[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2901004B1 - Injection valve - Google Patents

Injection valve Download PDF

Info

Publication number
EP2901004B1
EP2901004B1 EP13742624.3A EP13742624A EP2901004B1 EP 2901004 B1 EP2901004 B1 EP 2901004B1 EP 13742624 A EP13742624 A EP 13742624A EP 2901004 B1 EP2901004 B1 EP 2901004B1
Authority
EP
European Patent Office
Prior art keywords
stop
face
injection valve
angle
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13742624.3A
Other languages
German (de)
French (fr)
Other versions
EP2901004A1 (en
Inventor
Olaf SCHOENROCK
Juergen Graner
Philipp Rogler
Friedrich Moser
Anselm Berg
Walter Maeurer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2901004A1 publication Critical patent/EP2901004A1/en
Application granted granted Critical
Publication of EP2901004B1 publication Critical patent/EP2901004B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0685Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0635Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
    • F02M51/066Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/07Fuel-injection apparatus having means for avoiding sticking of valve or armature, e.g. preventing hydraulic or magnetic sticking of parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/306Fuel-injection apparatus having mechanical parts, the movement of which is damped using mechanical means

Definitions

  • the present invention relates to an injection valve for injecting a medium, in particular for injecting fuel into a combustion chamber.
  • the injection process can be designed as a channel or direct injection.
  • valves for the injection of gasoline with a valve needle which is moved by an actuator, such as an electromagnet or piezo actuator, against a closing spring so that a desired amount of fuel is introduced directly targeted into the combustion chamber.
  • an injection valve is considered in which the armature is decoupled from the valve needle.
  • the armature should quickly release from the valve stop located on the lower stop (second stop), quickly overcome the Ankerokweg and open the valve quickly when hitting the top stop (first stop). If the energization of the valve is terminated, the valve needle closes again. The armature, after the valve needle closes the valve seat, continues to move until it encounters the lower limit stop.
  • the anchor From the bottom stop, the anchor rebounds several times until it reaches its rest position again.
  • the time it takes for the armature to return to the rest position is critical to the ability of the valve to rapidly eject successive injections with high accuracy.
  • a crimp gap is formed at the lower stop, that is to say between magnet armature and the corresponding stop sleeve on the valve needle.
  • the medium to be injected is squeezed, so that when closing the armature is damped and quickly returned to the rest position.
  • the nip prevents rapid opening by stopping the movement dampens when opening.
  • the nip must therefore be designed as a compromise so that the armature opens the valve sufficiently quickly, and is reset sufficiently quickly to the rest position.
  • DE19849210A1 shows a known injection valve.
  • the injector according to the invention with the features of claim 1 makes it possible to better dampen the armature and thus reset the armature after closing the injector faster than before in its rest position. At the same time, the damping is reduced according to the invention when opening the injection valve, so that the injection valve opens faster.
  • the armature dissolves faster than before from the valve needle, whereby the dynamics of the valve is increased and thus the function is improved.
  • the force required to open is reduced, which reduces the power consumption of the injector and thus the total energy consumption of the vehicle. As a result, the consumption of the vehicle decreases.
  • closing the injection valve the following advantages result: The movement of the armature is attenuated more than previously.
  • an injection valve according to the invention comprising a housing with at least one injection opening on an outlet side, a magnetic coil and a magnet armature linearly movable by the magnetic coil. Furthermore, the injection valve has a valve needle. This valve needle is used to open and close the at least one injection opening. The valve needle extends along a longitudinal axis and is linearly movable.
  • the magnet armature In the magnet armature, a through hole is formed.
  • the valve needle is in this through hole.
  • the armature is linearly movable between a first and a second stop relative to the valve needle. This creates a two-mass system.
  • the first stop is on a side facing away from the outlet formed of the armature.
  • the first stop is formed by a ring on the valve needle.
  • the second stop is formed on an outlet-facing side of the magnet armature.
  • the second stop is formed by a stop element and a counter element. At the second stop, the stop element and the counter element hit each other.
  • the stop element on a stop surface. On the counter element one of the stop surface opposite counter surface is formed.
  • the stop surface and the counter surface meet each other at the second stop.
  • the stop element is designed to be elastic, so that an angle between the longitudinal axis and stop surface changes when striking counter surface and stop surface.
  • the stop surface is inclined before and after the contact of stop element and counter element to the counter element.
  • the stop element is elastically deformed, so that the space between stop surface and counter surface decreases. Due to the elastic design of the stop element according to the invention, it is possible that the nip and the throttle flow between stop surface and mating surface to move when moving together and Vonfactwegbe admire from stop surface and mating surface. As a result, the damping during opening and closing of the injection valve can be set very precisely.
  • the stop element is firmly connected to the valve needle. Accordingly, then the counter element is located on the armature.
  • the counter element is an integral part of the magnet armature.
  • the counter surface is the side of the magnet armature facing the abutment surface. It is crucial that at least one of the two opposing surfaces is formed elastically on the second stop. This at least one elastic surface is referred to in the present application as a stop surface.
  • the stop element is integrated in the valve needle.
  • the angle between the longitudinal axis and abutment surface is at least in places smaller than 90 ° without contact of abutment surface and counter surface.
  • the angle is defined on the opposite surface facing the stop surface. This means that the angle of less than 90 ° defines that the stop surface is inclined towards the opposite surface. It is sufficient if the stop surface only in places has this inclination with the appropriate angle. During the abutment of the counter surface on the stop surface, the stop surface is deformed, so that the angle is increased.
  • the abutment surface is inclined in the direction of the mating surface, so that a relatively large, filled with the medium space between abutment surface and mating surface is present.
  • the movement is first damped by a throttle flow and as soon as the stop surface and counter surface meet, the stop surface is deformed, so that the stop surface is aligned parallel to the counter surface. This creates a nip for damping the movement of the magnet armature.
  • the Damping effect thus increases with the decreasing distance between the stop surface and counter surface.
  • the angle without the contact of abutment surface and mating surface is a maximum of 89.99 °, preferably a maximum of 89.85 °. As already described above, this angle does not have to be present over the entire stop surface.
  • the angle is elastically deformed by at least 0.01 °, preferably at least 0.15 °, by the abutment of counter surface and abutment surface.
  • the stop surface is deformed so far until stop surface and counter surface are aligned parallel to each other.
  • the stop surface is divided into an inner portion and an outer portion.
  • the inner portion is closer to the longitudinal axis than the outer portion.
  • the stop surface is an annular surface around the valve needle.
  • the inner portion is an inner annular surface.
  • the outer portion is a further annular surface located outside the inner portion. The angle without the contact of abutment surface and counter surface is greater at the outer portion than at the inner portion.
  • the stop surface tends towards the counter surface with increasing distance from the longitudinal axis.
  • the inner portion is formed without the contact of the stop surface and counter surface parallel to the counter surface.
  • the inner portion may be slightly inclined to the opposite surface or concave.
  • outer surface a side facing away from the opposite surface.
  • This outer surface should also be shaped accordingly, so that sufficient elasticity for deformation of the stop surface is given. Therefore, the outer surface is preferably inclined towards the counter element or at least locally concave. Alternatively, the outer surface may be partially parallel to the stop surface. It is also decisive that the stop element is formed as thin as possible, so that the stop surface can deform elastically.
  • grooves are preferably provided in the stop element. Particularly preferably, these grooves are formed completely circumferentially about the longitudinal axis.
  • the first stop is preferably formed by a paragraph or by a ring on the valve needle.
  • FIGS. 1 to 7 a first embodiment of the injection valve 1 explained. Identical or functionally identical components are provided with the same reference numerals in all embodiments.
  • FIG. 1 shows the general structure of the injection valve 1 for all embodiments.
  • the injection valve 1 comprises a housing 2 with an injection opening 4 on an outlet side 3.
  • the housing 2 carries a magnetic coil 5.
  • a valve needle 6 with a ball 7 is arranged along a longitudinal axis 15.
  • the ball 7 forms with the housing 2 a valve seat for opening and closing the injection opening 4th
  • a magnet armature 8 which is connected to a spring cup 9.
  • a ring 10 is fixedly arranged on the valve needle 6. This ring 10 forms a first stop for the magnet armature 8.
  • a stop element 12 forms together with the armature 5, a second stop.
  • Both the valve needle 6 and the magnet armature 8 are linearly movable along the longitudinal axis 15. The movement of the magnet armature 8 is limited by the first and second stop.
  • valve needle 6 may be formed hollow.
  • valve needle 6 By means of a first spring 11, the valve needle 6 is loaded in the direction of the outlet side 3.
  • a second spring 13 between the spring cup 9 and the stop element 12 also loads the magnet armature 8 in the direction of the outlet side 3.
  • the armature 8 By energizing the solenoid 5, the armature 8 is moved. The armature 8 takes over the first and second stop the valve needle 6 with. The distance between the two stops defines an anchor path 14.
  • FIG. 2 shows a detail of the injection valve 1 according to the first embodiment. It can be seen that the stop element 12 is made in one piece with a sleeve 20. The sleeve 20 is inserted on the valve needle 6 and is firmly connected to the valve needle 6. The armature 8 is at the same time designed as a so-called counter element 18.
  • a counter element 18 facing surface on the stop element 12 is referred to as a stop surface 17.
  • the abutment surface 17 is located opposite the mating element 18 against a counter surface 19.
  • a side facing away from the counter element 18 of the stop element 12 is referred to as the outer surface 21.
  • the drawn angle ⁇ is defined between the abutment surface 17 and the longitudinal axis 15. The angle ⁇ is measured on the side of the abutment surface 17 facing the counter element 18.
  • the stop element 12 and thus also the stop surface 17 are elastically deformable. Upon impact of the counter element 18, so the armature 8, on the stop element 12, the stop element 12 is elastically deformed, so that the angle ⁇ increases.
  • FIG. 3 shows in detail the sleeve 20 and the stopper 12.
  • the sleeve 20 and the stopper 12 have a longitudinal axis 15 coaxial through hole 28.
  • the valve needle 6 In this through hole 28, the valve needle 6.
  • a first height 25 extends parallel to the longitudinal axis 15 from the upper end of the through hole 28 to the outer end of the abutment surface 17.
  • the outer end of the abutment surface 17 is referred to as a tip 27.
  • a second height 26 marks the extension of the stop element 12 parallel to the longitudinal axis 15. In the illustrated embodiment, the elasticity of the stop surface 17 is given by the fact that the two heights 25, 26 are greater than 0.
  • FIGS. 4 to 7 show a sequence of movements when opening and closing the injector.
  • FIG. 4 shows the idle state in which the magnetic coil 5 is not energized and the armature 8 only slightly rests on the stop element 12. Accordingly, the stop surface 17 is not deformed and the stop surface 17 is inclined ⁇ with the angle ⁇ smaller than 90 ° to the counter surface 19.
  • reference numeral 29 denotes a throttle flow of the medium to be injected.
  • the dashed line of the stop element 12 shows the elastic deformation.
  • FIG. 5 is pulled by the applied magnetic field at the magnetic coil 5 of the armature 8 in the direction of the inner pole, in the illustration shown upwards.
  • the valve needle 6 remains in the valve seat until the armature 8 has overcome the Ankerokweg 14 and the valve needle 6 via the ring 10 (first stop) entrains.
  • the throttle flow 29 is formed between magnet armature 8 and valve needle 6, that is to say between abutment surface 17 and mating surface 18.
  • the throttle flow 29 between abutment surface 17 and mating surface 19 decreases with increasing distance, so that the Injector can open quickly.
  • the current at the solenoid 5 is turned off, the magnetic field degrades.
  • the valve needle 6 is located in the seat and the magnet armature 8 can continue its movement in the direction of the second stop on the stop element 12 coming from the first stop on the ring 10.
  • the relative movement between the magnet armature 8 and the valve needle 6 results in the throttle flow 29 between the stop surface 17 and the counter surface 19 again.
  • the throttle flow 29 increases with decreasing distance, so that the movement of the magnet armature 8 is increasingly damped.
  • This state shows FIG. 7 , The movement of the armature 8 is thereby braked. Due to the elastic deformation of the stop element 12, the stop surface 17 is aligned plane-parallel to the counter surface 19, whereby the damping of the magnetic armature movement is maximized by the nip.
  • FIG. 8 shows a detail of the injection valve 1 according to a second embodiment.
  • the stop surface 17 is divided into an inner portion 23 and an outer portion 24.
  • the inner portion 23 is also without contact with the counter surface 19 perpendicular to the longitudinal axis 15 and thus also parallel to the counter surface 19, respectively.
  • the outer surface 21 is partially parallel to the mating surface 19 and partially inclined to the mating surface 19 is formed.
  • the outer surface 21 is inclined approximately in the region of the outer portion 24 towards the counter surface, so that here a sufficient elasticity of the stop element 12 is given.
  • FIG. 9 shows a detail of the injection valve 1 according to a third embodiment.
  • the stop surface 17 is inclined both in the inner portion 23 and in the outer portion 24 in the direction of the counter surface 19.
  • the inclination in the outer portion 24 is stronger, so that here the largest deformation of the stop element 12 occurs.
  • FIG. 10 shows a detail of the injection valve 1 according to a fourth embodiment.
  • the stop surface 17 is just as in the third embodiment in the inner portion 23 and inclined in the outer portion 24 in the direction of the counter surface 19.
  • the outer surface 21 is thereby greatly inclined away from the sleeve 20 in the direction of the counter surface 19. This results in particular in the outer area a very narrow stop element 12, which is correspondingly elastically deformable.
  • FIG. 11 shows a detail of the injection valve 1 according to a fifth embodiment.
  • the stop surface 17 is arranged on the inner portion 23 parallel to the counter surface 19.
  • the stop surface 17 is concave.
  • the outer surface 21 of the stop element 12 is concave. This results in a relatively narrow stop element 12 with rounded transitions between the various inclinations, so that a reliable elasticity is ensured.
  • the angle ⁇ is defined by the tangent to the concave configuration of the stop surface 17 in the outer portion 24 and the longitudinal axis 15th
  • FIG. 12 shows a detail of the injection valve 1 according to a sixth embodiment.
  • the sixth embodiment there is a groove in the outer surface 21 of the stop element 12.
  • This groove 22 is in particular formed circumferentially around the longitudinal axis 15. Through the groove 22, the stop element 12 is weakened accordingly, so that the desired elasticity is given.
  • FIG. 13 shows a part of the injection valve 1 according to a seventh embodiment.
  • a groove 22 for adjusting the elasticity of the stop element 12 is shown.
  • the groove 22 is in a plane parallel to the longitudinal axis 15 surface of the stop element 12.
  • the groove 22 extends very close to the tip 27 and the stop surface 17, so that in this embodiment, not the entire stop element 12, but only an upper portion is deformed.
  • the various embodiments show possible geometries of the stop element 12.
  • the stop surfaces 17 are designed wedge-shaped in the rule, since the wedge shape is easy to dimension and manufacture.
  • combinations of the illustrated embodiments are possible. So can the in FIG. 12 and 13 shown grooves 22 are used in appropriate depth and number in the other embodiments.
  • the outer surface 21 according to the Figures 9 . 10 and 11 adapt.
  • the different angles and concave configurations the stop surface 17 of the different embodiments can be combined. Further possible are all other concave and convex shapes of the stop element 12, as long as the sufficient elasticity is ensured.
  • Other cross-sectional shapes for the groove 22 are, for example, triangles or ellipses.
  • the embodiments show rotationally symmetrical, non-hollow valve needles 6. It is equally possible to apply the invention to hollow and / or non-rotationally symmetrical valve needles 6. Also, the stop surface 17 or the counter surface 19 does not have to be rotationally symmetrical. All embodiments shown, the stop surface 17 and the stop member 19 fixedly connected to the valve needle 6. Accordingly, the armature 6 is defined in the embodiments as a counter element 18 with mating surface 19.
  • the mating surface 19 is in the simplest embodiment of the invention, a flat, rigid surface. Just as well, it is possible that the counter surface 19 has a certain inclination and elasticity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Stand der TechnikState of the art

Die vorliegende Erfindung betrifft ein Einspritzventil zum Einspritzen eines Mediums, insbesondere zum Einspritzen von Brennstoff in einen Brennraum. Der Einspritzvorgang kann dabei als Kanal- oder Direkteinspritzung ausgestaltet sein.The present invention relates to an injection valve for injecting a medium, in particular for injecting fuel into a combustion chamber. The injection process can be designed as a channel or direct injection.

Stand der Technik sind Ventile zur Einspritzung von Ottokraftstoff mit einer Ventilnadel, die von einem Aktor, beispielsweise einem Elektromagneten oder Piezosteller, gegen eine Schließfeder so bewegt wird, dass eine gewünschte Kraftstoffmenge gezielt direkt in den Brennraum eingebracht wird. Im vorliegenden Fall wird ein Einspritzventil betrachtet, bei dem der Magnetanker von der Ventilnadel entkoppelt ist. Beim Öffnen des Einspritzventils soll sich der Magnetanker schnell von dem an der Ventilnadel befindlichen unteren Anschlag (zweiter Anschlag) lösen, den Ankerfreiweg schnell überwinden und beim Auftreffen auf den oberen Anschlag (erster Anschlag) das Ventil schnell öffnen. Wird die Bestromung des Ventils beendet, schließt die Ventilnadel wieder. Der Magnetanker führt, nachdem die Ventilnadel den Ventilsitz wieder verschließt, seine Bewegung fort, bis er auf den unteren Anschlag trifft. Vom unteren Anschlag prellt der Anker mehrmals ab, bis er seine Ruheposition wieder erreicht. Die Zeit, bis der Magnetanker wieder in die Ruheposition zurückgestellt wird, ist entscheidend für die Fähigkeit des Ventils, schnell aufeinanderfolgende Einspritzungen mit hoher Genauigkeit abzusetzen. Üblicherweise ist am unteren Anschlag, also zwischen Magnetanker und der entsprechenden Anschlagshülse auf der Ventilnadel, ein Quetschspalt ausgebildet. In diesen Quetschspalt wird das einzuspritzende Medium gequetscht, so dass beim Schließen der Magnetanker gedämpft und schnell in die Ruheposition zurückgestellt wird. Der Quetschspalt verhindert jedoch ein schnelles Öffnen, indem er die Bewegung beim Öffnen dämpft. Der Quetschspalt muss daher als Kompromiss so ausgelegt werden, dass der Magnetanker ausreichend schnell das Ventil öffnet, und ausreichend schnell wieder in die Ruheposition zurückgestellt wird.State of the art are valves for the injection of gasoline with a valve needle, which is moved by an actuator, such as an electromagnet or piezo actuator, against a closing spring so that a desired amount of fuel is introduced directly targeted into the combustion chamber. In the present case, an injection valve is considered in which the armature is decoupled from the valve needle. When opening the injector, the armature should quickly release from the valve stop located on the lower stop (second stop), quickly overcome the Ankerfreiweg and open the valve quickly when hitting the top stop (first stop). If the energization of the valve is terminated, the valve needle closes again. The armature, after the valve needle closes the valve seat, continues to move until it encounters the lower limit stop. From the bottom stop, the anchor rebounds several times until it reaches its rest position again. The time it takes for the armature to return to the rest position is critical to the ability of the valve to rapidly eject successive injections with high accuracy. Usually, a crimp gap is formed at the lower stop, that is to say between magnet armature and the corresponding stop sleeve on the valve needle. In this nip the medium to be injected is squeezed, so that when closing the armature is damped and quickly returned to the rest position. However, the nip prevents rapid opening by stopping the movement dampens when opening. The nip must therefore be designed as a compromise so that the armature opens the valve sufficiently quickly, and is reset sufficiently quickly to the rest position.

DE19849210A1 zeigt ein bekanntes Einspritzventil. DE19849210A1 shows a known injection valve.

Offenbarung der ErfindungDisclosure of the invention

Das erfindungsgemäße Einspritzventil mit den Merkmalen des Anspruchs 1 ermöglicht es, den Magnetanker besser zu dämpfen und somit den Magnetanker nach dem Schließen des Einspritzventils schneller als bisher in seine Ruheposition zurückzustellen. Gleichzeitig wird erfindungsgemäß beim Öffnen des Einspritzventils die Dämpfung reduziert, so dass sich das Einspritzventil schneller öffnet. Im Detail ergeben sich somit folgende Vorteile beim Öffnen des Einspritzventils: Der Magnetanker löst sich schneller als bisher von der Ventilnadel, wodurch die Dynamik des Ventils gesteigert wird und somit die Funktion verbessert wird. Die zum Öffnen benötigte Kraft wird reduziert, wodurch sich der Strombedarf des Einspritzventils und somit der gesamte Energiebedarf des Fahrzeugs senken. Infolgedessen sinkt der Verbrauch des Fahrzeugs. Beim Schließen des Einspritzventils ergeben sich folgende Vorteile: Die Bewegung des Magnetankers wird stärker als bisher gedämpft. Der Magnetanker erreicht dadurch früher als bisher seine Ruheposition, wodurch kurz aufeinander folgende Einspritzungen mit hoher Wiederholgenauigkeit abgesetzt werden können. Mit dem erfindungsgemäßen Einspritzventil sind neue Einspritzstrategien möglich, die eine Verbrennung mit weniger Schadstoffemissionen und weniger Verbrauch ermöglichen. Die bessere Dämpfung beim Schließen des Einspritzventils reduziert das Geräusch, das durch den Impulsübertrag des Magnetankers auf die Ventilnadel entsteht. All diese Vorteile werden erreicht durch ein erfindungsgemäßes Einspritzventil, umfassend ein Gehäuse mit zumindest einer Spritzöffnung an einer Auslassseite, eine Magnetspule und einen durch die Magnetspule linear beweglichen Magnetanker. Des Weiteren weist das Einspritzventil eine Ventilnadel auf. Diese Ventilnadel dient zum Öffnen und Schließen der zumindest einen Spritzöffnung. Die Ventilnadel erstreckt sich entlang einer Längsachse und ist linear beweglich. Im Magnetanker ist ein Durchgangsloch ausgebildet. In diesem Durchgangsloch steckt die Ventilnadel. Der Magnetanker ist dabei zwischen einem ersten und einem zweiten Anschlag gegenüber der Ventilnadel linear beweglich. Dadurch entsteht ein Zweimassensystem. Der erste Anschlag ist auf einer auslassabgewandten Seite des Magnetankers ausgebildet. Beispielsweise wird der erste Anschlag durch einen Ring an der Ventilnadel gebildet. Der zweite Anschlag ist an einer auslasszugewandten Seite des Magnetankers ausgebildet. Erfindungsgemäß ist der zweite Anschlag gebildet durch ein Anschlagelement und ein Gegenelement. Am zweiten Anschlag schlagen das Anschlagelement und das Gegenelement aufeinander. Hierzu weist das Anschlagelement eine Anschlagfläche auf. Am Gegenelement ist eine der Anschlagfläche gegenüberliegende Gegenfläche ausgebildet. Die Anschlagfläche und die Gegenfläche treffen am zweiten Anschlag aufeinander. Das Anschlagelement ist elastisch ausgebildet, so dass beim Anschlagen von Gegenfläche und Anschlagfläche sich ein Winkel zwischen Längsachse und Anschlagfläche verändert. Insbesondere ist vorgesehen, dass die Anschlagfläche vor und nach dem Kontakt von Anschlagelement und Gegenelement zum Gegenelement hin geneigt ist. Sobald Gegenelement und Anschlagelement aufeinandertreffen, wird das Anschlagelement elastisch deformiert, so dass sich der Raum zwischen Anschlagfläche und Gegenfläche verkleinert. Durch die erfindungsgemäße elastische Ausgestaltung des Anschlagelements ist es möglich, dass der Quetschspalt und die Drosselströmung zwischen Anschlagfläche und Gegenfläche sich beim Aufeinanderzubewegen und Voneinanderwegbewegen von Anschlagfläche und Gegenfläche verändern. Dadurch kann die Dämpfung beim Öffnen und Schließen des Einspritzventils sehr exakt eingestellt werden.The injector according to the invention with the features of claim 1 makes it possible to better dampen the armature and thus reset the armature after closing the injector faster than before in its rest position. At the same time, the damping is reduced according to the invention when opening the injection valve, so that the injection valve opens faster. In detail, there are thus the following advantages when opening the injection valve: The armature dissolves faster than before from the valve needle, whereby the dynamics of the valve is increased and thus the function is improved. The force required to open is reduced, which reduces the power consumption of the injector and thus the total energy consumption of the vehicle. As a result, the consumption of the vehicle decreases. When closing the injection valve, the following advantages result: The movement of the armature is attenuated more than previously. As a result, the magnet armature reaches its rest position earlier than before, as a result of which short successive injections can be discontinued with high repeat accuracy. With the injection valve according to the invention new injection strategies are possible, which allow combustion with less pollutant emissions and less consumption. The better damping when closing the injector reduces the noise that results from the momentum transfer of the armature to the valve needle. All of these advantages are achieved by an injection valve according to the invention, comprising a housing with at least one injection opening on an outlet side, a magnetic coil and a magnet armature linearly movable by the magnetic coil. Furthermore, the injection valve has a valve needle. This valve needle is used to open and close the at least one injection opening. The valve needle extends along a longitudinal axis and is linearly movable. In the magnet armature, a through hole is formed. The valve needle is in this through hole. The armature is linearly movable between a first and a second stop relative to the valve needle. This creates a two-mass system. The first stop is on a side facing away from the outlet formed of the armature. For example, the first stop is formed by a ring on the valve needle. The second stop is formed on an outlet-facing side of the magnet armature. According to the invention, the second stop is formed by a stop element and a counter element. At the second stop, the stop element and the counter element hit each other. For this purpose, the stop element on a stop surface. On the counter element one of the stop surface opposite counter surface is formed. The stop surface and the counter surface meet each other at the second stop. The stop element is designed to be elastic, so that an angle between the longitudinal axis and stop surface changes when striking counter surface and stop surface. In particular, it is provided that the stop surface is inclined before and after the contact of stop element and counter element to the counter element. As soon as counter element and stop element meet, the stop element is elastically deformed, so that the space between stop surface and counter surface decreases. Due to the elastic design of the stop element according to the invention, it is possible that the nip and the throttle flow between stop surface and mating surface to move when moving together and Voneinanderwegbewegen from stop surface and mating surface. As a result, the damping during opening and closing of the injection valve can be set very precisely.

Die Unteransprüche zeigen bevorzugte Weiterbildungen der Erfindung.The dependent claims show preferred developments of the invention.

Das Anschlagelement fest mit der Ventilnadel verbunden ist. Entsprechend befindet sich dann das Gegenelement am Magnetanker. Das Gegenelement ist dabei integraler Bestandteil des Magnetankers. Im einfachsten Fall ist die Gegenfläche die der Anschlagfläche zugewandten Seite des Magnetankers. Entscheidend ist, dass zumindest eine der beiden gegenüberliegenden Flächen am zweiten Anschlag elastisch ausgebildet ist. Diese zumindest eine elastische Fläche wird im Rahmen vorliegender Anmeldung als Anschlagfläche bezeichnet.The stop element is firmly connected to the valve needle. Accordingly, then the counter element is located on the armature. The counter element is an integral part of the magnet armature. In the simplest case, the counter surface is the side of the magnet armature facing the abutment surface. It is crucial that at least one of the two opposing surfaces is formed elastically on the second stop. This at least one elastic surface is referred to in the present application as a stop surface.

Bevorzugt ist das Anschlagelement in die Ventilnadel integriert.Preferably, the stop element is integrated in the valve needle.

Des Weiteren ist bevorzugt vorgesehen, dass der Winkel zwischen Längsachse und Anschlagfläche ohne einen Kontakt von Anschlagfläche und Gegenfläche zumindest stellenweise kleiner 90° ist. Der Winkel ist dabei auf der der Gegenfläche zugewandten Seite der Anschlagfläche definiert. Das bedeutet, dass der Winkel von kleiner 90° definiert, dass die Anschlagfläche zur Gegenfläche hin geneigt ist. Dabei ist es ausreichend, wenn die Anschlagfläche nur stellenweise diese Neigung mit dem entsprechenden Winkel aufweist. Während des Anschlags der Gegenfläche auf der Anschlagfläche wird die Anschlagfläche deformiert, so dass sich der Winkel vergrößert.Furthermore, it is preferably provided that the angle between the longitudinal axis and abutment surface is at least in places smaller than 90 ° without contact of abutment surface and counter surface. The angle is defined on the opposite surface facing the stop surface. This means that the angle of less than 90 ° defines that the stop surface is inclined towards the opposite surface. It is sufficient if the stop surface only in places has this inclination with the appropriate angle. During the abutment of the counter surface on the stop surface, the stop surface is deformed, so that the angle is increased.

Beim Abheben von Anschlagfläche und Gegenfläche, also beim Öffnen des Einspritzventils, entspannt sich das Anschlagelement wieder, so dass sich der Winkel wieder verkleinert. Durch diese Ausgestaltung des Winkels ist es möglich, dass beim Öffnen des Einspritzventils lediglich eine Drosselströmung, jedoch kein Quetschspalt, die Bewegung des Magnetankers dämpft. Sobald sich die Gegenfläche und die Anschlagfläche etwas voneinander wegbewegen, entspannt sich das Anschlagelement und die Anschlagfläche neigt sich somit in Richtung der Gegenfläche. Infolgedessen sind dann Anschlagfläche und Gegenfläche nicht mehr parallel zueinander und es liegt kein Quetschspalt vor. Lediglich eine Drosselströmung, nämlich die Strömung des einzuspritzenden Mediums, das aus dem Bereich zwischen Anschlagfläche und Gegenfläche herausströmt, dämpft die Öffnungsbewegung des Magnetankers.When lifting stop surface and mating surface, so when opening the injector, the stop element relaxes again, so that the angle decreases again. Due to this design of the angle, it is possible that when opening the injector only a throttle flow, but no squish, dampens the movement of the armature. As soon as the mating surface and the abutment surface move away from each other slightly, the abutment element relaxes and the abutment surface thus tilts in the direction of the mating surface. As a result, stop surface and counter surface are then no longer parallel to each other and there is no nip. Only a throttle flow, namely the flow of the medium to be injected, which flows out of the area between the stop surface and counter surface, dampens the opening movement of the magnet armature.

Beim Schließen des Einspritzventils bewegen sich Anschlagfläche und Gegenfläche aufeinander zu. Zunächst ist dabei die Anschlagfläche in Richtung der Gegenfläche geneigt, so dass ein relativ großer, mit dem Medium gefüllter Raum zwischen Anschlagfläche und Gegenfläche vorhanden ist. Die Bewegung wird zunächst durch eine Drosselströmung gedämpft und sobald Anschlagfläche und Gegenfläche aufeinandertreffen, wird die Anschlagfläche deformiert, so dass sich die Anschlagfläche parallel zur Gegenfläche ausrichtet. Dadurch entsteht ein Quetschspalt zum Dämpfen der Bewegung des Magnetankers. Die Dämpfungswirkung nimmt also mit dem sich verkleinernden Abstand zwischen Anschlagfläche und Gegenfläche zu.When closing the injector stop surface and counter surface move towards each other. First, the abutment surface is inclined in the direction of the mating surface, so that a relatively large, filled with the medium space between abutment surface and mating surface is present. The movement is first damped by a throttle flow and as soon as the stop surface and counter surface meet, the stop surface is deformed, so that the stop surface is aligned parallel to the counter surface. This creates a nip for damping the movement of the magnet armature. The Damping effect thus increases with the decreasing distance between the stop surface and counter surface.

Insbesondere ist vorgesehen, dass der Winkel ohne den Kontakt von Anschlagfläche und Gegenfläche maximal 89,99°, vorzugsweise maximal 89,85°, beträgt. Wie oben bereits beschrieben, muss dieser Winkel nicht über die gesamte Anschlagfläche vorliegen.In particular, it is provided that the angle without the contact of abutment surface and mating surface is a maximum of 89.99 °, preferably a maximum of 89.85 °. As already described above, this angle does not have to be present over the entire stop surface.

Des Weiteren ist bevorzugt vorgesehen, dass durch den Anschlag von Gegenfläche und Anschlagfläche der Winkel um zumindest 0,01°, vorzugsweise zumindest 0,15°, elastisch verformt wird. In besonders bevorzugter Ausführung wird die Anschlagfläche so weit verformt, bis Anschlagfläche und Gegenfläche parallel zueinander ausgerichtet sind.Furthermore, it is preferably provided that the angle is elastically deformed by at least 0.01 °, preferably at least 0.15 °, by the abutment of counter surface and abutment surface. In a particularly preferred embodiment, the stop surface is deformed so far until stop surface and counter surface are aligned parallel to each other.

Des Weiteren ist es von Vorteil, dass die Anschlagfläche unterteilt ist in einen Innenabschnitt und einen Außenabschnitt. Der Innenabschnitt liegt dabei näher an der Längsachse als der Außenabschnitt. Besonders bevorzugt ist die Anschlagfläche eine Ringfläche um die Ventilnadel herum. Der Innenabschnitt ist dabei eine innere Ringfläche. Der Außenabschnitt ist eine außerhalb des Innenabschnitts liegende weitere Ringfläche. Der Winkel ohne den Kontakt von Anschlagfläche und Gegenfläche ist am Außenabschnitt größer als am Innenabschnitt. Bevorzugt ist dazu vorgesehen, dass sich die Anschlagfläche mit steigendem Abstand von der Längsachse stärker in Richtung Gegenfläche neigt.Furthermore, it is advantageous that the stop surface is divided into an inner portion and an outer portion. The inner portion is closer to the longitudinal axis than the outer portion. Particularly preferably, the stop surface is an annular surface around the valve needle. The inner portion is an inner annular surface. The outer portion is a further annular surface located outside the inner portion. The angle without the contact of abutment surface and counter surface is greater at the outer portion than at the inner portion. Preferably, it is provided that the stop surface tends towards the counter surface with increasing distance from the longitudinal axis.

Besonders bevorzugt ist vorgesehen, dass der Innenabschnitt ohne den Kontakt von Anschlagfläche und Gegenfläche parallel zur Gegenfläche ausgebildet ist. Alternativ dazu kann der Innenabschnitt leicht zur Gegenfläche geneigt sein oder konkav ausgebildet sein.Particularly preferably, it is provided that the inner portion is formed without the contact of the stop surface and counter surface parallel to the counter surface. Alternatively, the inner portion may be slightly inclined to the opposite surface or concave.

Am Anschlagelement wird eine der Gegenfläche abgewandte Seite als Außenfläche bezeichnet. Diese Außenfläche sollte auch entsprechend geformt sein, so dass genügend Elastizität zur Verformung der Anschlagfläche gegeben ist. Deshalb wird die Außenfläche bevorzugt zum Gegenelement hin geneigt oder zumindest stellenweise konkav ausgebildet. Alternativ kann die Außenfläche auch stellenweise parallel zur Anschlagfläche liegen. Dabei ist auch entscheidend, dass das Anschlagelement möglichst dünn ausgebildet ist, so dass sich die Anschlagfläche elastisch verformen kann.At the stop element, a side facing away from the opposite surface is referred to as outer surface. This outer surface should also be shaped accordingly, so that sufficient elasticity for deformation of the stop surface is given. Therefore, the outer surface is preferably inclined towards the counter element or at least locally concave. Alternatively, the outer surface may be partially parallel to the stop surface. It is also decisive that the stop element is formed as thin as possible, so that the stop surface can deform elastically.

Um die elastische Verformbarkeit des Anschlagelements und somit auch der Anschlagfläche zu gewährleisten, sind bevorzugt Nuten im Anschlagelement vorgesehen. Besonders bevorzugt sind diese Nuten vollständig umlaufend um die Längsachse ausgebildet.In order to ensure the elastic deformability of the stop element and thus also the stop surface, grooves are preferably provided in the stop element. Particularly preferably, these grooves are formed completely circumferentially about the longitudinal axis.

Der erste Anschlag, wird vorzugsweise durch einen Absatz oder durch einen Ring auf der Ventilnadel gebildet.The first stop, is preferably formed by a paragraph or by a ring on the valve needle.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Nachfolgend werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die begleitenden Zeichnungen im Detail beschrieben. Dabei zeigen:

Figur 1
ein erfindungsgemäßes Einspritzventil für alle Ausführungsbeispiele,
Figur 2
ein Detail des erfindungsgemäßen Einspritzventils gemäß einem ersten Ausführungsbeispiel,
Figur 3
ein weiteres Detail des erfindungsgemäßen Einspritzventils gemäß dem ersten Ausführungsbeispiel,
Figuren 4 bis 7
einen Bewegungsablauf am erfindungsgemäßen Einspritzventil gemäß dem ersten Ausführungsbeispiel,
Figur 8
das erfindungsgemäße Einspritzventil gemäß einem zweiten Ausführungsbeispiel,
Figur 9
das erfindungsgemäße Einspritzventil gemäß einem dritten Ausführungsbeispiel,
Figur 10
das erfindungsgemäße Einspritzventil gemäß einem vierten Ausführungsbeispiel,
Figur 11
das erfindungsgemäße Einspritzventil gemäß einem fünften Ausführungsbeispiel,
Figur 12
das erfindungsgemäße Einspritzventil gemäß einem sechsten Ausführungsbeispiel, und
Figur 13
das erfindungsgemäße Einspritzventil gemäß einem siebten Ausführungsbeispiel.
Hereinafter, embodiments of the invention will be described in detail with reference to the accompanying drawings. Showing:
FIG. 1
an inventive injection valve for all embodiments,
FIG. 2
a detail of the injection valve according to the invention according to a first embodiment,
FIG. 3
another detail of the injection valve according to the invention according to the first embodiment,
FIGS. 4 to 7
a movement sequence at the injection valve according to the invention according to the first embodiment,
FIG. 8
the injection valve according to the invention according to a second embodiment,
FIG. 9
the injection valve according to the invention according to a third embodiment,
FIG. 10
the injection valve according to the invention according to a fourth embodiment,
FIG. 11
the injection valve according to the invention according to a fifth embodiment,
FIG. 12
the injection valve according to the invention according to a sixth embodiment, and
FIG. 13
the injection valve according to the invention according to a seventh embodiment.

Ausführungsformen der ErfindungEmbodiments of the invention

Im Folgenden wird anhand der Figuren 1 bis 7 ein erstes Ausführungsbeispiel des Einspritzventils 1 erläutert. Gleiche bzw. funktional gleichen Bauteile sind in allen Ausführungsbeispielen mit denselben Bezugszeichen versehen.The following is based on the FIGS. 1 to 7 a first embodiment of the injection valve 1 explained. Identical or functionally identical components are provided with the same reference numerals in all embodiments.

Figur 1 zeigt den generellen Aufbau des Einspritzventils 1 für alle Ausführungsbeispiele. Das Einspritzventil 1 umfasst ein Gehäuse 2 mit einer Spritzöffnung 4 an einer Auslassseite 3. Das Gehäuse 2 trägt eine Magnetspule 5. Im Inneren des Gehäuses 2 ist entlang einer Längsachse 15 eine Ventilnadel 6 mit einer Kugel 7 angeordnet. Die Kugel 7 bildet mit dem Gehäuse 2 einen Ventilsitz zum Öffnen und Schließen der Spritzöffnung 4. FIG. 1 shows the general structure of the injection valve 1 for all embodiments. The injection valve 1 comprises a housing 2 with an injection opening 4 on an outlet side 3. The housing 2 carries a magnetic coil 5. Inside the housing 2, a valve needle 6 with a ball 7 is arranged along a longitudinal axis 15. The ball 7 forms with the housing 2 a valve seat for opening and closing the injection opening 4th

Des Weiteren befindet sich im Gehäuse 2 ein Magnetanker 8 der verbunden ist mit einem Federtopf 9. Auf einer auslassabgewandten Seite des Magnetankers 8 ist ein Ring 10 fest auf der Ventilnadel 6 angeordnet. Dieser Ring 10 bildet einen ersten Anschlag für den Magnetanker 8. Auf einer auslasszugewandten Seite des Magnetankers 8 befindet sich ein Anschlagelement 12. Dieses Anschlagelement 12 bildet zusammen mit dem Magnetanker 5 einen zweiten Anschlag.Furthermore, located in the housing 2, a magnet armature 8 which is connected to a spring cup 9. On a side facing away from the magnet armature 8, a ring 10 is fixedly arranged on the valve needle 6. This ring 10 forms a first stop for the magnet armature 8. On an outlet-facing side of the magnet armature 8 is a stop element 12. This stop element 12 forms together with the armature 5, a second stop.

Sowohl die Ventilnadel 6 als auch der Magnetanker 8 sind entlang der Längsachse 15 linear beweglich. Die Bewegung des Magnetankers 8 ist dabei durch den ersten und zweiten Anschlag begrenzt.Both the valve needle 6 and the magnet armature 8 are linearly movable along the longitudinal axis 15. The movement of the magnet armature 8 is limited by the first and second stop.

Im Magnetanker 8 sind mehrere Kanäle 16 für das einzuspritzende Medium vorgesehen. Zusätzlich oder alternativ kann auch die Ventilnadel 6 hohl ausgebildet werden.In the armature 8 more channels 16 are provided for the medium to be injected. Additionally or alternatively, the valve needle 6 may be formed hollow.

Mittels einer ersten Feder 11 ist die Ventilnadel 6 in Richtung der Auslassseite 3 belastet. Eine zweite Feder 13 zwischen dem Federtopf 9 und dem Anschlagelement 12 belastet den Magnetanker 8 ebenfalls in Richtung der Auslassseite 3.By means of a first spring 11, the valve needle 6 is loaded in the direction of the outlet side 3. A second spring 13 between the spring cup 9 and the stop element 12 also loads the magnet armature 8 in the direction of the outlet side 3.

Durch Bestromen der Magnetspule 5 wird der Magnetanker 8 bewegt. Der Magnetanker 8 nimmt über den ersten und zweiten Anschlag die Ventilnadel 6 mit. Der Abstand zwischen den beiden Anschlägen definiert einen Ankerfreiweg 14.By energizing the solenoid 5, the armature 8 is moved. The armature 8 takes over the first and second stop the valve needle 6 with. The distance between the two stops defines an anchor path 14.

Figur 2 zeigt ein Detail des Einspritzventils 1 gemäß dem ersten Ausführungsbeispiel. Dabei ist zu sehen, dass das Anschlagelement 12 einstückig gefertigt ist mit einer Hülse 20. Die Hülse 20 steckt auf der Ventilnadel 6 und ist fest mit der Ventilnadel 6 verbunden. Der Magnetanker 8 ist gleichzeitig als sogenanntes Gegenelement 18 ausgebildet. FIG. 2 shows a detail of the injection valve 1 according to the first embodiment. It can be seen that the stop element 12 is made in one piece with a sleeve 20. The sleeve 20 is inserted on the valve needle 6 and is firmly connected to the valve needle 6. The armature 8 is at the same time designed as a so-called counter element 18.

Eine dem Gegenelement 18 zugewandte Fläche am Anschlagelement 12 wird als Anschlagfläche 17 bezeichnet. Der Anschlagfläche 17 liegt am Gegenelement 18 eine Gegenfläche 19 gegenüber. Eine dem Gegenelement 18 abgewandte Seite des Anschlagelements 12 wird als Außenfläche 21 bezeichnet. Der eingezeichnete Winkel α ist definiert zwischen der Anschlagfläche 17 und der Längsachse 15. Der Winkel α wird dabei auf der dem Gegenelement 18 zugewandten Seite der Anschlagfläche 17 gemessen.A counter element 18 facing surface on the stop element 12 is referred to as a stop surface 17. The abutment surface 17 is located opposite the mating element 18 against a counter surface 19. A side facing away from the counter element 18 of the stop element 12 is referred to as the outer surface 21. The drawn angle α is defined between the abutment surface 17 and the longitudinal axis 15. The angle α is measured on the side of the abutment surface 17 facing the counter element 18.

Das Anschlagelement 12 und somit auch die Anschlagfläche 17 sind elastisch verformbar. Beim Auftreffen des Gegenelements 18, also des Magnetankers 8, auf dem Anschlagelement 12 wird das Anschlagelement 12 elastisch deformiert, so dass sich der Winkel α vergrößert.The stop element 12 and thus also the stop surface 17 are elastically deformable. Upon impact of the counter element 18, so the armature 8, on the stop element 12, the stop element 12 is elastically deformed, so that the angle α increases.

Figur 3 zeigt im Detail die Hülse 20 und das Anschlagelement 12. Die Hülse 20 und das Anschlagelement 12 weisen ein zur Längsachse 15 koaxiales Durchgangsloch 28 auf. In diesem Durchgangsloch 28 steckt die Ventilnadel 6. FIG. 3 shows in detail the sleeve 20 and the stopper 12. The sleeve 20 and the stopper 12 have a longitudinal axis 15 coaxial through hole 28. In this through hole 28, the valve needle 6.

Eine erste Höhe 25 erstreckt sich parallel zur Längsachse 15 vom oberen Ende des Durchgangslochs 28 bis zum äußeren Ende der Anschlagfläche 17. Das äußere Ende der Anschlagfläche 17 wird als Spitze 27 bezeichnet. Eine zweite Höhe 26 kennzeichnet die Erstreckung des Anschlagelementes 12 parallel zur Längsachse 15. Im gezeigten Ausführungsbeispiel ist die Elastizität der Anschlagfläche 17 dadurch gegeben, dass die beiden Höhen 25, 26 größer 0 sind.A first height 25 extends parallel to the longitudinal axis 15 from the upper end of the through hole 28 to the outer end of the abutment surface 17. The outer end of the abutment surface 17 is referred to as a tip 27. A second height 26 marks the extension of the stop element 12 parallel to the longitudinal axis 15. In the illustrated embodiment, the elasticity of the stop surface 17 is given by the fact that the two heights 25, 26 are greater than 0.

Die Figuren 4 bis 7 zeigen einen Bewegungsablauf beim Öffnen und Schließen des Einspritzventils. Figur 4 zeigt den Ruhezustand, bei dem die Magnetspule 5 nicht bestromt ist und der Magnetanker 8 lediglich leicht auf dem Anschlagelement 12 aufliegt. Dementsprechend ist die Anschlagfläche 17 nicht deformiert und die Anschlagfläche 17 ist mit dem Winkel α kleiner 90° zur Gegenfläche 19 hin geneigt.The FIGS. 4 to 7 show a sequence of movements when opening and closing the injector. FIG. 4 shows the idle state in which the magnetic coil 5 is not energized and the armature 8 only slightly rests on the stop element 12. Accordingly, the stop surface 17 is not deformed and the stop surface 17 is inclined α with the angle α smaller than 90 ° to the counter surface 19.

In folgenden Figuren wird mit Bezugszeichen 29 eine Drosselströmung des einzuspritzenden Mediums gekennzeichnet. Die gestrichelte Darstellung des Anschlagelementes 12 zeigt die elastische Deformation.In the following figures, reference numeral 29 denotes a throttle flow of the medium to be injected. The dashed line of the stop element 12 shows the elastic deformation.

In Figur 5 wird durch das angelegte Magnetfeld an der Magnetspule 5 der Magnetanker 8 in Richtung Innenpol, in der gezeigten Darstellung nach oben, gezogen. Die Ventilnadel 6 bleibt dabei im Ventilsitz, bis der Magnetanker 8 den Ankerfreiweg 14 überwunden hat und die Ventilnadel 6 über den Ring 10 (erster Anschlag) mitnimmt. Solange eine Relativbewegung zwischen Magnetanker 8 und Ventilnadel 6 vorliegt, bildet sich zwischen Magnetanker 8 und Ventilnadel 6, also zwischen Anschlagfläche 17 und Gegenfläche 18, die Drosselströmung 29. Die Drosselströmung 29 zwischen Anschlagfläche 17 und Gegenfläche 19 nimmt mit steigendem Abstand ab, so dass das Einspritzventil schnell öffnen kann. In Figur 6 ist der Strom an der Magnetspule 5 abgeschaltet, das Magnetfeld baut sich ab. Die Ventilnadel 6 befindet sich im Sitz und der Magnetanker 8 kann vom ersten Anschlag am Ring 10 kommend seine Bewegung in Richtung des zweiten Anschlags am Anschlagelement 12 fortführen. Durch die Relativbewegung zwischen Magnetanker 8 und Ventilnadel 6 entsteht zwischen Anschlagfläche 17 und Gegenfläche 19 wiederum die Drosselströmung 29. Die Drosselströmung 29 nimmt mit kleiner werdendem Abstand zu, so dass die Bewegung des Magnetankers 8 zunehmend gedämpft wird. Trifft der Magnetanker 8 auf das Anschlagelement 12, d.h., die Gegenfläche 19 drückt auf die Anschlagfläche 17, so wird durch den Stoß das Anschlagsement 12 elastisch verformt und das zwischen Anschlagfläche 17 und Gegenfläche 19 befindliche Dämpfungsvolumen wird zu einem Quetschspalt. Diesen Zustand zeigt Figur 7. Die Bewegung des Magnetankers 8 wird dadurch gebremst. Durch die elastische Verformung des Anschlagelementes 12 wird die Anschlagfläche 17 planparallel zur Gegenfläche 19 ausgerichtet, wodurch die Dämpfung der Magnetankerbewegung durch den Quetschspalt maximiert wird.In FIG. 5 is pulled by the applied magnetic field at the magnetic coil 5 of the armature 8 in the direction of the inner pole, in the illustration shown upwards. The valve needle 6 remains in the valve seat until the armature 8 has overcome the Ankerfreiweg 14 and the valve needle 6 via the ring 10 (first stop) entrains. As long as there is a relative movement between armature 8 and valve needle 6, the throttle flow 29 is formed between magnet armature 8 and valve needle 6, that is to say between abutment surface 17 and mating surface 18. The throttle flow 29 between abutment surface 17 and mating surface 19 decreases with increasing distance, so that the Injector can open quickly. In FIG. 6 the current at the solenoid 5 is turned off, the magnetic field degrades. The valve needle 6 is located in the seat and the magnet armature 8 can continue its movement in the direction of the second stop on the stop element 12 coming from the first stop on the ring 10. The relative movement between the magnet armature 8 and the valve needle 6 results in the throttle flow 29 between the stop surface 17 and the counter surface 19 again. The throttle flow 29 increases with decreasing distance, so that the movement of the magnet armature 8 is increasingly damped. Meets the armature 8 on the Stop element 12, ie, the mating surface 19 presses on the stop surface 17, the stop element 12 is elastically deformed by the impact and the damping volume located between stop surface 17 and mating surface 19 becomes a nip. This state shows FIG. 7 , The movement of the armature 8 is thereby braked. Due to the elastic deformation of the stop element 12, the stop surface 17 is aligned plane-parallel to the counter surface 19, whereby the damping of the magnetic armature movement is maximized by the nip.

Figur 8 zeigt ein Detail des Einspritzventils 1 gemäß einem zweiten Ausführungsbeispiel. Im zweiten Ausführungsbeispiel ist die Anschlagfläche 17 unterteilt in einen Innenabschnitt 23 und einen Außenabschnitt 24. Der Innenabschnitt 23 ist dabei auch ohne den Kontakt mit der Gegenfläche 19 senkrecht zur Längsachse 15 und somit auch parallel zur Gegenfläche 19, angeordnet. Im Außenabschnitt 24 weist die Anschlagfläche 17 die Neigung mit dem Winkel α in Richtung der Gegenfläche 19 auf. FIG. 8 shows a detail of the injection valve 1 according to a second embodiment. In the second embodiment, the stop surface 17 is divided into an inner portion 23 and an outer portion 24. The inner portion 23 is also without contact with the counter surface 19 perpendicular to the longitudinal axis 15 and thus also parallel to the counter surface 19, respectively. In the outer portion 24, the stop surface 17, the inclination with the angle α in the direction of the counter surface 19.

Die Außenfläche 21 ist teilweise parallel zur Gegenfläche 19 und teilweise geneigt zur Gegenfläche 19 ausgebildet. Insbesondere ist die Außenfläche 21 in etwa im Bereich des Außenabschnitts 24 zur Gegenfläche hin geneigt, so dass hier eine ausreichende Elastizität des Anschlagelementes 12 gegeben ist.The outer surface 21 is partially parallel to the mating surface 19 and partially inclined to the mating surface 19 is formed. In particular, the outer surface 21 is inclined approximately in the region of the outer portion 24 towards the counter surface, so that here a sufficient elasticity of the stop element 12 is given.

Figur 9 zeigt ein Detail des Einspritzventils 1 gemäß einem dritten Ausführungsbeispiel. Im dritten Ausführungsbeispiel ist die Anschlagfläche 17 sowohl im Innenabschnitt 23 als auch im Außenabschnitt 24 in Richtung der Gegenfläche 19 geneigt. Allerdings ist die Neigung im Außenabschnitt 24 stärker, so dass hier die größte Deformation des Anschlagelementes 12 auftritt. FIG. 9 shows a detail of the injection valve 1 according to a third embodiment. In the third embodiment, the stop surface 17 is inclined both in the inner portion 23 and in the outer portion 24 in the direction of the counter surface 19. However, the inclination in the outer portion 24 is stronger, so that here the largest deformation of the stop element 12 occurs.

Figur 10 zeigt ein Detail des Einspritzventils 1 gemäß einem vierten Ausführungsbeispiel. Im vierten Ausführungsbeispiel ist die Anschlagfläche 17 genauso wie im dritten Ausführungsbeispiel im Innenabschnitt 23 und im Außenabschnitt 24 in Richtung der Gegenfläche 19 geneigt. Die Außenfläche 21 ist dabei von der Hülse 20 weg durchgehend stark geneigt in Richtung der Gegenfläche 19. Dadurch entsteht insbesondere im Außenbereich ein sehr schmales Anschlagelement 12, das entsprechend elastisch verformbar ist. FIG. 10 shows a detail of the injection valve 1 according to a fourth embodiment. In the fourth embodiment, the stop surface 17 is just as in the third embodiment in the inner portion 23 and inclined in the outer portion 24 in the direction of the counter surface 19. The outer surface 21 is thereby greatly inclined away from the sleeve 20 in the direction of the counter surface 19. This results in particular in the outer area a very narrow stop element 12, which is correspondingly elastically deformable.

Figur 11 zeigt ein Detail des Einspritzventils 1 gemäß einem fünften Ausführungsbeispiel. Im fünften Ausführungsbeispiel ist die Anschlagfläche 17 über den Innenabschnitt 23 parallel zur Gegenfläche 19 angeordnet. Entlang des Außenabschnitts 24 ist die Anschlagfläche 17 konkav ausgebildet. Auch die Außenfläche 21 des Anschlagselementes 12 ist konkav ausgebildet. Dadurch entsteht ein relativ schmales Anschlagselement 12 mit abgerundeten Übergängen zwischen den verschiedenen Neigungen, so dass eine betriebssichere Elastizität gewährleistet ist. Der Winkel α ist hierbei definiert durch die Tangente an die konkave Ausgestaltung der Anschlagfläche 17 im Außenabschnitt 24 und die Längsachse 15. FIG. 11 shows a detail of the injection valve 1 according to a fifth embodiment. In the fifth embodiment, the stop surface 17 is arranged on the inner portion 23 parallel to the counter surface 19. Along the outer portion 24, the stop surface 17 is concave. The outer surface 21 of the stop element 12 is concave. This results in a relatively narrow stop element 12 with rounded transitions between the various inclinations, so that a reliable elasticity is ensured. The angle α is defined by the tangent to the concave configuration of the stop surface 17 in the outer portion 24 and the longitudinal axis 15th

Figur 12 zeigt ein Detail des Einspritzventils 1 gemäß einem sechsten Ausführungsbeispiel. Im sechsten Ausführungsbeispiel befindet sich eine Nut in der Außenfläche 21 des Anschlagelementes 12. Diese Nut 22 ist insbesondere umlaufend um die Längsachse 15 ausgebildet. Durch die Nut 22 wird das Anschlagelement 12 entsprechend geschwächt, so dass die gewünschte Elastizität gegeben ist. FIG. 12 shows a detail of the injection valve 1 according to a sixth embodiment. In the sixth embodiment, there is a groove in the outer surface 21 of the stop element 12. This groove 22 is in particular formed circumferentially around the longitudinal axis 15. Through the groove 22, the stop element 12 is weakened accordingly, so that the desired elasticity is given.

Figur 13 zeigt einen Teil des Einspritzventils 1 gemäß einem siebten Ausführungsbeispiel. Im siebten Ausführungsbeispiel ist wiederum eine Nut 22 zur Einstellung der Elastizität des Anschlagelementes 12 gezeigt. Im siebten Ausführungsbeispiel befindet sich die Nut 22 in einer zur Längsachse 15 parallelen Fläche des Anschlagelementes 12. Dadurch reicht die Nut 22 sehr nah an die Spitze 27 und an die Anschlagsfläche 17 heran, so dass in diesem Ausführungsbeispiel nicht das gesamte Anschlagelement 12, sondern nur ein oberer Abschnitt deformiert wird. FIG. 13 shows a part of the injection valve 1 according to a seventh embodiment. In the seventh embodiment, in turn, a groove 22 for adjusting the elasticity of the stop element 12 is shown. In the seventh embodiment, the groove 22 is in a plane parallel to the longitudinal axis 15 surface of the stop element 12. As a result, the groove 22 extends very close to the tip 27 and the stop surface 17, so that in this embodiment, not the entire stop element 12, but only an upper portion is deformed.

Die verschiedenen Ausführungsbeispiele zeigen mögliche Geometrien des Anschlagelementes 12. In den Ausführungsbeispielen sind die Anschlagsflächen 17 in der Regel keilförmig ausgestaltet, da die Keilform einfach zu bemaßen und zu fertigen ist. Selbstverständlich sind auch Kombinationen der dargestellten Ausführungsbeispiele möglich. So können die in Figur 12 und 13 gezeigten Nuten 22 in entsprechender Formtiefe und Anzahl auch in den anderen Ausführungsbeispielen verwendet werden. Des Weiteren ist es möglich, in allen Ausführungsbeispielen die Außenfläche 21 entsprechend den Figuren 9, 10 und 11 anzupassen. Die unterschiedlichen Winkel und konkaven Ausgestaltungen der Anschlagfläche 17 der unterschiedlichen Ausführungsbeispiele können miteinander kombiniert werden. Ferner möglich sind alle anderen konkaven und konvexen Formen des Anschlagelementes 12, solange die ausreichende Elastizität gewährleistet ist. Weitere Querschnittsformen für die Nut 22 sind beispielsweise Dreiecke oder Ellipsen. Auch mehr als eine Nut 22 pro Anschlagselement 12 ist möglich, um die Steifigkeit entsprechend anzupassen. Die Ausführungsbeispiele zeigen rotationssymmetrische, nicht hohle Ventilnadeln 6. Genauso gut ist es möglich, die Erfindung an hohlen und/oder nicht rotationssymmetrischen Ventilnadeln 6 anzuwenden. Auch die Anschlagfläche 17 oder die Gegenfläche 19 muss nicht rotationssymmetrisch ausgebildet werden. Alle gezeigten Ausführungsbeispiele zeigen die Anschlagfläche 17 und das Anschlagelement 19 fest verbunden mit der Ventilnadel 6. Dementsprechend ist der Magnetanker 6 in den Ausführungsbeispielen als Gegenelement 18 mit Gegenfläche 19 definiert. Die Gegenfläche 19 ist in der einfachsten Ausführung der Erfindung eine plane, steife Fläche. Genauso gut ist es möglich, dass auch die Gegenfläche 19 eine gewisse Neigung und Elastizität aufweist.The various embodiments show possible geometries of the stop element 12. In the embodiments, the stop surfaces 17 are designed wedge-shaped in the rule, since the wedge shape is easy to dimension and manufacture. Of course, combinations of the illustrated embodiments are possible. So can the in FIG. 12 and 13 shown grooves 22 are used in appropriate depth and number in the other embodiments. Furthermore, it is possible in all embodiments, the outer surface 21 according to the Figures 9 . 10 and 11 adapt. The different angles and concave configurations the stop surface 17 of the different embodiments can be combined. Further possible are all other concave and convex shapes of the stop element 12, as long as the sufficient elasticity is ensured. Other cross-sectional shapes for the groove 22 are, for example, triangles or ellipses. Also, more than one groove 22 per stop member 12 is possible to adjust the stiffness accordingly. The embodiments show rotationally symmetrical, non-hollow valve needles 6. It is equally possible to apply the invention to hollow and / or non-rotationally symmetrical valve needles 6. Also, the stop surface 17 or the counter surface 19 does not have to be rotationally symmetrical. All embodiments shown, the stop surface 17 and the stop member 19 fixedly connected to the valve needle 6. Accordingly, the armature 6 is defined in the embodiments as a counter element 18 with mating surface 19. The mating surface 19 is in the simplest embodiment of the invention, a flat, rigid surface. Just as well, it is possible that the counter surface 19 has a certain inclination and elasticity.

Claims (9)

  1. Injection valve (1) for injecting a medium, in particular for injecting fuel into a combustion chamber, comprising:
    - a housing (2) with at least one spray opening (4) on an outlet side (3),
    - a magnet coil (5),
    - a magnet armature (8) which can be moved linearly through the magnet coil (5),
    - a valve needle (6) which can be moved linearly along a longitudinal axis (15) and protrudes through the magnet armature (8) for opening and closing the spray opening (4),
    characterized
    in that the magnet armature (8) can be moved linearly with respect to the valve needle (6) between a first stop and a second stop,
    the second stop being formed by way of a stop element (12) which is connected fixedly to the valve needle (6) with a stop face (17) and the magnet armature (8) with a corresponding face (19) which lies opposite the stop face (17),
    the second stop being provided on that side of the magnet armature (8) which faces the outlet of the at least one spray opening (4), and
    the stop element (12) of the second stop being of elastic configuration, with the result that, when the corresponding face (19) comes into contact on the stop face (17), an angle (α) between the longitudinal axis (15) and the stop face (17) changes.
  2. Injection valve according to Claim 1, characterized in that the angle (α) between the longitudinal axis (15) and the stop face (17) without contact of the stop face (17) and the corresponding face (19) is less than 90° at least in places, the angle (α) being defined on that side of the stop face (17) which faces the corresponding face (19).
  3. Injection valve according to Claim 2, characterized in that the angle (α) without the contact of the stop face (17) and the corresponding face (19) is at most 89.99°, preferably at most 89.85°.
  4. Injection valve according to one of the preceding claims, characterized in that the angle (α) is deformed elastically by at least 0.01°, preferably at least 0.15°, by way of the contact of the corresponding face (19) on the stop face (17).
  5. Injection valve according to one of the preceding claims, characterized in that the stop face (17) is divided into an inner section (23) and an outer section (24), the inner section (23) lying closer to the longitudinal axis (15) than the outer section (24), and the angle (α) without the contact of the stop face (17) and the corresponding face (19) being greater on the outer section (24) than on the inner section (23).
  6. Injection valve according to Claim 5, characterized in that the inner section (23) without the contact of the stop face (17) and the corresponding face (19) is parallel to the corresponding face (19) or inclined with respect to the corresponding face (19) or concave.
  7. Injection valve according to one of the preceding claims, characterized in that an outer face (21) of the stop element (21), which outer face (21) faces away from the corresponding face (19), is configured so as to be inclined with respect to the stop face (17) at least in places and/or is configured so as to be parallel to the stop face (17) at least in places and/or is configured so as to be concave at least in places.
  8. Injection valve according to one of the preceding claims, characterized in that the stop element (12) comprises at least one groove (22) which is preferably circumferential.
  9. Injection valve according to one of the preceding claims, characterized in that the first stop is formed by way of a ring (10) or a shoulder on the valve needle (6).
EP13742624.3A 2012-09-25 2013-07-26 Injection valve Active EP2901004B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012217322.6A DE102012217322A1 (en) 2012-09-25 2012-09-25 Injector
PCT/EP2013/065812 WO2014048609A1 (en) 2012-09-25 2013-07-26 Injection valve

Publications (2)

Publication Number Publication Date
EP2901004A1 EP2901004A1 (en) 2015-08-05
EP2901004B1 true EP2901004B1 (en) 2017-03-29

Family

ID=48906245

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13742624.3A Active EP2901004B1 (en) 2012-09-25 2013-07-26 Injection valve

Country Status (6)

Country Link
US (1) US9546630B2 (en)
EP (1) EP2901004B1 (en)
JP (1) JP6082467B2 (en)
KR (1) KR102110114B1 (en)
DE (1) DE102012217322A1 (en)
WO (1) WO2014048609A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015209395A1 (en) * 2015-05-22 2016-11-24 Robert Bosch Gmbh fuel injector
DE102015213216A1 (en) * 2015-07-15 2017-01-19 Robert Bosch Gmbh Valve for metering a fluid
DE102015213221A1 (en) * 2015-07-15 2017-01-19 Robert Bosch Gmbh Valve for metering a fluid
JP6468109B2 (en) * 2015-07-21 2019-02-13 株式会社デンソー Fuel injection valve
DE102015215537A1 (en) 2015-08-14 2017-02-16 Robert Bosch Gmbh Valve for metering a fluid
US10731614B2 (en) 2015-10-15 2020-08-04 Continental Automotive Gmbh Fuel injection valve with an anti bounce device
DE102016211454A1 (en) * 2016-06-27 2017-12-28 Robert Bosch Gmbh Arrangement with a valve for metering a fluid
DE102017207270A1 (en) * 2016-06-30 2018-01-04 Robert Bosch Gmbh Valve for metering a fluid
DE102016220326A1 (en) * 2016-10-18 2018-04-19 Robert Bosch Gmbh Valve for metering a gaseous or liquid fuel
DE102016223536A1 (en) * 2016-11-28 2018-05-30 Robert Bosch Gmbh Valve for dosing a gas
DE102016225768A1 (en) 2016-12-21 2018-06-21 Robert Bosch Gmbh A fuel injector and method of operating a fuel injector
DE102016225769A1 (en) * 2016-12-21 2018-06-21 Robert Bosch Gmbh Valve for metering a fluid
CN106894930A (en) * 2017-02-24 2017-06-27 中国第汽车股份有限公司 A kind of swirling flow ejector
DE102017220323A1 (en) * 2017-11-15 2019-05-16 Robert Bosch Gmbh Valve for metering a fluid
DE102018200364A1 (en) * 2018-01-11 2019-07-11 Robert Bosch Gmbh Valve for metering a fluid
DE102018201951A1 (en) * 2018-02-08 2019-08-08 Robert Bosch Gmbh Valve for metering a fluid
JP7338155B2 (en) * 2019-01-08 2023-09-05 株式会社デンソー fuel injector

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19849210A1 (en) * 1998-10-26 2000-04-27 Bosch Gmbh Robert Fuel injection valve for internal combustion engine fuel injection system has armature movable between two stops, damping spring arranged between second stop and armature
JP2000265919A (en) * 1999-03-16 2000-09-26 Bosch Automotive Systems Corp Solenoid fuel injection valve
DE19927900A1 (en) * 1999-06-18 2000-12-21 Bosch Gmbh Robert Fuel injection valve for direct injection IC engine has movement of armature limited by opposing stops attached to valve needle one of which is provided by spring element
DE19950761A1 (en) * 1999-10-21 2001-04-26 Bosch Gmbh Robert Fuel injection valve has supporting ring between elastomeric ring and armature that supports elastomeric ring axially near opening of fuel channel in armature and radially on shoulder
US6454191B1 (en) * 2000-01-10 2002-09-24 Delphi Technologies, Inc. Electromagnetic fuel injector dampening device
DE10108974A1 (en) * 2001-02-24 2002-09-05 Bosch Gmbh Robert Fuel injector
JP2006509964A (en) * 2002-12-13 2006-03-23 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Collision-free electromagnetic actuator for injection valve
JP2007224811A (en) 2006-02-23 2007-09-06 Denso Corp Injector
JP5048617B2 (en) 2008-09-17 2012-10-17 日立オートモティブシステムズ株式会社 Fuel injection valve for internal combustion engine
DE102012203161A1 (en) * 2012-02-29 2013-08-29 Robert Bosch Gmbh Injector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP6082467B2 (en) 2017-02-15
JP2015529306A (en) 2015-10-05
KR20150056789A (en) 2015-05-27
US9546630B2 (en) 2017-01-17
US20150247479A1 (en) 2015-09-03
KR102110114B1 (en) 2020-05-14
EP2901004A1 (en) 2015-08-05
DE102012217322A1 (en) 2014-06-12
WO2014048609A1 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
EP2901004B1 (en) Injection valve
EP2806150B1 (en) Electromagnetically actuated valve
EP2634412B1 (en) Injection valve
EP2021617B1 (en) Fuel injector comprising a pressure-compensated control valve
EP2634413B1 (en) Injector
EP2664779B1 (en) Valve for metering out fluid
WO2013004457A1 (en) Control valve for a fuel injector and fuel injector
EP2628941B1 (en) Fuel injection valve
DE102010064097A1 (en) Electromagnetically actuatable valve e.g. fuel injection valve of internal combustion engine, has movable valve needle with lower stopper comprising top stop face with elevations and depressions on which armature rests
EP2971749B1 (en) Valve for controlling a fluid with increased sealing action
EP2279343B1 (en) Solenoid valve without a residual air gap disk
EP2893182B1 (en) Injection valve
DE102013220877A1 (en) Valve
DE102014220877B3 (en) Fuel injection valve
EP2864623B1 (en) Injection valve
WO2010009925A1 (en) Armature pin for solenoid valve
EP3060789B1 (en) Fuel injector
EP3545185B1 (en) Gas dosing valve
WO2017008995A1 (en) Valve for metering a fluid
DE102021202173A1 (en) INJECTION VALVE
EP3095998B1 (en) Fuel injector
EP3387247B1 (en) Electromagnetically actuatable inlet valve and high-pressure pump having an inlet valve
DE102016225769A1 (en) Valve for metering a fluid
WO2017108343A1 (en) Electromagnetically actuatable inlet valve and high-pressure pump having an inlet valve
DE102013225376A1 (en) Solenoid valve for a fuel injector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160804

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170103

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 880021

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013006813

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170630

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170629

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170731

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013006813

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20180103

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170726

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170726

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130726

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 880021

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200724

Year of fee payment: 8

Ref country code: FR

Payment date: 20200727

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200731

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210726

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240919

Year of fee payment: 12