EP2990532B1 - Self-propelled construction machine and method for the visualization of the processing environment of a construction machine moving in the terrain - Google Patents
Self-propelled construction machine and method for the visualization of the processing environment of a construction machine moving in the terrain Download PDFInfo
- Publication number
- EP2990532B1 EP2990532B1 EP15180819.3A EP15180819A EP2990532B1 EP 2990532 B1 EP2990532 B1 EP 2990532B1 EP 15180819 A EP15180819 A EP 15180819A EP 2990532 B1 EP2990532 B1 EP 2990532B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- construction machine
- project
- orientation
- terrain
- coordinate system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010276 construction Methods 0.000 title claims description 131
- 238000012545 processing Methods 0.000 title claims description 34
- 238000000034 method Methods 0.000 title claims description 16
- 238000012800 visualization Methods 0.000 title description 4
- 230000001419 dependent effect Effects 0.000 claims description 10
- 238000012937 correction Methods 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 claims description 3
- 238000003801 milling Methods 0.000 description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 30
- 239000000463 material Substances 0.000 description 4
- 241001061260 Emmelichthys struhsakeri Species 0.000 description 3
- 230000012447 hatching Effects 0.000 description 3
- 230000003936 working memory Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013501 data transformation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C23/00—Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
- E01C23/01—Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/48—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
- E01C19/4886—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ for forming in a continuous operation kerbs, gutters, berms, safety kerbs, median barriers or like structures in situ, e.g. by slip-forming, by extrusion
Definitions
- the invention relates to a self-propelled construction machine, in particular a road milling machine or a slipform paver, which has a chassis, the front and rear wheels or drives in the working direction, carried by the chassis machine frame, a drive device for driving the front and / or rear wheels or drives and a steering device for directing the front and / or rear wheels or drives, so that the construction machine can perform translational and / or rotational movements in the field.
- the invention relates to a method for visualizing the processing environment of a terrain machine moving in the field, in particular a road milling machine or a slipform paver.
- the slipform pavers have a device for forming flowable material, in particular concrete, which is also referred to as concrete hollow. With the concrete trough structures of different education, such as baffles or gutters can be produced.
- the working device has a milling drum equipped with milling tools, with the material from the road surface can be milled in a given working width.
- the EP 2 336 424 A2 describes a self-propelled construction machine having data describing a target curve descriptive data in an independent of the position and orientation of the construction machine reference system and a control unit which is designed such that a reference point on the construction machine starting from a predetermined starting point at which the construction machine has a predetermined position and orientation in the field, moves on the target curve.
- a method for controlling a construction machine in which the data describing a setpoint curve in an independent of the position and orientation of the construction machine reference system by means of a measuring device (rover) determined in the field and read into a working memory of the construction machine.
- the known method allows the control of the construction machine without major surveying effort with high accuracy.
- the problem arises that objects already present in the terrain, for example water drains, hydrants or manhole covers, must be taken into account.
- the building should not be located on a water drain, or the area of the terrain, such as a fire hydrant or manhole cover, should not be altered.
- the milling drum of a road milling machine for example, when driving over a hydrant, taking into account a safety distance within a predetermined distance, which is dependent on the dimensions of the hydrant, must be raised from a predetermined position with respect to the surface to be machined.
- the operator can not see the exact position of the hydrant at the level of the milling drum in practice, however, because the milling drum is located below the control station. Therefore, the position of a hydrant in the field is in practice marked with lateral lines that are recognizable to the operator or to another person.
- the marking of existing objects in the field proves to be disadvantageous in practice.
- the marking of the objects requires an additional step.
- the lines are not or difficult to reach in the dark detect. Incidentally, the marking of the objects in the rain is not readily possible. Because of the inaccuracies, it is therefore necessary to choose a relatively large safety margin, which requires major reworking.
- slipform paver In a slipform paver, the same problem arises when a building is to be erected, which should not be on but adjacent to existing objects. For example, if the structure is to extend along a curb, water courses adjacent to the curb can not be detected by the operator if the water drains are immediately in front of or adjacent to the machine.
- a slipform paver adds to the difficulty that no short-term corrections to the trajectory are possible if it is determined shortly before the water intake that the planned trajectory is on this.
- an automatic control of the construction machine also taking into account objects existing in the terrain, it is fundamentally possible to determine the shape and position of the objects in the terrain. If the shape and position of the objects are known, an intervention in the machine control can also be carried out automatically, for example, when driving over the object, the milling drum of a road milling machine can be raised automatically.
- this requires an exact determination of the shape and position of the object, for example the hydrant with respect to the coordinate system in which the construction machine is to move. Otherwise the hydrant or the construction machine may be damaged.
- the invention has for its object to provide a self-propelled construction machine, in particular a road milling machine or a slipform paver, which simplifies the consideration of off-site objects in the control of the construction machine for the construction of a building or the change of the terrain in practice.
- Another object of the invention is to provide a method with which the consideration of existing in the field objects can be simplified.
- the construction machine according to the invention is a self-propelled construction machine, which has a working device for the construction of structures on the site, for example a device for forming concrete, or a device for changing the terrain, for example a milling drum.
- a working device for the construction of structures on the site for example a device for forming concrete, or a device for changing the terrain, for example a milling drum.
- the construction machine can be, for example, a road milling machine or a slipform paver. It can also be a paver with the same problem of considering objects already in the terrain.
- the construction machine has an image recording or recording unit for recording an image of the terrain, which is in a dependent on the position and orientation of the construction machine in the field coordinate system, and a display unit for displaying the image of the area.
- the image section should be selected so that all areas relevant to the control of the construction machine are detected, wherein the image section may also include areas that are not visible to the operator from the control station.
- the image recording unit may include one or more camera systems. If the image recording unit has a plurality of camera systems, the image section can be composed of a plurality of images, each recorded with a camera system. Each camera system can also be assigned a separate image section.
- the camera system may include one camera or two cameras (stereo camera system). If a three-dimensional scene is imaged onto the two-dimensional image plane of the camera when shooting with a camera, a clear correlation between the coordinates of an object, the coordinates of the image of the object on the image plane and the focal length of the camera results. However, the depth information is lost due to the two-dimensional image.
- the camera system has only one camera, since in practice, the curvature of the terrain surface in the captured by the camera image detail can be neglected. Moreover, only two-dimensional scenes are relevant to the invention, i. H. the outlines of objects in a plane (terrain surface). However, the invention is not limited thereto.
- the at least one camera system of the image recording unit can also be a stereo camera system comprising two cameras, which are arranged parallel to the axis at a predetermined horizontal distance, in accordance with the known methods the disparity to gain the depth information.
- the invention requires a device for providing project data which describes the shape and position of at least one project in a coordinate system independent of the position and orientation of the construction machine.
- a project is understood to mean all work to be carried out with the construction machine, which forms the basis for the control of the construction machine, whereby the project is determined by which works (form) are carried out at a specific location (location).
- the project may involve the construction of a building or the alteration of the site.
- the project data may be the data describing the shape and location of a building to be erected in the field.
- the project data can be, for example, the shape and position of a baffle to be constructed descriptive data or in the known road milling machines to be processed in the area or not to be processed surface descriptive data.
- the project data represent parameters for the control of the construction machine, which include, for example, the feed rate and inclination of the concrete trough of a slipform paver or the milling depth of a milling machine.
- parameters for the control of the construction machine include, for example, the feed rate and inclination of the concrete trough of a slipform paver or the milling depth of a milling machine.
- the construction machine has a data processing unit which is configured such that the image section of the terrain displayed on the display unit the part of the project lying in the image section is superimposed so that at least a part of the project is displayed in the image section.
- the display unit thus shows not only the real image detail, but also a virtual image of the project, so that the perception of the machine operator is extended. Consequently, the operator can recognize on the display unit whether the project underlying the control matches reality.
- the machine operator can intervene in the machine control in advance. Alternatively, an automatic intervention in the machine control can be made.
- This error may, for example, be that the terrain object (s) that reflect reality have not been or have not been detected correctly for the control of the construction machine.
- the machine operator can recognize when the surface to be machined, for example the surface to be milled with a road milling machine, lies on a hydrant or the structure to be erected with a slipform paver, for example a guide wall, should run over a water inlet.
- a preferred embodiment of the invention provides that the construction machine has a device for determining position / orientation data describing the position and orientation of the construction machine in a coordinate system independent of the construction machine.
- the project data are determined in a coordinate system independent of the position and orientation of the construction machine, which does not change with the movement of the construction machine in the field.
- the means for determining the position / orientation data describing the position and orientation of the construction machine preferably comprises a global navigation satellite system (GNSS) comprising first and second GNSS receivers for decoding GNSS signals of the Global Navigation Satellite System (GNSS) and Correction signals of a reference station for determining the position and orientation of the construction machine may have, wherein the first and second GNSS receiver on the construction machine in different positions are arranged. With the first and second GNSS receiver, the measurement accuracy can be increased.
- GNSS global navigation satellite system
- the position and orientation of the construction machine can also be determined with a satellite-independent system, for example with a tachymeter.
- a further preferred embodiment provides that the project data describing the shape and position of the at least one project in the coordinate system independent of the position and orientation of the construction machine in dependence on the known position and orientation of the construction machine in the non-construction machine coordinate system in be transformed depending on the position and orientation of the construction machine coordinate system.
- the project data available in the fixed coordinate system can then be superimposed on the image section in real time, so that the project is always visible in correct alignment with the real image, which can constantly change with the movement of the construction machine.
- the project data comprise at least one outline of the project descriptive data, wherein the data processing unit is configured such that in the image section of the terrain, the at least one outline of the project is displayed.
- the outline and the shape of the project in the image section are sufficiently marked. If the project is, for example, a building, the building can also be highlighted by a colored underlay or a hatching or can be represented by it alone.
- the data processing unit is configured to determine object data describing the shape and location of at least one real object in the image area of the terrain, the project data then being compared to the object data.
- object data is understood to be all data describing the shape and position of the objects present in the terrain and recorded with the image recording unit, which objects are represented as real objects in the image detail.
- the object data can describe, for example, the position and shape of a structure, for example a hydrant or a water inlet in the area, which should not be covered or damaged during the construction of a building or the change of the terrain.
- the comparison of the project data with the object data allows beyond the extension of the perception of the machine operator, a computer-aided monitoring of the control of the construction machine, where it can be determined that the determined project data does not match the object data (reality).
- the known mathematical algorithms can be used, for example, to be able to determine whether the building is actually next to the water inlet.
- a particularly simple evaluation of the data provides for determining the distance between at least one reference point related to the outline of the project and at least one reference point related to the outline of the object.
- the reference point can lie even on the outline, for example on a circle or circular arc, or next to the outline, for example, lie on the center of a circle.
- the determined distance is preferably compared with a predetermined limit value. If the distance between reference points lying on the contour lines is smaller than a predetermined limit, it can be concluded that a minimum distance is not maintained. This minimum distance can be visualized on the display unit. Another possibility is to base the areas enclosed by the contours on the evaluation. It is also possible to determine whether the outline of the project defined around the object, taking into account a predetermined minimum distance, intersects with the outline of the object. In the case that the project line intersects the object line, it can be concluded that the project line does not enclose the object line, ie the project and the object do not match, but at least partially overlap.
- the construction machine preferably has an alarm unit which gives an optical and / or audible and / or tactile alarm when the data processing unit has determined that the project and the object do not match, for example the project line and object line intersect and / or or the determined distance between the outlines of project and object is less than a predetermined limit. It is also possible to generate a control signal for intervention in the machine control.
- the construction machine has an interface for reading in the project data and a memory unit for storing the read-in project data. This makes it possible to determine the project data required for controlling the construction machine in advance.
- the project data are preferably determined in the field with a preferably satellite-based measuring device (rover).
- FIGS. 1A and 1B show in side view and plan view as an example of a self-propelled construction machine a slipform paver.
- slipform paver is in the EP 1 103 659 B1 described in detail. Since slipform pavers as such belong to the prior art, only the essential components of the construction machine of the invention will be described here.
- the slipform paver 1 has a machine frame 2, which is supported by a chassis 3.
- the chassis 3 has two front and two rear crawler tracks 4A, 4B, which are attached to front and rear lifting columns 5A, 5B.
- the working direction (Direction of travel) of the slipform paver is marked with an arrow A. But it can also be provided only a front or rear drive.
- the track drives 4A, 4B and lifting columns 5A, 5B constitute the drive means of the slipform paver for performing translational and / or rotational movements of the construction machine on the field.
- the track drives 4A, 4B and lifting columns 5A, 5B constitute the drive means of the slipform paver for performing translational and / or rotational movements of the construction machine on the field.
- the machine frame 2 By raising and lowering the lifting columns 5A, 5B, the machine frame 2 can be moved with respect to the ground in the height and inclination.
- the chain drives 4A, 4B the slipform paver can be moved back and forth.
- the construction machine has three translatory and three rotational degrees of freedom.
- the slipform paver 1 has an only hinted illustrated device 6 for forming concrete, which is referred to below as a concrete trough.
- the concrete trough 6 represents the working device of the slipform paver for the construction of a building structure with a predetermined shape on the site.
- FIGS. 2A and 2B show as a further example of a self-propelled construction machine, a road milling machine in the side view, wherein the same reference numerals are used for the corresponding parts.
- the road milling machine 1 has a machine frame 2, which is supported by a chassis 3.
- the chassis 3 again has front and rear crawler tracks 4A, 4B mounted on front and rear lifting columns 5A, 5B. But it can also be provided only a front or rear drive.
- the road milling machine has a working device for changing the terrain. This is a milling device 6 with a equipped with milling tools milling drum, which is not recognizable in the figures.
- the milled material is transported away with a conveyor F.
- Fig. 3 The road surface to be worked with a road milling machine is in Fig. 3 shown.
- the project is to milled the pavement of the road.
- objects O on the road such as manhole cover in the middle of the road surface and water inlets at the Side of the road surface.
- Fig. 3 shows two manhole covers 9, 10 and a water inlet 11, which are run over by the road milling machine when milling the road surface.
- the representation in Fig. 3 but does not correspond to the field of vision of the machine operator.
- the objects O on the road can not be seen by the operator on the platform of the construction machine, since they are located directly in front of the construction machine or below the machine.
- the machine operator can not recognize the manhole cover, in particular, when the milling drum is only a short distance in front of the manhole cover, ie exactly at the time when the machine operator has to lift the milling drum. However, this area can not be monitored with a camera because of the flying milling material in the milling drum housing.
- the position and shape of the circular manhole covers 9, 10 are clearly described by three lying on the circumference reference points O 11 , O 12 , O 13 and O 21 , O 22 , O 23 .
- the position and shape of the rectangular water inlets are described by four reference points O 31 , O 32 , O 33 , O 34 located at the corners of the water inlet.
- the project is described by previously created project data, which are read in via a suitable interface 12A in a working memory 12 of the construction machine ( Fig. 8 ).
- the project data contains the coordinates of reference points characteristic of the project, which are detected in a coordinate system (X, Y, Z) independent of the position and orientation of the construction machine.
- the reference points lie on the contours 13, 14, 15, which enclose the contours 16, 17, 18 of the objects O at a predetermined minimum distance ⁇ .
- the objects O are circular Manhole covers 9, 10 and rectangular water inlets 11 are, the outlines describing the project are also circles and rectangles.
- the circular outlines 13, 14 of the project are uniquely identified by the coordinates of three reference points P 11 , P 12 , P 13 and P 21 , P 22 , P 23 and the rectangular outlines 15 of the project by the coordinates of four reference points P 31 , P 32 , P 33 , P 34 in the independent of the movement of the construction machine coordinate system (X, Y, Z) described.
- the project data comprises the coordinates of the reference points of the project in the fixed coordinate system independent of the movement of the construction machine (X, Y, Z). They mark the area to be cut, which lies outside the outlines 13, 14, 15 of the project. The area not to be processed is the area within the outlines 13, 14, 15 of the project, in which the objects O lie. This clearly determines the project.
- the project data can be determined as follows.
- the fixed coordinate system (X, Y, Z) is preferably the coordinate system of a global navigation satellite system (GNSS), so that the reference points of the objects can be easily detected with a measuring device (rover).
- GNSS global navigation satellite system
- the project data can be stored in an external storage unit, for example a USB stick, and read into the internal storage unit 12 of the construction machine via the interface 12A. With this data, the construction machine can then be controlled. When the road milling machine reaches a surface that is not to be machined, the milling drum is automatically raised with respect to the ground. As soon as the road milling machine has traveled over the area not to be worked, the milling drum is lowered again. This avoids that the manhole cover 9, 10 or water inlet 11 or the construction machine is damaged. The raising and lowering of the milling drum can also be done with a manual intervention in the machine control, with the machine operator, the time at which the intervention is to be signaled.
- an external storage unit for example a USB stick
- the road milling machine has an image recording unit 19, which has a camera system 19A arranged on the machine frame 2, with which an image section 20A of the terrain to be processed, ie the road surface with the manhole covers and water inlets, is taken.
- the camera system 19A detects an area not visible to the operator by the operator.
- the image section 20A is displayed on a display unit 20, for example an LC display.
- Fig. 4 shows the display of the display unit 20. While the road milling machine moves in the field, constantly changing the image shown in the image section 20A, so that the operator can recognize that he moves with the road milling machine on a manhole cover 9, 10 or water inlet 11.
- the road milling machine has a data processing unit 21, with which the project data available is processed.
- the data processing unit 21 is configured such that the image section 20A of the terrain displayed on the display unit 20 is superimposed on the project lying in the image section.
- the outlines 16, 17, 18 of the project which identify the surface to be worked or the surface not to be processed, are displayed in the image section 20A as they correspond to the previously determined project data. The operator can thus immediately recognize on the display unit 20 if the project data should not correspond to reality, ie the outlines 16, 17, 18 of the project do not concentrically surround the outlines 13, 14, 15 of the objects O in the predetermined minimum distance ⁇ should. If the manhole cover and water inlets within the displayed outlines On the other hand, the control of the road milling machine can take place without any further intervention in the machine control.
- the image section 20A is assigned a coordinate system (x, y, z) which depends on the movement of the construction machine in the terrain and which is in Fig. 3 is shown.
- the position (origin) and orientation of this coordinate system corresponds to the location and viewing angle of the camera 19A on the construction machine.
- the position and shape of the objects O are also described by corresponding coordinates.
- the coordinate system (x, y, z) dependent on the movement of the construction machine in the field can be a three-dimensional or two-dimensional coordinate system.
- Fig. 3 the general case of a coordinate system with an x-axis, y-axis and z-axis is shown.
- a two-dimensional coordinate system With a negligible curvature of the terrain surface and the consideration of only two-dimensional objects but a two-dimensional coordinate system is sufficient. However, this presupposes that the x / y plane of the coordinate system is parallel to the terrain surface assumed to be assumed, which is assumed below.
- the camera system may be a stereo camera system or a camera system with only one camera. With negligible curvature of the terrain surface and / or the consideration of only two-dimensional objects but a camera system with only one camera is sufficient. If the camera system is a stereo camera system, three-dimensional images can also be displayed on the display unit 20 using the known methods.
- the construction machine For determining the position and orientation of the construction machine and thus also the position and orientation (viewing angle) of the camera system 19A in the coordinate system (X, Y, Z) independent of the position and orientation of the construction machine, the construction machine has a device 22 which Provides position / orientation data of the construction machine ( Fig. 8 ).
- This device may comprise a first GNSS receiver 22A and second GNSS receiver 22B arranged on the construction machine at different positions S1, S2.
- Fig. 1B shows the position S1 and S2 of the two GNSS receivers 22A and 22B on the slipform paver.
- the first and second GNSS receivers 22A, 22B decode the GNSS signals of the global navigation satellite system (GNSS) and correction signals of a reference station for determining the position and orientation of the construction machine.
- GNSS global navigation satellite system
- Such systems which enable a highly accurate determination of the position / orientation data, belong to the state of the art.
- an electronic compass K may be provided to detect the orientation of the construction machine.
- Fig. 2B shows the position S1 of the first GNSS receiver 22A and the position S2 of the compass K on the road milling machine.
- the compass can also be dispensed with if the orientation of the construction machine is calculated.
- the orientation can be calculated by determining the position of a reference point of the construction machine at successive times and determining the direction of the movement from the change in position.
- the accuracy can be additionally increased by including the steering angle in the calculation.
- the data processing unit 21 receives the current position / orientation data, which is continuously provided by the device 22 for determining the position and orientation of the construction machine, and transforms the shape and position of the project in the coordinate system independent of the position and orientation of the construction machine (FIG. X, Y, Z) depending on the position and orientation of the construction machine in the non-construction machine coordinate system in the dependent on the position and orientation of the construction machine machine coordinate system (x, y, z). This data transformation takes place in real time. After the coordinates of the reference points characterizing the outlines of the project in the machine coordinate system are known, the outlines 16, 17, 18 of the project are displayed in the image section 20A ( Fig. 4 ). The operations of the data processing unit required to generate the contours belong to the state of the art.
- the data processing unit 21 can comprise an image processing unit which can automatically recognize whether the real objects O match the virtual objects, ie the real outline 13, 14, 15 of an object O (hydrant or water inlet) shown in the image section, actually within the associated virtual one Outline 16, 17, 18 of the project lies.
- the data processing unit 21 is configured such that the shape and position of the real object O (hydrant or water inlet) recorded by the camera system 19A is determined in the image section 20A.
- the data processing unit 21 can make use of the known methods for image recognition.
- the shape and position of the real object in the image section are described by object data.
- the circular outline of the manhole cover 9 is described by the three contoured reference points P 11 , P 12 , P 13 ( Fig. 3 ).
- the object data is compared in the data processing unit 21 with the project data to determine whether the real objects match the virtual objects.
- the data processing unit checks whether the outline 13 of the real object, for example the manhole cover 9, lies within the outline 16 of the project. For this purpose, the data processing unit 21 checks whether the two contour lines 13, 16 intersect. If the contours 13, 16 do not intersect, it is concluded that the object data corresponds to reality. Otherwise, an erroneous determination of the object data is concluded.
- Fig. 5A shows the case that the object data match the project data, ie the outlines 13, 16 have no intersection while Fig. 5B the case shows that the object data do not match the project data, ie the outlines 13, 16 intersect at two points P s .
- the data processing unit 21 can still determine whether a minimum distance ⁇ is maintained.
- the data processing unit determines two reference points P A1 and P A2 , which are assigned to the outline 13 of the object or the outline 16 of the project.
- reference points P A1, P A2 points are determined lying on the circular contour lines 13, 16 especially close to each other ( Fig. 5A ).
- the data processing unit 21 determines the distance a between the lines lying on the outline of reference points P A1, P A2 and compares the distance with a predetermined limit value. If the distance between the points is smaller than the predetermined limit value, it is concluded that the outline 13 of the object lies within the project, since the outlines 13, 16 do not intersect.
- the reference points can also be the midpoints or line or area centers of the circular outlines. In an exact alignment taking into account the predetermined minimum distance ⁇ the outlines 13, 16 have a common center or line or centroid, ie the distance between the centers should be as small as possible.
- the above embodiment is only to be understood as an embodiment for comparing the project data and object data with each other.
- the data can also be evaluated with all other known algorithms to infer whether the real objects match the virtual objects.
- the construction machine has an alarm unit 23 which gives an optical and / or audible and / or tactile alarm when the data processing unit 21 has determined that the two contour lines 13, 16 do not match and / or the distance a is smaller than a predetermined one Limit is ( Fig. 8 ).
- the operator can be pointed to an erroneous determination of the object data also by color shading of certain surfaces, hatching or by markings.
- the distance a can also be displayed.
- FIGS. 6 and 7 described a further embodiment of the invention, which differs from the previous embodiment in that the project does not change the terrain with a road milling machine ( Fig. 2 ), but the erection of a structure with a slipform paver ( Fig. 1 ).
- the slipform paver like the road milling machine, has an image recording unit 12 and a data processing unit 21 and a device 12 for providing the project data (FIG. Fig. 8 ).
- the corresponding parts are provided with the same reference numerals.
- the slipform paver project is a traffic island bounded laterally by a curb 25 of concrete.
- the curb 25 has, for example, a straight section 25A, followed by a semicircular section 25B.
- the curb 25 should be adjacent to a rectangular water inlet 26, which requires precise control of the slipform paver.
- the project data again contains the coordinates of characteristic reference points for the project, which are detected in a coordinate system (X, Y, Z) independent of the position and orientation of the construction machine.
- the project data describe the shape and position of the curb 25.
- the shape and position of the straight portion 25A can be described, for example, by two reference points P 1 , P 2 and P 3 , P 4 at the beginning and end of the inner and outer Outline 27, 28 of the curb 25 are.
- the semi-circular portion 25B may be described, for example, by three reference points P 2 , P 5 , P 6 and P 4 , P 7 , P 8 lying on the inner and outer contour lines 27, 28, respectively.
- the previously determined project data relating to the GNSS system independent of the position and orientation are read into the working memory 12 of the slipform paver via the interface 12A.
- the control unit of the slipform paver is configured such that the slipform paver moves on a path corresponding to the course of the curb 25 to be erected.
- FIGS. 6 and 7 show the image section 20A taken by the camera system 19A of the image recording unit 19 and displayed on the display unit 20, in which the terrain lying in working direction A in front of the slipform paver and a part of the slipform paver with the concrete recess 6 can be seen.
- the terrain position and orientation determining means 22 of the slipform paver continuously calculates the current position / orientation data, and the data processing unit 21 obtains the project data which is in the GNSS system (X, Y, P) independent of the position and orientation of the slipform paver.
- Z) are transformed into the machine coordinate system (x, y, z) which depends on the position and orientation of the slipform paver and which corresponds to the viewing angle of the camera system.
- FIGS. 6 and 7 show a possibility of displaying the curb 25 in the image section 20A by the contour lines 27, 28, which show the machine operator the course of the curb, which is made with the slipform paver, if the stored project data of the control are based.
- contour lines 27, 28 show the machine operator the course of the curb, which is made with the slipform paver, if the stored project data of the control are based.
- color backgrounds, hatchings, auxiliary lines or markings can also be generated by the data processing unit 21 and displayed on the display unit 20.
- the machine operator can check the correct course of the curb 25 in the image section 20A. He can see in advance whether the curb 25, for example, runs next to the water inlet 26.
- Fig. 6 shows the case of a correct course of the curb 25 close to, ie at a predetermined minimum distance from the water inlet 26, while Fig. 7 the case shows that the curb 25 extends over the water inlet 26.
- the Alarm unit 23 an alarm signal, so that the operator can make an intervention in the machine control.
- the data processing unit 21 with an image recognition determines the coordinates of reference points O 1 , O 2 , O 3 , O 4 of the rectangular water inlet 26 in the machine coordinate system (x, y, z) corresponding to the camera image. Since the standardized shape and size of the water inlet 26 is known, for example, the coordinates of the corner points of the water inlet can be determined with an image recognition without much computational effort. These coordinates then provide the object data that is compared to the project data to determine if the design is consistent with reality. For this purpose, it can be checked with the data processing unit 21, for example, whether the contours of the curb and water inlet intersect, and / or with the data processing unit, for example, the distance between the contours can be calculated, as described with reference to the other embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Road Paving Machines (AREA)
- Component Parts Of Construction Machinery (AREA)
- Road Repair (AREA)
Description
Die Erfindung betrifft eine selbstfahrende Baumaschine, insbesondere eine Straßenfräsmaschine oder einen Gleitschalungsfertiger, die über ein Fahrwerk, das in Arbeitsrichtung vordere und hintere Räder oder Laufwerke aufweist, ein von dem Fahrwerk getragenen Maschinenrahmen, eine Antriebseinrichtung zum Antreiben der vorderen und/oder hinteren Räder oder Laufwerke und eine Lenkeinrichtung zum Lenken der vorderen und/oder hinteren Räder oder Laufwerke verfügt, so dass die Baumaschine im Gelände translatorische und/oder rotatorische Bewegungen ausführen kann. Darüber hinaus betrifft die Erfindung ein Verfahren zur Visualisierung des Bearbeitungsumfeldes einer sich im Gelände bewegenden Baumaschine, insbesondere eine Straßenfräsmaschine oder einen Gleitschalungsfertiger.The invention relates to a self-propelled construction machine, in particular a road milling machine or a slipform paver, which has a chassis, the front and rear wheels or drives in the working direction, carried by the chassis machine frame, a drive device for driving the front and / or rear wheels or drives and a steering device for directing the front and / or rear wheels or drives, so that the construction machine can perform translational and / or rotational movements in the field. In addition, the invention relates to a method for visualizing the processing environment of a terrain machine moving in the field, in particular a road milling machine or a slipform paver.
Es sind verschiedene Arten von selbstfahrenden Baumaschinen bekannt. Zu diesen Maschinen zählen insbesondere die bekannten Gleitschalungsfertiger oder Straßenfräsmaschinen. Diese Baumaschinen zeichnen sich dadurch aus, dass sie über eine Arbeitseinrichtung zum Errichten von Baukörpern auf dem Gelände oder zum Verändern des Geländes verfügen.There are various types of self-propelled construction machines known. These machines include in particular the known slipform pavers or road milling machines. These construction machines are characterized by the fact that they have a working device for erecting building structures on the site or for altering the terrain.
Die Gleitschalungsfertiger verfügen über eine Einrichtung zum Formen von fließfähigem Material, insbesondere Beton, die auch als Betonmulde bezeichnet wird. Mit der Betonmulde können Baukörper unterschiedlicher Ausbildung, beispielsweise Leitwände oder Wasserrinnen hergestellt werden. Bei den Straßenfräsen weist die Arbeitseinrichtung eine mit Fräswerkzeugen bestückte Fräswalze auf, mit der von der Straßenoberfläche Material in einer vorgegebenen Arbeitsbreite abgefräst werden kann.The slipform pavers have a device for forming flowable material, in particular concrete, which is also referred to as concrete hollow. With the concrete trough structures of different education, such as baffles or gutters can be produced. In the road milling machines, the working device has a milling drum equipped with milling tools, with the material from the road surface can be milled in a given working width.
Die
Aus der
Bei der Planung eines Bauvorhabens, das mit den bekannten Gleitschalungsfertigern oder Straßenfräsen durchgeführt werden soll, stellt sich das Problem, dass bereits im Gelände vorhandene Objekte, beispielsweise Wasserabläufe, Hydranten oder Schachtdeckel Berücksichtigung finden müssen. Der Baukörper sollte beispielsweise nicht auf einem Wasserablauf liegen oder der Bereich des Geländes, in dem beispielsweise ein Hydrant oder Schachtdeckel liegt, sollte nicht verändert werden.When planning a construction project that is to be carried out using the known slipform pavers or road milling machines, the problem arises that objects already present in the terrain, for example water drains, hydrants or manhole covers, must be taken into account. For example, the building should not be located on a water drain, or the area of the terrain, such as a fire hydrant or manhole cover, should not be altered.
Zur Berücksichtigung von im Gelände vorhandenen Objekten ist ein Eingriff in die Maschinensteuerung notwendig, der manuell vorgenommen werden kann.To take account of existing objects in the field an intervention in the machine control is necessary, which can be done manually.
Die Fräswalze einer Straßenfräsmaschine muss beispielsweise beim Überfahren eines Hydranten unter Berücksichtigung eines Sicherheitsabstandes innerhalb einer vorgegebenen Wegstrecke, die von den Abmessungen des Hydranten abhängig ist, aus einer vorgegebenen Position in Bezug auf die zu bearbeitende Oberfläche angehoben werden. Der Maschinenführer kann die genaue Position des Hydranten auf der Höhe der Fräswalze in der Praxis aber nicht erkennen, da sich die Fräswalze unterhalb des Fahrstandes befindet. Daher wird die Position eines Hydranten in dem Gelände in der Praxis mit seitlichen Linien markiert, die für den Maschinenführer oder eine andere Person erkennbar sind. Die Markierung vorhandener Objekte im Gelände erweist sich aber in der Praxis als nachteilig. Zunächst erfordert die Markierung der Objekte einen zusätzlichen Arbeitsschritt. Darüber hinaus ist es schwierig, die Linien exakt im rechten Winkel zur Fahrtrichtung zu ziehen. Ferner sind die Linien bei Dunkelheit nicht oder nur schwer zu erkennen. Im Übrigen ist die Markierung der Objekte bei Regen nicht ohne weiteres möglich. Wegen der Ungenauigkeiten ist es daher erforderlich, einen relativ großen Sicherheitsabstand zu wählen, der größere Nacharbeiten erforderlich macht.The milling drum of a road milling machine, for example, when driving over a hydrant, taking into account a safety distance within a predetermined distance, which is dependent on the dimensions of the hydrant, must be raised from a predetermined position with respect to the surface to be machined. The operator can not see the exact position of the hydrant at the level of the milling drum in practice, however, because the milling drum is located below the control station. Therefore, the position of a hydrant in the field is in practice marked with lateral lines that are recognizable to the operator or to another person. The marking of existing objects in the field proves to be disadvantageous in practice. First, the marking of the objects requires an additional step. In addition, it is difficult to draw the lines exactly at right angles to the direction of travel. Furthermore, the lines are not or difficult to reach in the dark detect. Incidentally, the marking of the objects in the rain is not readily possible. Because of the inaccuracies, it is therefore necessary to choose a relatively large safety margin, which requires major reworking.
Bei einem Gleitschalungsfertiger stellt sich das gleiche Problem, wenn ein Baukörper errichtet werden soll, der nicht auf, sondern neben im Gelände vorhandenen Objekten liegen soll. Wenn sich der Baukörper beispielsweise entlang eines Bordsteins erstrecken soll, können neben dem Bordstein liegende Wasserabläufe vom Maschinenführer nicht erkannt werden, wenn sich die Wasserabläufe unmittelbar vor oder neben der Maschine befinden. Bei einem Gleitschalungsfertiger kommt erschwerend hinzu, dass keine kurzfristigen Korrekturen an der Bahnkurve möglich sind, wenn erst kurz vor dem Wassereinlauf festgestellt wird, dass die geplante Bahnkurve über diesen verläuft.In a slipform paver, the same problem arises when a building is to be erected, which should not be on but adjacent to existing objects. For example, if the structure is to extend along a curb, water courses adjacent to the curb can not be detected by the operator if the water drains are immediately in front of or adjacent to the machine. A slipform paver adds to the difficulty that no short-term corrections to the trajectory are possible if it is determined shortly before the water intake that the planned trajectory is on this.
Für eine automatische Steuerung der Baumaschine auch unter Berücksichtigung im Gelände vorhandener Objekte ist es grundsätzlich möglich, die Form und Lage der Objekte im Gelände zu ermitteln. Wenn Form und Lage der Objekte bekannt sind, kann ein Eingriff in die Maschinensteuerung auch automatische vorgenommen werden, beispielsweise kann beim Überfahren des Objektes die Fräswalze einer Straßenfräsmaschine automatisch angehoben werden. Dies setzt aber eine exakte Bestimmung der Form und Lage des Objektes, beispielsweise des Hydranten in Bezug auf das Koordinatensystem voraus, in dem sich die Baumaschine bewegen soll. Andernfalls kann der Hydrant oder die Baumaschine beschädigt werden.For an automatic control of the construction machine, also taking into account objects existing in the terrain, it is fundamentally possible to determine the shape and position of the objects in the terrain. If the shape and position of the objects are known, an intervention in the machine control can also be carried out automatically, for example, when driving over the object, the milling drum of a road milling machine can be raised automatically. However, this requires an exact determination of the shape and position of the object, for example the hydrant with respect to the coordinate system in which the construction machine is to move. Otherwise the hydrant or the construction machine may be damaged.
Der Erfindung liegt die Aufgabe zugrunde, eine selbstfahrende Baumaschine, insbesondere eine Straßenfräsmaschine oder einen Gleitschalungsfertiger, zu schaffen, der die Berücksichtigung von im Gelände vorhandener Objekte bei der Steuerung der Baumaschine für die Errichtung eines Baukörpers oder der Veränderung des Geländes in der Praxis vereinfacht. Eine weitere Aufgabe der Erfindung liegt darin, ein Verfahren anzugeben, mit dem sich die Berücksichtigung von im Gelände vorhandener Objekte vereinfachen lässt.The invention has for its object to provide a self-propelled construction machine, in particular a road milling machine or a slipform paver, which simplifies the consideration of off-site objects in the control of the construction machine for the construction of a building or the change of the terrain in practice. Another object of the invention is to provide a method with which the consideration of existing in the field objects can be simplified.
Die Lösung dieser Aufgaben erfolgt erfindungsgemäß mit den Merkmalen der unabhängigen Patentansprüche. Die Gegenstände der abhängigen Ansprüche betreffen bevorzugte Ausführungsformen der Erfindung.The solution of these objects is achieved according to the invention with the features of the independent claims. The subject matters of the dependent claims relate to preferred embodiments of the invention.
Die erfindungsgemäße Baumaschine ist eine selbstfahrende Baumaschine, die über eine Arbeitseinrichtung zur Errichtung von Baukörpern auf dem Gelände, beispielsweise eine Einrichtung zum Formen von Beton, oder eine Einrichtung zum Verändern des Geländes, beispielsweise eine Fräswalze, verfügt. Für die Erfindung ist nicht von Bedeutung, wie die Arbeitseinrichtung im Einzelnen ausgebildet ist. Die Baumaschine kann beispielsweise eine Straßenfräsmaschine oder ein Gleitschalungsfertiger sein. Sie kann auch ein Straßenfertiger sein, bei dem sich das gleiche Problem der Berücksichtigung von bereits im Gelände vorhandenen Objekten stellt.The construction machine according to the invention is a self-propelled construction machine, which has a working device for the construction of structures on the site, for example a device for forming concrete, or a device for changing the terrain, for example a milling drum. For the invention is not important how the working device is formed in detail. The construction machine can be, for example, a road milling machine or a slipform paver. It can also be a paver with the same problem of considering objects already in the terrain.
Die Baumaschine verfügt über eine Bildaufzeichnungs- oder Bildaufnahmeeinheit zum Aufzeichnen eines Bildausschnitts des Geländes, der in einem von der Position und Orientierung der Baumaschine im Gelände abhängigen Koordinatensystem liegt, und eine Anzeigeeinheit zur Anzeige des Bildausschnitts des Geländes. Der Bildausschnitt sollte so gewählt werden, dass sämtliche für die Steuerung der Baumaschine relevanten Bereiche erfasst werden, wobei der Bildausschnitt auch Bereiche umfassen kann, die für den Maschinenführer vom Fahrstand aus nicht einsehbar sind. Die Bildaufzeichnungseinheit kann eine oder mehrere Kamera-Systeme umfassen. Wenn die Bildaufzeichnungseinheit mehrere Kamera-Systeme aufweist, kann der Bildausschnitt aus mehreren Bildern zusammengesetzt werden, die jeweils mit einem Kamera-System aufgenommen werden. Jedem Kamera-System kann aber auch ein eigener Bildausschnitt zugeordnet werden.The construction machine has an image recording or recording unit for recording an image of the terrain, which is in a dependent on the position and orientation of the construction machine in the field coordinate system, and a display unit for displaying the image of the area. The image section should be selected so that all areas relevant to the control of the construction machine are detected, wherein the image section may also include areas that are not visible to the operator from the control station. The image recording unit may include one or more camera systems. If the image recording unit has a plurality of camera systems, the image section can be composed of a plurality of images, each recorded with a camera system. Each camera system can also be assigned a separate image section.
Das Kamera-System kann eine Kamera oder zwei Kameras (Stereokamera-System) umfassen. Wenn bei der Aufnahme mit einer Kamera eine dreidimensionale Szene auf die zweidimensionale Bildebene der Kamera abgebildet wird, ergibt sich ein eindeutiger Zusammenhang zwischen den Koordinaten eines Objektes, den Koordinaten der Abbildung des Objektes auf der Bildebene und der Brennweite der Kamera. Allerdings geht durch die zweidimensionale Abbildung die Tiefeninformation verloren.The camera system may include one camera or two cameras (stereo camera system). If a three-dimensional scene is imaged onto the two-dimensional image plane of the camera when shooting with a camera, a clear correlation between the coordinates of an object, the coordinates of the image of the object on the image plane and the focal length of the camera results. However, the depth information is lost due to the two-dimensional image.
Für die Erfindung ist ausreichend, wenn das Kamera-System nur eine Kamera aufweist, da in der Praxis die Krümmung der Geländeoberfläche in dem von der Kamera aufgenommenen Bildausschnitt vernachlässigt werden kann. Außerdem sind für die Erfindung nur zweidimensionale Szenen relevant, d. h. die Umrisslinien der Objekte in einer Ebene (Geländeoberfläche). Darauf ist die Erfindung aber nicht beschränkt.For the invention is sufficient if the camera system has only one camera, since in practice, the curvature of the terrain surface in the captured by the camera image detail can be neglected. Moreover, only two-dimensional scenes are relevant to the invention, i. H. the outlines of objects in a plane (terrain surface). However, the invention is not limited thereto.
Zur Erfassung dreidimensionaler Szenen und/oder der Berücksichtigung einer Krümmung der Geländeoberfläche kann das mindestens einer Kamera-System der Bildaufzeichnungseinheit auch ein Stereokamera-System sein, das zwei Kameras umfasst, die achsparallel in einem vorgegebenen horizontalen Abstand angeordnet sind, um nach den bekannten Verfahren aus der Disparität die Tiefeninformation gewinnen zu können.For detecting three-dimensional scenes and / or taking into account a curvature of the terrain surface, the at least one camera system of the image recording unit can also be a stereo camera system comprising two cameras, which are arranged parallel to the axis at a predetermined horizontal distance, in accordance with the known methods the disparity to gain the depth information.
Die Erfindung setzt eine Einrichtung zur Bereitstellung von Projekt-Daten voraus, die Form und Lage mindestens eines Projektes in einem von der Position und Orientierung der Baumaschine unabhängigen Koordinatensystem beschreiben. Unter einem Projekt werden sämtliche mit der Baumaschine auszuführende Arbeiten verstanden, die eine Grundlage für die Steuerung der Baumaschine bilden, wobei das Projekt dadurch bestimmt wird, welche Arbeiten (Form) an einem bestimmten Ort (Lage) durchgeführt werden. Das Projekt kann in der Errichtung eines Baukörpers oder der Veränderung des Geländes liegen. So können die Projekt-Daten diejenigen Daten sein, die Form und Lage eines im Gelände zu errichtenden Baukörpers beschreiben. Bei den bekannten Gleitschalungsfertigern können die Projekt-Daten beispielsweise die Form und Lage einer zu errichtenden Leitwand beschreibende Daten oder bei den bekannten Straßenfräsmaschinen die eine im Gelände zu bearbeitenden oder auch nicht zu bearbeitende Fläche beschreibende Daten sein. Die Projekt-Daten stellen Parameter für die Steuerung der Baumaschine dar, die beispielsweise auch die Vorschubgeschwindigkeit und Neigung der Betonmulde eines Gleitschalungsfertigers oder die Frästiefe einer Fräsmaschine umfassen. Für die Erfindung ist nur entscheidend, dass Projekt-Daten eines oder mehrerer beliebiger Projekte zur Verfügung stehen.The invention requires a device for providing project data which describes the shape and position of at least one project in a coordinate system independent of the position and orientation of the construction machine. A project is understood to mean all work to be carried out with the construction machine, which forms the basis for the control of the construction machine, whereby the project is determined by which works (form) are carried out at a specific location (location). The project may involve the construction of a building or the alteration of the site. Thus, the project data may be the data describing the shape and location of a building to be erected in the field. In the known slipform pavers, the project data can be, for example, the shape and position of a baffle to be constructed descriptive data or in the known road milling machines to be processed in the area or not to be processed surface descriptive data. The project data represent parameters for the control of the construction machine, which include, for example, the feed rate and inclination of the concrete trough of a slipform paver or the milling depth of a milling machine. For the invention it is only crucial that project data of one or more arbitrary projects are available.
Darüber hinaus weist die Baumaschine eine Datenverarbeitungseinheit auf, die derart konfiguriert ist, dass dem auf der Anzeigeeinheit angezeigten Bildausschnitt des Geländes der in dem Bildausschnitt liegende Teil des Projekts überlagert wird, so dass zumindest ein Teil des Projekts in dem Bildausschnitt angezeigt wird. Die Anzeigeeinheit zeigt somit nicht nur den realen Bildausschnitt, sondern auch ein virtuelles Bild des Projektes, so dass die Wahrnehmung des Maschinenführers erweitert wird. Folglich kann der Maschinenführer auf der Anzeigeeinheit erkennen, ob das der Steuerung zugrunde liegende Projekt mit der Realität zusammenpasst.In addition, the construction machine has a data processing unit which is configured such that the image section of the terrain displayed on the display unit the part of the project lying in the image section is superimposed so that at least a part of the project is displayed in the image section. The display unit thus shows not only the real image detail, but also a virtual image of the project, so that the perception of the machine operator is extended. Consequently, the operator can recognize on the display unit whether the project underlying the control matches reality.
Wenn bei der Generierung der Projekt-Daten ein Fehler aufgetreten sein sollte, kann der Maschinenführer schon im Voraus einen Eingriff in die Maschinensteuerung vornehmen. Alternativ kann auch ein automatischer Eingriff in die Maschinensteuerung vorgenommen werden. Dieser Fehler kann beispielsweise darin liegen, dass das oder die im Gelände vorhandenen Objekte, die die Realität wiederspiegeln, für die Steuerung der Baumaschine nicht oder nicht korrekt erfasst worden sind. Beispielsweise kann der Maschinenführer erkennen, wenn die zu bearbeitende Fläche, beispielsweise die mit einer Straßenfräsmaschine abzufräsende Fläche auf einem Hydranten liegen oder der mit einem Gleitschalungsfertiger zu errichtende Baukörper, beispielsweise eine Leitwand, über einen Wassereinlauf verlaufen sollte.If an error has occurred during the generation of the project data, the machine operator can intervene in the machine control in advance. Alternatively, an automatic intervention in the machine control can be made. This error may, for example, be that the terrain object (s) that reflect reality have not been or have not been detected correctly for the control of the construction machine. For example, the machine operator can recognize when the surface to be machined, for example the surface to be milled with a road milling machine, lies on a hydrant or the structure to be erected with a slipform paver, for example a guide wall, should run over a water inlet.
Eine bevorzugte Ausführungsform der Erfindung sieht vor, dass die Baumaschine eine Einrichtung zur Ermittlung von die Position und Orientierung der Baumaschine beschreibende Positions-/Orientierungs-Daten in einem von der Baumaschine unabhängigen Koordinatensystem aufweist. Die Projekt-Daten werden in einem von der Position und Orientierung der Baumaschine unabhängigen Koordinatensystem ermittelt, das sich mit der Bewegung der Baumaschine im Gelände nicht verändert.A preferred embodiment of the invention provides that the construction machine has a device for determining position / orientation data describing the position and orientation of the construction machine in a coordinate system independent of the construction machine. The project data are determined in a coordinate system independent of the position and orientation of the construction machine, which does not change with the movement of the construction machine in the field.
Die Einrichtung zur Ermittlung von den die Position und Orientierung der Baumaschine beschreibenden Positions-/Orientierungs-Daten umfasst vorzugsweise ein globales Navigationssattelitensystem (GNSS), das einen ersten und einen zweiten GNSS-Empfänger zur Dekodierung von GNSS-Signalen des globalen Navigationssatellitensystems (GNSS) und Korrektursignalen einer Referenzstation für die Bestimmung der Position und Orientierung der Baumaschine aufweisen kann, wobei der erste und zweite GNSS-Empfänger an der Baumaschine in unterschiedlichen Positionen angeordnet sind. Mit dem ersten und zweiten GNSS-Empfänger kann die Messgenauigkeit erhöht werden. Anstelle eines globalen Navigationssatellitensystems (GNSS) kann die Position und Orientierung der Baumaschine auch mit einem satellitenunabhängigen System, beispielsweise mit einem Tachymeter, ermittelt werden.The means for determining the position / orientation data describing the position and orientation of the construction machine preferably comprises a global navigation satellite system (GNSS) comprising first and second GNSS receivers for decoding GNSS signals of the Global Navigation Satellite System (GNSS) and Correction signals of a reference station for determining the position and orientation of the construction machine may have, wherein the first and second GNSS receiver on the construction machine in different positions are arranged. With the first and second GNSS receiver, the measurement accuracy can be increased. Instead of a global navigation satellite system (GNSS), the position and orientation of the construction machine can also be determined with a satellite-independent system, for example with a tachymeter.
Eine weitere bevorzugte Ausführungsform sieht vor, dass die die Form und Lage des mindestens einen Projektes beschreibenden Projekt-Daten in dem von der Position und Orientierung der Baumaschine unabhängigen Koordinatensystem in Abhängigkeit von der bekannten Position und Orientierung der Baumaschine in dem von der Baumaschine unabhängigen Koordinatensystem in das von der Position und Orientierung der Baumaschine abhängige Koordinatensystem transformiert werden. Die in dem feststehenden Koordinatensystem bereitstehenden Projekt-Daten können dann dem Bildausschnitt in Echtzeit überlagert werden, so dass das Projekt immer in korrekter Ausrichtung zu dem realen Bild, das sich mit der Bewegung der Baumaschine laufend ändern kann, sichtbar ist.A further preferred embodiment provides that the project data describing the shape and position of the at least one project in the coordinate system independent of the position and orientation of the construction machine in dependence on the known position and orientation of the construction machine in the non-construction machine coordinate system in be transformed depending on the position and orientation of the construction machine coordinate system. The project data available in the fixed coordinate system can then be superimposed on the image section in real time, so that the project is always visible in correct alignment with the real image, which can constantly change with the movement of the construction machine.
Aus den Projekt-Daten können mit der Bildverarbeitungseinheit unterschiedliche Bilddaten gewonnen werden, mit denen sich das Projekt auf der Anzeigeeinheit für den Maschinenführer visualisieren lässt. Für die Visualisierung ist eine vereinfachte Darstellung des Projektes im Allgemeinen ausreichend. Vorzugsweise umfassen die Projekt-Daten mindestens eine Umrisslinie des Projektes beschreibende Daten, wobei die Datenverarbeitungseinheit derart konfiguriert ist, dass in dem Bildausschnitt des Geländes die mindestens eine Umrisslinie des Projektes angezeigt wird. Mit der Umrisslinie sind die Lage und die Form des Projektes in dem Bildausschnitt ausreichend gekennzeichnet. Wenn das Projekt beispielsweise ein Baukörper ist, kann der Baukörper auch durch eine farbliche Unterlegung oder eine Schraffur noch hervorgehoben oder allein dadurch dargestellt werden.From the project data, different image data can be obtained with the image processing unit with which the project can be visualized on the display unit for the machine operator. For visualization, a simplified representation of the project is generally sufficient. Preferably, the project data comprise at least one outline of the project descriptive data, wherein the data processing unit is configured such that in the image section of the terrain, the at least one outline of the project is displayed. The outline and the shape of the project in the image section are sufficiently marked. If the project is, for example, a building, the building can also be highlighted by a colored underlay or a hatching or can be represented by it alone.
Bei einer weiteren besonders bevorzugten Ausführungsform ist die Datenverarbeitungseinheit derart konfiguriert, dass Objekt-Daten ermittelt werden, die die Form und Lage von mindestens einem realen Objekt in dem Bildausschnitt des Geländes beschreiben, wobei die Projekt-Daten dann mit den Objekt-Daten verglichen werden. In diesem Zusammenhang werden unter Objekt-Daten sämtliche Daten verstanden, mit denen die Form und Lage der in dem Gelände vorhandenen und mit der Bildaufzeichnungseinheit aufgezeichneten Objekte beschrieben werden, die als reale Objekte in dem Bildausschnitt dargestellt werden. Die Objekt-Daten können beispielsweise Lage und Form eines Baukörpers, beispielsweise eines Hydranten oder eines Wassereinlaufs im Gelände beschreiben, der bei der Errichtung eines Baukörper oder der Veränderung des Geländes nicht abgedeckt oder beschädigt werden soll. Der Vergleich der Projekt-Daten mit den Objekt-Daten ermöglicht über die Erweiterung der Wahrnehmung des Maschinenführers hinaus eine computerunterstützte Überwachung der Steuerung der Baumaschine, wobei festgestellt werden kann, dass die ermittelten Projekt-Daten nicht mit den Objekt-Daten (Realität) übereinstimmen. Bei dem Vergleich können die bekannten mathematischen Algorithmen verwendet werden, um beispielsweise feststellen zu können, ob der Baukörper tatsächlich neben dem Wassereinlauf liegt.In a further particularly preferred embodiment, the data processing unit is configured to determine object data describing the shape and location of at least one real object in the image area of the terrain, the project data then being compared to the object data. In In this context, object data is understood to be all data describing the shape and position of the objects present in the terrain and recorded with the image recording unit, which objects are represented as real objects in the image detail. The object data can describe, for example, the position and shape of a structure, for example a hydrant or a water inlet in the area, which should not be covered or damaged during the construction of a building or the change of the terrain. The comparison of the project data with the object data allows beyond the extension of the perception of the machine operator, a computer-aided monitoring of the control of the construction machine, where it can be determined that the determined project data does not match the object data (reality). In the comparison, the known mathematical algorithms can be used, for example, to be able to determine whether the building is actually next to the water inlet.
Eine besonders einfache Auswertung der Daten sieht vor, den Abstand zwischen mindestens einem auf die Umrisslinie des Projektes bezogenen Referenzpunkt und mindestens einem auf die Umrisslinie des Objektes bezogenen Referenzpunkt zu ermitteln. Der Referenzpunkt kann dabei selbst auf der Umrisslinie, beispielsweise auf einem Kreis oder Kreisbogen, oder neben der Umrisslinie liegen, beispielsweise auf dem Mittelpunkt eines Kreises liegen. Der ermittelte Abstand wird vorzugsweise mit einem vorgegebenen Grenzwert verglichen wird. Wenn der Abstand zwischen auf den Umrisslinien liegenden Referenzpunkten kleiner als ein vorgegebener Grenzwert ist, kann darauf geschlossen werden, dass ein Mindestabstand nicht eingehalten ist. Dieser Mindestabstand kann auf der Anzeigeeinheit visualisiert werden. Eine weitere Möglichkeit sind die von den Umrisslinien eingeschlossenen Flächen der Auswertung zugrunde zulegen. Es ist auch möglich, zu bestimmen, ob sich die unter Berücksichtigung eines vorgegebenen Mindestabstandes um das Objekt festgelegte Umrisslinie des Projektes mit der Umrisslinie des Objektes schneidet. Für den Fall, dass die Projekt-Linie die Objekt-Linie schneidet, kann darauf geschlossen werden, dass die Projekt-Linie nicht die Objekt-Linie umschließt, d. h. Projekt und Objekt nicht zusammenpassen, sondern sich zumindest teilweise überlappen.A particularly simple evaluation of the data provides for determining the distance between at least one reference point related to the outline of the project and at least one reference point related to the outline of the object. The reference point can lie even on the outline, for example on a circle or circular arc, or next to the outline, for example, lie on the center of a circle. The determined distance is preferably compared with a predetermined limit value. If the distance between reference points lying on the contour lines is smaller than a predetermined limit, it can be concluded that a minimum distance is not maintained. This minimum distance can be visualized on the display unit. Another possibility is to base the areas enclosed by the contours on the evaluation. It is also possible to determine whether the outline of the project defined around the object, taking into account a predetermined minimum distance, intersects with the outline of the object. In the case that the project line intersects the object line, it can be concluded that the project line does not enclose the object line, ie the project and the object do not match, but at least partially overlap.
Die Baumaschine weist vorzugsweise eine Alarm-Einheit auf, die einen optischen und/oder akustischen und/oder taktilen Alarm gibt, wenn die Datenverarbeitungseinheit festgestellt hat, dass Projekt und Objekt nicht zusammenpassen, beispielsweise sich die Projekt-Linie und Objekt-Linie schneiden und/oder der ermittelte Abstand zwischen den Umrisslinien von Projekt und Objekt kleiner als ein vorgegebener Grenzwert ist. Es kann auch ein Steuersignal für einen Eingriff in die Maschinensteuerung erzeugt werden.The construction machine preferably has an alarm unit which gives an optical and / or audible and / or tactile alarm when the data processing unit has determined that the project and the object do not match, for example the project line and object line intersect and / or or the determined distance between the outlines of project and object is less than a predetermined limit. It is also possible to generate a control signal for intervention in the machine control.
Für die Erfindung ist unerheblich, wie Projekt-Daten bereitgestellt werden. Bei einer bevorzugten Ausführungsform weist die Baumaschine eine Schnittstelle zum Einlesen der Projekt-Daten und eine Speichereinheit zum Speichern der eingelesenen Projekt-Daten auf. Damit ist es möglich, die für die Steuerung der Baumaschine erforderlichen Projekt-Daten schon vorher zu ermitteln. Die Projekt-Daten werden vorzugsweise im Gelände mit einem vorzugsweise satellitengestützten Messgerät (Rover) ermittelt.For the invention is irrelevant how project data are provided. In a preferred embodiment, the construction machine has an interface for reading in the project data and a memory unit for storing the read-in project data. This makes it possible to determine the project data required for controlling the construction machine in advance. The project data are preferably determined in the field with a preferably satellite-based measuring device (rover).
Im Folgenden werden verschiedene Ausführungsbeispiele der Erfindung unter Bezugnahme auf die Zeichnungen näher erläutert.In the following, various embodiments of the invention will be explained in more detail with reference to the drawings.
- Fig. 1AFig. 1A
- ein Ausführungsbeispiel eines Gleitschalungsfertigers in der Seitenansicht,an embodiment of a slipform paver in the side view,
- Fig. 1BFig. 1B
-
den Gleitschalungsfertiger von
Fig. 1A in der Draufsicht,the slipform paver fromFig. 1A in the plan view, - Fig. 2AFig. 2A
- ein Ausführungsbeispiel einer Straßenfräsmaschine in der Seitenansicht,an embodiment of a road milling machine in side view,
- Fig. 2BFig. 2B
-
die Straßenfräsmaschine von
Fig. 2A in der Draufsicht,the road milling machine ofFig. 2A in the plan view, - Fig. 3Fig. 3
- die mit einer Straßenfräsmaschine zu bearbeitende Straßenoberfläche zusammen mit dem von der Bewegung der Baumaschine unabhängigen Koordinatensystem und dem von der Bewegung der Baumaschine abhängigen Koordinatensystem,the road surface to be worked with a road milling machine together with the coordinate system independent of the movement of the construction machine and the coordinate system dependent on the movement of the construction machine,
- Fig. 4Fig. 4
- den auf der Anzeigeeinheit der Straßenfräsmaschine angezeigten Bildausschnitt des Geländes,the image of the terrain displayed on the display unit of the road milling machine,
- Fig. 5AFig. 5A
- ein Beispiel für die Überlagerung der Umrisslinien eines Projektes und eines Objektes in dem Bildausschnitt, wobei sich die Umrisslinien von Projekt und Objekt nicht schneiden,an example of the superposition of the outline of a project and of an object in the image section, whereby the outlines of project and object do not intersect,
- Fig. 5BFig. 5B
- ein Beispiel für die Überlagerung der Umrisslinien eines Projektes und eines Objektes in dem Bildausschnitt, wobei sich die Umrisslinien von Projekt und Objekt schneiden,an example of the superimposition of the outline of a project and of an object in the image section, where the outlines of the project and the object intersect,
- Fig. 6Fig. 6
- den auf der Anzeigeeinheit eines Gleitschalungsfertigers angezeigten Bildausschnitt des Geländes, wobei Projekt und Objekt genau zusammenpassen,the image of the terrain displayed on the display unit of a slipform paver, where the project and the object are exactly matched,
- Fig. 7Fig. 7
- den auf der Anzeigeeinheit eines Gleitschalungsfertigers angezeigten Bildausschnitt des Geländes, wobei Projekt und Objekt nicht zusammenpassen undthe image of the terrain displayed on the display unit of a slipform paver, where the project and the object do not match, and
- Fig. 8Fig. 8
- ein Blockschaltbild mit den wesentlichen Komponenten für die Visualisierung des Bearbeitungsumfeldes der erfindungsgemäßen Baumaschine.a block diagram with the essential components for the visualization of the processing environment of the construction machine according to the invention.
Die
Der Gleitschalungsfertiger 1 weist einen Maschinenrahmen 2 auf, der von einem Fahrwerk 3 getragen wird. Das Fahrwerk 3 weist zwei vordere und zwei hintere Kettenlaufwerke 4A, 4B auf, die an vorderen und hinteren Hubsäulen 5A, 5B befestigt sind. Die Arbeitsrichtung (Fahrtrichtung) des Gleitschalungsfertigers ist mit einem Pfeil A gekennzeichnet. Es kann aber auch nur ein vorderes oder hinteres Laufwerk vorgesehen sein.The
Die Kettenlaufwerke 4A, 4B und Hubsäulen 5A, 5B bilden die Antriebseinrichtung des Gleitschalungsfertigers zum Ausführen von translatorischen und/oder rotatorischen Bewegungen der Baumaschine auf dem Gelände. Durch Anheben und Absenken der Hubsäulen 5A, 5B kann der Maschinenrahmen 2 gegenüber dem Boden in der Höhe und Neigung bewegt werden. Mit den Kettenlaufwerken 4A, 4B kann der Gleitschalungsfertiger vor- und zurückbewegt werden. Damit hat die Baumaschine drei translatorische und drei rotatorische Freiheitsgrade.The track drives 4A, 4B and lifting
Der Gleitschalungsfertiger 1 verfügt über eine nur andeutungsweise dargestellte Vorrichtung 6 zum Formen von Beton, die nachfolgend als Betonmulde bezeichnet wird. Die Betonmulde 6 stellt die Arbeitseinrichtung des Gleitschalungsfertigers zur Errichtung eines Baukörpers mit einer vorgegebenen Form auf dem Gelände dar.The
Die
Die mit einer Straßenfräsmaschine zu bearbeitende Straßenoberfläche ist in
Da der Maschinenführer die Schachtdeckel nicht erkennen kann, werden in der Praxis auf der Höhe der Schachtdeckel seitliche Markierungen angebracht, die in
Die Lage und Form der kreisförmigen Schachtdeckel 9, 10 werden eindeutig durch drei auf dem Kreisumfang liegende Referenzpunkte O11, O12, O13 und O21, O22, O23 beschrieben. Lage und Form der rechteckförmigen Wassereinläufe werden durch vier Referenzpunkte O31, O32, O33, O34 beschrieben, die an den Ecken des Wassereinlaufs liegen.The position and shape of the circular manhole covers 9, 10 are clearly described by three lying on the circumference reference points O 11 , O 12 , O 13 and O 21 , O 22 , O 23 . The position and shape of the rectangular water inlets are described by four reference points O 31 , O 32 , O 33 , O 34 located at the corners of the water inlet.
Das Projekt wird durch zuvor erstellte Projekt-Daten beschrieben, die über eine geeignete Schnittstelle 12A in einen Arbeitsspeicher 12 der Baumaschine eingelesen werden (
Die Projekt-Daten umfassen die Koordinaten der Referenzpunkte des Projektes in dem feststehenden, von der Bewegung der Baumaschine unabhängigen Koordinatensystem (X, Y, Z). Sie kennzeichnen die abzufräsende Fläche, die außerhalb der Umrisslinien 13, 14, 15 des Projektes liegt. Die nicht zu bearbeitende Fläche ist die innerhalb der Umrisslinien 13, 14, 15 des Projektes liegende Fläche, in der die Objekte O liegen. Damit ist das Projekt eindeutig bestimmt.The project data comprises the coordinates of the reference points of the project in the fixed coordinate system independent of the movement of the construction machine (X, Y, Z). They mark the area to be cut, which lies outside the
Die Projekt-Daten können wie folgt ermittelt werden. Das feststehende Koordinatensystem (X, Y, Z) ist vorzugsweise das Koordinatensystem eines globalen Satellitennavigationssystems (GNSS), so dass die Referenzpunkte der Objekte mit einem Messgerät (Rover) auf einfache Weise erfasst werden können. Aus den Referenzpunkten O11, O12, O13 und O21, O22, O23 und O31, O32, O33, O34 der Objekte werden unter Berücksichtigung eines Mindestabstandes Δ zwischen der Umrisslinie 13, 14, 15 des Projektes und der Umrisslinie 16, 17, 18 des Objektes die Referenzpunkte P11, P12, P13 und P21, P22, P23 und P31, P32, P33, P34 des Projektes ermittelt. Die Projekt-Daten können in einer externen Speichereinheit, beispielsweise einem USB-Stick, gespeichert und über die Schnittstelle 12A in die interne Speichereinheit 12 der Baumaschine eingelesen werden. Mit diesen Daten kann die Baumaschine dann gesteuert werden. Wenn die Straßenfräsmaschine eine nicht zu bearbeitende Fläche erreicht, wird die Fräswalze in Bezug auf den Boden automatisch angehoben. Sobald die Straßenfräse die nicht zu bearbeitende Fläche überfahren hat, wird die Fräswalze wieder abgesenkt. Dadurch wird vermieden, dass der Schachtdeckel 9, 10 oder Wassereinlauf 11 bzw. die Baumaschine beschädigt wird. Das Anheben und Absenken der Fräswalze kann aber auch mit einem manuellen Eingriff in die Maschinensteuerung erfolgen, wobei dem Maschinenführer der Zeitpunkt, an dem der Eingriff vorzunehmen ist, signalisiert wird.The project data can be determined as follows. The fixed coordinate system (X, Y, Z) is preferably the coordinate system of a global navigation satellite system (GNSS), so that the reference points of the objects can be easily detected with a measuring device (rover). From the reference points O 11 , O 12 , O 13 and O 21 , O 22 , O 23 and O 31 , O 32 , O 33 , O 34 of the objects are taking into account a minimum distance Δ between the
In der Praxis kann es vorkommen, dass die Referenzpunkte des Projektes in dem von der Straßenfräsmaschine unabhängigen GNSS-Koordinatensystem unter Berücksichtigung des Objektes O nicht korrekt erfasst werden. Dann besteht die Gefahr, dass der Schachtdeckel 9, 10 oder Wassereinlauf 11 nicht innerhalb der zuvor festgelegten Umrisslinie 16, 17, 18 liegt, was zur Folge hätte, dass der Schachtdeckel oder Wassereinlauf bzw. die Maschine beschädigt wird.In practice, it may happen that the reference points of the project are not detected correctly in the GNSS coordinate system independent of the road milling machine taking into account the object O. Then there is a risk that the
Die Straßenfräsmaschine verfügt über eine Bildaufzeichnungseinheit 19, die ein am Maschinenrahmen 2 angeordnetes Kamera-System 19A aufweist, mit dem ein Bildausschnitt 20A des zu bearbeitenden Geländes, d. h. des Straßenbelags mit den Schachtdeckeln und Wassereinläufen, aufgenommen wird. Das Kamera-System 19A erfasst einen vom Maschinenführer auf dem Fahrstand nicht einsehbaren Bereich. Der Bildausschnitt 20A wird auf einer Anzeigeeinheit 20, beispielsweise ein LC-Display, angezeigt.
Darüber hinaus verfügt die Straßenfräsmaschine über eine Datenverarbeitungseinheit 21, mit der die bereitstehenden Projekt-Daten verarbeitet werden. Die Datenverarbeitungseinheit 21 ist derart konfiguriert, dass dem auf der Anzeigeeinheit 20 angezeigten Bildausschnitt 20A des Geländes das in dem Bildausschnitt liegende Projekt überlagert wird. Bei diesem Ausführungsbeispiel werden die Umrisslinien 16, 17, 18 des Projektes, mit denen die zu bearbeitende Fläche bzw. die nicht zu bearbeitende Fläche gekennzeichnet werden, in dem Bildausschnitt 20A so angezeigt, wie sie den zuvor ermittelten Projekt-Daten entsprechen. Der Maschinenführer kann somit auf der Anzeigeeinheit 20 sofort erkennen, wenn die Projekt-Daten nicht der Realität entsprechen sollten, d. h. die Umrisslinien 16, 17, 18 des Projektes nicht die Umrisslinien 13, 14, 15 der Objekte O in dem vorgegebenen Mindestabstand Δ konzentrisch umschließen sollten. Wenn die Schachtdeckel und Wassereinläufe innerhalb der angezeigten Umrisslinien liegen, kann die Steuerung der Straßenfräse hingegen ohne weiteren Eingriff in die Maschinensteuerung erfolgen.In addition, the road milling machine has a
Dem Bildausschnitt 20A ist ein von der Bewegung der Baumaschine im Gelände abhängiges Koordinatensystem (x, y, z) zugeordnet, das in
Das von der Bewegung der Baumaschine im Gelände abhängige Koordinatensystem (x, y, z) kann ein dreidimensionales oder zweidimensionales Koordinatensystem sein. In
Das Kamera-System kann ein Stereokamera-System oder ein Kamera-System mit nur einer Kamera sein. Bei zu vernachlässigender Krümmung der Geländeoberfläche und/oder der Berücksichtigung nur zweidimensionaler Objekte ist aber ein Kamera-System mit nur einer Kamera ausreichend. Wenn das Kamera-System ein Stereokamera-System ist, können auf der Anzeigeeinheit 20 mit den bekannten Verfahren auch dreidimensionale Bilder angezeigt werden.The camera system may be a stereo camera system or a camera system with only one camera. With negligible curvature of the terrain surface and / or the consideration of only two-dimensional objects but a camera system with only one camera is sufficient. If the camera system is a stereo camera system, three-dimensional images can also be displayed on the
Zur Ermittlung der Position und Orientierung der Baumaschine und damit auch der Position und Orientierung (Blickwinkel) des Kamera-Systems 19A in dem von der Position und Orientierung der Baumaschine unabhängigen Koordinatensystem (X, Y, Z) verfügt die Baumaschine über eine Einrichtung 22, die Positions-/Orientierungs-Daten der Baumaschine bereitstellt (
Die Datenverarbeitungseinheit 21 empfängt die aktuellen Positions-/Orientierungs-Daten, die von der Einrichtung 22 zur Ermittlung der Position und Orientierung der Baumaschine laufend bereitstellt werden, und transformiert die Form und Lage des Projektes in dem von der Position und Orientierung der Baumaschine unabhängigen Koordinatensystem (X, Y, Z) beschreibenden Projekt-Daten in Abhängigkeit von der Position und Orientierung der Baumaschine in dem von der Baumaschine unabhängigen Koordinatensystem in das von der Position und Orientierung der Baumaschine abhängige Maschinenkoordinatensystem (x, y, z). Diese Datentransformation erfolgt in Echtzeit. Nachdem die Koordinaten der die Umrisslinien des Projektes kennzeichnenden Referenzpunkte in dem Maschinenkoordinatensystem bekannt sind, werden die Umrisslinien 16, 17, 18 des Projektes in dem Bildausschnitt 20A angezeigt (
Wenn für den dargestellten Bildausschnitt 20A keine Projekt-Daten vorliegen, erfolgt auf der Anzeigeeinheit 20 keine Visualisierung. Ansonsten werden die relevanten Informationen dem Maschinenführer neben der Abbildung der realen Objekte (Hydrant 9, 10 oder Wassereinlauf 11) mittels der Umrisslinien 16, 17, 18 als virtuelle Objekte angezeigt, die mit den im Kamerabild erfassten realen Objekten O zusammenpassen sollen. Folglich kann der Maschinenführer die Steuerung der Baumaschine ständig überwachen.If there is no project data for the displayed
Die Datenverarbeitungseinheit 21 kann eine Bildverarbeitungseinheit umfassen, die automatisch erkennen kann, ob die realen Objekte O mit den virtuellen Objekten zusammenpassen, d. h. die in dem Bildausschnitt gezeigte reale Umrisslinie 13, 14, 15 eines Objektes O (Hydrant oder Wassereinlauf) tatsächlich innerhalb der zugehörigen virtuellen Umrisslinie 16, 17, 18 des Projektes liegt. Die Datenverarbeitungseinheit 21 ist derart konfiguriert, dass die Form und Lage des mit dem Kamera-System 19A aufgenommenen realen Objektes O (Hydrant oder Wassereinlauf) in dem Bildausschnitt 20A ermittelt wird. Hierzu kann die Datenverarbeitungseinheit 21 von den bekannten Verfahren zur Bilderkennung Gebrauch machen. Form und Lage des realen Objektes in dem Bildausschnitt werden durch Objekt-Daten beschrieben. Beispielsweise wird die kreisförmige Umrisslinie des Schachtdeckels 9 durch die drei auf der Umrisslinie liegenden Referenzpunkte P11, P12, P13 beschrieben (
Die Objekt-Daten werden in der Datenverarbeitungseinheit 21 mit den Projekt-Daten verglichen, um festzustellen, ob die realen Objekte mit den virtuellen Objekten zusammenpassen. Bei diesem Ausführungsbeispiel prüft die Datenverarbeitungseinheit, ob die Umrisslinie 13 des realen Objektes, beispielsweise des Schachtdeckels 9, innerhalb der Umrisslinie 16 des Projektes liegt. Hierzu prüft die Datenverarbeitungseinheit 21, ob sich die beiden Umrisslinien 13, 16 schneiden. Wenn sich die Umrisslinien 13, 16 nicht schneiden, wird darauf geschlossen, dass die Objekt-Daten der Realität entsprechen. Andernfalls wird auf eine fehlerhafte Ermittlung der Objekt-Daten geschlossen.The object data is compared in the
Darüber hinaus kann die Datenverarbeitungseinheit 21 bei einer bevorzugten Ausführungsform noch feststellen, ob ein Mindestabstand Δ eingehalten wird. Hierzu bestimmt die Datenverarbeitungseinheit zwei Referenzpunkte PA1 und PA2, die der Umrisslinie 13 des Objektes bzw. der Umrisslinie 16 des Projektes zugeordnet werden. Beispielsweise können als Referenzpunkte PA1, PA2 Punkte bestimmt werden, die auf den kreisförmigen Umrisslinien 13, 16 besonders nahe aneinander liegen (
Die obige Ausführungsform ist nur als ein Ausführungsbeispiel zu verstehen, um die Projekt-Daten und Objekt-Daten miteinander zu vergleichen. Die Daten können aber auch mit allen anderen bekannten Algorithmen ausgewertet werden, um darauf zu schließen, ob die realen Objekte mit den virtuellen Objekten zusammenpassen.The above embodiment is only to be understood as an embodiment for comparing the project data and object data with each other. The data can also be evaluated with all other known algorithms to infer whether the real objects match the virtual objects.
Die Baumaschine weist eine Alarm-Einheit 23 auf, die einen optischen und/oder akustischen und/oder taktilen Alarm gibt, wenn die Datenverarbeitungseinheit 21 festgestellt hat, dass die beiden Umrisslinien 13, 16 nicht zusammenpassen und/oder der Abstand a kleiner als ein vorgegebener Grenzwert ist (
Nachfolgend wird unter Bezugnahme auf die
Bei dem vorliegenden Ausführungsbeispiel ist das Projekt des Gleitschalungsfertiger eine Verkehrsinsel, die von einem Bordstein 25 aus Beton seitlich begrenzt wird. Der Bordstein 25 weist beispielsweise einen geraden Abschnitt 25A auf, an den sich ein halbkreisförmiger Abschnitt 25B anschließt. Der Bordstein 25 soll neben einem rechteckförmigen Wassereinlauf 26 liegen, was eine genaue Steuerung des Gleitschalungsfertigers voraussetzt.In the present embodiment, the slipform paver project is a traffic island bounded laterally by a
Die Projekt-Daten enthalten wieder die Koordinaten von für das Projekt charakteristischer Referenzpunkten, die in einem von der Position und Orientierung der Baumaschine unabhängigen Koordinatensystem (X, Y, Z) erfasst werden. Die Projekt-Daten beschreiben die Form und Lage des Bordsteins 25. Form und Lage des geraden Abschnitts 25A können beispielsweise durch jeweils zwei Referenzpunkte P1, P2 und P3, P4 beschrieben werden, die am Anfang und Ende der inneren bzw. äußeren Umrisslinie 27, 28 des Bordsteins 25 liegen. Der halbkreisförmige Abschnitt 25B kann beispielsweise durch drei Referenzpunkte P2, P5, P6 und P4, P7, P8 beschrieben werden, die auf der inneren bzw. äußeren Umrisslinie 27, 28 liegen.The project data again contains the coordinates of characteristic reference points for the project, which are detected in a coordinate system (X, Y, Z) independent of the position and orientation of the construction machine. The project data describe the shape and position of the
Die zuvor ermittelten Projekt-Daten, die sich auf das von der Position und Orientierung unabhängige GNSS-System beziehen, werden über die Schnittstelle 12A in den Arbeitsspeicher 12 des Gleitschalungsfertigers eingelesen. Die Steuereinheit des Gleitschalungsfertigers ist derart konfiguriert, dass sich der Gleitschalungsfertiger auf einer Bahn bewegt, die dem Verlauf des zu errichtenden Bordsteins 25 entspricht.The previously determined project data relating to the GNSS system independent of the position and orientation are read into the working
Die
Die Einrichtung 22 zur Ermittlung der Position und Orientierung des Gleitschalungsfertigers im Gelände berechnet laufend die aktuellen Positions-/Orientierungsdaten, wobei die Datenverarbeitungseinheit 21 die Projekt-Daten, die in dem von der Position und Orientierung des Gleitschalungsfertigers unabhängigen GNSS-System (X, Y, Z) vorliegen, in das von der Position und Orientierung des Gleitschalungsfertigers abhängige Maschinenkoordinatensystem (x, y, z) transformiert, das dem Blickwinkel des Kamera-Systems entspricht. Nach der Ermittlung der Koordinaten der Referenzpunkte in dem Maschinenkoordinatensystem werden die inneren und äußeren Umrisslinien 27, 28 des geraden und halbkreisförmigen Abschnitts 25A, 25B dem Kamerabild überlagert.The terrain position and orientation determining means 22 of the slipform paver continuously calculates the current position / orientation data, and the
Die
Bei einer bevorzugten Ausführungsform bestimmt die Datenverarbeitungseinheit 21 mit einer Bilderkennung die Koordinaten von Referenzpunkten O1, O2, O3, O4 des rechteckförmigen Wassereinlaufs 26 in dem Maschinenkoordinatensystem (x, y, z), das dem Kamerabild entspricht. Da die standardisierte Form und Größe des Wassereinlaufs 26 bekannt ist, können beispielsweise die Koordinaten der Eckpunkte des Wassereinlaufs mit einer Bilderkennung ohne größeren Rechenaufwand bestimmt werden. Diese Koordinaten liefern dann die Objekt-Daten, die mit den Projekt-Daten verglichen werden, um feststellen zu können, ob die Planung mit der Realität übereinstimmt. Hierfür kann mit der Datenverarbeitungseinheit 21 beispielsweise geprüft werden, ob sich die Umrisslinien von Bordstein und Wassereinlauf schneiden, und/oder mit der Datenverarbeitungseinheit kann beispielsweise der Abstand zwischen den Umrisslinien berechnet werden, wie unter Bezugnahme auf das andere Ausführungsbeispiel beschrieben ist.In a preferred embodiment, the
Claims (18)
- Self-propelled construction machine comprising
a chassis (3) which comprises front and rear wheels or running gears (4A 4B) in the working direction,
a machine frame (2) supported by the chassis,
a drive device for driving the front and/or rear wheels or running gears (4A, 4B),
a working device (6) for installing structures on the terrain or for modifying the terrain,
an image recording unit (19) for recording an image segment (20A) of the terrain located in a coordinate system (x, y, z) dependent on the position and orientation of the construction machine on the terrain, and
a display unit (20) for displaying the image segment (20A) of the terrain, characterised in that
the construction machine further comprises:a device (12) for providing project data describing the shape and location of at least one project in a coordinate system (X, Y, Z) independent of the position and orientation of the construction machine, anda data processing unit (21) which is configured in such a way that a depiction of the part of the at least one project located in the image segment is superimposed on the image segment (20A) of the terrain displayed on the display unit (20), such that at least part of the at least one project is visualised in the image segment. - Self-propelled construction machine according to claim 1, characterised in that the construction machine comprises a device (22) for determining position/orientation data describing the position and orientation of the construction machine in the coordinate system (X, Y, Z) independent of the construction machine.
- Self-propelled construction machine according to claim 2, characterised in that the device (22) for determining the position/orientation data describing the position and orientation of the construction machine comprises a global navigation satellite system (GNSS).
- Self-propelled construction machine according to either claim 2 or claim 3, characterised in that the device (22) for determining the position/orientation data describing the position and orientation of the construction machine comprises a first and a second GNSS receiver (22A, 22B) for decoding GNSS signals from the global navigation satellite system (GNSS) and correction signals from a reference station in order to determine the position and orientation of the construction machine, the first and second GNSS receivers (22A, 22B) being arranged in different positions (S 1, S2) on the construction machine.
- Self-propelled construction machine according to any of claims 2 to 4, characterised in that the data processing unit (21) is configured in such a way that the project data describing the shape and location of the at least one project in the coordinate system (X, Y, Z) independent of the position and orientation of the construction machine is transformed, on the basis of the position and orientation of the construction machine in the coordinate system (X, Y, Z) independent of the construction machine, into a coordinate system (x, y, z) dependent on the position and orientation of the construction machine.
- Self-propelled construction machine according to any of claims 1 to 5, characterised in that the project data describing the shape and location of the at least one project comprise data describing at least one contour (16, 17, 18; 27, 28) of the project, the data processing unit (21) being configured in such a way that the at least one contour (16, 17, 18; 27, 28) of the project is displayed in the image segment of the terrain.
- Self-propelled construction machine according to any of claims 1 to 6, characterised in that the data processing unit (21) is configured in such a way that the shape and location of at least one actual object (O) in the object data describing the image segment of the terrain is determined, the object data being compared with the project data.
- Self-propelled construction machine according to claim 7, characterised in that the spacing (a) between at least one reference point (PA2) relating to the contour (16, 17, 18) of the project and at least one reference point (PA1) relating to the contour (13, 14, 15) of the object is determined.
- Self-propelled construction machine according to claim 8, characterised in that the construction machine comprises an alarm unit (23) which emits an optical and/or acoustic and/or tactile alarm or generates a control signal for intervention in the machine control if the data processing unit (21) has identified that the spacing (a) is smaller than a predefined threshold value.
- Self-propelled construction machine according to any of claims 1 to 9, characterised in that the device (12) for providing the project data describing the shape and location of at least one project in the coordinate system (X, Y, Z) independent of the position and orientation of the construction machine comprises an interface (12A) for inputting the project data and a storage unit for storing the project data.
- Method for visualising the working environment of a construction machine moving on the terrain and installing a structure on the terrain or modifying the terrain, the image segment (20A) of the terrain located in a coordinate system (x, y, z) dependent on the position and orientation of the construction machine on the terrain being recorded by means of an image recording unit (19) and displayed on a display unit (20),
characterised in that
the shape and location of at least one project are provided in project data describing a coordinate system (X, Y, Z) independent of the position and orientation of the construction machine, and in that
a depiction of the part of the at least one project located in the image segment is superimposed on the image segment (20A) of the terrain displayed on the display unit (20), such that at least part of the at least one project is visualised in the image segment. - Method according to claim 11, characterised in that the position/orientation data describing the position and orientation of the construction machine are determined in the coordinate system (X, Y, Z) independent of the construction machine.
- Method according to claim 12, characterised in that the position/orientation data describing the position and orientation of the construction machine are determined by means of a global navigation satellite system (GNSS).
- Method according to either claim 12 or claim 13, characterised in that the project data describing the shape and location of the at least one project in the coordinate system (X, Y, Z) independent of the position and orientation of the construction machine is transformed, on the basis of the position and orientation of the construction machine in the coordinate system (X, Y, Z) independent of the position and orientation of the construction machine, into a coordinate system (x, y, z) dependent on the position and orientation of the construction machine.
- Method according to any of claims 11 to 14, characterised in that the project data describing the shape and location of the at least one project comprise data describing at least one contour (16, 17, 18; 27, 28) of the project, the at least one contour (16, 17, 18; 27, 28) of the project being displayed in the image segment (20A) of the terrain.
- Method according to any of claims 11 to 15, characterised in that the shape and location of at least one actual object (O) in the object data describing the image segment (20A) of the terrain is determined, the object data being compared with the project data.
- Method according to claim 16, characterised in that the spacing (a) between at least one reference point (PA2) relating to the contour (16, 17, 18) of the project and at least one reference point (PA1) relating to the contour (13, 14, 15) of the object is determined.
- Method according to any of claims 11 to 17, characterised in that the shape and location of the at least one project in the project data describing the coordinate system (X, Y, Z) independent of the position and orientation of the construction machine is determined on the terrain by means of a measuring device.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014012836.9A DE102014012836B4 (en) | 2014-08-28 | 2014-08-28 | Self-propelled construction machine and method for visualizing the processing environment of a construction machine moving in the field |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2990532A1 EP2990532A1 (en) | 2016-03-02 |
EP2990532B1 true EP2990532B1 (en) | 2017-02-15 |
Family
ID=53871917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15180819.3A Active EP2990532B1 (en) | 2014-08-28 | 2015-08-12 | Self-propelled construction machine and method for the visualization of the processing environment of a construction machine moving in the terrain |
Country Status (4)
Country | Link |
---|---|
US (1) | US9719217B2 (en) |
EP (1) | EP2990532B1 (en) |
CN (2) | CN105386397B (en) |
DE (1) | DE102014012836B4 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014012836B4 (en) * | 2014-08-28 | 2018-09-13 | Wirtgen Gmbh | Self-propelled construction machine and method for visualizing the processing environment of a construction machine moving in the field |
EP3276079B1 (en) | 2016-07-26 | 2021-07-14 | Caterpillar Paving Products Inc. | Control system for a road paver |
DE102018119962A1 (en) * | 2018-08-16 | 2020-02-20 | Wirtgen Gmbh | Self-propelled construction machine and method for controlling a self-propelled construction machine |
US11913188B2 (en) * | 2021-02-11 | 2024-02-27 | R.H. Borden And Company, Llc | Automated tool access to a manhole through automated manhole cover removal using self-driving vehicle |
CN113126560B (en) * | 2021-03-18 | 2024-07-12 | 浙江美通筑路机械股份有限公司 | Well lid milling control system with machine vision and control method |
CN114263085B (en) * | 2022-01-13 | 2024-07-05 | 武汉英途工程智能设备有限公司 | Intelligent paving control system of paver |
CN114737456B (en) * | 2022-05-06 | 2023-08-01 | 江苏徐工工程机械研究院有限公司 | Milling rotor and milling machine |
CN118563626B (en) * | 2024-07-30 | 2024-10-11 | 四川顶圣工程项目管理有限公司 | Fine management system for road engineering construction pavement quality |
Family Cites Families (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2089662C (en) | 1990-08-17 | 1996-12-03 | Yvan Joseph Beliveau | Spatial positioning system |
FR2683336B1 (en) | 1991-11-06 | 1996-10-31 | Laserdot | GUIDE DEVICE SERVED ON LASER BEAM FOR A PUBLIC WORKS MACHINE. |
EP0567660B2 (en) * | 1992-04-21 | 2000-09-06 | IBP Pietzsch GmbH | Device for the guiding of vehicles |
ZA948824B (en) | 1993-12-08 | 1995-07-11 | Caterpillar Inc | Method and apparatus for operating geography altering machinery relative to a work site |
US5519620A (en) | 1994-02-18 | 1996-05-21 | Trimble Navigation Limited | Centimeter accurate global positioning system receiver for on-the-fly real-time kinematic measurement and control |
US5838277A (en) | 1994-05-20 | 1998-11-17 | Trimble Navigation Limited | GPS-based controller module |
US5549412A (en) | 1995-05-24 | 1996-08-27 | Blaw-Knox Construction Equipment Corporation | Position referencing, measuring and paving method and apparatus for a profiler and paver |
US5612864A (en) | 1995-06-20 | 1997-03-18 | Caterpillar Inc. | Apparatus and method for determining the position of a work implement |
KR100256620B1 (en) | 1995-10-30 | 2000-05-15 | 모리 하루오 | Navigation device |
US6113309A (en) | 1996-08-20 | 2000-09-05 | Hollon; Edmund D. | Uniform compaction of asphalt concrete |
US6287048B1 (en) | 1996-08-20 | 2001-09-11 | Edmund D. Hollon | Uniform compaction of asphalt concrete |
DE19647150C2 (en) | 1996-11-14 | 2001-02-01 | Moba Mobile Automation Gmbh | Device and method for controlling the installation height of a road finisher |
US6047227A (en) | 1996-11-19 | 2000-04-04 | Caterpillar Inc. | Method and apparatus for operating geography altering machinery relative to a work site |
US5929807A (en) | 1997-03-07 | 1999-07-27 | Trimble Navigation Limited | Method and apparatus for precision location of GPS survey tilt pole |
DE19756676C1 (en) | 1997-12-19 | 1999-06-02 | Wirtgen Gmbh | Method for cutting road surfaces |
GB2333862B (en) | 1998-02-02 | 2002-01-09 | Caterpillar Paving Prod | Method and apparatus for controllably avoiding an obstruction to a cold planer |
US6140957A (en) | 1998-03-12 | 2000-10-31 | Trimble Navigation Limited | Method and apparatus for navigation guidance |
US6088644A (en) | 1998-08-12 | 2000-07-11 | Caterpillar Inc. | Method and apparatus for determining a path to be traversed by a mobile machine |
US7399139B2 (en) | 1998-10-27 | 2008-07-15 | Somero Enterprises, Inc. | Apparatus and method for three-dimensional contouring |
US8478492B2 (en) * | 1998-11-27 | 2013-07-02 | Caterpillar Trimble Control Technologies, Inc. | Method and system for performing non-contact based determination of the position of an implement |
US6074693A (en) | 1999-02-22 | 2000-06-13 | Trimble Navigation Limited | Global positioning system controlled paint sprayer |
US6425186B1 (en) | 1999-03-12 | 2002-07-30 | Michael L. Oliver | Apparatus and method of surveying |
US6191732B1 (en) | 1999-05-25 | 2001-02-20 | Carlson Software | Real-time surveying/earth moving system |
DE29918747U1 (en) | 1999-10-25 | 2000-02-24 | MOBA - Mobile Automation GmbH, 65604 Elz | Device for controlling a paver |
DE19957048C1 (en) | 1999-11-26 | 2001-08-09 | Wirtgen Gmbh | Slipform paver |
CN1134571C (en) * | 1999-12-02 | 2004-01-14 | 何永辉 | Measuring and control system of pavement smoothness (straightness) for paving machine |
EP1118713B1 (en) | 2000-01-19 | 2004-10-13 | Joseph Vögele AG | Method for steering a construction machine or roadpaver and road finisher |
US7183942B2 (en) * | 2000-01-26 | 2007-02-27 | Origin Technologies Limited | Speed trap detection and warning system |
WO2001086078A1 (en) | 2000-05-05 | 2001-11-15 | Laser Alignment, Inc., A Leica Geosystems Company | Laser-guided construction equipment |
DE10060903C2 (en) | 2000-12-07 | 2002-10-31 | Moba Mobile Automation Gmbh | Laser height control device for a construction machine |
US6655465B2 (en) | 2001-03-16 | 2003-12-02 | David S. Carlson | Blade control apparatuses and methods for an earth-moving machine |
AUPR396501A0 (en) | 2001-03-26 | 2001-04-26 | Edgeroi Pty Ltd | Ground marking apparatus |
US6769836B2 (en) | 2002-04-11 | 2004-08-03 | Enviro-Pave, Inc. | Hot-in-place asphalt recycling machine and process |
US6950059B2 (en) | 2002-09-23 | 2005-09-27 | Topcon Gps Llc | Position estimation using a network of a global-positioning receivers |
US8271194B2 (en) | 2004-03-19 | 2012-09-18 | Hemisphere Gps Llc | Method and system using GNSS phase measurements for relative positioning |
US6907336B2 (en) | 2003-03-31 | 2005-06-14 | Deere & Company | Method and system for efficiently traversing an area with a work vehicle |
DE10317160A1 (en) | 2003-04-14 | 2004-11-18 | Wacker Construction Equipment Ag | System and method for automated soil compaction |
US7443167B2 (en) | 2003-08-28 | 2008-10-28 | Science Applications International Corporation | Interleaved magnetometry and pulsed electromagnetic detection of underground objects |
US7002513B2 (en) | 2004-03-26 | 2006-02-21 | Topcon Gps, Llc | Estimation and resolution of carrier wave ambiguities in a position navigation system |
US7256710B2 (en) * | 2004-06-30 | 2007-08-14 | The Boeing Company | Methods and systems for graphically displaying sources for and natures of aircraft flight control instructions |
DE102004040136B4 (en) | 2004-08-19 | 2008-05-08 | Abg Allgemeine Baumaschinen-Gesellschaft Mbh | Device for milling traffic areas |
US7437221B2 (en) * | 2004-12-16 | 2008-10-14 | Raytheon Company | Interactive device for legacy cockpit environments |
EP1672122A1 (en) | 2004-12-17 | 2006-06-21 | Leica Geosystems AG | Method and apparatus for controlling a road working machine |
US7363154B2 (en) | 2005-10-12 | 2008-04-22 | Trimble Navigation Limited | Method and system for determining the path of a mobile machine |
US7856302B2 (en) | 2005-12-23 | 2010-12-21 | Caterpillar Inc | Work machine with transition region control system |
US20070179702A1 (en) * | 2006-01-27 | 2007-08-02 | Garmin Ltd., A Cayman Islands Corporation | Combined receiver and power adapter |
FR2898196B1 (en) * | 2006-03-01 | 2008-04-25 | Eurocopter France | HYBRID POSITIONING METHOD AND DEVICE |
DE102006020293B4 (en) | 2006-04-27 | 2013-07-11 | Wirtgen Gmbh | Road construction machine, leveling device and method for controlling the cutting depth or milling inclination in a road construction machine |
DE102006024123B4 (en) | 2006-05-22 | 2010-02-25 | Wirtgen Gmbh | Self-propelled construction machine, as well as methods for processing of ground surfaces |
US7617061B2 (en) | 2006-11-03 | 2009-11-10 | Topcon Positioning Systems, Inc. | Method and apparatus for accurately determining height coordinates in a satellite/laser positioning system |
DE102006062129B4 (en) | 2006-12-22 | 2010-08-05 | Wirtgen Gmbh | Road construction machine and method for measuring the cutting depth |
WO2008124657A1 (en) | 2007-04-05 | 2008-10-16 | Power Curbers, Inc. | Methods and systems utilizing 3d control to define a path of operation for a construction machine |
US7717521B2 (en) | 2007-07-09 | 2010-05-18 | Hall David R | Metal detector for an asphalt milling machine |
US20110200092A1 (en) * | 2007-11-12 | 2011-08-18 | Yoshio Todoroki | Digitial broadcast receiver |
US8018376B2 (en) | 2008-04-08 | 2011-09-13 | Hemisphere Gps Llc | GNSS-based mobile communication system and method |
US7946787B2 (en) | 2008-06-27 | 2011-05-24 | Caterpillar Inc. | Paving system and method |
US8401744B2 (en) | 2008-07-22 | 2013-03-19 | Trimble Navigation Limited | System and method for configuring a guidance controller |
US20120001638A1 (en) | 2010-06-30 | 2012-01-05 | Hall David R | Assembly and Method for Identifying a Ferrous Material |
US8174437B2 (en) | 2009-07-29 | 2012-05-08 | Hemisphere Gps Llc | System and method for augmenting DGNSS with internally-generated differential correction |
CN101718072B (en) * | 2009-12-04 | 2011-06-08 | 中国人民解放军国防科学技术大学 | Camera measurement based automatic leveling system and method of spreading machine |
DE102009059106A1 (en) | 2009-12-18 | 2011-06-22 | Wirtgen GmbH, 53578 | Self-propelled construction machine and method for controlling a self-propelled construction machine |
EP2366830B1 (en) | 2010-03-18 | 2016-05-11 | Joseph Vögele AG | Method and system for applying a street pavement |
DE102010014695A1 (en) | 2010-04-12 | 2011-10-13 | Dynapac Gmbh | Method for milling off surface covering i.e. road surface covering, involves adjusting milling roller by controller according to stored milled profile, and selecting stored profile or another profile by operator according to requirement |
US8314608B2 (en) | 2010-06-30 | 2012-11-20 | Hall David R | Method of determining distance to a ferrous material |
KR101169985B1 (en) * | 2010-08-16 | 2012-08-01 | (주)우리로드솔루션 | Apparatus for removing sign printed on paved road |
DE102010048185B4 (en) | 2010-10-13 | 2021-10-28 | Wirtgen Gmbh | Self-propelled construction machine |
US8498788B2 (en) | 2010-10-26 | 2013-07-30 | Deere & Company | Method and system for determining a planned path of a vehicle |
CN201865031U (en) * | 2010-11-25 | 2011-06-15 | 湖南高翔重工科技有限公司 | Multipurpose road building vehicle |
US8794867B2 (en) | 2011-05-26 | 2014-08-05 | Trimble Navigation Limited | Asphalt milling machine control and method |
US20130035875A1 (en) * | 2011-08-02 | 2013-02-07 | Hall David R | System for Acquiring Data from a Component |
DE102013006464B4 (en) | 2012-04-16 | 2020-03-19 | Bomag Gmbh | Construction machine with a maneuvering device, method for facilitating maneuvering of a construction machine and maneuvering device for a construction machine |
US8989968B2 (en) | 2012-10-12 | 2015-03-24 | Wirtgen Gmbh | Self-propelled civil engineering machine system with field rover |
US9096977B2 (en) | 2013-05-23 | 2015-08-04 | Wirtgen Gmbh | Milling machine with location indicator system |
CN103345225A (en) * | 2013-07-01 | 2013-10-09 | 广东惠利普路桥信息工程有限公司 | Remote Brinell compactness image analysis and measurement system in paving process |
SE537279C2 (en) * | 2013-07-12 | 2015-03-24 | BAE Systems Hägglunds AB | System and procedure for handling tactical information in combat vehicles |
DE102014012836B4 (en) * | 2014-08-28 | 2018-09-13 | Wirtgen Gmbh | Self-propelled construction machine and method for visualizing the processing environment of a construction machine moving in the field |
-
2014
- 2014-08-28 DE DE102014012836.9A patent/DE102014012836B4/en active Active
-
2015
- 2015-08-12 EP EP15180819.3A patent/EP2990532B1/en active Active
- 2015-08-25 US US14/834,541 patent/US9719217B2/en active Active
- 2015-08-28 CN CN201510543489.1A patent/CN105386397B/en active Active
- 2015-08-28 CN CN201520664295.2U patent/CN205024576U/en not_active Withdrawn - After Issue
Also Published As
Publication number | Publication date |
---|---|
DE102014012836B4 (en) | 2018-09-13 |
US9719217B2 (en) | 2017-08-01 |
CN105386397B (en) | 2017-09-12 |
CN105386397A (en) | 2016-03-09 |
CN205024576U (en) | 2016-02-10 |
DE102014012836A1 (en) | 2016-03-03 |
US20160060825A1 (en) | 2016-03-03 |
EP2990532A1 (en) | 2016-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2990532B1 (en) | Self-propelled construction machine and method for the visualization of the processing environment of a construction machine moving in the terrain | |
EP2990533B1 (en) | Self-propelled construction machine and method for controlling the same | |
EP2990534B1 (en) | Self-propelled construction machine and method for controlling same | |
EP3502821B1 (en) | Self-propelled construction machine and method for controlling the same | |
DE102009059106A1 (en) | Self-propelled construction machine and method for controlling a self-propelled construction machine | |
DE102018207706A1 (en) | Environmental scan using a work machine with a camera | |
EP2568310A2 (en) | Method, system and device for locating a vehicle relative to a predefined reference system | |
WO2005038395A1 (en) | Method and device for determining the actual position of a geodetic instrument | |
EP2963631B1 (en) | Method for determining a parking space from a number of measuring points | |
DE102012112036A1 (en) | Method for navigation of self-propelled soil cultivation device, involves digging space region from starting point to end point on meandering path, where starting point is selected | |
EP3475921B1 (en) | Method and vehicle control system for producing images of a surroundings model, and corresponding vehicle | |
DE102020206190A1 (en) | SYSTEM AND PROCEDURE FOR CONFIGURATION OF A WORKPLACE WARNING ZONE. | |
DE102007060056A1 (en) | Control system for drive unit of robotic vehicle, comprises sensor unit for detecting boundary of operating area, and electronic unit is provided for generating and storing digital map of operating area | |
EP2660501B1 (en) | Method for visualising the position of a vehicle for travelling on a canal | |
DE102014205640B4 (en) | Surveying using a mobile device | |
EP2983010B1 (en) | Method for correcting position data stored in a memory of a work computer | |
EP2527872A1 (en) | Methods for aligning and controlling the alignment of a traffic monitoring device relative to the edge of a roadway | |
EP3931524B1 (en) | Construction of formwork and scaffolding using mobile devices | |
EP3435030A1 (en) | Method for creating a 3d model of an object | |
EP3410158A1 (en) | Method, devices and computer-readable storage media comprising instructions for determining the position of data captured by a motor vehicle | |
DE102019205484A1 (en) | Method and device for creating a height profile for an area to be traveled by a vehicle | |
DE102020006851A1 (en) | Device for piecewise height measurement | |
DE102019202299B4 (en) | On-line calibration and calibration setup procedures | |
EP2837909A2 (en) | Method and assembly for mapping an agricultural field | |
DE102017210830A1 (en) | Create and use an edge development map |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20160426 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160902 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 867972 Country of ref document: AT Kind code of ref document: T Effective date: 20170315 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015000587 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170215 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170516 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170515 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170215 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170515 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170615 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015000587 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20171116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170831 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170812 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170215 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170615 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 867972 Country of ref document: AT Kind code of ref document: T Effective date: 20200812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200812 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240819 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240822 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240821 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240830 Year of fee payment: 10 Ref country code: SE Payment date: 20240821 Year of fee payment: 10 |