EP2984779A1 - Reference configuration for flexible time division duplexing - Google Patents
Reference configuration for flexible time division duplexingInfo
- Publication number
- EP2984779A1 EP2984779A1 EP13714922.5A EP13714922A EP2984779A1 EP 2984779 A1 EP2984779 A1 EP 2984779A1 EP 13714922 A EP13714922 A EP 13714922A EP 2984779 A1 EP2984779 A1 EP 2984779A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- downlink
- configuration
- configuration parameter
- uplink
- flexible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/22—Arrangements affording multiple use of the transmission path using time-division multiplexing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0042—Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
Definitions
- the present invention relates to reference configuration arrangement for flexible time division duplexing. More specifically, the present invention exemplarily relates to measures (including methods, apparatuses and computer program products) for realizing reference configuration for flexible time division duplexing. Background
- the present specification generally relates to relates to Long Term Evolution Advanced (LTE-Advanced, LTE-A) system which will be part of 3 rd Generation Partnership Project (3GPP) LTE Rel-12. More specifically, the present specification focuses on signalling arrangement related to flexible downlink (DL) - uplink (UL) traffic adaptation in TD-LTE.
- LTE-A Long Term Evolution Advanced
- 3GPP 3 rd Generation Partnership Project
- Time division (TDD) LTE (TD-LTE) Rel-11 supports UL-DL reconfiguration only with periodicity of 640 ms or longer.
- the goal of Rel-12 is to enable faster time division duplexing (TDD) UL-DL reconfiguration.
- the question is how to provide the necessary signaling mechanism(s) such as hybrid automatic retransmission request (HARQ)/scheduling timeline for user equipments (UE) supporting flexible UL/DL mode.
- HARQ hybrid automatic retransmission request
- UE user equipments supporting flexible UL/DL mode.
- the candidate set for TDD UL-DL configuration is defined in the following way.
- TDD UL-DL configuration is defined for each of existing seven TDD UL-DL configurations as shown in the table below, illustrating a definition for candidate TDD UL- DL configuration.
- the biggest advantage of such approach may be that legacy UE's channel state information (CSI) measurement is kept unchanged since DL frame is not used as UL subframe.
- CSI channel state information
- Document 2010E02547 FI introduces a reference configuration method. More detailed illustration of such reference configuration method can be found in 3GGP document Rl-130130.
- Figure 4 (as adopted from 3GPP document Rl-130130) shows a schematic diagram of subset relations for UL and DL subframes, in particular the subset relation for DL and UL reference configurations as a function of UL-DL configuration.
- a relation D(1) ⁇ D(2) means that DL subframes in configuration #1 form a subset of DL subframes in configuration #2.
- the relation U(2) ⁇ U(1) means that UL subframes in configuration #2 form a subset of UL subframes in configuration #1.
- 3GPP document Rl-130130 provides just a high level principle for defining the properties of UL-DL reference configurations. It does not provide a working solution for dynamic UL-DL configuration adjustment in TD-LTE cell having legacy UEs in the system.
- the main problem is identified as what is a complete solution for a reference configuration based method supporting scenario having both legacy UEs as well as flexible UL/DL mode UEs operating simultaneously in the same TD-LTE cell.
- SIB-1 system information block number 1
- SIB- 1 system information block number 1
- a method comprising obtaining a first configuration parameter and a second configuration parameter, determining an uplink reference configuration for a flexible uplink/downlink mode from said first configuration parameter, determining a downlink reference configuration for said flexible uplink/downlink mode from said second configuration parameter, and deriving an uplink/downlink configuration candidate set based on at least one of said first configuration parameter and said second configuration parameter.
- an apparatus comprising obtaining means configured to obtain a first configuration parameter and a second configuration parameter, determining means configured to determine an uplink reference configuration for a flexible uplink/downlink mode from said first configuration parameter, and to determine a downlink reference configuration for said flexible uplink/downlink mode from said second configuration parameter, and deriving means configured to derive an uplink/downlink configuration candidate set based on at least one of said first configuration parameter and said second configuration parameter.
- a computer program product comprising computer-executable computer program code which, when the program is run on a computer (e.g. a computer of an apparatus according to any one of the aforementioned apparatus-related exemplary aspects of the present invention), is configured to cause the computer to carry out the method according to any one of the aforementioned method-related exemplary aspects of the present invention.
- a computer e.g. a computer of an apparatus according to any one of the aforementioned apparatus-related exemplary aspects of the present invention
- Such computer program product may comprise (or be embodied) a (tangible) computer-readable (storage) medium or the like on which the computer-executable computer program code is stored, and/or the program may be directly loadable into an internal memory of the computer or a processor thereof.
- reference configuration for flexible time division duplexing More specifically, by way of exemplary embodiments of the present invention, there are provided measures and mechanisms for realizing reference configuration for flexible time division duplexing. Thus, improvement is achieved by methods, apparatuses and computer program products enabling/realizing reference configuration for flexible time division duplexing.
- Figure 1 is a block diagram illustrating an apparatus according to exemplary embodiments of the present invention
- Figure 2 is a schematic diagram of a procedure according to exemplary embodiments of the present invention
- Figure 3 shows a schematic diagram of UL/DL configurations for TD-LTE Rel-8/9/10/11
- Figure 4 shows a schematic diagram of subset relations for UL and DL subframes
- Figure 5 is a schematic diagram alternatively illustrating a procedure according to exemplary embodiments of the present invention
- Figure 6 is a block diagram alternatively illustrating apparatuses according to exemplary embodiments of the present invention.
- the following description of the present invention and its embodiments mainly refers to specifications being used as non-limiting examples for certain exemplary network configurations and deployments. Namely, the present invention and its embodiments are mainly described in relation to 3GPP specifications being used as non-limiting examples for certain exemplary network configurations and deployments. As such, the description of exemplary embodiments given herein specifically refers to terminology which is directly related thereto. Such terminology is only used in the context of the presented non-limiting examples, and does naturally not limit the invention in any way. Rather, any other communication or communication related system deployment, etc. may also be utilized as long as compliant with the features described herein.
- the objective of this work item is to enable TDD UL-DL reconfiguration for traffic adaptation in small cells, including :
- the main advantage of the reference configuration method is that it is a relatively simple solution, which completely avoids the potential misunderstanding between evolved NodeB (eNB) and UE regarding to HARQ timing when TDD allocation changes. Furthermore, it supports all different time scales and signalling schemes (implicit/explicit) used for conveying the actual UL/DL reconfiguration signaling. It is noted that the principle of the reference configuration method is already supported by the UEs supporting carrier aggregation with different UL-DL configurations.
- flexible UL/DL mode should have no impact for the channel state information (CSI) measurement of the legacy UEs.
- flexible UL/DL mode should provide maximal flexibility in terms of number of supported UL-DL configurations, that is, flexible UL/DL mode should not be limited to e.g. configurations with 5 ms periodicity only, but may for example also include configurations with 10 ms periodicity.
- no ambiguity on related to the A/N codebook size is asked.
- the proposed solution according to exemplary embodiments of the present invention which is available for UEs configured for flexible UL/DL mode, is achieved by means of determining UL and DL reference configurations (called as property A and property B) as well as the candidate set of UL-DL configurations (called as property C) as a function of UL-DL configuration defined by the SIB-1.
- property A and property B the candidate set of UL-DL configurations
- property C the candidate set of UL-DL configurations
- properties A, B and C using two configuration parameters, which are called in the following as "configuration X", and "SIB-1 configuration”.
- the related UE procedure is depicted in Figure 5, alternatively illustrating a procedure according to exemplary embodiments of the present invention.
- the detailed scheme according to exemplary embodiments of the present invention is characterized as follows.
- SIB-1 configuration defines the UL reference configuration (property A) for UEs configured to flexible UL/DL mode.
- the UL reference configuration defines at least one of a physical uplink shared channel to physical hybrid automatic repeat request indicator channel (PUSCH-to-PHICH) timing and a downlink control information/physical hybrid automatic repeat request indicator channel to physical uplink shared channel (DCI/PHICH-to-PUSCH) timing. It may also define the number of hybrid automatic repeat request (HARQ) processes available in UL side.
- HARQ hybrid automatic repeat request
- PHICH covers any HARQ- ACK channels available, including also EPHICH (Enhanced PHICH) which may be a future evolution of PHICH. The same applies to DCI which may cover e.g. both PDCCH and EPDCCH.
- the second UL-DL configuration (denoted as X) defines the DL reference configuration (property B) for UEs configured to flexible UL/DL mode.
- the DL reference configuration defines physical downlink shared channel to acknowledgement (PDSCH-to-ACK) timing. It may also define the maximum number of HARQ processes available in DL side as well as a size of the hybrid automatic repeat request acknowledgement (HARQ-ACK) codebook.
- the value X is selected from set of existing configurations (Including also possible future extensions made for UL/DL configurations).
- the value X is selected in a way that that the following condition is fulfilled.
- D(SIB-1) ⁇ D(X) which means that DL subframes corresponding to UL-DL configuration defined by the SIB-1 form a subset of DL subframes defined by X.
- the value X defines the candidate set of UL-DL configurations (property C) available for UEs configured to flexible UL/DL mode.
- the UE may utilize this information to derive the subframe type (UL subframe, DL subframe, special subframe, flexible subframe) for at least one subframe of the radio frame.
- the subframe type UL subframe, DL subframe, special subframe, flexible subframe
- X is selected and predefined (i.e. set to a fixed value) such that the size of UL- DL candidate set is maximized.
- X can be configured to the UE.
- the size of candidate set is varied according to the value of X in predefined manner. An example of such is shown in the table below, assuming that UL-DL configuration defined by SIB-1 equals to 0.
- Figure 1 is a block diagram illustrating an apparatus according to exemplary embodiments of the present invention.
- the apparatus may be a terminal such as a user equipment 10 comprising a obtaining means 11, a determining means 12 and a deriving means 13.
- Figure 2 is a schematic diagram of a procedure according to exemplary embodiments of the present invention.
- the apparatus according to Figure 1 may perform the method of Figure 2 but is not limited to this method.
- the method of Figure 2 may be performed by the apparatus of Figure 1 but is not limited to being performed by this apparatus.
- a procedure according to exemplary embodiments of the present invention comprises an operation of obtaining a first configuration parameter and a second configuration parameter (S21), an operation of determining an uplink reference configuration for a flexible uplink/downlink mode from said first configuration parameter (S22), an operation of determining a downlink reference configuration for said flexible uplink/downlink mode from said second configuration parameter (S23), and an operation of deriving an uplink/downlink configuration candidate set based on at least one of said first configuration parameter and said second configuration parameter (S24).
- the procedure shown in Figure 2 may be varied in that the steps mentioned above (i.e. steps S21 to S24) are not fixed to the order as mentioned above.
- steps S22 and S23 may be interchanged in order.
- an exemplary method according to exemplary embodiments of the present invention may comprise an operation of obtaining an actual uplink/downlink configuration from said uplink/downlink configuration candidate set based on received configuration signaling conveying the actual UL/DL reconfiguration signaling.
- an exemplary method may comprise an operation of downlink control channel detection on such subframes that are defined to be downlink subframes in at least one of the uplink/downlink configurations contained in the said uplink/downlink configuration candidate set.
- Operation of downlink control channel detection may comprise blind decoding of a downlink control channel, such as physical downlink control channel or enhanced physical downlink control channel.
- UE determines a set of subframes based on the uplink/downlink configuration candidate set so that the set of subframes contains all subframes that are defined to be downlink subframes in at least one of the uplink/downlink configurations contained in the said uplink/downlink configuration candidate set.
- UE blind decodes downlink control channel on the said set of subframes, in order to receive a possible resource allocation grant directed to the UE in question.
- Blind decoding may be restricted to a subset of downlink control channel resources. That is, according to a variation of the procedure shown in Figure 2, exemplary additional operations are given, which are inherently independent from each other as such.
- an exemplary method according to exemplary embodiments of the present invention may comprise an operation of determining a set of subframes corresponding to said uplink/downlink configuration candidate set, and an operation of blind decoding a downlink control channel on said set of subframes.
- exemplary details of the obtaining operation (said first configuration parameter) are given, which are inherently independent from each other as such.
- Such exemplary obtaining operation may comprise an operation of receiving a system information block number 1, wherein said first configuration parameter is an uplink/downlink configuration parameter conveyed in said system information block number 1.
- the second configuration parameter may define a first set of downlink subframes such that a second set of downlink subframes corresponding to said first configuration parameter forms a subset of said first set of subframes. That is, the second configuration paramenter (i.e.
- exemplary details of the obtaining operation are given, which are inherently independent from each other as such.
- Such exemplary obtaining operation may comprise an operation of acquiring said second configuration parameter from a preset number.
- the preset number may be 5 according to further exemplary embodiments of the present invention.
- Such exemplary obtaining operation according to exemplary embodiments of the present invention may comprise an operation of receiving a message including said second configuration parameter.
- an exemplary method according to exemplary embodiments of the present invention may comprise an operation of receiving a signaling instructing an activation of said flexible uplink/downlink mode.
- Said signaling may include said second configuration parameter according to further exemplary embodiments of the present invention.
- said uplink reference configuration defines at least one of a physical uplink shared channel to physical hybrid automatic repeat request indicator channel timing and a downlink control information/physical hybrid automatic repeat request indicator channel to physical uplink shared channel timing and optionally a number of uplink hybrid automatic repeat request processes
- said downlink reference configuration defines a physical downlink shared channel to acknowledgement timing and optionally a maximum number of downlink hybrid automatic repeat request processes and optionally a size of a hybrid automatic repeat request acknowledgement codebook.
- an initial access follows UL-DL configuration defined by SIB-1. This mode may be called as legacy UL/DL mode.
- an eNB may utilize dedicated higher layer signaling to configure flexible UL/DL mode for Rel-12 UEs supporting the feature.
- the configuration may involve just switching the flexible UL/DL mode on or it may contain some additional configuration parameters (such as X).
- the UE Based on UL/DL configuration defined by SIB-1 and the parameter X (predefined or signaled), the UE is able to derive UL and DL reference configurations that are used when transmitting and receiving control and data signals.
- the indication of the flexible UL/DL mode (potentially including the value of X) can be broadcasted in the cell allowing all Rel-12 UEs supporting flexible TDD to make use of it without separate configuration.
- the UE may derive the candidate UL/DL configuration set based on available parameters (SIB-1 and X).
- the UE may utilize this information to derive the subframe type (UL subframe, DL subframe, special subframe, flexible subframe).
- the UE may further utilize this information also when defining the physical downlink control channel/enhanced physical downlink control channel (PDCCH/ePDDCH) blind decodings, control signaling codebook size, and possible micro sleep (to minimize UE power consumption).
- the UE may take the reference configuration into account in the CSI measurement and reporting.
- PDCCH/ePDCCH downlink control information can contain indication (e.g.
- the UE may take the DL/special subframe indication into account in the CSI measurement and reporting.
- the UE configured to flexible UL/DL mode starts using the new configuration at the time the new configuration becomes valid (at the UE side).
- the eNB may schedule only fixed subframes during the time of uncertainty. The time of uncertainty may originate due to the fact that eNB may not know in absolute terms the subframe when the new configuration is taken into use at UE side, or vice versa.
- the new configuration may contain a new feedback channel for HARQ-ACK signaling conveyed via PUCCH.
- PUCCH format 3 is used to convey HARQ-ACK in flexible UL/DL mode.
- the UE (defined for flexible UL/DL mode) starts using HARQ/scheduling timing and is ready to change the UL/DL configuration dynamically within the UL/DL candidate set.
- the eNB may reconfigure legacy UL/DL mode for the UE (at some point in time), when there is no need for flexible UL/DL mode any more.
- the above mentioned exemplary embodiments of the present invention enable co-existence of legacy UEs (Rel-11 an earlier) and Rel-12 UEs supporting flexible UL/DL mode. Further, according to exemplary embodiments of the present invention, no impact for the CSI measurement of the legacy UEs is caused, since the CSI measurement of the legacy UEs can be (is) based on the SIB-1 signaled configuration.
- the proposed signaling solution according to exemplary embodiments of the present invention has maximal flexibility in terms of number of UL-DL configurations supported contrary to limitations of state of the art proposals to cases with 5 ms periodicity only. This enables maximization of the throughput gain of flexible UL/DL reconfiguration. Further, the impact on standards due to dynamic UL/DL configuration can be minimized according to the present proposal, and a signaling burden can be kept at reasonable level.
- the above-described procedures and functions may be implemented by respective functional elements, processors, or the like, as described below.
- the network entity may comprise further units that are necessary for its respective operation. However, a description of these units is omitted in this specification.
- the arrangement of the functional blocks of the devices is not construed to limit the invention, and the functions may be performed by one block or further split into sub-blocks.
- the apparatus i.e. terminal (or some other means) is configured to perform some function
- this is to be construed to be equivalent to a description stating that a (i.e. at least one) processor or corresponding circuitry, potentially in cooperation with computer program code stored in the memory of the respective apparatus, is configured to cause the apparatus to perform at least the thus mentioned function.
- a (i.e. at least one) processor or corresponding circuitry potentially in cooperation with computer program code stored in the memory of the respective apparatus, is configured to cause the apparatus to perform at least the thus mentioned function.
- function is to be construed to be equivalently implementable by specifically configured circuitry or means for performing the respective function (i.e. the expression "unit configured to” is construed to be equivalent to an expression such as "means for").
- the apparatus (terminal) 10' (corresponding to the terminal 10) comprises a processor 61, a memory 62 and an interface 63, which are connected by a bus 64 or the like, and the apparatus (terminal) 10' may be connected via link 69 with a further apparatus such as a network node (e.g. eNB or the like).
- the processor 61 and/or the interface 63 may also include a modem or the like to facilitate communication over a (hardwire or wireless) link, respectively.
- the interface 63 may include a suitable transceiver coupled to one or more antennas or communication means for (hardwire or wireless) communications with the linked or connected device(s), respectively.
- the interface 63 is generally configured to communicate with at least one other apparatus, i.e. the interface thereof.
- the memory 62 may store respective programs assumed to include program instructions or computer program code that, when executed by the respective processor, enables the respective electronic device or apparatus to operate in accordance with the exemplary embodiments of the present invention.
- the respective devices/apparatuses may represent means for performing respective operations and/or exhibiting respective functionalities, and/or the respective devices (and/or parts thereof) may have functions for performing respective operations and/or exhibiting respective functionalities.
- the processor or some other means
- the processor is configured to perform some function
- this is to be construed to be equivalent to a description stating that at least one processor, potentially in cooperation with computer program code stored in the memory of the respective apparatus, is configured to cause the apparatus to perform at least the thus mentioned function.
- function is to be construed to be equivalently implementable by specifically configured means for performing the respective function (i.e. the expression "processor configured to [cause the apparatus to] perform xxx-ing” is construed to be equivalent to an expression such as "means for xxx-ing").
- an apparatus representing the terminal comprises at least one processor 61, at least one memory 62 including computer program code, and at least one interface 63 configured for communication with at least another apparatus.
- the processor i.e. the at least one processor 61, with the at least one memory 62 and the computer program code
- the processor is configured to perform obtaining a first configuration parameter and a second configuration parameter (thus the apparatus comprising corresponding means for obtaining), to perform determining an uplink reference configuration for a flexible uplink/downlink mode from said first configuration parameter (thus the apparatus comprising corresponding means for determining), to perform determining a downlink reference configuration for said flexible uplink/downlink mode from said second configuration parameter, and to perform deriving an uplink/downlink configuration candidate set based on at least one of said first configuration parameter and said second configuration parameter (thus the apparatus comprising corresponding means for deriving).
- any method step is suitable to be implemented as software or by hardware without changing the idea of the embodiments and its modification in terms of the functionality implemented;
- CMOS Complementary MOS
- BiMOS Bipolar MOS
- BiCMOS Bipolar CMOS
- ECL emitter Coupled Logic
- TTL Transistor- Transistor Logic
- ASIC Application Specific IC
- FPGA Field-programmable Gate Arrays
- CPLD Complex Programmable Logic Device
- DSP Digital Signal Processor
- - devices, units or means e.g. the above-defined network entity or network register, or any one of their respective units/means
- an apparatus like the user equipment and the network entity /network register may be represented by a semiconductor chip, a chipset, or a (hardware) module comprising such chip or chipset; this, however, does not exclude the possibility that a functionality of an apparatus or module, instead of being hardware implemented, be implemented as software in a (software) module such as a computer program or a computer program product comprising executable software code portions for execution/being run on a processor;
- a device may be regarded as an apparatus or as an assembly of more than one apparatus, whether functionally in cooperation with each other or functionally independently of each other but in a same device housing, for example.
- respective functional blocks or elements according to above-described aspects can be implemented by any known means, either in hardware and/or software, respectively, if it is only adapted to perform the described functions of the respective parts.
- the mentioned method steps can be realized in individual functional blocks or by individual devices, or one or more of the method steps can be realized in a single functional block or by a single device.
- any method step is suitable to be implemented as software or by hardware without changing the idea of the present invention.
- Devices and means can be implemented as individual devices, but this does not exclude that they are implemented in a distributed fashion throughout the system, as long as the functionality of the device is preserved. Such and similar principles are to be considered as known to a skilled person.
- Software in the sense of the present description comprises software code as such comprising code means or portions or a computer program or a computer program product for performing the respective functions, as well as software (or a computer program or a computer program product) embodied on a tangible medium such as a computer-readable (storage) medium having stored thereon a respective data structure or code means/portions or embodied in a signal or in a chip, potentially during processing thereof.
- the present invention also covers any conceivable combination of method steps and operations described above, and any conceivable combination of nodes, apparatuses, modules or elements described above, as long as the above-described concepts of methodology and structural arrangement are applicable.
- measures for reference configuration for flexible time division duplexing exemplarily comprise obtaining a first configuration parameter and a second configuration parameter, determining an uplink reference configuration for a flexible uplink/downlink mode from said first configuration parameter, determining a downlink reference configuration for said flexible uplink/downlink mode from said second configuration parameter, and deriving an uplink/downlink configuration candidate set based on at least one of said first configuration parameter and said second configuration parameter.
- SIB-1 system information block #1 (number 1)
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Claims
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2013/057296 WO2014166515A1 (en) | 2013-04-08 | 2013-04-08 | Reference configuration for flexible time division duplexing |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2984779A1 true EP2984779A1 (en) | 2016-02-17 |
Family
ID=48050715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13714922.5A Withdrawn EP2984779A1 (en) | 2013-04-08 | 2013-04-08 | Reference configuration for flexible time division duplexing |
Country Status (4)
Country | Link |
---|---|
US (1) | US9722766B2 (en) |
EP (1) | EP2984779A1 (en) |
HK (1) | HK1220556A1 (en) |
WO (1) | WO2014166515A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3934128B1 (en) | 2012-07-06 | 2022-12-21 | Samsung Electronics Co., Ltd. | Method and apparatus for determining tdd ul-dl configuration applicable for radio frames |
WO2014179958A1 (en) | 2013-05-09 | 2014-11-13 | Nokia Siemens Networks Oy | Method, apparatus and computer program for wireless communications |
US9398609B2 (en) * | 2013-05-21 | 2016-07-19 | Telefonaktiebolaget L M Ericsson (Publ) | Method for use in BS (RE) configuring UE to switch from fixed UL-DL TDD configuration to flexible UL-DL TDD configuration, and BS |
EP3016457B1 (en) | 2013-06-26 | 2020-04-08 | LG Electronics Inc. | Method for supporting discontinuous reception and apparatus therefor in wireless communication system supporting reconfiguration of wireless resource |
US10779265B2 (en) * | 2013-08-09 | 2020-09-15 | Sharp Kabushiki Kaisha | Terminal, base station, integrated circuit, and communication method |
CN110224797B (en) * | 2013-08-09 | 2022-06-07 | 太阳专利信托公司 | Mobile station, method and storage medium for communicating with base station in communication system |
AR109722A1 (en) * | 2016-09-26 | 2019-01-16 | Ericsson Telefon Ab L M | RELATIONSHIP OF CONFIGURABLE TIMING AND OPERATING PARAMETERS |
CN107872834B (en) | 2016-09-28 | 2023-10-24 | 华为技术有限公司 | Information transmission method and device |
CN109803425B (en) | 2017-11-17 | 2020-12-15 | 中国移动通信有限公司研究院 | Configuration method and acquisition method of frame structure, base station and terminal |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010035067A2 (en) * | 2008-09-25 | 2010-04-01 | Nokia Corporation | Advanced resource allocation signaling |
CN102204154B (en) * | 2008-10-31 | 2014-05-21 | 诺基亚公司 | Dynamic allocation of subframe scheduling for time division duplex operation in a packet-based wireless communication system |
CN102036296B (en) * | 2010-12-02 | 2016-08-03 | 大唐移动通信设备有限公司 | A kind of determine the method for uplink-downlink configuration, system and equipment |
CN103493556B (en) | 2011-02-21 | 2020-02-14 | 安华高科技股份有限公司 | Dynamic uplink/downlink configuration for time division duplexing |
KR101859594B1 (en) | 2011-03-10 | 2018-06-28 | 삼성전자 주식회사 | Method and Apparatus for Supporting Flexible Time Division Duplex in Communication System |
WO2012157981A2 (en) * | 2011-05-17 | 2012-11-22 | 엘지전자 주식회사 | Method for transmitting control information and device for same |
US20140204961A1 (en) | 2011-08-15 | 2014-07-24 | Nokia Solutions And Networks Oy | Signaling |
CN103384188B (en) * | 2012-05-04 | 2017-03-01 | 电信科学技术研究院 | Carrier aggregation feedback method, apparatus and system |
US9520979B2 (en) * | 2012-09-09 | 2016-12-13 | Lg Electronics Inc. | Method and apparatus for transmitting and receiving data |
EP3823197A1 (en) * | 2012-09-26 | 2021-05-19 | Interdigital Patent Holdings, Inc. | Methods for dynamic tdd uplink/downlink configuration |
WO2014110782A1 (en) * | 2013-01-18 | 2014-07-24 | Broadcom Corporation | Cell clustering based configuration of flexible time division duplex communication |
CN105027657B (en) * | 2013-03-05 | 2018-12-11 | 夏普株式会社 | Terminal installation, base station apparatus, integrated circuit and wireless communications method |
US20140274011A1 (en) * | 2013-03-14 | 2014-09-18 | Qualcomm Incorporated | Method and apparatus for controlling operation of a user equipment based on physical layer parameters |
WO2015005462A1 (en) * | 2013-07-12 | 2015-01-15 | シャープ株式会社 | Terminal device, method, and integrated circuit |
WO2015020604A1 (en) * | 2013-08-08 | 2015-02-12 | Telefonaktiebolaget L M Ericsson (Publ) | Method and devices for solving resource conflict issues among dynamic tdd capable ue |
US10064101B2 (en) * | 2013-11-01 | 2018-08-28 | Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd. | VoIP data transmission method and base station |
-
2013
- 2013-04-08 WO PCT/EP2013/057296 patent/WO2014166515A1/en active Application Filing
- 2013-04-08 EP EP13714922.5A patent/EP2984779A1/en not_active Withdrawn
- 2013-04-08 US US14/782,906 patent/US9722766B2/en active Active
-
2016
- 2016-07-15 HK HK16108369.8A patent/HK1220556A1/en unknown
Non-Patent Citations (1)
Title |
---|
NOKIA SIEMENS NETWORKS ET AL: "Reference configuration method for dynamic UL-DL reconfiguration", vol. RAN WG1, no. Chicago, US; 20130415 - 20130419, 6 April 2013 (2013-04-06), XP050697131, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_72b/Docs/> [retrieved on 20130406] * |
Also Published As
Publication number | Publication date |
---|---|
US9722766B2 (en) | 2017-08-01 |
WO2014166515A1 (en) | 2014-10-16 |
US20160056947A1 (en) | 2016-02-25 |
HK1220556A1 (en) | 2017-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9722766B2 (en) | Reference configuration for flexible time division duplexing | |
EP2995106B1 (en) | Method, apparatus and computer program for wireless communications | |
AU2016233795B2 (en) | Self-contained time division duplex (TDD) subframe structure | |
KR102412454B1 (en) | A method and apparatus for transmitting uplink sounding reference signal | |
CN107113136B (en) | Two-stage PDCCH with DCI flag and DCI format size indicator | |
JP6433919B2 (en) | Method and apparatus for performing uplink / downlink transmission in flexible subframes | |
RU2682370C2 (en) | Half duplex fdd wtru with single oscillator | |
AU2012391149B2 (en) | PUCCH resource allocation for E-PDCCH in communications system | |
CN105393485B (en) | method and node in a wireless communication system | |
JP5745182B2 (en) | Method and apparatus for transmitting / acquiring control information in a wireless communication system | |
US11743868B2 (en) | Short physical uplink shared channel arrangement | |
EP3592061B1 (en) | User terminal and wireless communication method | |
CN110546903B (en) | Method and device for sending and receiving feedback information and communication system | |
EP3787216A1 (en) | Configuration of downlink transmissions | |
US20220070913A1 (en) | Terminal, radio base station, radio communication system, and radio communication method | |
US20220174720A1 (en) | Sidelink Feedback Information Transmission Method and Communications Apparatus | |
US20240114539A1 (en) | Base station, terminal, and communication method | |
US9755816B2 (en) | Dynamic TDD configuration method and a base station using the same | |
WO2018063059A1 (en) | Methods and apparatuses for handling of retransmission feedback | |
EP3398285B1 (en) | Method and device of determining scheduling of shortened subframes | |
WO2017024467A1 (en) | Wireless communication method, network device, and terminal device | |
JP6532912B2 (en) | HARQ feedback using carrier aggregation | |
EP3634059B1 (en) | Method and device for transmitting information | |
KR20180046444A (en) | Apparatus and method of slow DCI configuration in a short TTI frame structure | |
CN109804585A (en) | Message feedback method and device based on HARQ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20151109 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20161123 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1220556 Country of ref document: HK |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170607 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1220556 Country of ref document: HK |