[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2828164B1 - Device for detecting critical states of a surface - Google Patents

Device for detecting critical states of a surface Download PDF

Info

Publication number
EP2828164B1
EP2828164B1 EP13716171.7A EP13716171A EP2828164B1 EP 2828164 B1 EP2828164 B1 EP 2828164B1 EP 13716171 A EP13716171 A EP 13716171A EP 2828164 B1 EP2828164 B1 EP 2828164B1
Authority
EP
European Patent Office
Prior art keywords
sensor
ice
flexible
detecting
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13716171.7A
Other languages
German (de)
French (fr)
Other versions
EP2828164A2 (en
Inventor
Michael Moser
Hubert Zangl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eologix Sensor Technology GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2828164A2 publication Critical patent/EP2828164A2/en
Application granted granted Critical
Publication of EP2828164B1 publication Critical patent/EP2828164B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B19/00Alarms responsive to two or more different undesired or abnormal conditions, e.g. burglary and fire, abnormal temperature and abnormal rate of flow
    • G08B19/02Alarm responsive to formation or anticipated formation of ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/40Ice detection; De-icing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/20Means for detecting icing or initiating de-icing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/20Means for detecting icing or initiating de-icing
    • B64D15/22Automatic initiation by icing detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/36Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heating conductor embedded in insulating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • ice formation is also a relevant phenomenon in other areas such as on roads, aircraft wings or antennas, the early detection and elimination of which by appropriate measures facilitates trouble-free operation.
  • the detection threshold is relatively high (about 4% weight change) and no localization of the ice layer is possible.
  • a system which uses an optical ice detection principle by guiding optical fibers from the inside to the surface of the rotor blade ( DE 102005017716 A1 ). This requires the installation of a complex measuring device in the rotor blade and thus high installation costs, further injury to the surface and it allows the measurement only at a few points per rotor blade.
  • DE 10205017716 uses the wireless transmission of signals over a transmission link to a receiver as a measuring principle for detecting deposits as obstacles in an optical transmission path as a method of ice detection on the surface of a rotor blade.
  • WO 2009/052828 is considered to be the closest prior art.
  • the object is as follows: a device for detecting critical surface conditions, wherein the most vulnerable surfaces are typically not planar (e.g., in aircraft, rotor blades, high voltage insulators, or antennas).
  • the surface shape or its nature must not or not significantly changed by the sensor, for example, to change the behavior with respect to a Anise or not minimal.
  • the aerodynamics may not be influenced by the device or only slightly.
  • ice in the context of the invention, all types of frozen water are to be understood as mixed with liquid water. If necessary, classification of the type of ice or detection of situations in which there is certainly no ice on the surface may be of interest.
  • water also includes mixtures of water and impurities of the surface.
  • Critical surface states in the sense of the invention are in particular the following scenarios: water and / or ice and / or mixtures thereof on surfaces (eg rotor blades) of wind turbines, ice and / or water and / or impurities on high-voltage insulators.
  • the device which includes a device for detecting ice and / or water, for power supply and data transmission, at least partially designed to be mechanically flexible, so that an adaptation to non-planar surfaces is possible.
  • the device may be hermetically sealed, i. no water or humidity can penetrate into the interior of the sensor; in particular, the interface with the environment is by no means porous.
  • the integration into a unit and the geometric shape are a first but also a subsequent attachment of the device to a surface to be detected in a simple manner and without major changes to the Surface possible.
  • the acquired and evaluated data can be transmitted wirelessly or by wire to another device or to a base station, which need not necessarily be located in the rotor blade and form no mechanical unit with transmitter and receiver.
  • the attachment to non-planar surfaces requires a flexible design, especially large-scale components, in particular an at least partially flexible support plate, for example, from two flexible circuit boards, which can simultaneously represent the outer skin, running with intermediate filler (for example, Polymerverguss) is, whereby a mechanical connection of all components is guaranteed.
  • a flexible design especially large-scale components, in particular an at least partially flexible support plate, for example, from two flexible circuit boards, which can simultaneously represent the outer skin, running with intermediate filler (for example, Polymerverguss) is, whereby a mechanical connection of all components is guaranteed.
  • the total thickness is in the low single-digit millimeter range; Thicknesses of less than 5 mm are advantageous and allow a ratio between the greater side length and the thickness of the device greater than 10.
  • the sensor for ice detection and / or ice thickness measurement and / or ice classification can be designed for example as a capacitive sensor.
  • a capacitive sensor for ice detection and / or ice thickness measurement consists of a plurality of electrodes of conductive structures, which may be applied, for example, on a flexible, non-porous, ideally hermetically sealed carrier material (ie low water absorption / low water permeability of the carrier material), and an evaluation unit Measures capacitances between largely planar arranged electrodes and returns from it a value for detection and / or thickness.
  • the material of the interface between the sensor and the outside world should also be largely hermetically sealed, which means that the material has almost no permeability or absorption capacity for water or water vapor.
  • Other sensors included in the device can measure, for example, brightness, oscillations, temperature and / or electrical currents.
  • leakage currents direct and alternating currents
  • insulating surfaces such as high-voltage insulators, on which the device can be mounted, are of interest.
  • the assembly of the device can be achieved by adhesion to a surface to be observed (with or without application of further protective layers over the device) or by embedding eg in outer layers of a rotor blade during the manufacturing process. As a result, no mechanical intervention (drilled holes, slots, recesses) in the surface to be observed is necessary.
  • self-adhesive films above or below the device
  • spray adhesives liquid adhesives
  • liquid adhesives may be used in the bonding.
  • an adhesive is already applied to the device in the manufacturing process and covered with a protective film until it is assembled, so that only the protective film must be removed during assembly and the device can be attached directly to the surface to be observed.
  • a typical surface treatment (if electrically or only slightly conductive) can also be applied above the device so that the original surface finish remains guaranteed.
  • the electrical energy required for operation can be obtained from the environment: these are, for example, flexible solar cells based on GaAs or amorphous silicon. Furthermore, an energy recovery from heat (thermoelectric generator) or from vibrations of the surface can be used. These are also technologies that can be realized with low height and / or largely flexible.
  • the electrical energy necessary for operation is temporarily stored in an energy store.
  • These typically rechargeable energy storage can also be implemented in a flexible design. This can be, for example, accumulators or capacitors (also Supercaps etc.). Furthermore, a (flexible) primary cell (battery) can be used.
  • the data transmission of the acquired measurement data may advantageously be wireless (i.e., for example, over optical links or over the air) in order to make connections for data transmission obsolete, in addition to a connection to the power supply; thus no cabling is necessary.
  • the device can be completely hermetically sealed, i. no substance (e.g., water or humidity) can penetrate the interior of the device. This increases the robustness of the system.
  • Such devices can optionally communicate with each other, on the one hand to limit the distance to be bridged by the data transmission by radio (and thus the energy consumption), and on the other hand to increase the reliability and the statistical quality of the measured data.
  • the device can also be used to control devices for defrosting the surfaces of rotor blades (eg hot air blower, surface heater).
  • the low weight, the low height and the longevity of the device are of particular use here.
  • the device can be integrated, for example, in a surface heating and applied together, whereby the device with the device for defrosting can form a mechanical unit.
  • the device can also electrically form a unit with the device for defrosting.
  • the device may also be attached to the inside of the rotor blade.
  • the invention relates to a device for detecting and measuring thickness of ice and water on surfaces and is characterized in that the assemblies for energy production from the environment, energy storage, data processing and wireless data transmission are already included in the device, the entire device is thin and is flexible.
  • the device can be without major mechanical intervention in the equipment to be equipped with the device, even later, attach.
  • the individual devices can optionally not only communicate with one base station but also with each other, but work independently of each other.
  • the present invention is as follows: a device for the detection of critical surface conditions (eg quantification of ice and water on surfaces), wherein all components for power supply and data processing and data transmission are included in the device and the entire device thin (height less than 5 mm or ratio between the greater side length and the thickness> 10) and at least partially flexible (flexible) is executed. Due to the low height, changes in the aerodynamics are minimized and thus also changes in the Aneisungs avoided by the device.
  • critical surface conditions eg quantification of ice and water on surfaces
  • the device 100 includes a system for generating energy from the environment 1 (eg from solar radiation, heat, vibrations or leakage currents, electric / magnetic / electromagnetic field). These energy sources are typically not continuously available, which is why the energy can be temporarily stored in an energy store 3. Both modules are optionally flexible and thin. The regulation is carried out by an energy management system 2.
  • a control unit 5 (for example, a microprocessor) is supplied with energy from energy store 3 or the system for generating energy from environment 1 and acquires measurement data from the sensor for ice detection and / or ice thickness measurement and / or ice classification 4. These data can be combined with further measurement data from further Sensors 6 (eg temperature, electricity) are processed and are over a device for data transmission 7, for example, wirelessly via a radio link 8 to another device 100 'or a base station 9 forwarded.
  • Sensors 6 eg temperature, electricity
  • FIGS. 2 and 3 show the exemplary schematic structure of the device: a rigid or flexible solar cell 10 is located at or below a surface to be observed and is separated from the environment by an at least partially transparent protective layer.
  • a flexible battery 11 is located within the device 100 which is surrounded by an outer skin 12 (eg, a flexible circuit board).
  • the entire interior is filled with a (possibly reinforced) filler 14 (eg a polymer).
  • the outer skin 12, which may for example be designed as a flexible printed circuit board, forms with the filler 14 is a mechanical unit with the function of the flexible support plate 21.
  • the electrodes for ice detection or ice thickness measurement 15 are located below the surface of the device 100 to be observed.
  • the radio antenna 16 is also integrated in the device 100 and may also be below the surface 0 to be observed.
  • the device 100 may be hermetically sealed (completely electrically isolated), whereby a particularly long unrestricted operating time can be realized. Furthermore, the entire device 100 is thin (height below 5 mm or ratio between the largest side length and thickness greater than 10) and flexible (flexible) executed.
  • the flexible version large-area, thin components with simultaneous use of a flexible substrate, the arrangement of the components to each other and small dimensions of rigid components contribute significantly to the flexibility of the device 100 at.
  • Fig. 4 shows three of many possible mounting positions of the device 100 on a rotor blade 20 of a wind turbine:
  • Device 100 and device 100 'at the leading edge of the rotor blade 20 are positioned significantly more relevant than device 100 ", as experience shows starting at the leading edge and depending on the manufacturer only this area is equipped with a defrosting device 22.
  • the curvature of the surface O of the rotor blade 20 is particularly pronounced precisely at these positions, which makes an at least partially flexible device 100 necessary for the measurement Therefore, it is necessary to have a fastening method with the least possible height requirement (gluing or integration by lamination) and a low overall height of the device 100.
  • Protective layers over the device 100 are unproblematic if not conductive and possibly transparent sch.
  • the device 100 can be integrated, for example, in a surface heating such that a common assembly or the sharing of conductive structures is possible.
  • the acquired measurement data are, for example, transmitted by radio in a sensor network to another device 100 'or device 100 "for further transmission or are transmitted directly to a base station 9 for evaluation and / or control of a device for defrosting 22.
  • the design as a sensor network be beneficial to those of the Radio transmission to bridge the distance (and thus the energy consumption) to reduce;
  • several measurement points are useful to ensure the redundancy of the system and to ensure the high quality of the recorded values.
  • Fig. 5 shows one of many possible mounting positions of the device 100: Attachment of the device 100 "'to the surface O of an insulator 23 of high voltage transmission equipment (eg overhead tower, transformer bushing) allows, in a suitable embodiment (eg annular, mounting to mounting position 24), the measurement of unwanted leakage currents along such surfaces by means of contacting or non-contact methods of current measurement (eg Rogowski coil, fluxgate sensor, shunt resistor).
  • a suitable embodiment eg annular, mounting to mounting position 24

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

Technisches GebietTechnical area

Die Erkennung von Eisbildung an Flächen (auch Oberflächen) wie z.B. an den Rotorblättern von Windenergieanlagen kann zur Einhaltung sicherer Betriebsbedingungen wesentlich beitragen. Im Bereich von Windenergieanlagen verursacht ein Eisbelag einen geringeren Energieertrag und höhere mechanische Beanspruchung der Anlage und birgt gleichzeitig die Gefahr des Eisabwurfs (eine Gefahr sowohl für Menschen als auch für Sachgüter). Bereits dünne Schichten verursachen durch die turbulente Strömung an der Oberfläche bedingt durch größere Rauigkeit relevante Ertragseinbußen. Dickere Schichten können durch verstärkte Vibrationen und Unwucht zu Schäden an der Maschine und bei Abwurf zu Schäden führen. Man ist nun als Betreiber von Windkraftanlagen an gefährdeten Standorten interessiert, den Grad der Vereisung der Rotorblätter so gut wie möglich zu kennen, um die Windkraftanlage rechtzeitig abzuschalten, bevor Schäden auftreten oder aber eine evtl. vorhandene elektrische Heizung der Rotorblätter gezielt zu aktivieren.The detection of ice formation on surfaces (including surfaces) such as on the rotor blades of wind turbines can contribute significantly to maintaining safe operating conditions. In the field of wind turbines, an ice coating causes lower energy yield and higher mechanical stress on the system and at the same time poses a risk of ice shedding (a hazard for both humans and goods). Already thin layers cause due to the turbulent flow at the surface due to greater roughness relevant yield losses. Thicker layers can lead to damage to the machine as a result of increased vibrations and imbalance and to damage when dropped. As the operator of wind turbines at endangered locations, it is now interesting to know the degree of icing of the rotor blades as well as possible in order to shut down the wind turbine in good time before damages occur or to selectively activate any existing electrical heating of the rotor blades.

Eisbildung ist aber auch in anderen Bereichen wie beispielsweise an Straßen, Flugzeugtragflächen oder Antennen ein relevantes Phänomen, dessen frühe Erkennung und Beseitigung durch geeignete Maßnahmen einen störungsfreien Betrieb erleichtert.However, ice formation is also a relevant phenomenon in other areas such as on roads, aircraft wings or antennas, the early detection and elimination of which by appropriate measures facilitates trouble-free operation.

Stand der TechnikState of the art

Gegenwärtige kommerzielle Systeme zur Detektion von Vereisung sind typischerweise komplexe Messgeräte und im Umfeld von Windenergieanlagen aufgrund ihrer Baugröße fix montiert und benötigen durch ihren Aufbau typischerweise einen Stromanschluss (z.B. optische und ultraschallbasierte Systeme). Es ist in Fachkreisen bekannt, dass sich das Aneisungsverhalten z.B. bei Windenergieanlagen am Standort der Gondel und an den Rotorblättern wesentlich unterscheiden kann (z.B. durch die aus der Rotation resultierende höhere Windgeschwindigkeit). Daher wurden weiters Systeme entwickelt, die das Aneisungsverhalten der Rotorblätter untersuchen, z.B. durch Überwachung des Zustandes des Rotorblattes mittels Eigenfrequenzanalyse. Dieses System birgt den Nachteil, dass nicht ausschließlich Eisbelag zur Änderung der Eigenfrequenzen führen kann. Weiters liegt die Detektionsschwelle verhältnismäßig hoch (ca. 4% Gewichtsänderung) und es ist keine Lokalisation der Eisschicht möglich. Weiters ist ein System bekannt, das ein optisches Eisdetektionsprinzip verwendet, indem optische Fasern von innen her an die Oberfläche des Rotorblattes geführt werden ( DE 102005017716 A1 ). Dies bedingt den Einbau eines komplexen Messgerätes in das Rotorblatt und damit hohen Installationsaufwand, weiters Verletzungen der Oberfläche und es erlaubt die Messung nur an einigen wenigen Punkten pro Rotorblatt.Current commercial systems for the detection of icing are typically complex measuring devices and fixed in the vicinity of wind turbines due to their size and typically require a power connection due to their structure (eg optical and ultrasound-based systems). It is known in the art that the Aneisungsverhalten eg in wind turbines at the location of the nacelle and on the rotor blades can significantly differ (eg, by the resulting higher speed from the rotation of the wind). Therefore, systems were further developed that investigate the Aneisungsverhalten the rotor blades, eg by monitoring the condition of the rotor blade by means of natural frequency analysis. This system has the disadvantage that not only ice coating can lead to the change of the natural frequencies. Furthermore, the detection threshold is relatively high (about 4% weight change) and no localization of the ice layer is possible. Furthermore, a system is known which uses an optical ice detection principle by guiding optical fibers from the inside to the surface of the rotor blade ( DE 102005017716 A1 ). This requires the installation of a complex measuring device in the rotor blade and thus high installation costs, further injury to the surface and it allows the measurement only at a few points per rotor blade.

Verfahren zur Detektion von Feuchtigkeit oder Luftfeuchtigkeit durch Absorption an einen porösen Träger und Auswertung einer komplexen Impedanz werden zum Beispiel in FR 2750494 A1 und US5177662 beschrieben. Diese Verfahren sind jedoch prinzipbedingt nicht in der Lage, das Vorhandensein von Eis bzw. eine Schichtdicke zu detektieren, da das auf Absorption basierende Verfahren bedingt, dass Feuchtigkeit ins Innere des Sensors eindringen kann.Methods for the detection of moisture or humidity by absorption to a porous carrier and evaluation of a complex impedance are described, for example, in US Pat FR 2750494 A1 and US5177662 described. However, these methods are in principle not able to detect the presence of ice or a layer thickness, since the absorption-based method requires that moisture can penetrate into the interior of the sensor.

Demgegenüber sind Verfahren zur Eisdetektion bekannt, die auf der Messung der elektrischen Kapazität oder Impedanz basieren (z.B. US 5398547 ). Diese Verfahren eignen sich besonders für einen planaren Aufbau mit geringer Bauhöhe.In contrast, methods for ice detection are known, based on the measurement of electrical capacitance or impedance (eg US 5398547 ). These methods are particularly suitable for a planar construction with low height.

DE 10205017716 verwendet das drahtlose Senden von Signalen über eine Übertragungsstrecke zu einem Empfänger als Messprinzip zur Erfassung von Ablagerungen als Hindernisse in einem optischen Übertragungsweg als Methode zur Eisdetektion an der Oberfläche eines Rotorblatts. WO 2009/052828 wird als nächstliegender Stand der Technik angesehen. DE 10205017716 uses the wireless transmission of signals over a transmission link to a receiver as a measuring principle for detecting deposits as obstacles in an optical transmission path as a method of ice detection on the surface of a rotor blade. WO 2009/052828 is considered to be the closest prior art.

Aufgabe der ErfindungObject of the invention

Die Aufgabe stellt sich wie folgt dar: eine Vorrichtung zum Erfassen kritischer Oberflächenzustände, wobei die besonders gefährdeten Flächen typischerweise nicht eben (plan) sind (z.B. bei Flugzeugen, Rotorblättern, Hochspannungsisolatoren oder Antennen). Die Flächenform bzw. deren Beschaffenheit darf durch den Sensor nicht bzw. nicht maßgeblich verändert werden, um beispielsweise das Verhalten hinsichtlich einer Aneisung nicht oder nur minimal zu verändern. Die Aerodynamik darf durch die Vorrichtung nicht oder nur wenig beeinflusst werden. Als Eis im Sinne der Erfindung sind alle Arten von gefrorenem Wasser auch in Mischung mit flüssigem Wasser zu verstehen. Gegebenenfalls können auch eine Klassifizierung der Eisart oder die Erkennung von Situationen, in denen sicher kein Eis an der Oberfläche vorhanden ist, von Interesse sein. Im Sinne der Erfindung umfasst Wasser auch Mischungen aus Wasser und Verunreinigungen der Oberfläche.The object is as follows: a device for detecting critical surface conditions, wherein the most vulnerable surfaces are typically not planar (e.g., in aircraft, rotor blades, high voltage insulators, or antennas). The surface shape or its nature must not or not significantly changed by the sensor, for example, to change the behavior with respect to a Anise or not minimal. The aerodynamics may not be influenced by the device or only slightly. As ice in the context of the invention, all types of frozen water are to be understood as mixed with liquid water. If necessary, classification of the type of ice or detection of situations in which there is certainly no ice on the surface may be of interest. For the purposes of the invention, water also includes mixtures of water and impurities of the surface.

Als kritische Oberflächenzustände im Sinne der Erfindung sind insbesondere folgende Szenarien zu verstehen: Wasser und/oder Eis und/oder Mischungen davon an Oberflächen (z.B. Rotorblättern) von Windkraftanlagen, Eis und/oder Wasser und/oder Verunreinigungen an Hochspannungsisolatoren. Dabei ist ein Ziel der Erfindung, sich in Entstehung befindliche kritische Zustände zu erfassen, sodass Gegenmaßnahmen in einem Zeitfenster ergriffen werden können, in dem diese kritischen Zustände noch beherrschbar sind.Critical surface states in the sense of the invention are in particular the following scenarios: water and / or ice and / or mixtures thereof on surfaces (eg rotor blades) of wind turbines, ice and / or water and / or impurities on high-voltage insulators. there It is an object of the invention to detect emerging critical states so that countermeasures can be taken in a time window in which these critical states are still manageable.

Die gegenständliche Erfindung löst die Aufgabe unter anderem dadurch, dass die Vorrichtung, die eine Einrichtung zur Detektion von Eis und/oder Wasser, zur Energieversorgung und zur Datenübertragung beinhaltet, wenigstens teilweise mechanisch flexibel ausgeführt ist, sodass eine Anpassung an nicht ebene Flächen möglich ist. Die Vorrichtung kann hermetisch abgedichtet sein, d.h. kein Wasser bzw. Luftfeuchtigkeit kann ins Innere des Sensors eindringen; insbesondere die Grenzfläche zur Umgebung ist keinesfalls porös. Durch die Integration in eine Einheit und die geometrische Form (unter anderem durch die geringen Bauhöhe im Verhältnis zur Länge und Breite) sind eine erstmalige aber auch eine nachträgliche Anbringung der Vorrichtung an einer zu erfassenden Fläche auf einfache Art und Weise und ohne große Veränderungen an der Fläche möglich. Die erfassten und ausgewerteten Daten können drahtlos oder drahtgebunden an eine weitere Vorrichtung oder an eine Basisstation übertragen werden, wobei sich diese nicht zwingend im Rotorblatt befinden müssen sowie mit Sender und Empfänger keine mechanische Einheit bilden.The subject invention solves the problem, inter alia, that the device, which includes a device for detecting ice and / or water, for power supply and data transmission, at least partially designed to be mechanically flexible, so that an adaptation to non-planar surfaces is possible. The device may be hermetically sealed, i. no water or humidity can penetrate into the interior of the sensor; in particular, the interface with the environment is by no means porous. The integration into a unit and the geometric shape (among other things by the low height in relation to the length and width) are a first but also a subsequent attachment of the device to a surface to be detected in a simple manner and without major changes to the Surface possible. The acquired and evaluated data can be transmitted wirelessly or by wire to another device or to a base station, which need not necessarily be located in the rotor blade and form no mechanical unit with transmitter and receiver.

Weitere Details zu Ausführungsformen und Vorteile der gegenständlichen Erfindung sind im Weiteren ausgeführt.Further details on embodiments and advantages of the subject invention are set forth below.

Die Anbringung an nicht ebenen Oberflächen bedingt eine flexible Ausführung vor allem großflächiger Bauelemente, insbesondere eine wenigstens teilweise flexible Trägerplatte, die beispielsweise aus zwei flexiblen Leiterplatten, die gleichzeitig die Außenhaut,darstellen können, mit dazwischen liegendem Füllstoff (beispielsweise Polymerverguss) ausgeführt ist, wodurch eine mechanische Verbindung aller Komponenten gewährleistet ist.The attachment to non-planar surfaces requires a flexible design, especially large-scale components, in particular an at least partially flexible support plate, for example, from two flexible circuit boards, which can simultaneously represent the outer skin, running with intermediate filler (for example, Polymerverguss) is, whereby a mechanical connection of all components is guaranteed.

Weiters erforderlich sind eine geringe Stärke der einzelnen Komponenten und kleine Abmessungen starrer Bauelemente. Die Gesamtdicke liegt im niedrigen einstelligen Millimeterbereich; Dicken von unter 5 mm sind vorteilhaft und erlauben ein Verhältnis zwischen der größeren Seitenlänge und der Dicke der Vorrichtung größer als 10.Furthermore, a low strength of the individual components and small dimensions of rigid components are required. The total thickness is in the low single-digit millimeter range; Thicknesses of less than 5 mm are advantageous and allow a ratio between the greater side length and the thickness of the device greater than 10.

Der Sensor zur Eisdetektion und/oder Eisdickenmessung und/oder Eisklassifizierung kann beispielsweise als kapazitiver Sensor ausgeführt sein. Ein kapazitiver Sensor zur Eisdetektion und/oder Eisdickenmessung besteht aus mehreren Elektroden aus leitfähigen Strukturen, die beispielsweise auf einem flexiblen, nicht porösen, idealerweise hermetisch abdichtenden Trägermaterial, (d.h. geringe Wasseraufnahme/geringe Wasserdurchlässigkeit des Trägermaterials) aufgebracht sein können, und einer Auswerteeinheit, die Kapazitäten zwischen weitgehend planar angeordneten Elektroden misst und daraus einen Wert zur Detektion und/oder Dicke zurückliefert. Das Material der Grenzfläche zwischen Sensor und Außenwelt soll ebenfalls weitgehend hermetisch abdichten, das heißt, dass das Material nahezu keine Durchlässigkeit oder Aufnahmefähigkeit für Wasser bzw. Wasserdampf aufweist.The sensor for ice detection and / or ice thickness measurement and / or ice classification can be designed for example as a capacitive sensor. A capacitive sensor for ice detection and / or ice thickness measurement consists of a plurality of electrodes of conductive structures, which may be applied, for example, on a flexible, non-porous, ideally hermetically sealed carrier material (ie low water absorption / low water permeability of the carrier material), and an evaluation unit Measures capacitances between largely planar arranged electrodes and returns from it a value for detection and / or thickness. The material of the interface between the sensor and the outside world should also be largely hermetically sealed, which means that the material has almost no permeability or absorption capacity for water or water vapor.

Andere, in der Vorrichtung enthaltene Sensoren können beispielsweise Helligkeit, Schwingungen, Temperatur und/oder elektrische Ströme messen. Dabei sind vor allem Kriechströme (Gleich- und Wechselströme) entlang isolierender Oberflächen wie beispielsweise Hochspannungsisolatoren, auf denen die Vorrichtung angebracht werden kann, von Interesse.Other sensors included in the device can measure, for example, brightness, oscillations, temperature and / or electrical currents. In particular, leakage currents (direct and alternating currents) along insulating surfaces, such as high-voltage insulators, on which the device can be mounted, are of interest.

Die Montage der Vorrichtung kann durch Klebung auf eine zu beobachtende Oberfläche (mit oder ohne Aufbringung von weiteren Schutzschichten über der Vorrichtung) oder durch Einbettung z.B. in äußere Schichten eines Rotorblatts während des Herstellungsprozesses erfolgen. Dadurch sind keine mechanischen Eingriffe (Bohrlöcher, Schlitze, Ausnehmungen) in die zu beobachtende Oberfläche notwendig.The assembly of the device can be achieved by adhesion to a surface to be observed (with or without application of further protective layers over the device) or by embedding eg in outer layers of a rotor blade during the manufacturing process. As a result, no mechanical intervention (drilled holes, slots, recesses) in the surface to be observed is necessary.

Bei der Klebung können beispielsweise selbstklebende Folien (oberhalb oder unterhalb der Vorrichtung), Sprühkleber, flüssige Klebstoffe sein. In einer bevorzugten Ausführungsform wird ein Klebstoff bereits im Herstellungsprozess auf der Vorrichtung appliziert und mit einer Schutzfolie bis zur Montage abgedeckt, sodass bei einer Montage nur die Schutzfolie abgezogen werden muss und die Vorrichtung an der zu beobachtenden Oberfläche unmittelbar angebracht werden kann.For example, self-adhesive films (above or below the device), spray adhesives, liquid adhesives may be used in the bonding. In a preferred embodiment, an adhesive is already applied to the device in the manufacturing process and covered with a protective film until it is assembled, so that only the protective film must be removed during assembly and the device can be attached directly to the surface to be observed.

Eine typische Oberflächenbehandlung kann (sofern elektrisch nicht oder nur gering leitfähig) auch oberhalb der Vorrichtung appliziert werden, sodass die ursprüngliche Oberflächenbeschaffenheit gewährleistet bleibt.A typical surface treatment (if electrically or only slightly conductive) can also be applied above the device so that the original surface finish remains guaranteed.

Die für den Betrieb notwendige elektrische Energie kann aus der Umgebung gewonnen werden: es sind dies zum Beispiel flexible Solarzellen auf Basis von GaAs oder amorphem Silizium. Weiters kann eine Energiegewinnung aus Wärme (thermoelektrischer Generator) oder aus Vibrationen der Oberfläche eingesetzt werden. Es sind dies ebenfalls Technologien, die mit geringer Bauhöhe und/oder weitgehend flexibel realisiert werden können.The electrical energy required for operation can be obtained from the environment: these are, for example, flexible solar cells based on GaAs or amorphous silicon. Furthermore, an energy recovery from heat (thermoelectric generator) or from vibrations of the surface can be used. These are also technologies that can be realized with low height and / or largely flexible.

Die für den Betrieb notwendige elektrische Energie wird in einem Energiespeicher zwischengespeichert. Diese typischerweise wieder aufladbaren Energiespeicher können auch in flexibler Ausführung realisiert werden. Es können dies beispielsweise Akkumulatoren oder Kondensatoren (auch Supercaps etc.) sein. Weiters kann auch eine (flexible) Primärzelle (Batterie) verwendet werden.The electrical energy necessary for operation is temporarily stored in an energy store. These typically rechargeable energy storage can also be implemented in a flexible design. This can be, for example, accumulators or capacitors (also Supercaps etc.). Furthermore, a (flexible) primary cell (battery) can be used.

Die Datenübertragung der erfassten Messdaten kann vorteilhaft drahtlos (d.h. z.B. über optische Übertragungsstrecken oder per Funk) erfolgen, um neben einer Verbindung zur Stromversorgung auch Verbindungen für die Datenübertragung obsolet zu machen; somit sind keine Verkabelungen notwendig. In diesem Falle kann die Vorrichtung vollständig hermetisch abgedichtet werden, d.h. kein Stoff (z.B. Wasser oder Luftfeuchtigkeit) kann in das Innere der Vorrichtung eindringen. Dies erhöht die Robustheit des Systems.The data transmission of the acquired measurement data may advantageously be wireless (i.e., for example, over optical links or over the air) in order to make connections for data transmission obsolete, in addition to a connection to the power supply; thus no cabling is necessary. In this case, the device can be completely hermetically sealed, i. no substance (e.g., water or humidity) can penetrate the interior of the device. This increases the robustness of the system.

Mehrere solcher Vorrichtungen können optional untereinander kommunizieren, um einerseits die von der Datenübertragung per Funk zu überbrückende Strecke (und damit den Energiebedarf) zu limitieren, und andererseits die Ausfallssicherheit und die statistische Qualität der Messdaten zu erhöhen.Several such devices can optionally communicate with each other, on the one hand to limit the distance to be bridged by the data transmission by radio (and thus the energy consumption), and on the other hand to increase the reliability and the statistical quality of the measured data.

Eine mögliche Anwendung solcher Vorrichtungen ist die Eisdetektion und/oder die Eisdickenmessung an der Oberfläche von Rotorblättern von Windenergieanlagen. Hier kann die Vorrichtung weiters dazu benutzt werden, Einrichtungen zur Abtauung der Oberflächen von Rotorblättern (z.B. Warmluftgebläse, Flächenheizer) zu steuern. Das geringe Gewicht, die geringe Bauhöhe und die Langlebigkeit der Vorrichtung sind hierbei von besonderem Nutzen. Dabei kann die Vorrichtung beispielsweise in eine Flächenheizung integriert und gemeinsam aufgebracht werden, wodurch die Vorrichtung mit der Einrichtung zur Abtauung eine mechanische Einheit bilden kann. Hier besteht die Möglichkeit, den Wärmestrom aus der Heizung in die Umgebung zur thermoelektrischen Energiegewinnung zu nutzen. Weiters besteht die Möglichkeit, leitfähige Teile der Heizung als Elektroden für Eisdetektion oder Eisdickenmessung (kapazitive Eissensorik) zu verwenden, wodurch die Vorrichtung auch elektrisch eine Einheit mit der Einrichtung zur Abtauung bilden kann. Unter bestimmten Umständen kann die Vorrichtung auch an der Innenseite des Rotorblattes angebracht werden.One possible application of such devices is ice detection and / or ice thickness measurement on the surface of rotor blades of wind turbines. Here, the device can also be used to control devices for defrosting the surfaces of rotor blades (eg hot air blower, surface heater). The low weight, the low height and the longevity of the device are of particular use here. In this case, the device can be integrated, for example, in a surface heating and applied together, whereby the device with the device for defrosting can form a mechanical unit. Here it is possible to use the heat flow from the heating in the environment for thermoelectric energy production. Furthermore, there is the possibility of conductive parts of the heater as electrodes for ice detection or ice thickness measurement (capacitive ice sensors), whereby the device can also electrically form a unit with the device for defrosting. In certain circumstances, the device may also be attached to the inside of the rotor blade.

Die Erfindung bezieht sich auf eine Vorrichtung zur Detektion und Dickenmessung von Eis und Wasser auf Oberflächen und zeichnet sich dadurch aus, dass die Baugruppen für Energiegewinnung aus der Umwelt, Energiespeicherung, Datenverarbeitung und drahtlose Datenübertragung bereits in der Vorrichtung enthalten sind, wobei die gesamte Vorrichtung dünn und flexibel ausgeführt ist. Somit lässt sich die Vorrichtung ohne größere mechanische Eingriffe in das mit der Vorrichtung auszustattende Objekt, auch nachträglich, anbringen. Die einzelnen Vorrichtungen können optional nicht nur mit einer Basisstation, sondern auch untereinander kommunizieren, arbeiten aber unabhängig voneinander.The invention relates to a device for detecting and measuring thickness of ice and water on surfaces and is characterized in that the assemblies for energy production from the environment, energy storage, data processing and wireless data transmission are already included in the device, the entire device is thin and is flexible. Thus, the device can be without major mechanical intervention in the equipment to be equipped with the device, even later, attach. The individual devices can optionally not only communicate with one base station but also with each other, but work independently of each other.

Die vorliegende Erfindung stellt sich wie folgt dar: eine Vorrichtung zur Detektion kritischer Oberflächenzustände (z.B. Quantifizierung von Eis und Wasser an Oberflächen), wobei alle Baugruppen für Energieversorgung und Datenverarbeitung sowie Datenübertragung in der Vorrichtung enthalten sind sowie die gesamte Vorrichtung dünn (Bauhöhe unter 5 mm bzw. Verhältnis zwischen der größeren Seitenlänge und der Dicke >10) und wenigstens teilweise flexibel (biegsam) ausgeführt ist. Durch die geringe Bauhöhe werden Veränderungen der Aerodynamik minimiert und somit auch Änderungen im Aneisungsverhalten durch die Vorrichtung vermieden.The present invention is as follows: a device for the detection of critical surface conditions (eg quantification of ice and water on surfaces), wherein all components for power supply and data processing and data transmission are included in the device and the entire device thin (height less than 5 mm or ratio between the greater side length and the thickness> 10) and at least partially flexible (flexible) is executed. Due to the low height, changes in the aerodynamics are minimized and thus also changes in the Aneisungsverhalten avoided by the device.

Aufzählung der ZeichnungenEnumeration of the drawings

Die Erfindung wird anhand eines Ausführungsbeispiels gemäß den Zeichnungen näher erläutert, wobei

  • Fig. 1 ein beispielhaftes Blockschaltbild der Vorrichtung darstellt,
  • Fig. 2 eine beispielhafte Ausführungsform der Vorrichtung im Profil zeigt,
  • Fig. 3 eine Draufsicht auf eine beispielhafte Ausführungsform der Vorrichtung zeigt und
  • Fig. 4 beispielhaft ein Rotorblatt mit möglichen Montageorten für die Vorrichtung zeigt.
  • Fig. 5 beispielhaft die Montage der Vorrichtung auf einem elektrischen Isolator zeigt.
The invention will be explained in more detail with reference to an embodiment according to the drawings, wherein
  • Fig. 1 an exemplary block diagram of the device represents
  • Fig. 2 shows an exemplary embodiment of the device in profile,
  • Fig. 3 a plan view of an exemplary embodiment of the device shows and
  • Fig. 4 exemplarily shows a rotor blade with possible mounting locations for the device.
  • Fig. 5 shows by way of example the mounting of the device on an electrical insulator.

Ausführliche Beschreibung unter Verwendung der Bezugszeichen in der ZeichnungDetailed description using the reference numerals in the drawing

Wie in Fig. 1 dargestellt, enthält die Vorrichtung 100 neben einem Sensor zur Eisdetektion und/oder Eisdickenmessung und/oder Eisklassifizierung 4 ein System zur Energiegewinnung aus der Umgebung 1 (z.B. aus Sonnenstrahlung, Wärme, Vibrationen oder Kriechströmen, elektrisches/magnetisches/elektromagnetisches Feld). Diese Energiequellen stehen typischerweise nicht kontinuierlich zur Verfügung, weshalb die Energie in einem Energiespeicher 3 zwischengespeichert werden kann. Beide Baugruppen werden optional flexibel und dünn ausgeführt. Die Regelung wird von einem Energiemanagementsystem 2 ausgeführt.As in Fig. 1 In addition to a sensor for ice detection and / or ice thickness measurement and / or ice classification 4, the device 100 includes a system for generating energy from the environment 1 (eg from solar radiation, heat, vibrations or leakage currents, electric / magnetic / electromagnetic field). These energy sources are typically not continuously available, which is why the energy can be temporarily stored in an energy store 3. Both modules are optionally flexible and thin. The regulation is carried out by an energy management system 2.

Eine Steuereinheit 5 (beispielsweise ein Mikroprozessor) wird von Energiespeicher 3 oder dem System zur Energiegewinnung aus der Umgebung 1 mit elektrischer Energie versorgt und erfasst Messdaten des Sensors zur Eisdetektion und/oder Eisdickenmessung und/oder Eisklassifizierung 4. Diese Daten können mit weiteren Messdaten aus weiteren Sensoren 6 (z.B. Temperatur, Strom) verarbeitet werden und werden über eine Einrichtung zur Datenübertragung 7 z.B. drahtlos über eine Funkstrecke 8 an eine weitere Vorrichtung 100' oder eine Basisstation 9 weitergeleitet. Je nach Standort und Umgebungsbedingungen können unterschiedliche Einrichtungen zur Energiegewinnung und -speicherung (auch mehrere Systeme in einer Vorrichtung 100) vorgesehen werden.A control unit 5 (for example, a microprocessor) is supplied with energy from energy store 3 or the system for generating energy from environment 1 and acquires measurement data from the sensor for ice detection and / or ice thickness measurement and / or ice classification 4. These data can be combined with further measurement data from further Sensors 6 (eg temperature, electricity) are processed and are over a device for data transmission 7, for example, wirelessly via a radio link 8 to another device 100 'or a base station 9 forwarded. Depending on the location and environmental conditions, different devices for energy generation and storage (also several systems in a device 100) can be provided.

Fig. 2 und 3 zeigen den beispielhaften schematischen Aufbau der Vorrichtung: eine starre oder flexible Solarzelle 10 liegt an oder unter einer zu beobachtenden Fläche und wird durch eine zumindest teilweise lichtdurchlässige Schutzschicht von der Umgebung getrennt. Eine flexible Batterie 11 befindet sich innerhalb der Vorrichtung 100, die von einer Außenhaut 12 (beispielsweise eine flexible Leiterplatte) umgeben ist. Der gesamte Innenraum wird mit einem (ggf. verstärkten) Füllstoff 14 (z.B. einem Polymer), gefüllt. Die Außenhaut 12, die beispielsweise als flexible Leiterplatte ausgeführt sein kann, bildet mit dem Füllstoff 14 eine mechanische Einheit mit der Funktion der flexiblen Trägerplatte 21. Ebenfalls innerhalb der Vorrichtung 100 liegen weitere Einrichtungen z.B elektronische Komponenten und integrierte Bausteine 13 für Datenverarbeitung, Messung und Datenübertragung. Die Elektroden für eine Eisdetektion oder Eisdickenmessung 15 befinden sich unter der zu beobachtenden Fläche der Vorrichtung 100. Die Funkantenne 16 ist ebenfalls in der Vorrichtung 100 integriert und kann ebenfalls unter der zu beobachtenden Oberfläche 0 liegen. FIGS. 2 and 3 show the exemplary schematic structure of the device: a rigid or flexible solar cell 10 is located at or below a surface to be observed and is separated from the environment by an at least partially transparent protective layer. A flexible battery 11 is located within the device 100 which is surrounded by an outer skin 12 (eg, a flexible circuit board). The entire interior is filled with a (possibly reinforced) filler 14 (eg a polymer). The outer skin 12, which may for example be designed as a flexible printed circuit board, forms with the filler 14 is a mechanical unit with the function of the flexible support plate 21. Also within the device 100 are other devices such as electronic components and integrated components 13 for data processing, measurement and data transmission , The electrodes for ice detection or ice thickness measurement 15 are located below the surface of the device 100 to be observed. The radio antenna 16 is also integrated in the device 100 and may also be below the surface 0 to be observed.

Durch die beschriebenen Merkmale kann die Vorrichtung 100 gegebenenfalls hermetisch abgedichtet (vollständig elektrisch isoliert) werden, wodurch eine besonders lange uneingeschränkte Betriebsdauer realisiert werden kann. Weiters ist die gesamte Vorrichtung 100 dünn (Bauhöhe unter 5 mm bzw. Verhältnis zwischen größter Seitenlänge und Dicke größer als 10) und flexibel (biegsam) ausgeführt. Die flexible Ausführung großflächiger, dünner Bauelemente bei gleichzeitiger Verwendung eines flexiblen Trägermaterials, die Anordnung der Komponenten zueinander und kleine Abmessungen von starren Komponenten tragen wesentlich zur Flexibilität der Vorrichtung 100 bei.Due to the described features, the device 100 may be hermetically sealed (completely electrically isolated), whereby a particularly long unrestricted operating time can be realized. Furthermore, the entire device 100 is thin (height below 5 mm or ratio between the largest side length and thickness greater than 10) and flexible (flexible) executed. The flexible version large-area, thin components with simultaneous use of a flexible substrate, the arrangement of the components to each other and small dimensions of rigid components contribute significantly to the flexibility of the device 100 at.

Fig. 4 zeigt drei von vielen möglichen Montagepositionen der Vorrichtung 100 auf einem Rotorblatt 20 einer Windenergieanlage: Vorrichtung 100 und Vorrichtung 100' an der Vorderkante des Rotorblattes 20 sind deutlich relevanter positioniert als Vorrichtung 100", da erfahrungsgemäß Aneisungen an der Vorderkante beginnen und je nach Hersteller auch nur dieser Bereich mit einer Einrichtung zur Abtauung 22 ausgerüstet wird. Typischerweise ist gerade an diesen Positionen die Krümmung der Oberfläche 0 des Rotorblattes 20 besonders stark ausgeprägt, was eine zumindest teilweise flexible Vorrichtung 100 zur Messung notwendig macht. Gleichzeitig sind gerade an der Vorderkante Eingriffe in die Aerodynamik kritisch. Daher ist eine Befestigungsart mit möglichst geringem Bauhöhenbedarf (Klebung oder Integration durch Laminierung) und eine geringe Bauhöhe der Vorrichtung 100 notwendig. Schutzschichten über der Vorrichtung 100 sind - sofern nichtleitend und gegebenenfalls transparent- unproblematisch. Außerdem kann durch Verwendung ähnlicher Materialien und vergleichbare Bauhöhe die Vorrichtung 100 z.B. in eine Flächenheizung derart integriert werden, dass eine gemeinsame Montage bzw. die gemeinsame Nutzung leitfähiger Strukturen möglich ist. Fig. 4 shows three of many possible mounting positions of the device 100 on a rotor blade 20 of a wind turbine: Device 100 and device 100 'at the leading edge of the rotor blade 20 are positioned significantly more relevant than device 100 ", as experience shows starting at the leading edge and depending on the manufacturer only this area is equipped with a defrosting device 22. Typically, the curvature of the surface O of the rotor blade 20 is particularly pronounced precisely at these positions, which makes an at least partially flexible device 100 necessary for the measurement Therefore, it is necessary to have a fastening method with the least possible height requirement (gluing or integration by lamination) and a low overall height of the device 100. Protective layers over the device 100 are unproblematic if not conductive and possibly transparent sch. In addition, by using similar materials and comparable height, the device 100 can be integrated, for example, in a surface heating such that a common assembly or the sharing of conductive structures is possible.

Die erfassten Messdaten werden z.B. per Funk in einem Sensornetz an eine weitere Vorrichtung 100' oder Vorrichtung 100" zur Weiterübermittlung weitergereicht oder werden direkt an eine Basisstation 9 zur Auswertung und/oder zur Steuerung einer Einrichtung zur Abtauung 22 übertragen. Dabei kann die Ausführung als Sensornetz vorteilhaft sein, um die von der Funkübertragung zu überbrückende Strecke (und damit den Energiebedarf) zu reduzieren; andererseits sind mehrere Messpunkte sinnvoll, um die Redundanz des Systems zu gewährleisten und die hohe Qualität der erfassten Werte zu gewährleisten.The acquired measurement data are, for example, transmitted by radio in a sensor network to another device 100 'or device 100 "for further transmission or are transmitted directly to a base station 9 for evaluation and / or control of a device for defrosting 22. In this case, the design as a sensor network be beneficial to those of the Radio transmission to bridge the distance (and thus the energy consumption) to reduce; On the other hand, several measurement points are useful to ensure the redundancy of the system and to ensure the high quality of the recorded values.

Fig. 5 zeigt eine von vielen möglichen Montagepositionen der Vorrichtung 100: Die Anbringung der Vorrichtung 100"' an der Oberfläche O eines Isolators 23 von Hochspannungsübertragungseinrichtungen (z.B. Freileitungsmast, Transformatordurchführung) erlaubt bei geeigneter Ausführungsform (z.B. ringförmig, Anbringung an Montageposition 24) die Messung von unerwünschten Kriechströmen entlang solcher Oberflächen mittels kontaktierender oder kontaktloser Verfahren zur Strommessung (z.B. Rogowski-Spule, Fluxgate-Sensor, Shunt-Widerstand). Fig. 5 shows one of many possible mounting positions of the device 100: Attachment of the device 100 "'to the surface O of an insulator 23 of high voltage transmission equipment (eg overhead tower, transformer bushing) allows, in a suitable embodiment (eg annular, mounting to mounting position 24), the measurement of unwanted leakage currents along such surfaces by means of contacting or non-contact methods of current measurement (eg Rogowski coil, fluxgate sensor, shunt resistor).

Claims (8)

  1. A device (100, 100"') for detecting critical states on a surface of a component part (20), characterised by
    an at least partially flexible carrier plate (21), which can be fastened to the surface (O) and which is mechanically integrated into a unit together with at least one sensor (4) for detecting critical states of the surface, an electrical energy store (3, 11), a device for electrical energy harvesting, a control unit (4) for detecting and processing the sensor data and also a data transfer unit for wireless data transfer, wherein at least the sensor (4) is hermetically sealed.
  2. The device (100,100"') according to Claim 1, characterised in that the device for electrical energy harvesting comprises a solar cell (10).
  3. The device (100, 100'") according to Claim 1 or 2, characterised in that it is thinner than 5 mm.
  4. The device (100, 100"') according to one of Claims 1 to 3, characterised in that it can be adhered to the surface (O).
  5. The device (100, 100'") according to one of Claims 1 to 4, characterised in it is integrated beneath the surface (O) into the component part (20).
  6. The device (100, 100"') according to one of Claims 1 to 5, characterised in that the sensor (4) is a capacitive sensor for detecting icing with a number of electrodes (15) made of conductive structures.
  7. The device (100, 100"') according to one of Claims 1 to 6, characterised in that the sensor (4) can be fastened to the surface (O) of a component part (20), which has a device (22) for defrosting the surface, wherein the device is used to control the defrosting device (22).
  8. The device (100"') according to one of Claims 1 to 4, characterised in that the sensor is configured to measure leakage currents at the surface (O) of an insulator (23).
EP13716171.7A 2012-03-19 2013-03-18 Device for detecting critical states of a surface Active EP2828164B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA329/2012A AT512413B1 (en) 2012-03-19 2012-03-19 Integrated flexible ice detector
PCT/AT2013/050066 WO2013138832A2 (en) 2012-03-19 2013-03-18 Device for detecting critical states of a surface

Publications (2)

Publication Number Publication Date
EP2828164A2 EP2828164A2 (en) 2015-01-28
EP2828164B1 true EP2828164B1 (en) 2015-09-23

Family

ID=48095448

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13716171.7A Active EP2828164B1 (en) 2012-03-19 2013-03-18 Device for detecting critical states of a surface

Country Status (8)

Country Link
US (1) US9909568B2 (en)
EP (1) EP2828164B1 (en)
AT (1) AT512413B1 (en)
CA (1) CA2867052C (en)
DK (1) DK2828164T3 (en)
ES (1) ES2557029T3 (en)
RU (1) RU2619160C2 (en)
WO (1) WO2013138832A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019110364A1 (en) 2017-12-07 2019-06-13 Wobben Properties Gmbh Method for operating a wind turbine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3042312A1 (en) * 2015-10-08 2017-04-14 Greensystech DEVICE FOR DETERMINING THE RISK OF FREEZING
AT518539B1 (en) 2016-07-05 2017-11-15 Eologix Sensor Tech Gmbh Security element for an object surface
EP3276168A1 (en) 2016-07-25 2018-01-31 Siemens Aktiengesellschaft Controlling a safety system of a wind turbine
CN109900967B (en) * 2017-12-07 2021-01-22 北京金风科创风电设备有限公司 Capacitance value detection method and device of super capacitor and wind generating set
US10822097B2 (en) 2018-02-15 2020-11-03 Booz Allen Hamilton Inc. Ice formation detection and removal system for an aerial vehicle and method
CN109442794A (en) * 2018-11-28 2019-03-08 宁波奥克斯电气股份有限公司 A kind of air-conditioning refrigeration system, Defrost method and air conditioner
RU195528U1 (en) * 2019-05-29 2020-01-30 ООО "Оптиметрик" High voltage multifunction measuring device
US20200393203A1 (en) * 2019-06-14 2020-12-17 Rosemount Aerospace Inc. Friction energy systems
CN115783268A (en) * 2023-02-08 2023-03-14 中国空气动力研究与发展中心低速空气动力研究所 Composite airplane icing detection device and method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398547A (en) * 1989-01-10 1995-03-21 Innovative Dynamics, Inc. Apparatus for measuring ice distribution profiles
US5177662A (en) 1992-02-05 1993-01-05 Johnson Service Company Capacitance humidity sensor
FR2750494B1 (en) * 1996-07-01 1998-09-04 S P S I Soc HIGH PERFORMANCE CAPACITIVE SENSORS COMPRISING AT LEAST ONE NON-METALLIC ELECTRODE AND METHOD FOR MANUFACTURING SUCH SENSORS
US6237874B1 (en) * 1997-09-22 2001-05-29 Northcoast Technologies Zoned aircraft de-icing system and method
DE20206704U1 (en) * 2002-04-27 2002-08-22 Diwald, Werner, 17291 Ludwigsburg Ice sensor for wind turbines
DE102005017716A1 (en) * 2005-04-15 2006-10-19 Wobben, Aloys, Dipl.-Ing. Rotor blade for wind power station has rotor blade nose, deposition sensor device arranged in area of rotor blade nose with transmitter for wireless transmission of signals via transmission link and receiver for receiving signals
JP2007181278A (en) * 2005-12-27 2007-07-12 Morioka Seiko Instruments Inc Autonomous power supply and wireless sensor network apparatus
US7400054B2 (en) * 2006-01-10 2008-07-15 General Electric Company Method and assembly for detecting blade status in a wind turbine
ITTO20060400A1 (en) * 2006-05-31 2007-12-01 Lorenzo Battisti METHOD AND SYSTEM FOR DETECTION OF DANGER OF ICE FORMATION ON AERODYNAMIC SURFACES
CN101999038A (en) * 2007-10-24 2011-03-30 维斯塔斯风力系统有限公司 Wind turbine blade, wind turbine and method for manufacturing a wind turbine blade
US8381601B2 (en) * 2008-05-05 2013-02-26 John F. Stumpf Transducer matrix film
CN101285673A (en) * 2008-06-06 2008-10-15 太原理工大学 Capacitance ratio type ice-covering thickness sensor and its detection method
US8692537B2 (en) * 2009-07-17 2014-04-08 The Invention Science Fund I, Llc Use pairs of transformers to increase transmission line voltage
WO2011117246A2 (en) * 2010-03-23 2011-09-29 Vestas Wind Systems A/S A method for de-icing the blades of a wind turbine and a wind turbine with a de-icing system
FR2971144A1 (en) * 2011-02-08 2012-08-10 Tornier Sa GLENOIDAL IMPLANT FOR SHOULDER PROSTHESIS AND SURGICAL KIT

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019110364A1 (en) 2017-12-07 2019-06-13 Wobben Properties Gmbh Method for operating a wind turbine
US11415112B2 (en) 2017-12-07 2022-08-16 Wobben Properties Gmbh Method for operating a wind turbine
EP3721083B1 (en) 2017-12-07 2022-10-26 Wobben Properties GmbH Method for operating a wind turbine

Also Published As

Publication number Publication date
CA2867052A1 (en) 2013-09-26
CA2867052C (en) 2019-06-18
WO2013138832A3 (en) 2013-11-14
AT512413B1 (en) 2013-08-15
ES2557029T3 (en) 2016-01-21
AT512413A4 (en) 2013-08-15
US20150035548A1 (en) 2015-02-05
US9909568B2 (en) 2018-03-06
WO2013138832A2 (en) 2013-09-26
DK2828164T3 (en) 2016-01-11
RU2619160C2 (en) 2017-05-12
RU2014142041A (en) 2016-05-20
EP2828164A2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
EP2828164B1 (en) Device for detecting critical states of a surface
EP2826993B1 (en) Wind energy plant rotor blade de-icing method and wind energy plant rotor blade de-icing system
DE102009009189B4 (en) Sensor and sensor network for an aircraft
DE102015002061B4 (en) Electrical busbar with sensor unit
EP3062363A1 (en) Battery assembly
DE102010032093B4 (en) Repairing device for repair patches, repair kit and method for monitoring a repair patch
DE102007055090B4 (en) Monitoring device for monitoring the outer skin of an aircraft
DE102015014256B4 (en) Microelectronic module for cleaning a surface, modular array and method for cleaning a surface
DE102011088440A1 (en) Energy storage cell i.e. battery cell, for electric car, has first communication terminal coupled with second communication terminal for wireless transmitting characteristic of storage unit, where terminals are externally arranged at cell
EP2615302A1 (en) Method for operating a wind energy assembly, for which the risk of icing is determined on the basis of meteorological data and wind energy assembly for implementing the method
WO2011032993A1 (en) Method and device for characterizing at least one solar cell module
EP2615301B1 (en) Method for operating a wind energy assembly, for which the risk of icing is determined on the basis of meteorological data and wind energy assembly for implementing the method
DE202013101776U1 (en) Storage system for storing static electricity present in the atmosphere
EP1227335A2 (en) Current supply system for ROSAR transponder and transmit/receive antennas for ROSAR devices
EP2281748A1 (en) Device for deicing airplanes
DE102015117011A1 (en) Power supply unit for a radio module
DE102018208254B4 (en) System for condition monitoring of a fiber composite structure
EP3866261B1 (en) Method for manufacturing an electronic assembly protected against rough environmental conditions, for aircrafts, electronic assembly and aircraft
CN207504446U (en) Suitable for the apparatus for examination and repair of different size cable
DE102014101051A1 (en) Method and device for producing an electrode stack
DE102015010233A1 (en) Microelectronic module, modular array and flow control method
DE102015211517A1 (en) Mobile device for performing maintenance on a wind turbine
DE102017109233A1 (en) Segmented electrode unit, battery and method for producing a segmented electrode unit
AT504529B1 (en) METHOD AND DEVICE FOR MONITORING PERMISSIONS
DE202023101569U1 (en) Intelligent system for lithium battery power management through heat dissipation model and controlling battery internal leakage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140828

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F03D 11/00 20060101ALI20150420BHEP

Ipc: B64D 15/22 20060101ALI20150420BHEP

Ipc: G08B 19/02 20060101ALI20150420BHEP

Ipc: G01R 27/26 20060101ALI20150420BHEP

Ipc: B64D 15/20 20060101AFI20150420BHEP

DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20150512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 751081

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013001242

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: ZANKLSTRASSE 11/6, 8051 GRAZ (AT) $ MICHAEL MOSER, GRABENSTRASSE 90C/TOP 4, 8010 GRAZ (AT)

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160107

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2557029

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160121

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151224

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20150923

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013001242

Country of ref document: DE

Owner name: EOLOGIX SENSOR TECHNOLOGY GMBH, AT

Free format text: FORMER OWNERS: MOSER, MICHAEL, GRAZ, AT; ZANGL, HUBERT, GRAZ, AT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013001242

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: EOLOGIX SENSOR TECHNOLOGY GMBH, AT

Free format text: FORMER OWNER: ZANGL, HUBERT, AT

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20160531

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ZANGL, HUBERT

Owner name: MOSER, MICHAEL

RIN2 Information on inventor provided after grant (corrected)

Inventor name: MOSER, MICHAEL

Inventor name: ZANGL, HUBERT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EOLOGIX SENSOR TECHNOLOGY GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20160721 AND 20160727

26N No opposition filed

Effective date: 20160624

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: EOLOGIX SENSOR TECHNOLOGY GMBH; AT

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), OVERDRACHT; FORMER OWNER NAME: ZANGL, HUBERT

Effective date: 20160722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160318

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 751081

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180318

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240320

Year of fee payment: 12

Ref country code: NL

Payment date: 20240318

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240318

Year of fee payment: 12

Ref country code: DE

Payment date: 20240318

Year of fee payment: 12

Ref country code: GB

Payment date: 20240313

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240313

Year of fee payment: 12

Ref country code: NO

Payment date: 20240314

Year of fee payment: 12

Ref country code: IT

Payment date: 20240318

Year of fee payment: 12

Ref country code: FR

Payment date: 20240313

Year of fee payment: 12

Ref country code: DK

Payment date: 20240312

Year of fee payment: 12

Ref country code: BE

Payment date: 20240318

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240415

Year of fee payment: 12