EP2826999B1 - Vacuum pump - Google Patents
Vacuum pump Download PDFInfo
- Publication number
- EP2826999B1 EP2826999B1 EP14173399.8A EP14173399A EP2826999B1 EP 2826999 B1 EP2826999 B1 EP 2826999B1 EP 14173399 A EP14173399 A EP 14173399A EP 2826999 B1 EP2826999 B1 EP 2826999B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pump
- rotor
- siegbahn
- stage
- bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007789 sealing Methods 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 17
- 230000000903 blocking effect Effects 0.000 claims description 11
- 238000003754 machining Methods 0.000 claims description 7
- 230000003068 static effect Effects 0.000 claims description 7
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 claims description 2
- 238000005086 pumping Methods 0.000 description 54
- 238000003860 storage Methods 0.000 description 43
- 239000007789 gas Substances 0.000 description 28
- 238000005192 partition Methods 0.000 description 23
- 210000000056 organ Anatomy 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000009740 moulding (composite fabrication) Methods 0.000 description 4
- 238000005242 forging Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/056—Bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/042—Turbomolecular vacuum pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/08—Sealings
- F04D29/10—Shaft sealings
- F04D29/102—Shaft sealings especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/60—Mounting; Assembling; Disassembling
- F04D29/64—Mounting; Assembling; Disassembling of axial pumps
- F04D29/644—Mounting; Assembling; Disassembling of axial pumps especially adapted for elastic fluid pumps
- F04D29/646—Mounting or removal of fans
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49229—Prime mover or fluid pump making
- Y10T29/49236—Fluid pump or compressor making
- Y10T29/49245—Vane type or other rotary, e.g., fan
Definitions
- the invention relates to a turbomolecular pump with a working space, a storage space, a partition wall arranged between the working space and the storage space, and a rotor shaft extending through the partition wall.
- Vacuum pumps are used in various technical processes in order to create the vacuum required for the respective process.
- a vacuum pump typically comprises a work space, a storage space, a partition wall arranged between the work space and the storage space, and a rotor shaft.
- a pump structure of the vacuum pump is arranged in the working space, which pumps the process gas present in the working space from the inlet to the outlet of the vacuum pump and thereby pumps it.
- In the storage room there is e.g. a bearing for supporting the rotor shaft and, if necessary, a drive for the rotor shaft.
- the rotor shaft extends through the partition wall, forming a gap.
- a section of the rotor shaft, which carries the rotor-side part of the pump structure extends into the working space and another section of the rotor shaft, which is e.g. connected to the bearing, extends into the bearing space.
- a problem with known vacuum pumps is posed by corrosive and other harmful gases which are contained in the conveyed process gas and which pass from the working space into the storage space through the gap formed between the rotor shaft and the partition wall. These gases take effect the bearings, equipment and other components in the storage room, which can lead to damage and premature failure of the pump.
- a labyrinth seal can be provided between the rotor shaft and the partition wall in order to shut off the storage space from the working space, i.e. in order to prevent undesired gas exchange between the working space and the storage space.
- the labyrinth seal can comprise a multiplicity of axial recesses of a rotor disk which follow one another in the radial direction and which mesh with corresponding projections of the surrounding partition wall, so that a long and narrow gap is formed between the rotor shaft and the partition wall, which causes a seal.
- the labyrinth seal can also comprise a multiplicity of radial grooves in the rotor shaft which follow one another in the axial direction and which form a long and narrow sealing gap with the partition.
- a disadvantage of a vacuum pump with such a labyrinth seal is that very narrow gaps are required for a high sealing effect, which are difficult to reach due to the thermal expansions occurring during operation of the vacuum pump and the expansions due to the centrifugal forces occurring at high speeds.
- the provision of a vacuum pump with such a labyrinth seal is associated with a high additional manufacturing cost.
- the punctures in the rotor disk can also lead to the occurrence of unfavorable mechanical stresses in the rotor during the pumping operation, which impair the service life and the operational safety of the vacuum pump.
- the labyrinth seal also leads to a considerable increase in the overall axial height and the power requirement of the vacuum pump due to the gas friction occurring in the narrow gaps.
- the EP 0 773 367 A1 describes a similar turbo molecular pump.
- turbo-molecular pump which overcomes the disadvantages described above, that is to say a turbo-molecular pump in which a harmful gas exchange between the working space and the storage room is avoided and which can be produced at the same time with little effort and in a small installation space and which has a low power requirement and a long service life.
- the turbomolecular pump comprises a working space, a storage space, a partition wall arranged between the working space and the storage space, and at least one rotor shaft extending through the partition wall which forms a gap with the partition wall.
- the turbomolecular pump also includes a locking device for locking between the working space and the storage space.
- the locking device is formed by a Siegbahn pumping stage, which is designed to provide a pumping action between the working space and the storage space that extends through the gap.
- the Siegbahn pumping stage creates an effective barrier between the working area and the storage room, since the pumping action of the Siegbahn pumping stage effectively prevents a gas flow through the gap that is directed against the pumping direction of the Siegbahn pumping stage.
- the use of a sealing gas can optionally be dispensed with. In principle, however, the use of a sealing gas is also conceivable.
- the operation of the Siegbahn pump stage does not lead to a significant increase in the power requirement of the turbo molecular pump.
- the Siegbahn pumping stage can be provided with simple means.
- the Siegbahn pumping stage comprises a stator element and a rotor element, which, for example, are each oriented in the radial direction and are disk-shaped.
- the stator element and the rotor element form opposing pump-active surfaces, wherein one of the pump-active surfaces can be smooth or flat and the other can be structured.
- Such stator and rotor elements are easy to manufacture and complex machining of the rotor disk and the oppositely arranged stator partner to produce a large number of axial grooves and the associated weakening of the rotor disk can be avoided.
- the Siegbahn pump stage can have an axial sealing gap, wherein formed by a rotating pump-active organ of the pump stage for the process gas, which comprises a pump-active surface for the process gas, or by a rotor hub of the pump stage for the process gas.
- the rotor element is formed by a rotor hub of a Holweck or cross-thread pump stage, which, for example, can carry a Holweck cylinder.
- the Siegbahn pump stage Due to the radial alignment of the Siegbahn pump stage, the overall axial height is at most slightly increased by the Siegbahn pump stage.
- the Siegbahn pump stage can have an axial sealing gap, a small gap width of the sealing gap being achievable with little effort despite the thermal expansion of the turbo molecular pump.
- the Siegbahn pumping stage is preferably designed to provide a pumping action from the storage space via the gap into the working space. As a result, the storage space is effectively blocked off from the work space, so that no harmful process gases can enter the storage space from the work space.
- the stator element is preferably supported by or formed by a static part of the turbomolecular pump, for example the pump housing or the partition wall.
- the rotor member is preferably carried by the rotor shaft and in particular attached to the rotor shaft in a rotationally fixed manner.
- At least one active pumping surface of the Siegbahn pumping stage is preferably formed and / or is at least a structured surface a pumping active surface formed by a flat surface.
- one pump-active surface is formed by a structured surface and the other pump-active surface is formed by a flat surface.
- the stator element preferably has the structured, pump-active surface.
- the rotor element can have the planar, pump-active surface.
- the rotor element can be manufactured with particularly little effort, while at the same time a disadvantageous weakening of the rotor element resulting from structuring is avoided.
- the rotor element is therefore easily able to withstand the centrifugal forces that occur during the operation of the turbo molecular pump without excessive stresses occurring, which reduce the operational reliability of the turbo molecular pump.
- an imbalance of the rotor caused by the rotor element is largely avoided by a flat or smooth configuration of the active pumping surface of the rotor element.
- the active pumping surfaces of the Siegbahn pump stage can delimit at least one delivery channel of the Siegbahn pump stage and a sealing gap for sealing the delivery channel.
- the gas is driven through the delivery channel, the sealing gap being so narrow that an undesired backflow of the gas delivered through the delivery channel, directed counter to the pumping direction, is largely prevented.
- a structured pumping-active surface of the turbo-molecular pump preferably comprises at least one depression which forms the delivery channel and at least one elevation, wherein a surface area of the elevation facing the opposite pumping-active surface can delimit the sealing gap together with the opposite pumping-active surface.
- the conveying channel can be designed in a spiral shape and / or run essentially in a radial plane.
- the delivery channel preferably connects an inlet and an outlet of the Siegbahn pumping stage.
- One of the inlet and outlet can be arranged on a radial inside of the Siegbahn pump stage and the other of the inlet and outlet can be arranged on the radial outside of the Siegbahn pump stage.
- the sealing gap can be formed by an axial gap between the active pumping surfaces of the Siegbahn pumping stage.
- the Siegbahn pump stage can do without any radial sealing gaps. Since the thermal expansions of the turbomolecular pump occurring in the axial direction are small compared to the radial expansions, a small gap width and a correspondingly good blocking effect can be reliably ensured.
- an area delimiting the sealing gap of at least one pump-active surface is produced or can be produced at least in sections by machining that removes material.
- the material-removing processing can in particular a include cutting or machining processes such as turning or grinding.
- a blank with a structured surface can first be provided, with those areas of the structured surface that delimit the sealing gap then being machined by turning or grinding the blank in order to achieve the Organ to adapt to a desired gap width.
- the stator element and / or the rotor element is preferably designed essentially in the form of a disk.
- the disk plane of the stator element and / or of the rotor element preferably runs radially to the axis of rotation of the rotor shaft.
- the rotor member is preferably designed to be rotationally symmetrical. This increases the operational safety, since an imbalance caused by the rotor element is avoided.
- the stator element and / or the rotor element can be designed as an injection-molded part, as a forged part or as a formed part.
- Injection molding, forging or reshaping are particularly suitable for producing an organ which has a structured pumping-active surface, for example a stator organ with a structured pumping-active surface.
- structuring can already be produced for the structured, pump-active surface.
- the structuring produced during injection molding, forging or forming can be final or can be reworked, in particular by the material-removing method described above.
- the stator element and / or the rotor element consists at least partially or completely of a metal such as aluminum.
- the stator element and / or the rotor element consists at least partially or completely of a plastic.
- the stator element and / or the rotor element can at least partially or completely consist of a fiber-reinforced plastic such as a glass-fiber-reinforced or carbon-fiber-reinforced plastic.
- the stator element can be designed as a separate part which is carried by a static component of the turbo molecular pump.
- the stator element can, for example, be carried by a pump housing of the turbo-molecular pump or by the partition.
- the stator can be glued to the static component of the turbo molecular pump.
- the stator element can be produced separately, which reduces the effort required to provide the turbo molecular pump.
- the working space and the storage space are preferably directly adjacent to one another and directly separated from one another by the partition.
- a rotary bearing for rotatably supporting the rotor shaft is arranged in the storage space, for example a roller bearing, which is preferably designed as a lubricated roller bearing.
- a drive for driving the rotor shaft in rotation can be arranged in the storage space.
- the pivot bearing provided in the storage room is preferably arranged in the vicinity of the locking device.
- the pump structure of the turbo molecular pump with which the process gas to be pumped by the turbo molecular pump can be conveyed from a pump inlet to a pump outlet of the turbo molecular pump, can be arranged in the working space of the turbo molecular pump.
- the rotating part of this pump structure is preferably carried by the rotor shaft.
- the pump structure preferably comprises one or more stator disks and rotor disks arranged between the stator disks, which together implement a turbomolecular pumping principle.
- a sealing gas can be fed to the storage space, in particular via a sealing gas inlet which connects the storage space with the outside of the pump in a gas-conducting manner, which can be conveyed from the storage space into the work space by the Siegbahn pumping stage. This optimizes the locking effect provided by the Siegbahn pumping stage.
- the invention also relates to a method for producing a turbo molecular pump, in which a working space, a storage space, a partition wall arranged between the working space and the storage space and at least one rotor shaft extending through the partition wall and forming a gap with the partition wall is provided. Furthermore, a blocking device is provided for blocking between the work space and the storage room.
- a Siegbahn pumping stage is provided as a blocking device, which is designed to provide a pumping action between the working space and the storage space that extends through the gap.
- the method is suitable for producing a turbomolecular pump according to the invention in accordance with the present description.
- the advantageous embodiments and advantages described in the present description in relation to the turbomolecular pump and its production represent corresponding advantages and advantageous embodiments of the method.
- a stator element and a rotor element of the Siegbahn pumping stage are each produced with a pump-active surface.
- the active pumping surfaces delimit at least one delivery channel of the Siegbahn pumping stage and a sealing gap for sealing the delivery channel.
- an area delimiting the sealing gap of at least one pump-active surface is produced, at least in sections, by machining that removes material.
- a stator element for the Siegbahn pump stage is provided as a separate part and attached to a static component of the turbo molecular pump.
- the stator element can be attached, for example, to a pump housing of the turbo-molecular pump or to the partition become.
- the attachment can include gluing the stator element to the static component.
- the vacuum pump shown is designed as a turbomolecular pump and comprises a working space 12 and a storage space 14, which are delimited by a pump housing 48 of the vacuum pump, a partition 16 separating the working space 12 and the storage space 14 from one another, and a rotor shaft 18, which is formed into a radial Gap 20 extends through partition 16 into working space 12 and into storage space 14.
- the turbomolecular pump structure is housed in the working space 12.
- This pumping structure comprises a plurality of turbomolecular rotor disks 42 fastened to the rotor shaft 18 and turbomolecular stator disks 44 arranged between the rotor disks 42 and fixed in the housing 48 of the housing 48 is limited. This pumping action serves to convey the process gas from the pump inlet 38 to the pump outlet 40.
- a roller bearing 46 is arranged, which supports the rotor shaft 18 rotatably about the axis of rotation 19.
- a magnetic bearing or a magnetic bearing cartridge could in principle also be provided for rotatably supporting the rotor shaft 18.
- an in Fig. 1 A drive (not shown) for the rotor shaft 18 may be provided.
- the vacuum pump comprises a Siegbahn pump stage 22 with a stator member 24 carried by the partition 16 and a rotor member 26 carried by the rotor shaft 18.
- the stator member 24 and the rotor member 26 are each essentially disk-shaped and oriented radially to the direction of the axis of rotation of the rotor shaft 18.
- the stator element 24 and the rotor element 26 each have one of two opposing pump-active surfaces 28, 30, which form the pump-active structure of the Siegbahn pump stage 22. While the active pumping surface 30 of the rotor member is formed by a flat surface which is oriented perpendicular to the axis of rotation 19 of the rotor shaft 18, the active pumping surface 28 of the stator member 24 is structured.
- the active pumping surface 28 of the stator element 24 comprises a depression which forms a conveying channel 34 of the Siegbahn pumping stage 22, which runs in the radial direction spirally from the inside to the outside, and an elevation 36 delimiting the depression or the conveying channel 34.
- the gas present in the delivery channel 34 is displaced by the active pumping structure in the direction of rotation of the rotor shaft 18 and thereby conveyed along the spiral line shape of the conveying channel 34 from the inlet 50 of the Siegbahn pump stage 22 facing the gap 20 in the radial direction outward to the outlet 52 of the Siegbahn pump stage 22 facing the working chamber 12.
- a pumping action directed through the gap 20 from the storage space 14 into the working space 12 is provided, which in FIG Fig. 1 is illustrated by arrows 54 and blocks the storage space 14 from the work space 12.
- the vacuum pump shown is the rotor element 26 of the Siegbahn pump stage 22 and its active pumping surface 28 formed by the last rotor disk 42 in the conveying direction.
- the section of the rotor disk 42 that forms the pump-active surface 28 carries the blades of the rotor disk 42 that extend radially outward from this section.
- the process gas is conveyed to the pump outlet 40 following the last rotor disk 42 and past the storage space 14 laterally in the direction of the axis of rotation .
- Fig. 2 the drive 60 arranged in the storage room 14 is also shown schematically.
- the vacuum pump shown essentially corresponds to the one in FIG Fig. 2 shown vacuum pump, whereby instead of the last turbomolecular pump stage in the direction of flow, the in Fig. 2 Pump shown a Holweck pumping stage with a Holweck rotor 62 and a Holweck stator 64 is provided, which conveys the gas conveyed by the turbomolecular pump stages on to the pump outlet 40.
- the rotor element 26 of the Siegbahn pump stage 22 and its active pumping surface 28 are formed in this embodiment by the rotor hub of the Holweck pump stage connected to the rotor shaft 18 or a flat surface thereof, which is disc-shaped and is oriented in the radial direction to the axis of rotation 19.
- the Holweck rotor 62 comprises a Holweck cylinder 66 carried by the rotor hub with a smooth radial outer surface in the present exemplary embodiment, which forms an active pumping surface of the Holweck pumping stage and a pumping active surface of the Holweck stator 64 formed by the radial inner surface of the sleeve-shaped Holweck stator 64 with the formation of a narrow radial Holweck gap 68 opposite.
- the pump-active surface of the Holweck stator 64 is structured and forms one or more conveying channels which run helically around the axis of rotation 19 in the axial direction. During the operation of the vacuum pump, the process gas conveyed by the turbomolecular pump stages to the inlet of the Holweck pump stage is driven in the conveying channels of the Holweck pump stage and thereby conveyed to the pump outlet 40.
- the vacuum pump shown essentially corresponds to that in Fig. 3 shown vacuum pump.
- the vacuum pump shown comprises a larger number of turbomolecular pump stages, each with a rotor disk 42 and a stator disk 44, the stator disks 44 being held at a predetermined distance from one another by spacer rings 70. Also includes the vacuum pump three Holweck pump stages nested one after the other in the radial direction and connected in series in the flow direction with the turbomolecular pump stages and with one another, each of which in the above with reference to the in Fig. 2 Holweckpumptreatment shown are designed described manner.
- the Holweck pump stages comprise a Holweck rotor 62 with an outer Holweck cylinder 72 and an inner Holweck cylinder 74, each of which is carried by a common rotor hub which simultaneously forms the rotor element 26 and the active pumping surface 28 of the Siegbahn pump stage 22. Furthermore, the Holweck pumping stages comprise an outer Holweck stator 76 and an inner Holweck stator 78, each of which is sleeve-shaped.
- the radial inner surface of the outer Holweck stator 76 forms with the radial outer surface of the outer Holweck cylinder 72 a first Holweck pump stage with a Holweck gap 80
- the radial inner surface of the outer Holweck cylinder 72 forms with the radial outer surface of the inner Holweck stator 78 a second Holweck pump stage with a Holweck gap 82 and the radial one
- the inner surface of the inner Holweck stator 78 forms with the radial outer surface of the inner Holweck cylinder 74 a third Holweck pump stage with a Holweck gap 84.
- the vacuum pump shown comprises a drive 60 which is designed as an electric motor and, in the present exemplary embodiment, is a brushless direct current motor.
- An electronic control unit 86 is used to control and energize the drive 60.
- a conical injection molded nut 88 is provided with an outer cross section increasing towards the roller bearing 46.
- the injection nut 88 stands with at least one Wiper of an operating medium store in sliding contact, which comprises a plurality of absorbent disks 90 stacked on top of one another, which are impregnated with an operating medium for the roller bearing 46, for example with a lubricant for the roller bearing 46.
- the operating fluid is transferred from the operating fluid reservoir through the capillary action via the scraper to the rotating injection nut 88 and, due to the centrifugal force, is conveyed in the direction of the increasing outer diameter of the injection nut 88 to the roller bearing 46, where it fulfills its desired function.
- the roller bearing 46 and the operating medium reservoir are enclosed by a trough-shaped insert 92 and a cover element 94 of the vacuum pump.
- the rotor shaft 18 is rotatably supported by a magnetic bearing, which in the present embodiment is designed as a permanent magnetic bearing.
- the magnetic bearing comprises a rotor-side bearing half 96 and a stator-side bearing half 98, which each comprise a ring stack of several permanent magnetic rings 100 and 102, respectively, stacked on top of one another in the axial direction.
- the magnet rings 100, 102 lie opposite one another with the formation of a narrow radial bearing gap 103, the rotor-side magnet rings 100 being disposed radially on the outside and the stator-side magnet rings 102 being disposed radially on the inside.
- the magnetic field present in the bearing gap 103 causes magnetic repulsive forces between the rings 100, 102, which cause the rotor shaft 18 to be supported radially.
- the rotor-side magnet rings 100 are carried by a carrier section 104 of the rotor shaft 18 which surrounds the magnet rings 100 radially on the outside.
- the stator-side magnet rings 102 are carried by a stator-side support section 106 which extends through the magnet rings 102 extends therethrough and is suspended from radial struts 108 of the housing 48.
- Parallel to the axis of rotation 19, the rotor-side magnet rings 100 are fixed in one direction by a cover element 110 coupled to the carrier section 104 and in the other direction by a shoulder section of the carrier section 104.
- the stator-side magnetic rings 102 are fixed parallel to the axis of rotation 19 in one direction by a fastening ring 112 connected to the carrier section 106 and a compensating element 114 arranged between the fastening ring 112 and the magnetic rings 102 and in the other direction by a support ring 116 connected to the carrier section 106 .
- An emergency or retainer bearing 118 is arranged inside the magnetic bearing, which runs empty during normal operation of the vacuum pump without contact and only comes into engagement with an excessive radial deflection of the rotor relative to the stator in order to form a radial stop for the rotor shaft 18 , which prevents a collision of the rotor-side structures with the stator-side structures.
- the backup bearing 118 is designed as an unlubricated roller bearing and forms a radial gap with the rotor and / or the stator, which has the effect that the backup bearing 118 is disengaged during normal pumping operation.
- the radial deflection at which the backup bearing 118 engages is dimensioned large enough so that the backup bearing 118 does not come into engagement during normal operation of the vacuum pump, and at the same time small enough so that the structures on the rotor side cannot collide with the structures on the stator side is avoided in all circumstances.
- the vacuum pump shown comprises a sealing gas inlet 122 closed with a closure element 120, which connects the storage space 14 to the outside of the pump and via which the storage space 14 a sealing gas can be supplied.
- the sealing gas supplied to the storage space 14 is conveyed into the working space 12 via the Siegbahn pump stage 22, as a result of which the storage space 14 is blocked off from the working space 12.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Non-Positive Displacement Air Blowers (AREA)
Description
Die Erfindung betrifft eine Turbomolekularpumpe mit einem Arbeitsraum, einem Lagerraum, einer zwischen dem Arbeitsraum und dem Lagerraum angeordneten Trennwand und einer sich durch die Trennwand hindurch erstreckenden Rotorwelle.The invention relates to a turbomolecular pump with a working space, a storage space, a partition wall arranged between the working space and the storage space, and a rotor shaft extending through the partition wall.
Vakuumpumpen werden in unterschiedlichen technischen Prozessen eingesetzt, um ein für den jeweiligen Prozess notwendiges Vakuum zu schaffen. Eine Vakuumpumpe umfasst typischerweise einen Arbeitsraum, einen Lagerraum, eine zwischen dem Arbeitsraum und dem Lagerraum angeordnete Trennwand und eine Rotorwelle. In dem Arbeitsraum ist eine Pumpstruktur der Vakuumpumpe angeordnet, die das in dem Arbeitsraum vorhandene Prozessgas von dem Einlass zu dem Auslass der Vakuumpumpe fördert und dadurch pumpt. In dem Lagerraum sind z.B. ein Lager zur Lagerung der Rotorwelle und ggf. ein Antrieb für die Rotorwelle angeordnet. Die Rotorwelle erstreckt sich unter Ausbildung eines Spaltes durch die Trennwand hindurch. Dabei erstreckt sich ein Abschnitt der Rotorwelle, welcher den rotorseitigen Teil der Pumpstruktur trägt, in den Arbeitsraum hinein und ein anderer Abschnitt der Rotorwelle, welcher z.B. mit dem Lager verbunden ist, erstreckt sich in den Lagerraum hinein.Vacuum pumps are used in various technical processes in order to create the vacuum required for the respective process. A vacuum pump typically comprises a work space, a storage space, a partition wall arranged between the work space and the storage space, and a rotor shaft. A pump structure of the vacuum pump is arranged in the working space, which pumps the process gas present in the working space from the inlet to the outlet of the vacuum pump and thereby pumps it. In the storage room there is e.g. a bearing for supporting the rotor shaft and, if necessary, a drive for the rotor shaft. The rotor shaft extends through the partition wall, forming a gap. A section of the rotor shaft, which carries the rotor-side part of the pump structure, extends into the working space and another section of the rotor shaft, which is e.g. connected to the bearing, extends into the bearing space.
Ein Problem bei bekannten Vakuumpumpen stellen korrosive und andere schädliche Gase dar, die in dem geförderten Prozessgas enthalten sind und durch den zwischen der Rotorwelle und der Trennwand ausgebildeten Spalt von dem Arbeitsraum in den Lagerraum gelangen. Diese Gase greifen die in dem Lagerraum vorhandenen Lager, Betriebsmittel und weiteren Komponenten an, was zu einer Schädigung und zu einem vorzeitigen Ausfall der Pumpe führen kann.A problem with known vacuum pumps is posed by corrosive and other harmful gases which are contained in the conveyed process gas and which pass from the working space into the storage space through the gap formed between the rotor shaft and the partition wall. These gases take effect the bearings, equipment and other components in the storage room, which can lead to damage and premature failure of the pump.
Um den Lagerraum von dem Arbeitsraum abzusperren, d.h. um einen unerwünschten Gasaustausch zwischen dem Arbeitsraum und dem Lagerraum zu verhindern, kann zwischen der Rotorwelle und der Trennwand eine Labyrinthdichtung vorgesehen sein. Die Labyrinthdichtung kann eine Vielzahl von in radialer Richtung aufeinander folgenden axialen Einstichen einer Rotorscheibe umfassen, die mit entsprechenden Vorsprüngen der umgebenden Trennwand kämmen, so dass ein langer und schmaler Spalt zwischen der Rotorwelle und der Trennwand gebildet wird, welcher eine Abdichtung bewirkt. Prinzipiell kann die Labyrinthdichtung auch eine Vielzahl von in axialer Richtung aufeinander folgenden radialen Einstichen der Rotorwelle umfassen, die mit der Trennwand einen langen und schmalen Dichtspalt bilden.A labyrinth seal can be provided between the rotor shaft and the partition wall in order to shut off the storage space from the working space, i.e. in order to prevent undesired gas exchange between the working space and the storage space. The labyrinth seal can comprise a multiplicity of axial recesses of a rotor disk which follow one another in the radial direction and which mesh with corresponding projections of the surrounding partition wall, so that a long and narrow gap is formed between the rotor shaft and the partition wall, which causes a seal. In principle, the labyrinth seal can also comprise a multiplicity of radial grooves in the rotor shaft which follow one another in the axial direction and which form a long and narrow sealing gap with the partition.
Ein Nachteil einer Vakuumpumpe mit einer solchen Labyrinthdichtung ist, dass für eine hohe Dichtwirkung sehr enge Spalte erforderlich sind, welche aufgrund der bei dem Betrieb der Vakuumpumpe auftretenden thermischen Ausdehnungen und der Ausdehnungen aufgrund der bei hohen Drehzahlen auftretenden Fliehkräfte nur schwer erreichbar sind. Außerdem ist die Bereitstellung einer Vakuumpumpe mit einer solchen Labyrinthdichtung mit einem hohen zusätzlichen Herstellungsaufwand verbunden. Die Einstiche in der Rotorscheibe können darüber hinaus zu dem Auftreten von ungünstigen mechanischen Spannungen in dem Rotor während des Pumpbetriebs führen, die die Lebensdauer und die Betriebssicherheit der Vakuumpumpe beeinträchtigen. Die Labyrinthdichtung führt außerdem zu einer erheblichen Erhöhung der axialen Bauhöhe und des Leistungsbedarfs der Vakuumpumpe aufgrund der in den engen Spalten auftretenden Gasreibung.A disadvantage of a vacuum pump with such a labyrinth seal is that very narrow gaps are required for a high sealing effect, which are difficult to reach due to the thermal expansions occurring during operation of the vacuum pump and the expansions due to the centrifugal forces occurring at high speeds. In addition, the provision of a vacuum pump with such a labyrinth seal is associated with a high additional manufacturing cost. The punctures in the rotor disk can also lead to the occurrence of unfavorable mechanical stresses in the rotor during the pumping operation, which impair the service life and the operational safety of the vacuum pump. The labyrinth seal also leads to a considerable increase in the overall axial height and the power requirement of the vacuum pump due to the gas friction occurring in the narrow gaps.
Aus der
Die
Es ist eine Aufgabe der Erfindung, eine Turbomolekularpumpe anzugeben, welche die vorstehend beschriebenen Nachteile überwindet, das heißt eine Turbomolekularpumpe, bei der ein schädlicher Gasaustausch zwischen dem Arbeitsraum und dem Lagerraum vermieden wird und die gleichzeitig mit geringem Aufwand herstellbar und auf kleinem Bauraum realisierbar ist und die einen geringen Leistungsbedarf und eine hohe Lebensdauer aufweist.It is an object of the invention to specify a turbo-molecular pump which overcomes the disadvantages described above, that is to say a turbo-molecular pump in which a harmful gas exchange between the working space and the storage room is avoided and which can be produced at the same time with little effort and in a small installation space and which has a low power requirement and a long service life.
Die Aufgabe wird durch eine Turbomolekularpumpe mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved by a turbo molecular pump with the features of
Die Turbomolekularpumpe umfasst einen Arbeitsraum, einen Lagerraum, eine zwischen dem Arbeitsraum und dem Lagerraum angeordnete Trennwand und wenigstens eine sich durch die Trennwand hindurch erstreckende Rotorwelle, die mit der Trennwand einen Spalt bildet. Die Turbomolekularpumpe umfasst außerdem eine Sperreinrichtung zur Absperrung zwischen dem Arbeitsraum und dem Lagerraum. Die Sperreinrichtung ist durch eine Siegbahnpumpstufe gebildet, die zum Bereitstellen einer durch den Spalt hindurch gehenden Pumpwirkung zwischen dem Arbeitsraum und dem Lagerraum ausgebildet ist.The turbomolecular pump comprises a working space, a storage space, a partition wall arranged between the working space and the storage space, and at least one rotor shaft extending through the partition wall which forms a gap with the partition wall. The turbomolecular pump also includes a locking device for locking between the working space and the storage space. The locking device is formed by a Siegbahn pumping stage, which is designed to provide a pumping action between the working space and the storage space that extends through the gap.
Es wurde erkannt, dass durch eine solche Siegbahnpumpstufe eine wirksame Absperrung zwischen dem Arbeitsraum und dem Pumpenraum erreicht wird, ohne dass der Herstellungsaufwand, die axiale Bauhöhe oder der Leistungsbedarf der Turbomolekularpumpe erhöht wird oder die Stabilität und die Lebensdauer der Turbomolekularpumpe verringert werden.It was recognized that such a Siegbahn pumping stage achieves an effective shut-off between the working space and the pump space without increasing the manufacturing effort, the axial height or the power requirement of the turbomolecular pump or reducing the stability and service life of the turbomolecular pump.
Die Siegbahnpumpstufe schafft eine wirksame Absperrung zwischen dem Arbeitsraum und dem Lagerraum, da durch die Pumpwirkung der Siegbahnpumpstufe eine entgegen der Pumprichtung der Siegbahnpumpstufe gerichtete Gasströmung durch den Spalt hindurch wirksam verhindert wird. Auf den Einsatz eines Sperrgases kann dabei gegebenenfalls verzichtet werden. Der Einsatz eines Sperrgases ist prinzipiell aber auch denkbar. Der Betrieb der Siegbahnpumpstufe führt außerdem nicht zu einer erheblichen Erhöhung des Leistungsbedarfs der Turbomolekularpumpe.The Siegbahn pumping stage creates an effective barrier between the working area and the storage room, since the pumping action of the Siegbahn pumping stage effectively prevents a gas flow through the gap that is directed against the pumping direction of the Siegbahn pumping stage. The use of a sealing gas can optionally be dispensed with. In principle, however, the use of a sealing gas is also conceivable. In addition, the operation of the Siegbahn pump stage does not lead to a significant increase in the power requirement of the turbo molecular pump.
Die Bereitstellung der Siegbahnpumpstufe ist mit einfachen Mitteln möglich. Die Siegbahnpumpstufe umfasst ein Statororgan und ein Rotororgan, die beispielsweise jeweils in radialer Richtung orientiert und scheibenförmig sind. Das Statororgan und das Rotororgan bilden einander gegenüberliegende pumpaktive Oberflächen, wobei eine der pumpaktiven Oberflächen glatt bzw. eben und die andere strukturiert ausgebildet sein kann. Solche Stator- und Rotororgane sind einfach herstellbar und eine aufwändige Bearbeitung der Rotorscheibe und des gegenüberliegend angeordneten Statorpartners zur Herstellung einer Vielzahl von axialen Einstichen und eine damit einhergehende Schwächung der Rotorscheibe kann vermieden werden.The Siegbahn pumping stage can be provided with simple means. The Siegbahn pumping stage comprises a stator element and a rotor element, which, for example, are each oriented in the radial direction and are disk-shaped. The stator element and the rotor element form opposing pump-active surfaces, wherein one of the pump-active surfaces can be smooth or flat and the other can be structured. Such stator and rotor elements are easy to manufacture and complex machining of the rotor disk and the oppositely arranged stator partner to produce a large number of axial grooves and the associated weakening of the rotor disk can be avoided.
Aufgrund der radialen Ausrichtung der Siegbahnpumpstufe wird die axiale Bauhöhe durch die Siegbahnpumpstufe allenfalls geringfügig erhöht. Die Siegbahnpumpstufe kann einen axialen Dichtspalt aufweisen, wobei durch ein rotierendes pumpaktives Organ der Pumpstufe für das Prozessgas gebildet, welches eine pumpaktive Oberfläche für das Prozessgas umfasst, oder durch eine Rotornabe der Pumpstufe für das Prozessgas. Erfindungsgemäß ist das Rotororgan durch eine Rotornabe einer Holweck- oder Kreuzgewindepumpstufe, welche z.B. einen Holweckzylinder tragen kann, gebildet.Due to the radial alignment of the Siegbahn pump stage, the overall axial height is at most slightly increased by the Siegbahn pump stage. The Siegbahn pump stage can have an axial sealing gap, wherein formed by a rotating pump-active organ of the pump stage for the process gas, which comprises a pump-active surface for the process gas, or by a rotor hub of the pump stage for the process gas. According to the invention, the rotor element is formed by a rotor hub of a Holweck or cross-thread pump stage, which, for example, can carry a Holweck cylinder.
Aufgrund der radialen Ausrichtung der Siegbahnpumpstufe wird die axiale Bauhöhe durch die Siegbahnpumpstufe allenfalls geringfügig erhöht. Die Siegbahnpumpstufe kann einen axialen Dichtspalt aufweisen, wobei trotz der thermischen Ausdehnungen der Turbomolekularpumpe mit geringem Aufwand eine geringe Spaltweite des Dichtspalts erreichbar ist.Due to the radial alignment of the Siegbahn pump stage, the overall axial height is at most slightly increased by the Siegbahn pump stage. The Siegbahn pump stage can have an axial sealing gap, a small gap width of the sealing gap being achievable with little effort despite the thermal expansion of the turbo molecular pump.
Vorteilhafte Ausführungsformen der Erfindung sind in den Unteransprüchen, der Beschreibung und in den Figuren beschrieben.Advantageous embodiments of the invention are described in the subclaims, the description and in the figures.
Bevorzugt ist die Siegbahnpumpstufe dazu ausgebildet, eine Pumpwirkung von dem Lagerraum über den Spalt in den Arbeitsraum bereitzustellen. Dadurch wird der Lagerraum wirksam gegenüber dem Arbeitsraum abgesperrt, so dass keine schädlichen Prozessgase aus dem Arbeitsraum in den Lagerraum gelangen können.The Siegbahn pumping stage is preferably designed to provide a pumping action from the storage space via the gap into the working space. As a result, the storage space is effectively blocked off from the work space, so that no harmful process gases can enter the storage space from the work space.
Das Statororgan ist vorzugsweise von einem statischen Teil der Turbomolekularpumpe, zum Beispiel dem Pumpengehäuse oder der Trennwand, getragen oder dadurch gebildet. Das Rotororgan ist vorzugsweise von der Rotorwelle getragen und insbesondere drehfest an der Rotorwelle angebracht.The stator element is preferably supported by or formed by a static part of the turbomolecular pump, for example the pump housing or the partition wall. The rotor member is preferably carried by the rotor shaft and in particular attached to the rotor shaft in a rotationally fixed manner.
Bevorzugt ist zumindest eine pumpaktive Oberfläche der Siegbahnpumpstufe durch eine strukturierte Oberfläche gebildet und/oder ist zumindest eine pumpaktive Oberfläche durch eine ebene Oberfläche gebildet. Gemäß einer Ausführungsform ist eine pumpaktive Oberfläche durch eine strukturierte Oberfläche und die andere pumpaktive Oberfläche durch eine ebene Oberfläche gebildet.At least one active pumping surface of the Siegbahn pumping stage is preferably formed and / or is at least a structured surface a pumping active surface formed by a flat surface. According to one embodiment, one pump-active surface is formed by a structured surface and the other pump-active surface is formed by a flat surface.
Bevorzugt weist das Statororgan die strukturierte pumpaktive Oberfläche auf. Das Rotororgan kann hingegen die ebene pumpaktive Oberfläche aufweisen. Das Rotororgan ist in diesem Fall mit besonders geringem Aufwand herstellbar, wobei gleichzeitig eine sich durch eine Strukturierung ergebende nachteilige Schwächung des Rotororgans vermieden wird. Das Rotororgan ist daher ohne weiteres in der Lage, den bei dem Betrieb der Turbomolekularpumpe auftretenden Fliehkraftbelastungen Stand zu halten, ohne dass übermäßige Spannungen auftreten, die die Betriebssicherheit der Turbomolekularpumpe verringern. Ferner wird eine durch das Rotororgan hervorgerufene Unwucht des Rotors durch eine ebene bzw. glatte Ausgestaltung der pumpaktiven Oberfläche des Rotororgans weitestgehend vermieden.The stator element preferably has the structured, pump-active surface. In contrast, the rotor element can have the planar, pump-active surface. In this case, the rotor element can be manufactured with particularly little effort, while at the same time a disadvantageous weakening of the rotor element resulting from structuring is avoided. The rotor element is therefore easily able to withstand the centrifugal forces that occur during the operation of the turbo molecular pump without excessive stresses occurring, which reduce the operational reliability of the turbo molecular pump. Furthermore, an imbalance of the rotor caused by the rotor element is largely avoided by a flat or smooth configuration of the active pumping surface of the rotor element.
Die pumpaktiven Oberflächen der Siegbahnpumpstufe können wenigstens einen Förderkanal der Siegbahnpumpstufe und einen Dichtspalt zur Abdichtung des Förderkanals begrenzen. Das Gas wird bei dem Betrieb der Turbomolekularpumpe durch den Förderkanal angetrieben, wobei der Dichtspalt so eng ausgebildet ist, dass ein unerwünschtes, entgegen der Pumprichtung gerichtetes Rückströmen des durch den Förderkanal geförderten Gases weitgehend verhindert wird.The active pumping surfaces of the Siegbahn pump stage can delimit at least one delivery channel of the Siegbahn pump stage and a sealing gap for sealing the delivery channel. When the turbo-molecular pump is in operation, the gas is driven through the delivery channel, the sealing gap being so narrow that an undesired backflow of the gas delivered through the delivery channel, directed counter to the pumping direction, is largely prevented.
Bevorzugt umfasst eine strukturierte pumpaktive Oberfläche der Turbomolekularpumpe wenigstens eine Vertiefung, welche den Förderkanal bildet, und wenigstens eine Erhebung, wobei ein Oberflächenbereich der Erhebung, der der gegenüberliegenden pumpaktiven Oberfläche zugewandt ist, gemeinsam mit der gegenüberliegenden pumpaktiven Oberfläche den Dichtspalt begrenzen kann.A structured pumping-active surface of the turbo-molecular pump preferably comprises at least one depression which forms the delivery channel and at least one elevation, wherein a surface area of the elevation facing the opposite pumping-active surface can delimit the sealing gap together with the opposite pumping-active surface.
Der Förderkanal kann spiralförmig ausgebildet sein und/oder im Wesentlichen in einer radialen Ebene verlaufen. Der Förderkanal verbindet vorzugsweise einen Einlass und einen Auslass der Siegbahnpumpstufe. Einer von Einlass und Auslass kann an einer radialen Innenseite der Siegbahnpumpstufe angeordnet sein und der jeweils andere von Einlass und Auslass kann an der radialen Außenseite der Siegbahnpumpstufe angeordnet sein.The conveying channel can be designed in a spiral shape and / or run essentially in a radial plane. The delivery channel preferably connects an inlet and an outlet of the Siegbahn pumping stage. One of the inlet and outlet can be arranged on a radial inside of the Siegbahn pump stage and the other of the inlet and outlet can be arranged on the radial outside of the Siegbahn pump stage.
Der Dichtspalt kann durch einen axialen Spalt zwischen den pumpaktiven Oberflächen der Siegbahnpumpstufe gebildet sein. Die Siegbahnpumpstufe kann prinzipiell ganz ohne radiale Dichtspalte auskommen. Da die in axialer Richtung auftretenden thermischen Ausdehnungen der Turbomolekularpumpe im Vergleich zu den radialen Ausdehnungen gering sind, kann dabei zuverlässig eine geringe Spaltweite und eine entsprechend gute Sperrwirkung sichergestellt werden.The sealing gap can be formed by an axial gap between the active pumping surfaces of the Siegbahn pumping stage. In principle, the Siegbahn pump stage can do without any radial sealing gaps. Since the thermal expansions of the turbomolecular pump occurring in the axial direction are small compared to the radial expansions, a small gap width and a correspondingly good blocking effect can be reliably ensured.
Bevorzugt ist ein den Dichtspalt begrenzender Bereich zumindest einer pumpaktiven Oberfläche zumindest abschnittsweise durch eine materialentfernende Bearbeitung erzeugt oder erzeugbar. Durch die materialentfernende Bearbeitung kann mit hoher Zuverlässigkeit und mit geringem Aufwand eine gewünschte geringe Spaltweite des Dichtspalts und eine dementsprechend hohe Sperrwirkung der Siegbahnpumpstufe gewährleistet werden. Die materialentfernende Bearbeitung kann insbesondere ein spanabhebendes oder zerspanendes Verfahren wie zum Beispiel ein Drehen oder Schleifen umfassen.Preferably, an area delimiting the sealing gap of at least one pump-active surface is produced or can be produced at least in sections by machining that removes material. As a result of the material-removing machining, a desired small gap width of the sealing gap and a correspondingly high blocking effect of the Siegbahn pumping stage can be ensured with high reliability and with little effort. The material-removing processing can in particular a include cutting or machining processes such as turning or grinding.
Beispielsweise kann zur Herstellung des Organs mit der strukturierten pumpaktiven Oberfläche, vorzugsweise des Statororgans, zuerst ein Rohling mit einer strukturierten Oberfläche bereitgestellt werden, wobei anschließend diejenigen Bereiche der strukturierten Oberfläche, die den Dichtspalt begrenzen, durch Überdrehen oder Überschleifen des Rohlings bearbeitet werden, um das Organ an eine gewünschte Spaltweite anzupassen.For example, to produce the organ with the structured pumping active surface, preferably the stator organ, a blank with a structured surface can first be provided, with those areas of the structured surface that delimit the sealing gap then being machined by turning or grinding the blank in order to achieve the Organ to adapt to a desired gap width.
Bevorzugt ist das Statororgan und/oder das Rotororgan im Wesentlichen scheibenförmig ausgebildet. Die Scheibenebene des Statororgans und/oder des Rotororgans verläuft dabei vorzugsweise radial zu der Rotationsachse der Rotorwelle. Das Rotororgan ist vorzugsweise rotationssymmetrisch ausgebildet. Dadurch wird die Betriebssicherheit erhöht, da eine durch das Rotororgan hervorgerufene Unwucht vermieden wird.The stator element and / or the rotor element is preferably designed essentially in the form of a disk. The disk plane of the stator element and / or of the rotor element preferably runs radially to the axis of rotation of the rotor shaft. The rotor member is preferably designed to be rotationally symmetrical. This increases the operational safety, since an imbalance caused by the rotor element is avoided.
Das Statororgan und/oder das Rotororgan kann als Spritzgussteil, als Schmiedeteil oder als Umformteil ausgebildet sein. Insbesondere eignet sich Spritzgießen, Schmieden oder Umformen zum Herstellen eines Organs, welches eine strukturierte pumpaktive Oberfläche aufweist, z.B. eines Statororgans mit einer strukturierten pumpaktiven Oberfläche. Bei dem Spritzgießen, Schmiede oder Umformen kann bereits eine Strukturierung für die strukturierte pumpaktive Oberfläche hergestellt werden. Die bei dem Spritzgießen, Schmieden oder Umformen hergestellte Strukturierung kann endgültig sein oder kann nachbearbeitet werden, insbesondere durch das vorstehend beschriebene materialentfernende Verfahren.The stator element and / or the rotor element can be designed as an injection-molded part, as a forged part or as a formed part. Injection molding, forging or reshaping are particularly suitable for producing an organ which has a structured pumping-active surface, for example a stator organ with a structured pumping-active surface. During injection molding, forging or forming, structuring can already be produced for the structured, pump-active surface. The structuring produced during injection molding, forging or forming can be final or can be reworked, in particular by the material-removing method described above.
Gemäß einer Ausführungsform besteht das Statororgan und/oder das Rotororgan zumindest teilweise oder vollständig aus einem Metall wie z.B. Aluminium. Gemäß einer weiteren Ausführungsform besteht das Statororgan und/oder das Rotororgan zumindest teilweise oder vollständig aus einem Kunststoff. Das Statororgan und/oder das Rotororgan kann zumindest teilweise oder vollständig aus einem faserverstärkten Kunststoff wie z.B. einem glasfaserverstärkten oder kohlefaserverstärkten Kunststoff bestehen. Diese Materialien gewährleisten eine kostengünstige Herstellbarkeit des Statororgans bzw. Rotororgans, welches eine für einen hohen Wirkungsgrad der Siegbahnpumpstufe gewünschte geometrische Präzision aufweist. Gleichzeitig sind die genannten Materialien in der Lage, den bei dem Betrieb der Turbomolekularpumpe auftretenden mechanischen und thermischen Belastungen standzuhalten.According to one embodiment, the stator element and / or the rotor element consists at least partially or completely of a metal such as aluminum. According to a further embodiment, the stator element and / or the rotor element consists at least partially or completely of a plastic. The stator element and / or the rotor element can at least partially or completely consist of a fiber-reinforced plastic such as a glass-fiber-reinforced or carbon-fiber-reinforced plastic. These materials ensure that the stator element or rotor element can be manufactured at low cost, which has the geometric precision desired for a high degree of efficiency of the Siegbahn pump stage. At the same time, the materials mentioned are able to withstand the mechanical and thermal loads that occur during operation of the turbo molecular pump.
Das Statororgan kann als separates Teil ausgebildet sein, welches von einer statischen Komponente der Turbomolekularpumpe getragen ist. Das Statororgan kann z.B. von einem Pumpengehäuse der Turbomolekularpumpe oder von der Trennwand getragen sein. Das Statororgan kann mit der statischen Komponente der Turbomolekularpumpe verklebt sein. Das Statororgan ist bei dieser Ausgestaltung separat herstellbar, wodurch der für die Bereitstellung der Turbomolekularpumpe erforderliche Aufwand reduziert wird.The stator element can be designed as a separate part which is carried by a static component of the turbo molecular pump. The stator element can, for example, be carried by a pump housing of the turbo-molecular pump or by the partition. The stator can be glued to the static component of the turbo molecular pump. In this embodiment, the stator element can be produced separately, which reduces the effort required to provide the turbo molecular pump.
Der Arbeitsraum und der Lagerraum sind vorzugsweise direkt zueinander benachbart und durch die Trennwand unmittelbar voneinander getrennt. In dem Lagerraum ist ein Drehlager zur drehbaren Abstützung der Rotorwelle angeordnet, zum Beispiel ein Wälzlager, welches vorzugsweise als geschmiertes Wälzlager ausgebildet ist. Alternativ oder zusätzlich kann in dem Lagerraum ein Antrieb zum drehenden Antreiben der Rotorwelle angeordnet sein.The working space and the storage space are preferably directly adjacent to one another and directly separated from one another by the partition. A rotary bearing for rotatably supporting the rotor shaft is arranged in the storage space, for example a roller bearing, which is preferably designed as a lubricated roller bearing. Alternatively or additionally, a drive for driving the rotor shaft in rotation can be arranged in the storage space.
Das in dem Lagerraum vorgesehene Drehlager ist vorzugsweise in der Nähe der Sperreinrichtung angeordnet. Dadurch kann der Einfluss der bei dem Betrieb der Turbomolekularpumpe auftretenden mechanischen und thermischen Belastungen auf die Positionsgenauigkeit der Rotorwelle im Bereich der Siegbahnpumpstufe begrenzt werden, so dass eine Siegbahnpumpstufe mit einem Dichtspalt mit einer besonders geringen Spaltweite realisierbar ist.The pivot bearing provided in the storage room is preferably arranged in the vicinity of the locking device. As a result, the influence of the mechanical and thermal loads occurring during operation of the turbo molecular pump on the positional accuracy of the rotor shaft in the area of the Siegbahn pump stage can be limited, so that a Siegbahn pump stage with a sealing gap with a particularly small gap width can be implemented.
. In dem Arbeitsraum der Turbomolekularpumpe kann die Pumpstruktur der Turbomolekularpumpe angeordnet sein, mit der das durch die Turbomolekularpumpe zu pumpende Prozessgas von einem Pumpeneinlass zu einem Pumpenauslass der Turbomolekularpumpe förderbar ist. Der rotierende Teil dieser Pumpstruktur ist vorzugsweise von der Rotorwelle getragen.. The pump structure of the turbo molecular pump, with which the process gas to be pumped by the turbo molecular pump can be conveyed from a pump inlet to a pump outlet of the turbo molecular pump, can be arranged in the working space of the turbo molecular pump. The rotating part of this pump structure is preferably carried by the rotor shaft.
Die Pumpstruktur umfasst bei einer Turbomolekularpumpe vorzugsweise eine oder mehrere Statorscheiben und zwischen den Statorscheiben angeordnete Rotorscheiben, welche gemeinsam ein turbomolekulares Pumpprinzip verwirklichen.In a turbomolecular pump, the pump structure preferably comprises one or more stator disks and rotor disks arranged between the stator disks, which together implement a turbomolecular pumping principle.
Dem Lagerraum kann, insbesondere über einen Sperrgaseinlass, welcher den Lagerraum gasleitend mit dem Pumpenäußeren verbindet, ein Sperrgas zuführbar sein, welches durch die Siegbahnpumpstufe von dem Lagerraum in den Arbeitsraum förderbar ist. Dadurch wird die durch die Siegbahnpumpstufe bereitgestellte Sperrwirkung optimiert.A sealing gas can be fed to the storage space, in particular via a sealing gas inlet which connects the storage space with the outside of the pump in a gas-conducting manner, which can be conveyed from the storage space into the work space by the Siegbahn pumping stage. This optimizes the locking effect provided by the Siegbahn pumping stage.
Weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung einer Turbomolekularpumpe, bei dem ein Arbeitsraum, ein Lagerraum, eine zwischen dem Arbeitsraum und dem Lagerraum angeordnete Trennwand und wenigstens eine sich durch die Trennwand hindurch erstreckende Rotorwelle, die mit der Trennwand einen Spalt bildet, bereitgestellt werden. Ferner wird eine Sperreinrichtung zur Absperrung zwischen dem Arbeitsraum und dem Lagerraum bereitgestellt. Als Sperreinrichtung wird dabei eine Siegbahnpumpstufe vorgesehen, die zum Bereitstellen einer durch den Spalt hindurch gehenden Pumpwirkung zwischen dem Arbeitsraum und dem Lagerraum ausgebildet ist. Das Verfahren eignet sich zur Herstellung einer erfindungsgemäßen Turbomolekularpumpe gemäß der vorliegenden Beschreibung. Die in der vorliegenden Beschreibung in Bezug auf die Turbomolekularpumpe sowie deren Herstellung beschriebenen vorteilhaften Ausführungsformen und Vorteile stellen entsprechende Vorteile und vorteilhafte Ausführungsformen des Verfahrens dar. Ein Statororgan und ein Rotororgan der Siegbahnpumpstufe werden mit jeweils einer pumpaktiven Oberfläche erzeugt.The invention also relates to a method for producing a turbo molecular pump, in which a working space, a storage space, a partition wall arranged between the working space and the storage space and at least one rotor shaft extending through the partition wall and forming a gap with the partition wall is provided. Furthermore, a blocking device is provided for blocking between the work space and the storage room. A Siegbahn pumping stage is provided as a blocking device, which is designed to provide a pumping action between the working space and the storage space that extends through the gap. The method is suitable for producing a turbomolecular pump according to the invention in accordance with the present description. The advantageous embodiments and advantages described in the present description in relation to the turbomolecular pump and its production represent corresponding advantages and advantageous embodiments of the method. A stator element and a rotor element of the Siegbahn pumping stage are each produced with a pump-active surface.
Gemäß einer vorteilhaften Ausführungsform begrenzen die pumpaktiven Oberflächen wenigstens einen Förderkanal der Siegbahnpumpstufe und einen Dichtspalt zur Abdichtung des Förderkanals. Gemäß einer vorteilhaften Ausführungsform wird ein den Dichtspalt begrenzender Bereich zumindest einer pumpaktiven Oberfläche zumindest abschnittsweise durch eine materialentfernende Bearbeitung erzeugt. Dadurch kann der Dichtspalt besonders präzise angepasst werden und eine besonders geringe Spaltweite des Dichtspalts gewährleistet werden, welche eine hohe Effizienz der Siegbahnpumpstufe sicherstellt.According to an advantageous embodiment, the active pumping surfaces delimit at least one delivery channel of the Siegbahn pumping stage and a sealing gap for sealing the delivery channel. According to an advantageous embodiment, an area delimiting the sealing gap of at least one pump-active surface is produced, at least in sections, by machining that removes material. As a result, the sealing gap can be adapted particularly precisely and a particularly small gap width of the sealing gap can be ensured, which ensures a high efficiency of the Siegbahn pumping stage.
Gemäß einer Ausführungsform wird ein Statororgan für die Siegbahnpumpstufe als separates Teil bereitgestellt und an einer statischen Komponente der Turbomolekularpumpe angebracht. Das Statororgan kann z.B. an einem Pumpengehäuse der Turbomolekularpumpe oder an der Trennwand angebracht werden. Das Anbringen kann ein Verkleben des Statororgans mit der statischen Komponente umfassen.According to one embodiment, a stator element for the Siegbahn pump stage is provided as a separate part and attached to a static component of the turbo molecular pump. The stator element can be attached, for example, to a pump housing of the turbo-molecular pump or to the partition become. The attachment can include gluing the stator element to the static component.
Nachfolgend wird die Erfindung beispielhaft anhand vorteilhafter Ausführungsformen unter Bezugnahme auf die beigefügten Figuren beschrieben. Es zeigen:
-
Fig. 1 und2 : Ausführungsformen die nicht zur Erfindung gehören; -
Fig. 3 und4 jeweils eine Vakuumpumpe gemäß einer Ausführungsform der Erfindung im Querschnitt.
-
Fig. 1 and2 : Embodiments not belonging to the invention; -
Fig. 3 and4th each a vacuum pump according to an embodiment of the invention in cross section.
Die in
In dem Arbeitsraum 12 ist die turbomolekulare Pumpstruktur untergebracht. Diese Pumpstruktur umfasst mehrere an der Rotorwelle 18 befestigte turbomolekulare Rotorscheiben 42 und zwischen den Rotorscheiben 42 angeordnete und in dem Gehäuse 48 festgelegte turbomolekulare Statorscheiben 44. Die Pumpstruktur stellt eine Pumpwirkung für ein Prozessgas bereit, das an einem Pumpeneinlass 38 ansteht, welcher durch einen Einlassflansch 58 des Gehäuses 48 begrenzt ist. Diese Pumpwirkung dient dazu, das Prozessgas von dem Pumpeneinlass 38 zu dem Pumpenauslass 40 zu fördern.The turbomolecular pump structure is housed in the working
In dem Lagerraum 14 ist ein Wälzlager 46 angeordnet, welches die Rotorwelle 18 um die Rotationsachse 19 drehbar unterstützt. In dem Lagerraum 14 könnte prinzipiell auch ein Magnetlager bzw. eine Magnetlagerkartusche zur drehbaren Unterstützung der Rotorwelle 18 vorgesehen sein. Ferner kann in dem Lagerraum 14 ein in
Die Vakuumpumpe umfasst eine Siegbahnpumpstufe 22 mit einem von der Trennwand 16 getragenen Statororgan 24 und einem von der Rotorwelle 18 getragenen Rotororgan 26. Das Statororgan 24 und das Rotororgan 26 sind jeweils im Wesentlichen scheibenförmig ausgebildet und radial zu der Rotationsachsenrichtung der Rotorwelle 18 orientiert.The vacuum pump comprises a
Das Statororgan 24 und das Rotororgan 26 weisen jeweils eine von zwei einander gegenüberliegenden pumpaktiven Oberflächen 28, 30 auf, welche die pumpaktive Struktur der Siegbahnpumpstufe 22 bilden. Während die pumpaktive Oberfläche 30 des Rotororgans durch eine ebene Oberfläche gebildet ist, die senkrecht zur Rotationsachse 19 der Rotorwelle 18 orientiert ist, ist die pumpaktive Oberfläche 28 des Statororgans 24 strukturiert ausgebildet.The
Die pumpaktive Oberfläche 28 des Statororgans 24 umfasst eine Vertiefung, welche einen Förderkanal 34 der Siegbahnpumpstufe 22 bildet, welcher in radialer Richtung spiralförmig von innen nach außen verläuft, und eine die Vertiefung bzw. den Förderkanal 34 begrenzende Erhebung 36. Der Oberflächenbereich der Erhebung 36, welcher zu der pumpaktiven Oberfläche 30 des Rotororgans 26 hin weist, bildet mit der pumpaktiven Oberfläche 30 einen axialen Dichtspalt 32, welcher den Förderkanal 34 abdichtet.The
Im Betrieb der Vakuumpumpe wird das in dem Förderkanal 34 vorhandene Gas durch die pumpaktive Struktur in Rotationsrichtung der Rotorwelle 18 angetrieben und dadurch entlang der Spirallinienform des Förderkanals 34 von dem dem Spalt 20 zugewandten Einlass 50 der Siegbahnpumpstufe 22 in radialer Richtung nach außen zu dem dem Arbeitsraum 12 zugewandten Auslass 52 der Siegbahnpumpstufe 22 gefördert. Dadurch wird eine durch den Spalt 20 hindurch von dem Lagerraum 14 in den Arbeitsraum 12 gerichtete Pumpwirkung bereitgestellt, die in
Die in
Bei der in
In
Die in
Der Holweckrotor 62 umfasst einen von der Rotornabe getragenen Holweckzylinder 66 mit einer im vorliegenden Ausführungsbeispiel glatten radialen Außenfläche, welche eine pumpaktive Oberfläche der Holweckpumpstufe bildet und einer durch die radiale Innenfläche des hülsenförmigen Holweckstators 64 gebildeten pumpaktiven Oberfläche des Holweckstators 64 unter Ausbildung eines engen radialen Holweckspalts 68 gegenüberliegt. Die pumpaktive Oberfläche des Holweckstators 64 ist strukturiert ausgebildet und bildet einen oder mehrere Förderkanäle, welche schraubenlinienförmig um die Rotationsachse 19 herum in axialer Richtung verlaufen. Bei dem Betrieb der Vakuumpumpe wird das von den turbomolekularen Pumpstufen zu dem Einlass der Holweckpumpstufe geförderte Prozessgas in den Förderkanälen der Holweckpumpstufe vorangetrieben und dadurch zu dem Pumpenauslass 40 gefördert.The
Die in
Die in
Die Holweckpumpstufen umfassen einen Holweckrotor 62 mit einem äußeren Holweckzylinder 72 und einem inneren Holweckzylinder 74, die jeweils von einer gemeinsamen Rotornabe getragen sind, welche gleichzeitig das Rotororgan 26 und die pumpaktive Oberfläche 28 der Siegbahnpumpstufe 22 bildet. Ferner umfassen die Holweckpumpstufen einen äußeren Holweckstator 76 und einen inneren Holweckstator 78, die jeweils hülsenförmig ausgebildet sind. Die radiale Innenfläche des äußeren Holweckstators 76 bildet mit der radialen Außenfläche des äußeren Holweckzylinders 72 eine erste Holweckpumpstufe mit einem Holweckspalt 80, die radiale Innenfläche des äußeren Holweckzylinders 72 bildet mit der radialen Außenfläche des inneren Holweckstators 78 eine zweite Holweckpumpstufe mit einem Holweckspalt 82 und die radiale Innenfläche des inneren Holweckstators 78 bildet mit der radialen Außenfläche des inneren Holweckzylinders 74 eine dritte Holweckpumpstufe mit einem Holweckspalt 84.The Holweck pump stages comprise a
Die in
An dem lagerraumseitigen Ende der Rotorwelle 18 ist eine konische Spritzmutter 88 mit einem zu dem Wälzlager 46 hin zunehmenden Außenquerschnitt vorgesehen. Die Spritzmutter 88 steht mit zumindest einem Abstreifer eines Betriebsmittelspeichers in gleitendem Kontakt, welcher mehrere aufeinander gestapelte saugfähige Scheiben 90 umfasst, die mit einem Betriebsmittel für das Wälzlager 46, z.B. mit einem Schmiermittel für das Wälzlager 46, getränkt sind. Bei dem Betrieb der Vakuumpumpe wird das Betriebsmittel von dem Betriebsmittelspeicher durch die kapillare Wirkung über den Abstreifer auf die rotierende Spritzmutter 88 übertragen und infolge der Zentrifugalkraft in Richtung des größer werdenden Außendurchmessers der Spritzmutter 88 zu dem Wälzlager 46 gefördert, wo es seine gewünschte Funktion erfüllt. Das Wälzlager 46 und der Betriebsmittelspeicher sind durch einen wannenförmigen Einsatz 92 und ein Deckelelement 94 der Vakuumpumpe eingefasst.At the end of the
Auf der Hochvakuumseite, d.h. im Bereich des Pumpeneinlasses 38, ist die Rotorwelle 18 durch ein Magnetlager drehbar gelagert, welches im vorliegenden Ausführungsbeispiel als Permanentmagnetlager ausgebildet ist. Das Magnetlager umfasst eine rotorseitige Lagerhälfte 96 und eine statorseitige Lagerhälfte 98, welche jeweils einen Ringstapel aus mehreren in axialer Richtung aufeinander gestapelten permanentmagnetischen Ringen 100 bzw. 102 umfassen. Die Magnetringe 100, 102 liegen einander unter Ausbildung eines engen radialen Lagerspalts 103 gegenüber, wobei die rotorseitigen Magnetringe 100 radial außen und die statorseitigen Magnetringe 102 radial innen angeordnet sind. Das in dem Lagerspalt 103 vorhandene magnetische Feld bewirkt magnetische Abstoßungskräfte zwischen den Ringen 100, 102, welche eine radiale Lagerung der Rotorwelle 18 bewirken.On the high vacuum side, i.e. in the area of the
Die rotorseitigen Magnetringe 100 sind von einem Trägerabschnitt 104 der Rotorwelle 18 getragen, welcher die Magnetringe 100 radial außenseitig umgibt. Die statorseitigen Magnetringe 102 sind von einem statorseitigen Trägerabschnitt 106 getragen, welcher sich durch die Magnetringe 102 hindurch erstreckt und an radialen Streben 108 des Gehäuses 48 aufgehängt ist. Parallel zur Rotationsachse 19 sind die rotorseitigen Magnetringe 100 in der einen Richtung durch ein mit dem Trägerabschnitt 104 gekoppeltes Deckelelement 110 und in der anderen Richtung durch einen Schulterabschnitt des Trägerabschnitts 104 festgelegt. Die statorseitigen Magnetringe 102 sind parallel zur Rotationsachse 19 in der einen Richtung durch einen mit dem Trägerabschnitt 106 verbundenen Befestigungsring 112 und ein zwischen dem Befestigungsring 112 und den Magnetringen 102 angeordnetes Ausgleichselement 114 und in der anderen Richtung durch einen mit dem Trägerabschnitt 106 verbundenen Stützring 116 festgelegt.The rotor-side magnet rings 100 are carried by a
Innerhalb des Magnetlagers ist ein Not- bzw. Fanglager 118 angeordnet, welches im normalen Betrieb der Vakuumpumpe ohne Berührung leer läuft und erst bei einer übermäßigen radialen Auslenkung des Rotors relativ zu dem Stator in Eingriff gelangt, um einen radialen Anschlag für die Rotorwelle 18 zu bilden, der eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen verhindert. Das Fanglager 118 ist als ungeschmiertes Wälzlager ausgebildet und bildet mit dem Rotor und/oder dem Stator einen radialen Spalt, welcher bewirkt, dass das Fanglager 118 im normalen Pumpbetrieb außer Eingriff ist. Die radiale Auslenkung, bei der das Fanglager 118 in Eingriff gelangt, ist groß genug bemessen, so dass das Fanglager 118 im normalen Betrieb der Vakuumpumpe nicht in Eingriff gelangt, und gleichzeitig klein genug, so dass eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen unter allen Umständen vermieden wird.An emergency or retainer bearing 118 is arranged inside the magnetic bearing, which runs empty during normal operation of the vacuum pump without contact and only comes into engagement with an excessive radial deflection of the rotor relative to the stator in order to form a radial stop for the
Die in
- 1212th
- Arbeitsraumworking space
- 1414th
- Lagerraumstorage room
- 1616
- Trennwandpartition wall
- 1818th
- RotorwelleRotor shaft
- 1919th
- RotationsachseAxis of rotation
- 2020th
- Spaltgap
- 2222nd
- SiegbahnpumpstufeSiegbahn pumping stage
- 2424
- StatororganStator organ
- 2626th
- RotororganRotor organ
- 28, 3028, 30
- pumpaktive Oberflächeactive pumping surface
- 3232
- DichtspaltSealing gap
- 3434
- FörderkanalConveyor channel
- 3636
- ErhebungElevation
- 3838
- PumpeneinlassPump inlet
- 4040
- PumpenauslassPump outlet
- 4242
- RotorscheibeRotor disk
- 4444
- StatorscheibeStator disk
- 4646
- Wälzlagerroller bearing
- 4848
- Gehäusecasing
- 5050
- Einlassinlet
- 5252
- AuslassOutlet
- 54, 5654, 56
- Pfeilarrow
- 5858
- EinlassflanschInlet flange
- 6060
- Antriebdrive
- 6262
- HolweckrotorHolweck rotor
- 6464
- HolweckstatorHolweck stator
- 6666
- HolweckzylinderHolweck cylinder
- 6868
- HolweckspaltHolweck gap
- 7070
- AbstandsringSpacer ring
- 72, 7472, 74
- HolweckzylinderHolweck cylinder
- 76, 7876, 78
- HolweckstatorHolweck stator
- 80, 82, 8480, 82, 84
- HolweckspaltHolweck gap
- 8686
- elektronische Steuereinheitelectronic control unit
- 8888
- SpritzmutterInjection nut
- 9090
- saugfähige Scheibeabsorbent disc
- 9292
- wannenförmiger Einsatztub-shaped insert
- 9494
- DeckelelementCover element
- 96, 9896, 98
- MagnetlagerhälfteMagnetic bearing half
- 100, 102100, 102
- MagnetringMagnetic ring
- 103103
- LagerspaltBearing gap
- 104, 106104, 106
- TrägerabschnittBeam section
- 108108
- Strebestrut
- 110110
- DeckelelementCover element
- 112112
- BefestigungsringFastening ring
- 114114
- AusgleichselementCompensation element
- 116116
- StützringSupport ring
- 118118
- FanglagerCatch camp
- 120120
- VerschlusselementClosure element
- 122122
- SperrgaseinlassSealing gas inlet
Claims (13)
- A turbomolecular pump having a working space (12), a bearing space (14), a dividing wall (16) arranged between the working space (12) and the bearing space (14) and at least one rotor shaft (18), which extends through the dividing wall (16) and which forms a gap (20) with the dividing wall (16), and having a blocking device for blocking between the working space (12) and the bearing space (14), wherein the blocking device is formed by a Siegbahn pump stage (22) which is configured for providing a pump action, which passes through the gap (20), between the working space (12) and the bearing space (14), and wherein a rotary bearing (46) for rotatably supporting the rotor shaft (18) is arranged in the bearing space (14), wherein the Siegbahn pump stage (22) comprises a stator member (24) and a rotor member (26), with the stator member (24) and the rotor member (26) each forming one of two mutually oppositely disposed pump-active surfaces (28, 30) of the Siegbahn pump stage (22),
characterized in that
the Siegbahn pump stage (22) is arranged between the rotary bearing (46) and a magnetic bearing (96, 98) which is located at a high vacuum side of the turbomolecular pump outside the bearing space (14); and
in that the rotor member (26) of the Siegbahn pump stage (22) is formed by a rotor hub of a Holweck pump stage or of a cross-thread pump stage. - A turbomolecular pump in accordance with claim 1,
characterized in that
the Siegbahn pump stage (22) is configured to provide a pump action from the bearing space (14) via the gap (20) into the working space (12). - A turbomolecular pump in accordance with claim 1 or claim 2, characterized in that
one pump-active surface (28) is formed by a structured surface and the other pump-active surface (30) is formed by a planar surface. - A turbomolecular pump in accordance with claim 3,
characterized in that
the stator member (24) has the structured pump-active surface (28). - A turbomolecular pump in accordance with any one of the preceding claims, characterized in that
the pump-active surfaces (28, 30) bound at least one conveying passage (34) of the Siegbahn pump stage (22) and a sealing gap (32) for sealing the conveying passage (34). - A turbomolecular pump in accordance with claim 5,
characterized in that
a region of at least one pump-active surface (28, 30) bounding the sealing gap (32) is or can be produced at least sectionally by a material-removing machining. - A turbomolecular pump in accordance with any one of the preceding claims, characterized in that
the stator member (24) and/or the rotor member (26) is/are configured as substantially disk-shaped. - A turbomolecular pump in accordance with any one of the preceding claims, characterized in that
the stator member (24) and/or the rotor member (26) is/are configured as an injection molded part, as a forged part or as a shaped part. - A turbomolecular pump in accordance with any one of the preceding claims, characterized in that
the stator member (24) and/or the rotor member (26) is/are at least partly or fully composed of a metal, in particular aluminum; and/or
in that the stator member (24) and/or the rotor member (26) is/are at least partly or fully composed of a plastic. - A turbomolecular pump in accordance with any one of the preceding claims, characterized in that
the stator member (24) is configured as a separate part which is carried by a static component (16, 48) of the turbomolecular pump. - A method of manufacturing a turbomolecular pump, in which a working space (12), a bearing space (14), a dividing wall (16) arranged between the working space (12) and the bearing space (14) and at least one rotor shaft (18) which extends through the dividing wall (16) and which forms a gap (20) with the dividing wall (16) are provided as well as a blocking device for blocking between the working space (12) and the bearing space (14), wherein a Siegbahn pump stage (22) is provided as a blocking device which is configured for providing a pump action, which passes through the gap (20), between the working space (12) and the bearing space (14), and wherein a rotary bearing (46) for rotatably supporting the rotor shaft (18) is arranged in the bearing space (14),
wherein a stator member (24) and a rotor member (26) of the Siegbahn pump stage (22) are each produced with a respective pump-active surface (28, 30),
characterized in that
the Siegbahn pump stage (22) is arranged between the rotary bearing (46) and a magnetic bearing (96, 98) which is located at a high vacuum side of the turbomolecular pump outside the bearing space (14); and
in that the rotor member (26) of the Siegbahn pump stage (22) is formed by a rotor hub of a Holweck pump stage or of a cross-thread pump stage. - A method in accordance with claim 11,
characterized in that
the pump-active surfaces (28, 30) bound at least one conveying passage (34) of the Siegbahn pump stage (22) and a sealing gap (32) for sealing the conveying passage (34) and a region of at least one pump-active surface (28, 30) bounding the sealing gap (32) is generated at least sectionally by a material-removing machining. - A method in accordance with claim 11 or claim 12,
characterized in that
a stator member (24) for the Siegbahn pump stage (22) is configured as a separate part and is attached to a static component (16, 48) of the turbomolecular pump.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013213815.6A DE102013213815A1 (en) | 2013-07-15 | 2013-07-15 | vacuum pump |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2826999A1 EP2826999A1 (en) | 2015-01-21 |
EP2826999B1 true EP2826999B1 (en) | 2021-03-03 |
Family
ID=50979608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14173399.8A Active EP2826999B1 (en) | 2013-07-15 | 2014-06-23 | Vacuum pump |
Country Status (5)
Country | Link |
---|---|
US (1) | US9909592B2 (en) |
EP (1) | EP2826999B1 (en) |
JP (1) | JP6154787B2 (en) |
CN (1) | CN104295509A (en) |
DE (1) | DE102013213815A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014118083A1 (en) * | 2014-12-08 | 2016-06-09 | Pfeiffer Vacuum Gmbh | TURBO MOLECULAR PUMP |
JP6692635B2 (en) * | 2015-12-09 | 2020-05-13 | エドワーズ株式会社 | Connectable thread groove spacer and vacuum pump |
GB2554762B (en) * | 2016-10-10 | 2020-04-01 | Aspen Pumps Ltd | Centrifugal pump flow modifier |
JP6753759B2 (en) * | 2016-10-21 | 2020-09-09 | エドワーズ株式会社 | Vacuum pump and waterproof structure and control device applied to the vacuum pump |
GB2557679A (en) * | 2016-12-15 | 2018-06-27 | Edwards Ltd | Stator blade unit for a turbomolecular pump |
JP7187186B2 (en) * | 2018-06-27 | 2022-12-12 | エドワーズ株式会社 | Vacuum pump, stator column, base and vacuum pump exhaust system |
EP3628883B1 (en) * | 2019-12-09 | 2022-02-09 | Pfeiffer Vacuum Gmbh | Vacuum pump |
TWI725683B (en) * | 2019-12-24 | 2021-04-21 | 建準電機工業股份有限公司 | Impeller and cooling fan including the same |
JP2022074413A (en) * | 2020-11-04 | 2022-05-18 | エドワーズ株式会社 | Vacuum pump |
GB2601313A (en) * | 2020-11-25 | 2022-06-01 | Edwards Ltd | Drag pumping mechanism for a turbomolecular pump |
CN113187743A (en) * | 2021-04-08 | 2021-07-30 | 日扬科技股份有限公司 | Long-acting running rotor structure |
GB2616283A (en) * | 2022-03-03 | 2023-09-06 | Edwards Ltd | Siegbahn drag pumps |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0773367A1 (en) * | 1995-11-10 | 1997-05-14 | VARIAN S.p.A. | Turbo-molecular pump |
JP2005069066A (en) * | 2003-08-21 | 2005-03-17 | Ebara Corp | Turbo vacuum pump and semiconductor manufacturing device having this turbo vacuum pump |
US20060245960A1 (en) * | 2003-04-29 | 2006-11-02 | Schooling Jennifer M | Vacuum pump |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2521650A1 (en) * | 1982-02-16 | 1983-08-19 | Cit Alcatel | ROTARY PUMP WITH HIGH VACUUM |
DE4314418A1 (en) * | 1993-05-03 | 1994-11-10 | Leybold Ag | Friction vacuum pump with differently designed pump sections |
US7272569B1 (en) | 1997-03-21 | 2007-09-18 | Walker Digital, Llc | Method and apparatus for controlling the performance of a supplementary process at a point-of-sale terminal |
DE10004263A1 (en) * | 2000-02-01 | 2001-08-02 | Leybold Vakuum Gmbh | Seal between stationary and rotating component in vacuum pump consists of blades arranged in herringbone pattern attached to each component |
DE10149366A1 (en) * | 2001-10-06 | 2003-04-17 | Leybold Vakuum Gmbh | Axial friction vacuum pump has two concentric rotor components with drives, rotating in opposite directions to improve relative speed of pumping structures |
JP4156830B2 (en) * | 2001-12-13 | 2008-09-24 | エドワーズ株式会社 | Vacuum pump |
JP3935865B2 (en) * | 2003-07-07 | 2007-06-27 | 三菱重工業株式会社 | Vacuum pump |
US7717684B2 (en) * | 2003-08-21 | 2010-05-18 | Ebara Corporation | Turbo vacuum pump and semiconductor manufacturing apparatus having the same |
JP2005307859A (en) * | 2004-04-21 | 2005-11-04 | Ebara Corp | Turbo vacuum pump |
JP4920975B2 (en) * | 2006-01-18 | 2012-04-18 | 株式会社荏原製作所 | Turbo type vacuum pump |
US7645116B2 (en) | 2005-04-28 | 2010-01-12 | Ebara Corporation | Turbo vacuum pump |
JP2007107480A (en) * | 2005-10-14 | 2007-04-26 | Ebara Corp | Turbo vacuum pump |
DE102007014142B4 (en) | 2007-03-23 | 2019-05-29 | Pfeiffer Vacuum Gmbh | vacuum pump |
JP2009203906A (en) * | 2008-02-28 | 2009-09-10 | Ebara Corp | Turbo vacuum pump |
JP2010236530A (en) * | 2009-03-30 | 2010-10-21 | Em Oyo Gijutsu Kenkyusho:Kk | Magnetic bearing type atmospheric pressure operation vacuum pump |
ITTO20100070A1 (en) * | 2010-02-01 | 2011-08-02 | Varian Spa | VACUUM PUMP, IN PARTICULAR TURBOMOLECULAR VACUUM PUMP. |
-
2013
- 2013-07-15 DE DE102013213815.6A patent/DE102013213815A1/en active Pending
-
2014
- 2014-06-23 EP EP14173399.8A patent/EP2826999B1/en active Active
- 2014-07-10 JP JP2014141915A patent/JP6154787B2/en active Active
- 2014-07-11 US US14/328,766 patent/US9909592B2/en active Active
- 2014-07-14 CN CN201410334674.5A patent/CN104295509A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0773367A1 (en) * | 1995-11-10 | 1997-05-14 | VARIAN S.p.A. | Turbo-molecular pump |
US20060245960A1 (en) * | 2003-04-29 | 2006-11-02 | Schooling Jennifer M | Vacuum pump |
JP2005069066A (en) * | 2003-08-21 | 2005-03-17 | Ebara Corp | Turbo vacuum pump and semiconductor manufacturing device having this turbo vacuum pump |
JP2009047178A (en) * | 2003-08-21 | 2009-03-05 | Ebara Corp | Turbo vacuum pump and semiconductor manufacturing device provided with turbo vacuum pump |
Also Published As
Publication number | Publication date |
---|---|
DE102013213815A1 (en) | 2015-01-15 |
JP6154787B2 (en) | 2017-06-28 |
EP2826999A1 (en) | 2015-01-21 |
US9909592B2 (en) | 2018-03-06 |
CN104295509A (en) | 2015-01-21 |
US20150016958A1 (en) | 2015-01-15 |
JP2015017611A (en) | 2015-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2826999B1 (en) | Vacuum pump | |
EP2829734B1 (en) | Vacuum pump | |
EP3657021B1 (en) | Vacuum pump | |
EP3608545B1 (en) | Vacuum pump | |
EP3693610B1 (en) | Molecular vacuum pump | |
EP4212730A1 (en) | Vacuum pump with optimized holweck pump stage to compensate for temperature-related loss of performance | |
EP4108932B1 (en) | Recipient and system with recipient and high vacuum pump | |
EP3088746B1 (en) | Vacuum pump | |
EP3734078B1 (en) | Turbomolecular pump and method of manufacturing a stator disc for such a pump | |
EP3196471B1 (en) | Vacuum pump | |
DE102020116770B4 (en) | VACUUM PUMP WITH INTEGRATED MINIATURE VALVE | |
EP3093496B1 (en) | Rotor of a vacuum pump | |
EP3135932B1 (en) | Vacuum pump and permanent magnet bearing | |
EP3267040B1 (en) | Turbomolecular pump | |
EP4155549B1 (en) | Vacuum pump with improved suction capacity of the holweck pump stage | |
EP3096020B1 (en) | Vacuum pump | |
EP3032106B1 (en) | Vacuum pump | |
EP1559915B1 (en) | Gas friction pump | |
EP3462036B1 (en) | Turbomolecular vacuum pump | |
EP4390144A2 (en) | Vacuum pump | |
EP3628883B1 (en) | Vacuum pump | |
EP4108931B1 (en) | Method for operating a molecular vacuum pump to achieve improved suction capacity | |
EP3561307B1 (en) | Vacuum pump with an inlet flange and a bearing support in the inlet | |
EP4194700A1 (en) | Vacuum pump with a holweck pump stage with variable holweck geometry | |
EP4273405A1 (en) | Vacuum pump with a holweck pumping stage with a varying holweck geometry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
17P | Request for examination filed |
Effective date: 20140623 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
R17P | Request for examination filed (corrected) |
Effective date: 20150720 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20181207 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201118 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1367496 Country of ref document: AT Kind code of ref document: T Effective date: 20210315 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014015319 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210604 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210603 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210603 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210705 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210703 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014015319 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20211206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210623 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210703 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1367496 Country of ref document: AT Kind code of ref document: T Effective date: 20210623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240613 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240625 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240829 Year of fee payment: 11 |