[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2823170B1 - Système de chauffage de combustible de moteur de turbine à gaz - Google Patents

Système de chauffage de combustible de moteur de turbine à gaz Download PDF

Info

Publication number
EP2823170B1
EP2823170B1 EP13758632.7A EP13758632A EP2823170B1 EP 2823170 B1 EP2823170 B1 EP 2823170B1 EP 13758632 A EP13758632 A EP 13758632A EP 2823170 B1 EP2823170 B1 EP 2823170B1
Authority
EP
European Patent Office
Prior art keywords
fuel
flow
gas turbine
turbine engine
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13758632.7A
Other languages
German (de)
English (en)
Other versions
EP2823170A1 (fr
EP2823170A4 (fr
Inventor
Omar I. OSORIO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamilton Sundstrand Corp
Original Assignee
Hamilton Sundstrand Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamilton Sundstrand Corp filed Critical Hamilton Sundstrand Corp
Publication of EP2823170A1 publication Critical patent/EP2823170A1/fr
Publication of EP2823170A4 publication Critical patent/EP2823170A4/fr
Application granted granted Critical
Publication of EP2823170B1 publication Critical patent/EP2823170B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/50Application for auxiliary power units (APU's)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention is directed generally to fluid control systems for gas turbine engines and more particularly to fuel heating systems.
  • Gas turbine engines operate during varied environmental conditions, including at temperatures below the freezing point of water. Additionally, it is possible for the fuel to absorb water under various conditions. Ice crystals therefore have a tendency to form in the fuel under certain conditions, particularly at high altitudes or before the engine is operating. The ice crystals can plug fuel lines and orifices in the fuel system, which may degrade performance of the gas turbine engine or even cause an engine stall. As such, gas turbine engines are equipped with systems for eliminating or removing ice particles from fuel lines. For example, last-chance screens are often provided just before the fuel pump to remove any ice crystals. The screens, however, must be periodically cleared to prevent blockage of fuel flow. It is, therefore, more desirable to eliminate ice crystals from the fuel system altogether.
  • Typical ice removal systems comprise a heat exchanger that imparts heat to the fuel from engine oil used to cool bearings in the engine.
  • Such systems require time for the engine oil to heat up, thereby delaying the melting of any ice crystals.
  • the heat exchanger may not be able to extradite adequate heat from the engine oil to melt the ice. There is, therefore, a need for improved fuel heating systems.
  • Fluid flow control in gas turbine engines is also disclosed in US 4,932,204 , US 2011/0297357 and US 2007/0095068 .
  • the present invention is directed to a gas turbine engine according to claim 1.
  • the present invention is also directed to a method according to claim 8.
  • the sole Figure shows a schematic of a gas turbine engine having a fuel heating system of the present invention.
  • Gas turbine engine 10 having fuel heating system 12 including fuel heater 14 of the present invention.
  • Gas turbine engine 10 includes compressor 16, turbine 18, shaft 20 and combustor 22.
  • Fuel heating system 12 further includes fuel pump 24, heat exchanger 26, heater valve 28 and temperature sensor 29.
  • Gas turbine engine 10 is also interconnected with lubrication system 30, which includes oil cooler 32 and fan 34.
  • gas turbine engine 10 comprises an auxiliary power unit (APU) configured to drive electrical generator 36.
  • APU auxiliary power unit
  • Gas turbine engine 10 and heater 14 of the present invention may, however be implemented in other types of gas turbine engine, such as those used for propulsive force in aircraft and those used in the industrial gas turbine field.
  • Combustor 22, fan 34, valve 28 and fuel pump 24 are in electronic communication with engine controller 37.
  • Gas turbine engine 10 operates in a conventional manner by combusting fuel from fuel pump 24 and compressed air from compressor 16 in combustor 22 to produce high energy gases for driving turbine 18.
  • Fuel pump 24 includes inlet line 38, which receives fuel from a fuel tank (not shown), and outlet line 40, which delivers fuel to combustor 22.
  • Outlet line 40 may include other components, such as a metering valve, connected to controller 37 to precisely regulate fuel flow to combustor 22.
  • Engine controller 37 determines the rate of fuel flow to combustor 22 based on the demands placed on engine 10, as is known in the art.
  • engine controller 37 may comprise a Full Authority Digital Engine Controller (FADEC).
  • Compressor 16 draws in ambient air A A , compresses it and provides it to combustor 22.
  • FADEC Full Authority Digital Engine Controller
  • Combustor 16 includes conventional fuel injectors and igniters for burning a mixture of fuel and air to provide exhaust gas G E that turns turbine 18. Rotation of turbine 18 drives shaft 20, which rotates compressor 16 and electrical generator 36. Electrical generator 36 is shown schematically being driven by tower shaft 41, which is coupled to shaft 20 through a gearbox, as is known in the art.
  • Fuel pump 24 also includes bypass line 42 and return line 44, which are regulated by valve 28. Valve 28 controls flow of fuel to heat exchanger 26 to melt ice before entering fuel line 40 where clogging of orifices within the fuel metering valve or the combustor may occur.
  • oil cooler 32 is coupled into oil lines 46A and 46B, such as to be provided with heated oil from the oil sumps and to provide cooled oil to the oil pump.
  • oil cooler 32 comprises an air cooled heat exchanger that receives cooling air A C from fan 34.
  • Engine controller 37 is in communication with sensors (not shown) that determine the temperature of the oil and can adjust the speed of fan 34 to provide increased or decreased cooling to oil cooler 32.
  • Oil cooler 32 and fan 34 are shown positioned upstream of compressor 16, but need not be in other configurations.
  • Fan 34 includes mechanically rotated fan blades to push a flow of cooling air A C across cooling fins in oil cooler 32.
  • Fan 34 can be mechanically driven by shaft 20, a gear train coupled to shaft 20, or an electric motor powered by electrical generator 36 or some other such electrical power supply.
  • Fan 34 is fluidly connected to heat exchanger 26 through air line 48A, heater 14 and air line 48B.
  • the fluid comprises compressed air that is siphoned from fan 34 and provided to heat exchanger 26.
  • the compressed air from fan 34 is sufficiently pressurized by the fan blades to produce flow through air line 48A, heater 14, air line 48B, heat exchanger 26 and air line 48C.
  • the speed of fan 34 and the resulting pressure of the air can be increased by engine controller 37 as needed.
  • Compressed air from heat exchanger 26 is expelled from fuel heating system 12 through air line 48C.
  • a dedicated coolant can be continuously cycled between heater 14 and heat exchanger 26 via a pump.
  • Heat exchanger 26 receives a motive flow of a heated fluid from heater 14 and a motive flow of cold fuel from pump 24.
  • heat exchanger 26 comprises a dual-fluid plate-fin heat exchanger. After passing through heat exchanger 26, the cooled motive fluid is dumped from system 12. Cold fuel from fuel pump 24 enters heat exchanger 26 through bypass line 42 and the heated fuel is restored to fuel pump 24 through return line 44.
  • Valve 28 is responsive to input from temperature sensor 29 to periodically connect heat exchanger 26 in series between pump 24 and combustor 22 based on temperatures sensed by sensor 29.
  • Engine controller 37 is in electronic communication with sensor 29 and fuel pump 24 to modulate circulation of fuel through heat exchanger 26, depending on atmospheric conditions such as temperature and barometric pressure.
  • Fuel pump 24 is configured to provide motive flow of fuel to combustor 22 under default operating conditions.
  • valve 28 is actuated by engine controller 37 to circulate fuel through heat exchanger 26 before allowing the fuel to continue to combustor 22.
  • Temperature sensor 29 is in thermal communication with fuel in line 38. When temperature sensor 29 detects temperatures above a threshold level, a signal is sent to engine controller 37 to maintain valve 28 in a closed state. With valve 28 closed, fuel is permitted to flow uninterruptedly from the fuel tank, through inlet line 38, pump 24 and outlet line 40, while fuel is prevented from entering line 42. Check valve 52 prevents backflow of fuel into line 44.
  • the threshold level may be the freezing point of water (0° C or 32° F), some threshold temperature above the freezing point of water to provide a safety factor, or a temperature above the freezing point of water at which the water may freeze due to elevated altitude, which can be sensed by engine controller 37. Default operation is desirable and acceptable, and indicates that the presence of ice in the fuel lines is absent and not possible.
  • Fuel lines 38 and 40 are provided with screens to filter the crystals from the system.
  • screen 50 is positioned upstream of fuel pump 24 to remove ice crystals from fuel heating system 12.
  • the screens can further be provided with means for removing or melting the crystals in the screen to prevent blockage of fuel flow, as is known in the art.
  • ice crystals may have formed in fuel already present in line 40 that cannot be caught by filter 50.
  • temperatures that are at or below the threshold indicate to engine controller 37 a need to heat the fuel.
  • engine controller 37 detects a temperature from temperature sensor 29 at or below the threshold level, a signal is sent to open valve 28.
  • Temperature sensor 29 is positioned upstream of fuel pump 24 so that engine control 37 can act to prevent ice crystals from reaching combustor 22 where injectors having fine orifices are located. Using lines 42 and 44, valve 28 routes fuel to heat exchanger 26 to melt ice crystals and prevent blocking of the injector orifices before permitting the fuel to continue on to combustor 22.
  • Heater 14 is positioned so as to be in thermal communication with exhaust gas G E so that the compressed air from fan 34 is heated. Heater 14 can be placed directly in the flow of exhaust gas G E or adjacent the flow of exhaust gas G E .
  • Heater 14 comprises a heat exchanger that transfers heat from exhaust gas G E to compressed air from fan 34.
  • heater 14 may comprise a dual-fluid plate-fin heat exchanger that is coupled to tubing comprising lines 48A and 48B.
  • heater 14 comprises a tube that is coiled in a helical fashion and disposed within the outer diametrical limits of the flow of exhaust gas G E .
  • heater 14 has approximately the same diameter as the downstream exit of turbine 18.
  • heater 14 may comprise a tube coiled in a serpentine fashion so as to shape a planar body that can be placed perpendicular to the flow of exhaust gas G E .
  • Coiled embodiments of heater 14 may also include heat transfer-enhancing features such as fins in other embodiments.
  • heat exchanger 26 can be omitted and heater 14 comprises a tube wrapped directly around a fuel line connecting lines 42 and 44.
  • Heat from exhaust gas G E increases the temperature of the compressed air within heater 14 to temperatures sufficiently high so as to be able to increase the temperature of the fuel within heat exchanger 26 to melt ice crystals within the fuel and to prevent reforming of ice crystals within lines 44 and 40.
  • Engine controller 37 can increase the speed of fan 34 to increase the flow of compressed air to heater 14, thereby increasing the heating of the fuel, based on temperatures detected by sensor 29.
  • Heat from exhaust gas G E is immediately available at the start-up of engine 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Claims (10)

  1. Moteur à turbine à gaz comprenant :
    une pompe à combustible (24) pour fournir un écoulement de combustible ;
    un compresseur (16) pour comprimer l'air d'entrée ;
    une chambre de combustion (22) pour mélanger l'écoulement de combustible à l'air d'entrée comprimé et produire un gaz d'échappement ; et
    une turbine (18) pour recevoir le gaz d'échappement de la chambre de combustion ;
    un serpentin disposé à l'intérieur du gaz d'échappement quittant la turbine de sorte à être chauffé,
    le serpentin étant configuré pour recevoir une énergie cinétique de fluide ; et
    un échangeur de chaleur (26) en communication fluidique avec l'énergie cinétique de fluide provenant du serpentin et l'écoulement de combustible de la pompe à combustible de sorte à transférer la chaleur de l'énergie cinétique de fluide à l'écoulement de combustible ; et
    dans lequel la pompe à combustible comprend :
    une conduite d'entrée (38) pour recevoir le combustible, la conduite d'entrée incluant un capteur de température (29) ;
    une conduite de sortie (40) en communication fluidique avec la chambre de combustion ;
    une conduite de dérivation (42) en communication fluidique avec l'échangeur de chaleur, la conduite de dérivation incluant une soupape marche/arrêt (28) ;
    et
    une conduite de retour (44) en communication fluidique avec l'échangeur de chaleur, la conduite de retour incluant une soupape de non-retour (52).
  2. Moteur à turbine à gaz selon la revendication 1, comprenant en outre une soufflante (34) et dans lequel l'énergie cinétique de fluide comprend l'air généré par la soufflante.
  3. Moteur à turbine à gaz selon la revendication 2 et comprenant en outre :
    un refroidisseur d'huile (32) configuré pour recevoir de l'air de la soufflante et de l'huile d'un circuit de lubrification relié au moteur à turbine à gaz.
  4. Moteur à turbine à gaz selon la revendication 2 ou 3, dans lequel l'énergie cinétique de fluide de l'échangeur de chaleur est évacuée du circuit de combustible du moteur à turbine à gaz.
  5. Moteur à turbine à gaz selon une quelconque revendication précédente et dans lequel la soupape de marche/arrêt (28) réagit à la température détectée de l'écoulement de combustible, la soupape étant configurée pour acheminer l'écoulement de combustible de la pompe à combustible vers l'échangeur de chaleur lorsque la température détectée chute en dessous d'un niveau de température seuil.
  6. Moteur à turbine à gaz selon la revendication 5, dans lequel l'échangeur de chaleur est configuré pour réacheminer l'écoulement de combustible vers la pompe à combustible pour fourniture à la chambre de combustion.
  7. Moteur à turbine à gaz selon une quelconque revendication précédente, dans lequel le moteur à turbine à gaz comprend un groupe auxiliaire de puissance.
  8. Procédé de chauffage de combustible dans un moteur à turbine à gaz, le procédé comprenant la fourniture de combustible à un moteur à turbine à gaz avec une pompe à combustible pour mettre en oeuvre un processus de combustion ;
    le chauffage d'un écoulement d'air avec le gaz d'échappement provenant du processus de combustion ; et
    le chauffage sélectif de combustible de la pompe à combustible en voie d'acheminement vers le moteur à turbine à gaz avec l'écoulement d'air basé sur une température du combustible ; et
    dans lequel le chauffage d'un écoulement d'air avec le gaz d'échappement comprend en outre le passage de l'écoulement d'air à travers un serpentin disposé dans le gaz d'échappement ; et
    dans lequel le chauffage de combustible de la pompe à combustible comprend en outre le passage d'un écoulement d'air à travers un échangeur de chaleur en communication thermique avec le combustible ; et
    comprenant en outre
    la modulation de l'écoulement de combustible vers l'échangeur de chaleur au moyen d'une soupape en réponse à une température détectée du combustible.
  9. Procédé selon la revendication 8 et comprenant en outre la génération de l'écoulement d'air au moyen d'une soufflante.
  10. Procédé selon l'une quelconque des revendications 8 et 9 et comprenant en outre la détection d'une température du combustible avant que le combustible ne pénètre dans la pompe à combustible.
EP13758632.7A 2012-03-06 2013-02-12 Système de chauffage de combustible de moteur de turbine à gaz Active EP2823170B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/413,419 US9222415B2 (en) 2012-03-06 2012-03-06 Gas turbine engine fuel heating system
PCT/US2013/025685 WO2013133935A1 (fr) 2012-03-06 2013-02-12 Système de chauffage de combustible de moteur de turbine à gaz

Publications (3)

Publication Number Publication Date
EP2823170A1 EP2823170A1 (fr) 2015-01-14
EP2823170A4 EP2823170A4 (fr) 2015-11-18
EP2823170B1 true EP2823170B1 (fr) 2019-05-01

Family

ID=49112820

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13758632.7A Active EP2823170B1 (fr) 2012-03-06 2013-02-12 Système de chauffage de combustible de moteur de turbine à gaz

Country Status (5)

Country Link
US (1) US9222415B2 (fr)
EP (1) EP2823170B1 (fr)
CA (1) CA2865896C (fr)
ES (1) ES2729246T3 (fr)
WO (1) WO2013133935A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8997493B2 (en) * 2013-02-20 2015-04-07 Hamilton Sunstrand Corporation Auxiliary power unit generator
US11105267B2 (en) * 2013-02-21 2021-08-31 Raytheon Technologies Corporation Removing non-homogeneous ice from a fuel system
WO2015002716A1 (fr) * 2013-07-03 2015-01-08 United Technologies Corporation Tamis filtrants chauffés électriquement
EP3084186B1 (fr) * 2013-12-16 2019-01-02 United Technologies Corporation Systèmes de carburant de turbine à gaz tolérant la glace
EP3102809B1 (fr) * 2014-01-31 2019-11-27 United Technologies Corporation Technique utilisant la température du carburant pour optimiser le rendement d'un moteur
US9821255B2 (en) 2014-08-01 2017-11-21 Hamilton Sundstrand Corporation Screen and screen elements for fuel systems
US10961920B2 (en) 2018-10-02 2021-03-30 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
MA40950A (fr) * 2014-11-12 2017-09-19 8 Rivers Capital Llc Systèmes et procédés de commande appropriés pour une utilisation avec des systèmes et des procédés de production d'énergie
US11686258B2 (en) 2014-11-12 2023-06-27 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
WO2017145094A1 (fr) 2016-02-26 2017-08-31 8 Rivers Capital, Llc Systèmes et procédés de commande d'une centrale électrique
US10544717B2 (en) 2016-09-07 2020-01-28 Pratt & Whitney Canada Corp. Shared oil system arrangement for an engine component and a generator
US20190257569A1 (en) * 2018-02-19 2019-08-22 Hamilton Sundstrand Corporation Closed loop icing control for heat exchangers
AU2020369233A1 (en) 2019-10-22 2022-05-19 8 Rivers Capital, Llc Control schemes for thermal management of power production systems and methods
US11428162B2 (en) * 2020-01-17 2022-08-30 Raytheon Technologies Corporation Supercritical CO2 cycle for gas turbine engines using powered cooling flow
US20210310412A1 (en) * 2020-04-06 2021-10-07 Williams International Co., L.L.C. External auxiliary power unit
US11434824B2 (en) 2021-02-03 2022-09-06 General Electric Company Fuel heater and energy conversion system
US11952946B2 (en) 2021-10-15 2024-04-09 Rtx Corporation Turbine engine with preheat of cryogenic fuel via intermediate fluid

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562058U (fr) 1979-06-15 1981-01-09
US4696156A (en) * 1986-06-03 1987-09-29 United Technologies Corporation Fuel and oil heat management system for a gas turbine engine
US4932204A (en) 1989-04-03 1990-06-12 Westinghouse Electric Corp. Efficiency combined cycle power plant
GB9008140D0 (en) 1990-04-10 1990-06-06 Rolls Royce Plc An apparatus for and method of filtering a fluid
JPH08165926A (ja) 1994-12-14 1996-06-25 Calsonic Corp オイルクーラー装置
JPH1193694A (ja) * 1997-09-18 1999-04-06 Toshiba Corp ガスタービンプラント
JP2003041946A (ja) 2001-07-31 2003-02-13 Toshiba Corp ガスタービンプラント
US6651441B2 (en) 2002-01-22 2003-11-25 Hamilton Sundstrand Fluid flow system for a gas turbine engine
CA2501862C (fr) 2002-10-10 2010-09-21 Combustion Science & Engineering, Inc. Systeme de vaporisation de combustibles liquides pour la combustion et procede d'utilisation
US7337605B2 (en) 2003-10-10 2008-03-04 Hamilton Sundstrand Corporation Thermal management for aircraft auxiliary power unit compartment
JP4568592B2 (ja) * 2004-12-07 2010-10-27 三菱重工業株式会社 燃料ガス加熱制御装置及びこの燃料ガス加熱制御装置を備えるガスタービン発電施設
US20070089423A1 (en) * 2005-10-24 2007-04-26 Norman Bruce G Gas turbine engine system and method of operating the same
US7487642B2 (en) 2005-11-01 2009-02-10 General Electric Comapny Methods and apparatus for operating gas turbine engines
US7836680B2 (en) * 2007-06-20 2010-11-23 United Technologies Corporation Aircraft combination engines thermal management system
GB0714924D0 (en) * 2007-08-01 2007-09-12 Rolls Royce Plc An engine arrangement
US8425223B2 (en) 2008-07-29 2013-04-23 General Electric Company Apparatus, system and method for heating fuel gas using gas turbine exhaust
US8483929B2 (en) * 2008-11-21 2013-07-09 General Electric Company Method of controlling an air preheating system of a gas turbine
US8572975B2 (en) * 2009-06-08 2013-11-05 General Electric Company Systems relating to turbine engine control and operation
US8616828B2 (en) 2010-06-08 2013-12-31 Siemens Energy, Inc. Adjustable loop rotor air cooler and fuel gas heater

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20130232989A1 (en) 2013-09-12
WO2013133935A1 (fr) 2013-09-12
ES2729246T3 (es) 2019-10-31
US9222415B2 (en) 2015-12-29
EP2823170A1 (fr) 2015-01-14
CA2865896A1 (fr) 2013-09-12
EP2823170A4 (fr) 2015-11-18
CA2865896C (fr) 2020-01-28

Similar Documents

Publication Publication Date Title
EP2823170B1 (fr) Système de chauffage de combustible de moteur de turbine à gaz
US9823030B2 (en) Heated bypass valve for heat exchanger
CN110529256B (zh) 用于燃气涡轮发动机组件的空气循环组件
EP2959133B1 (fr) Élimination de glace non homogène d'un système d'alimentation en combustible
US10934930B2 (en) Auxiliary power unit with variable speed ratio
EP1726879B1 (fr) Système à masse réduite d'alimentation en fuel pour moteur de turbine à gaz, moteur de turbine à gaz utilisant un tel système et procédé d'alimentation en carburant d'un tel moteur
CN106573680B (zh) 喷气发动机冷空气冷却系统
US4104873A (en) Fuel delivery system including heat exchanger means
US6769259B2 (en) Gas turbine having a cooling air system and a spray air system
US10443503B2 (en) Fuel system for a gas turbine engine
EP3084186B1 (fr) Systèmes de carburant de turbine à gaz tolérant la glace
US9394832B2 (en) Aeronautical engine with cooling of an electric starting device
EP2617649A2 (fr) Petit système de refroidissement d'air refroidi de moteur
EP2527252A2 (fr) Système de gestion thermique et de puissance adaptative
EP3118435B1 (fr) Systeme d'augmentation de puissance pour une turbine a gaz utilisant stockage d'air comprime
EP3067534B1 (fr) Système d'échange de chaleur de turbine a gaz
US20180050812A1 (en) Aircraft fuel pump systems
US20160237900A1 (en) Turbomachine designed to operate in turning gear mode
US20130036722A1 (en) Fuel system having fuel control unit and heat exchanger
US20200102894A1 (en) Anti-surge and relight system
US20090116955A1 (en) Turbine engine comprising means for heating the air entering the free turbine
CN114439616A (zh) 包括涡轮机的燃烧发动机
US20170051668A1 (en) System and method for de-icing a gas turbine engine
RU2514522C2 (ru) Способ подачи топлива в газотурбинный двигатель

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141002

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20151020

RIC1 Information provided on ipc code assigned before grant

Ipc: F02C 7/224 20060101AFI20151014BHEP

Ipc: F02K 3/06 20060101ALI20151014BHEP

Ipc: F02C 3/04 20060101ALI20151014BHEP

Ipc: F02M 31/08 20060101ALI20151014BHEP

Ipc: F02M 31/125 20060101ALI20151014BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181127

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HAMILTON SUNDSTRAND CORPORATION

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1127222

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013054664

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190501

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190901

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190801

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2729246

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190802

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190801

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1127222

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013054664

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

26N No opposition filed

Effective date: 20200204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602013054664

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200212

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200212

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200212

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501