EP2822061B1 - Vehicle component comprising sandwich structure - Google Patents
Vehicle component comprising sandwich structure Download PDFInfo
- Publication number
- EP2822061B1 EP2822061B1 EP13160142.9A EP13160142A EP2822061B1 EP 2822061 B1 EP2822061 B1 EP 2822061B1 EP 13160142 A EP13160142 A EP 13160142A EP 2822061 B1 EP2822061 B1 EP 2822061B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vehicle
- essentially planar
- vehicle component
- battery
- sandwich structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000126 substance Substances 0.000 claims description 65
- 239000002131 composite material Substances 0.000 claims description 34
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 18
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- 239000010409 thin film Substances 0.000 claims description 14
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 8
- 239000003365 glass fiber Substances 0.000 claims description 8
- 229910001416 lithium ion Inorganic materials 0.000 claims description 8
- 229920000642 polymer Polymers 0.000 claims description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 7
- 239000000835 fiber Substances 0.000 claims description 7
- 229910052744 lithium Inorganic materials 0.000 claims description 7
- 238000001816 cooling Methods 0.000 description 17
- 239000011230 binding agent Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920000561 Twaron Polymers 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- -1 fibres Chemical compound 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004762 twaron Substances 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/64—Constructional details of batteries specially adapted for electric vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0413—Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/64—Heating or cooling; Temperature control characterised by the shape of the cells
- H01M10/647—Prismatic or flat cells, e.g. pouch cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6554—Rods or plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/103—Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/209—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/218—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
- H01M50/22—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
- H01M50/222—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/218—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
- H01M50/22—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
- H01M50/227—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/218—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
- H01M50/22—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
- H01M50/229—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/233—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
- H01M50/24—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/262—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
- H01M50/264—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a vehicle component comprising a sandwich structure.
- the present invention further relates to a vehicle comprising a vehicle component.
- such a battery pack requires a considerable amount of space inside the vehicle why areas such as the luggage compartment have to be adapted and reduced to accommodate the battery pack.
- such a battery pack requires a considerable amount of cooling during use. Therefore, battery packs of hybrid electric vehicles and purely electrically propelled vehicles are often provided with cooling systems such as fans, air-ducts and cooling boxes. Also, since overheating a battery pack is potentially dangerous, such a cooling system often has some sort of temperature monitoring and feedback system.
- the document EP 1294032 A2 relates to an assembled battery including at least two unit cells provided within a supporter, each unit cell is a thin laminate cell packaged with a laminate, and each unit cell is covered by a group of at least one resin.
- the document US2012263984 A1 relates to a cooling/heating element for a rechargeable battery, the cooling/heating element including a cooling area having a first boundary which physically contacts a first cell of the rechargeable battery, and a second boundary which physically contacts a second cell of the rechargeable battery.
- the cooling/heating element can be stacked and also include an inlet and/or outlet which interacts with an inlet and/or outlet of an adjacent cooling/heating element in a stack.
- the document WO2012114162 A1 discloses pouch cells, for example lithium-ion pouch cells, where a portion of the inner volume of the pouch is substantially empty and there is subatmospheric pressure inside the pouch. In some embodiments gas released inside the pouch, for example during use of the cell, is accommodated in the substantially empty portion of the inner volume of the pouch, avoiding pouch bulging.
- the document US 2012/251896 A1 relates according to the abstract to an energy storing device being a bipolar device having graded, reticulated, porous or interpenetrating structures, and methods of making such structures.
- the document EP 2 747 184 A2 relates to an electrode assembly of a porous structure and a secondary battery including the same, and to a battery module including a plurality of secondary batteries.
- a rechargeable battery which is incorporated into a structural component is described in the document WO 2011098794 A1 .
- Such component could be used as an energy storing unit which would overcome some of the above described drawbacks of battery packs.
- the rechargeable battery described in the document is a capacitor type battery it has a low energy storage capacity and thereby has a limited potential to replace the battery pack of a hybrid electric or purely electrically propelled vehicle.
- An object of the present invention is to provide a vehicle component which has a rigid structure and is suitable for use as an energy storing unit with high energy storing potential.
- the object is achieved by a vehicle component having a rigid structure and comprising a sandwich structure comprising a first supporting sheet and a second supporting sheet, wherein the sandwich structure further comprises an essentially planar electro-chemical battery arranged between, and abutting against, the first and the second supporting sheets, and wherein the first and the second supporting sheets are connected via at least one connection and wherein the essentially planar electro-chemical battery is provided with at least one through hole, and wherein the at least one connection is provided via the at least one through hole , and wherein shear forces between said first supporting sheet and said second supporting sheet are transferrable directly via said at least one connection.
- a vehicle component which has a rigid structure and is useable as an energy storing unit with high energy storing potential.
- the vehicle component comprises a sandwich structure comprising a first supporting sheet, a second supporting sheet, and an essentially planar electro-chemical battery arranged between, and abutting against, the first and the second supporting sheets, the essentially planar electro-chemical battery, the first, and the second supporting sheets form discrete parts.
- the first and the second supporting sheets do not form an integral part of the essentially planar electro-chemical battery. Therefore, the vehicle component is easy to recycle as compared to the prior art solutions where a battery is incorporated into a structural component.
- the vehicle component may be a component for an aircraft such as a body panel or a wing, or a component for a car, a truck, or a bus or the like, such as a body panel, a structural part of a vehicle chassis, a vehicle roof, a vehicle hood, a vehicle door, a vehicle trunk lid, a vehicle engine plenum cover, or a vehicle spare wheel box.
- first and second supporting sheets are arranged to support their own weight and the weight of the essentially planar electro-chemical battery.
- first and second supporting sheets may be arranged to support the weight of other components such as other vehicle components.
- the first and second supporting sheets may be arranged to take up forces exerted on the vehicle component such as bending forces, pressure forces, etc.
- the sandwich structure extends in a first, a second, and a third direction, where each direction is perpendicular to the other two directions, and an extension of the sandwich structure is substantially greater in a first and a second direction than in a third direction.
- the extension of the sandwich structure may be more than ten times greater in the first and the second direction than in the third direction. Since an extension of the sandwich structure is substantially greater in a first and a second direction than in a third direction, the form of the sandwich structure facilitates cooling of the essentially planar electro-chemical battery.
- the essentially planar electro-chemical battery comprises a thin film lithium ion battery or a thin film lithium polymer battery. Since the essentially planar electro-chemical battery, in these embodiments, comprises a thin film lithium ion battery or a thin film lithium polymer battery, the weight of the battery is low and the energy storage capability of the battery is good. Thereby, the energy storing potential of the vehicle component is further improved.
- At least the first supporting sheet is arranged to conduct heat from the essentially planar electro-chemical battery to an ambient environment of the vehicle component. Since at least the first supporting sheet is arranged to conduct heat from the essentially planar electro-chemical battery to an ambient environment of the vehicle component in these embodiments, cooling of the essentially planar electro-chemical battery is ensured. Further, since the battery is essentially planar and since an extension of the sandwich structure may be substantially greater in a first and a second direction than in a third direction, the cooling capacity of the battery, through heat transfer from the battery via the first supporting sheet to an ambient environment of the vehicle component is improved.
- the first and the second supporting sheets comprise a composite material such as carbon fibre composite, carbon net composite or glass fibre composite. Since the first and the second supporting sheets , in these embodiments, comprise a composite material such as carbon fibre composite, carbon net composite or glass fibre composite, the sandwich structure is strong and light weight, whereby the vehicle component, having energy storing capabilities, also is strong and light weight.
- the first and the second supporting sheets are connected via at least one connection. Since the first and the second supporting sheets are connected via at least one connection, a rigid vehicle component is provided where shear forces between the first and second sheets may be transferred directly via the at least one connection.
- the at least one connection is provided adjacent to the essentially planar electro-chemical battery. Since the least one connection is provided adjacent to the essentially planar electro-chemical battery, in these embodiments, a rigid vehicle component is provided and the connection is easy to form. Thereby manufacturing costs of the vehicle component may be reduced. Also, since the least one connection is provided adjacent to the essentially planar electro-chemical battery the component may be easy to recycle.
- the essentially planar electro-chemical battery is provided with at least one through hole, and wherein the at least one connection is provided via the at least one through hole. Since the essentially planar electro-chemical battery is provided with at least one through hole, and the at least one connection is provided via the at least one through hole, a rigid vehicle component is provided where shear forces between the first and second sheets may be transferred directly via the at least one connection.
- the component is one of a vehicle roof, a vehicle hood, a vehicle door, a vehicle trunk lid, a vehicle engine plenum cover, or a vehicle spare wheel box. Since the component, in these embodiments, is one of a vehicle roof, a vehicle hood, a vehicle door, a vehicle trunk lid, a vehicle engine plenum cover, or a vehicle spare wheel box, a vehicle component is provided having energy storing capabilities which may replace an existing vehicle component. Also, since the energy storing potential of the vehicle component is high, the use of one or more of such components in a vehicle reduces the need for additional heavy and bulky battery packs and/or lead-acid batteries. Therefore, in total, the weight of a vehicle comprising one or more of such components may be reduced.
- a further object of the invention is to provide a vehicle comprising a vehicle component which has a rigid structure and is suitable for use as an energy storing unit with high energy storing potential.
- the object is achieved by a vehicle, wherein the vehicle comprises a vehicle component at least comprising a sandwich structure comprising a first supporting sheet, a second supporting sheet, and an essentially planar electro-chemical battery arranged between, and abutting against, the first and the second supporting sheets.
- a vehicle comprising a vehicle component is provided, which has a rigid structure and is useable as an energy storing unit with high energy storing potential.
- Fig. 1 illustrates a vehicle component 1 comprising a sandwich structure 3.
- the vehicle component 1 is illustrated as a vehicle door.
- the entire vehicle component 1 or a larger portion of the vehicle component 1 may be provided with the sandwich structure.
- a segment 4 of the vehicle component 1 comprising the sandwich structure 3 is illustrated.
- the segment 4 is also illustrated in Fig. 2a .
- the sandwich structure 3 comprises a first supporting sheet 10, a second supporting sheet 20, and an essentially planar electro-chemical battery 5 arranged between, and abutting against, the first and the second supporting sheets 10, 20.
- the component 1 can be used as an energy storing unit with high energy storing potential.
- the sandwich structure 3 extends in a first, a second, and a third direction 11, 12, 13, where each direction 11, 12, 13 is perpendicular to the other two directions, and an extension of the sandwich structure 3 is substantially greater in the first and the second direction 11, 12 than in the third direction 13. Thereby, the form of the sandwich structure 3 facilitates cooling of the essentially planar electro-chemical battery 5.
- the sandwich structure 3 may extend in a first and a second direction 11, 12, where the first and/or the second directions 11, 12 are curved, and wherein an extension of the sandwich structure 3 is substantially greater in the first and the second direction 11, 12 than in the third direction 13.
- the essentially planar electro-chemical battery since the essentially planar electro-chemical battery is comprised in the sandwich structure 3, the essentially planar electro-chemical battery may be curved as well.
- the vehicle component 1 may be curve-shaped, circularly shaped, or may have any other shape as long as an extension of the sandwich structure 3 of the component 1 is substantially greater in a first and the second direction 11, 12 than in the third direction 13.
- the entire vehicle component 1 or a larger portion of the vehicle component 1 may be provided with the sandwich structure 3, which sandwich structure 3 may comprise one coherent essentially planar electro-chemical battery 5 which may cover a majority of the sandwich structure 3.
- the sandwich structure 3 may comprise a plurality of essentially planar electro-chemical batteries 5 being arranged side by side between the first and second supporting sheets.
- the plurality of essentially planar electro-chemical batteries 5 is interconnected by electrical wiring.
- the vehicle component 1 comprises electrical connections via which an electrical current may be delivered to, or received from, the essentially planar electro-chemical battery 5.
- Such electrical connections may comprise point connections and/or ribbon connectors, which may be arranged along an edge of the essentially planar electro-chemical battery 5.
- the essentially planar electro-chemical battery 5 may comprise a thin film lithium ion battery or a thin film lithium polymer battery. Since a thin film lithium ion battery or a thin film lithium polymer battery has a low weight and a good energy storing potential, the energy storing potential of the vehicle component 1 is further ensured. Also, during use, a thin film lithium ion battery or a thin film lithium polymer battery requires cooling. Since the form of the sandwich structure 3 facilitates cooling, the cooling of such a thin film lithium ion battery or a thin film lithium polymer battery is ensured.
- the essentially planar electro-chemical battery 5 may comprise one or more essentially planar electro-chemical battery cells 5.1.
- the essentially planar electro-chemical battery 5 is illustrated as comprising one essentially planar electro-chemical battery cell 5.1.
- the sandwich structure 3 comprising one essentially planar electro-chemical battery cell 5.1 arranged between, and abutting against, the first and the second supporting sheets 10, 20, a thin sandwich structure 3 may be provided.
- the essentially planar electro-chemical battery 5 is illustrated as comprising three essentially planar electro-chemical battery cells 5.1, 5.2, 5.3.
- the three essentially planar electro-chemical battery cells 5.1, 5.2, 5.3 are stacked and bonded to each other so as to form the essentially planar electro-chemical battery 5.
- the essentially planar electro-chemical battery 5 may comprise more than three essentially planar electro-chemical battery cells, such as four, five, six, or seven essentially planar electro-chemical battery cells, as long as the cells together form an essentially planar electro-chemical battery, i.e. that an extension of the essentially planar electro-chemical battery is substantially greater in a first and a second direction than in a third direction where each direction is perpendicular to the other two directions.
- the first and the second supporting sheets 10, 20 may comprise a composite material such as carbon fibre composite, carbon net composite or glass fibre composite.
- the composite material may comprise carbon fibres, carbon nets, sheets of graphene, carbon nanotubes, or glass fibres as well as other fibres, such as aramid e.g. Kevlar, Twaron, or aluminium, and a binder such as a plastic, a polymer such as epoxy, polyester, vinyl ester or nylon.
- the first and the second supporting sheets 10, 20 comprises a composite material such as carbon fibre composite, carbon net composite or glass fibre composite
- the fibres may be woven as a mat, laid as unidirectional fibres or be arranged as a net structure.
- the sandwich structure 3 is strong and light weight, whereby the vehicle component 1, having energy storing capabilities, also is strong and light weight. Therefore, by using such a vehicle component 1 in a vehicle, the total weight of the vehicle can be reduced.
- At least the first supporting sheet 10 may be arranged to conduct heat from the essentially planar electro-chemical battery 5 to an ambient environment of the vehicle component 1.
- the first supporting sheet 10 may be thin, i.e. having substantially smaller extension in the third direction 13 than in the first and the second direction 11, 12, and/or may be provided in a material and/or composite material composition having good thermal conductivity.
- the first supporting sheet 10 may be arranged to conduct heat from the essentially planar electro-chemical battery 5 to an ambient environment of the vehicle component 1 by the first supporting sheet 10 being arranged adjacent to an external environment of the vehicle component 1 and of a corresponding vehicle.
- the first and the second supporting sheets 10, 20 are connected via at least one connection 6, 9. Due to the at least one connection 6, 9 a rigid vehicle component 1 is provided and shear forces between the first and second sheets 10, 20 may be transferred via the at least one connection 6, 9. Some shear forces between the first and second sheets 10, 20 may also be transferred via the essentially planar electro-chemical battery 5.
- the at least one connection 6, 9 may comprise a bolt, a rivet, a spar, and/or glue.
- first and the second supporting sheets 10, 20 comprise a composite material such as carbon fibre composite, carbon net composite or glass fibre composite
- the binder of the composite material of the respective first and the second supporting sheets 10, 20 may meet and bond where the bond forms the at least one connection 6, 9 between the first and the second supporting sheets 10, 20.
- a uniform sandwich structure 3 is provided having flat surfaces and a rigid structure.
- the at least one connection 6 is provided adjacent to the essentially planar electro-chemical battery 5. Thereby, the at least one connection 6 is easy to manufacture. Also, since the least one connection is provided adjacent to the essentially planar electro-chemical battery the vehicle component 1 may be easy to recycle.
- the at least one connection 6 is illustrated as being provided adjacent to the essentially planar electro-chemical battery 5.
- the at least one connection 6 is illustrated in Fig. 2a may comprise glue or a bond between the binders of the composite materials of the respective first and the second supporting sheets 10, 20.
- the essentially planar electro-chemical battery 5 is provided with at least one through hole 7, wherein the at least one connection 9 is provided via the at least one through hole 7.
- the essentially planar electro-chemical battery 5 may be provided with a plurality of through holes 7, where the at least one connection 9 is provided via the plurality of through holes 7.
- the through hole 7 may extend through all essentially planar electro-chemical battery cells 5.1, 5.2, 5.3.
- first and the second supporting sheets 10, 20 comprise a composite material such as carbon fibre composite, carbon net composite or glass fibre composite
- the binders of the composite material of the respective first and second sheets 10, 20 may extend through the at least one through hole 7 and meet to thereby form a bond where the bond forms the at least one connection 9 between the first and the second supporting sheets 10, 20.
- Fig. 3 illustrates vehicle 8 comprising vehicle components 21, 22, 23, 24, 25, 26 according to some embodiments.
- Each of the vehicle components 21, 22, 23, 24, 25, 26 comprises a sandwich structure comprising a first supporting sheet, a second supporting sheet, and an essentially planar electro-chemical battery arranged between, and abutting against, the first and the second supporting sheets. Since the essentially planar electro-chemical battery is arranged between, and abutting against, the first and the second supporting sheets, a vehicle component is provided, which has a rigid structure and is useable as an energy storing unit with high energy storing potential.
- the components may be provided in the form of a vehicle roof 21, a vehicle hood 22, a vehicle door 23, a vehicle trunk lid 24, a vehicle engine plenum cover 25, or a vehicle spare wheel box 26.
- a vehicle roof 21, a vehicle hood 22, a vehicle door 23, a vehicle trunk lid 24, a vehicle engine plenum cover 25, or a vehicle spare wheel box 26 By arranging one or more of such components in a vehicle, the need for heavy and bulky battery packs and/or lead-acid batteries is reduced. Thereby, the total weight of a hybrid electric vehicle or purely electrically propelled vehicle may be reduced whereby the CO2 emissions of such a vehicle may be reduced. Also, since such solution occupies less internal space of the vehicle than battery packs and/or lead-acid batteries, the internal space of such a vehicle may be enlarged.
- the first supporting sheet of such components 21, 22, 23, 24, 25, 26 may be arranged adjacent to an ambient environment of the vehicle. Thereby, cooling of the essentially planar electro-chemical battery comprised in such components 21, 22, 23, 24, 25, 26 may
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Battery Mounting, Suspending (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
Description
- The present invention relates to a vehicle component comprising a sandwich structure. The present invention further relates to a vehicle comprising a vehicle component.
- There is a strong incentive to reduce vehicle emissions in the automotive industry. Traditionally, this has been done by improving fuel efficiency of combustion engines, reducing aerodynamic drag, reducing rolling resistance of vehicle tires, etc. In recent years, hybrid electric vehicles, at least partially being propelled by electric motors, as well as purely electrically propelled vehicles have found their way to market. The CO2 emissions of such vehicles are substantial lower than the CO2 emissions of vehicles solely being propelled by combustion engines. Also, hybrid electric vehicles and purely electrically propelled vehicles have the advantage of being able to store energy being produced during braking. Especially during city driving which is associated with a plurality of start and stop events, such energy storage has the potential of a significant reduction of CO2 emissions. Even though hybrid electric vehicles and purely electrically propelled vehicles have advantages over traditional vehicles solely being propelled by combustion engines, they do have some drawbacks. Such a drawback is the accommodation of a bulky and heavy battery pack. For example, a battery pack of a purely electrically propelled vehicle can weigh as much as 450 kg. The weight of such a battery pack reduces the total energy efficiency of the vehicle, as well as the performance of the vehicle, both with regard to acceleration and cornering abilities.
- Further, such a battery pack requires a considerable amount of space inside the vehicle why areas such as the luggage compartment have to be adapted and reduced to accommodate the battery pack. In addition, such a battery pack requires a considerable amount of cooling during use. Therefore, battery packs of hybrid electric vehicles and purely electrically propelled vehicles are often provided with cooling systems such as fans, air-ducts and cooling boxes. Also, since overheating a battery pack is potentially dangerous, such a cooling system often has some sort of temperature monitoring and feedback system.
- The document
EP 1294032 A2 relates to an assembled battery including at least two unit cells provided within a supporter, each unit cell is a thin laminate cell packaged with a laminate, and each unit cell is covered by a group of at least one resin. The documentUS2012263984 A1 relates to a cooling/heating element for a rechargeable battery, the cooling/heating element including a cooling area having a first boundary which physically contacts a first cell of the rechargeable battery, and a second boundary which physically contacts a second cell of the rechargeable battery. The cooling/heating element can be stacked and also include an inlet and/or outlet which interacts with an inlet and/or outlet of an adjacent cooling/heating element in a stack. The documentWO2012114162 A1 discloses pouch cells, for example lithium-ion pouch cells, where a portion of the inner volume of the pouch is substantially empty and there is subatmospheric pressure inside the pouch. In some embodiments gas released inside the pouch, for example during use of the cell, is accommodated in the substantially empty portion of the inner volume of the pouch, avoiding pouch bulging. The documentUS 2012/251896 A1 relates according to the abstract to an energy storing device being a bipolar device having graded, reticulated, porous or interpenetrating structures, and methods of making such structures. The documentEP 2 747 184 A2 relates to an electrode assembly of a porous structure and a secondary battery including the same, and to a battery module including a plurality of secondary batteries. - Attempts have been made to adapt existing vehicle parts such that these can be used to store electric energy. A rechargeable battery which is incorporated into a structural component is described in the document
WO 2011098794 A1 . Such component could be used as an energy storing unit which would overcome some of the above described drawbacks of battery packs. However, since the rechargeable battery described in the document is a capacitor type battery it has a low energy storage capacity and thereby has a limited potential to replace the battery pack of a hybrid electric or purely electrically propelled vehicle. - Therefore, in view of the above mentioned drawbacks with the prior art solutions, there is a need for a vehicle component which could be used as an energy storing unit with high energy storing potential.
- An object of the present invention is to provide a vehicle component which has a rigid structure and is suitable for use as an energy storing unit with high energy storing potential.
- According to an aspect of the invention, the object is achieved by a vehicle component having a rigid structure and comprising a sandwich structure comprising a first supporting sheet and a second supporting sheet, wherein the sandwich structure further comprises an essentially planar electro-chemical battery arranged between, and abutting against, the first and the second supporting sheets, and wherein the first and the second supporting sheets are connected via at least one connection and wherein the essentially planar electro-chemical battery is provided with at least one through hole, and wherein the at least one connection is provided via the at least one through hole , and wherein shear forces between said first supporting sheet and said second supporting sheet are transferrable directly via said at least one connection.
- Since the essentially planar electro-chemical battery is arranged between, and abutting against, the first and the second supporting sheets, a vehicle component is provided, which has a rigid structure and is useable as an energy storing unit with high energy storing potential.
- As a result, the above mentioned object is achieved.
- Further, since the vehicle component comprises a sandwich structure comprising a first supporting sheet, a second supporting sheet, and an essentially planar electro-chemical battery arranged between, and abutting against, the first and the second supporting sheets, the essentially planar electro-chemical battery, the first, and the second supporting sheets form discrete parts. Thus, the first and the second supporting sheets do not form an integral part of the essentially planar electro-chemical battery. Therefore, the vehicle component is easy to recycle as compared to the prior art solutions where a battery is incorporated into a structural component.
- The vehicle component may be a component for an aircraft such as a body panel or a wing, or a component for a car, a truck, or a bus or the like, such as a body panel, a structural part of a vehicle chassis, a vehicle roof, a vehicle hood, a vehicle door, a vehicle trunk lid, a vehicle engine plenum cover, or a vehicle spare wheel box.
- The first and second supporting sheets are arranged to support their own weight and the weight of the essentially planar electro-chemical battery. In addition, first and second supporting sheets may be arranged to support the weight of other components such as other vehicle components. Also, the first and second supporting sheets may be arranged to take up forces exerted on the vehicle component such as bending forces, pressure forces, etc.
- According to some embodiments, the sandwich structure extends in a first, a second, and a third direction, where each direction is perpendicular to the other two directions, and an extension of the sandwich structure is substantially greater in a first and a second direction than in a third direction. For example, the extension of the sandwich structure may be more than ten times greater in the first and the second direction than in the third direction. Since an extension of the sandwich structure is substantially greater in a first and a second direction than in a third direction, the form of the sandwich structure facilitates cooling of the essentially planar electro-chemical battery.
- According to some embodiments, the essentially planar electro-chemical battery comprises a thin film lithium ion battery or a thin film lithium polymer battery. Since the essentially planar electro-chemical battery, in these embodiments, comprises a thin film lithium ion battery or a thin film lithium polymer battery, the weight of the battery is low and the energy storage capability of the battery is good. Thereby, the energy storing potential of the vehicle component is further improved.
- According to some embodiments, at least the first supporting sheet is arranged to conduct heat from the essentially planar electro-chemical battery to an ambient environment of the vehicle component. Since at least the first supporting sheet is arranged to conduct heat from the essentially planar electro-chemical battery to an ambient environment of the vehicle component in these embodiments, cooling of the essentially planar electro-chemical battery is ensured. Further, since the battery is essentially planar and since an extension of the sandwich structure may be substantially greater in a first and a second direction than in a third direction, the cooling capacity of the battery, through heat transfer from the battery via the first supporting sheet to an ambient environment of the vehicle component is improved.
- According to some embodiments, the first and the second supporting sheets comprise a composite material such as carbon fibre composite, carbon net composite or glass fibre composite. Since the first and the second supporting sheets , in these embodiments, comprise a composite material such as carbon fibre composite, carbon net composite or glass fibre composite, the sandwich structure is strong and light weight, whereby the vehicle component, having energy storing capabilities, also is strong and light weight.
- According to some embodiments, the first and the second supporting sheets are connected via at least one connection. Since the first and the second supporting sheets are connected via at least one connection, a rigid vehicle component is provided where shear forces between the first and second sheets may be transferred directly via the at least one connection.
- According to some embodiments, the at least one connection is provided adjacent to the essentially planar electro-chemical battery. Since the least one connection is provided adjacent to the essentially planar electro-chemical battery, in these embodiments, a rigid vehicle component is provided and the connection is easy to form. Thereby manufacturing costs of the vehicle component may be reduced. Also, since the least one connection is provided adjacent to the essentially planar electro-chemical battery the component may be easy to recycle.
- According to some embodiments, the essentially planar electro-chemical battery is provided with at least one through hole, and wherein the at least one connection is provided via the at least one through hole. Since the essentially planar electro-chemical battery is provided with at least one through hole, and the at least one connection is provided via the at least one through hole, a rigid vehicle component is provided where shear forces between the first and second sheets may be transferred directly via the at least one connection.
- According to some embodiments, the component is one of a vehicle roof, a vehicle hood, a vehicle door, a vehicle trunk lid, a vehicle engine plenum cover, or a vehicle spare wheel box. Since the component, in these embodiments, is one of a vehicle roof, a vehicle hood, a vehicle door, a vehicle trunk lid, a vehicle engine plenum cover, or a vehicle spare wheel box, a vehicle component is provided having energy storing capabilities which may replace an existing vehicle component. Also, since the energy storing potential of the vehicle component is high, the use of one or more of such components in a vehicle reduces the need for additional heavy and bulky battery packs and/or lead-acid batteries. Therefore, in total, the weight of a vehicle comprising one or more of such components may be reduced.
- A further object of the invention is to provide a vehicle comprising a vehicle component which has a rigid structure and is suitable for use as an energy storing unit with high energy storing potential. According to an aspect of the invention, the object is achieved by a vehicle, wherein the vehicle comprises a vehicle component at least comprising a sandwich structure comprising a first supporting sheet, a second supporting sheet, and an essentially planar electro-chemical battery arranged between, and abutting against, the first and the second supporting sheets.
- Since the essentially planar electro-chemical battery is arranged between, and abutting against, the first and the second supporting sheets, a vehicle comprising a vehicle component is provided, which has a rigid structure and is useable as an energy storing unit with high energy storing potential. As a result, the above mentioned object is achieved.
- Further features of, and advantages with, the present invention will become apparent when studying the appended claims and the following detailed description. Those skilled in the art will realize that different features of the present invention may be combined to create embodiments other than those described in the following, without departing from the scope of the present invention, as defined by the appended claims.
- The various aspects of the invention, including its particular features and advantages, will be readily understood from the following detailed description and the accompanying drawings, in which:
-
Fig. 1 illustrates a vehicle component according to some embodiments, -
Fig. 2a and2b illustrates a sandwich structure of a vehicle component according to some embodiments, and -
Fig. 3 illustrates a vehicle comprising a vehicle component according to some embodiments. - The present invention will now be described more fully with reference to the accompanying drawings, in which example embodiments are shown. However, this invention should not be construed as limited to the embodiments set forth herein. Disclosed features of example embodiments may be combined as readily understood by one of ordinary skill in the art to which this invention belongs. Like numbers refer to like elements throughout.
- Well-known functions or constructions will not necessarily be described in detail for brevity and/or clarity.
-
Fig. 1 illustrates avehicle component 1 comprising asandwich structure 3. Thevehicle component 1 is illustrated as a vehicle door. Theentire vehicle component 1 or a larger portion of thevehicle component 1 may be provided with the sandwich structure. InFig. 1 , asegment 4 of thevehicle component 1 comprising thesandwich structure 3 is illustrated. Thesegment 4 is also illustrated inFig. 2a . As can be seen, thesandwich structure 3 comprises a first supportingsheet 10, a second supportingsheet 20, and an essentially planar electro-chemical battery 5 arranged between, and abutting against, the first and the second supportingsheets component 1 can be used as an energy storing unit with high energy storing potential. Thesandwich structure 3 extends in a first, a second, and athird direction direction sandwich structure 3 is substantially greater in the first and thesecond direction third direction 13. Thereby, the form of thesandwich structure 3 facilitates cooling of the essentially planar electro-chemical battery 5. - According to some embodiments, the
sandwich structure 3 may extend in a first and asecond direction second directions sandwich structure 3 is substantially greater in the first and thesecond direction third direction 13. In these embodiments, since the essentially planar electro-chemical battery is comprised in thesandwich structure 3, the essentially planar electro-chemical battery may be curved as well. Thus, according to some embodiments, thevehicle component 1 may be curve-shaped, circularly shaped, or may have any other shape as long as an extension of thesandwich structure 3 of thecomponent 1 is substantially greater in a first and thesecond direction third direction 13. - The
entire vehicle component 1 or a larger portion of thevehicle component 1 may be provided with thesandwich structure 3, whichsandwich structure 3 may comprise one coherent essentially planar electro-chemical battery 5 which may cover a majority of thesandwich structure 3. As an alternative to one coherent essentially planar electro-chemical battery, thesandwich structure 3 may comprise a plurality of essentially planar electro-chemical batteries 5 being arranged side by side between the first and second supporting sheets. In these embodiments, the plurality of essentially planar electro-chemical batteries 5 is interconnected by electrical wiring. In all embodiments however, thevehicle component 1 comprises electrical connections via which an electrical current may be delivered to, or received from, the essentially planar electro-chemical battery 5. Such electrical connections may comprise point connections and/or ribbon connectors, which may be arranged along an edge of the essentially planar electro-chemical battery 5. - The essentially planar electro-
chemical battery 5 may comprise a thin film lithium ion battery or a thin film lithium polymer battery. Since a thin film lithium ion battery or a thin film lithium polymer battery has a low weight and a good energy storing potential, the energy storing potential of thevehicle component 1 is further ensured. Also, during use, a thin film lithium ion battery or a thin film lithium polymer battery requires cooling. Since the form of thesandwich structure 3 facilitates cooling, the cooling of such a thin film lithium ion battery or a thin film lithium polymer battery is ensured. - The essentially planar electro-
chemical battery 5 may comprise one or more essentially planar electro-chemical battery cells 5.1. InFig. 2a , the essentially planar electro-chemical battery 5 is illustrated as comprising one essentially planar electro-chemical battery cell 5.1. By thesandwich structure 3 comprising one essentially planar electro-chemical battery cell 5.1 arranged between, and abutting against, the first and the second supportingsheets thin sandwich structure 3 may be provided. InFig. 2b , the essentially planar electro-chemical battery 5 is illustrated as comprising three essentially planar electro-chemical battery cells 5.1, 5.2, 5.3. The three essentially planar electro-chemical battery cells 5.1, 5.2, 5.3 are stacked and bonded to each other so as to form the essentially planar electro-chemical battery 5. By using more than one essentially planar electro-chemical battery cell, the energy storing potential may be further improved. The essentially planar electro-chemical battery 5 may comprise more than three essentially planar electro-chemical battery cells, such as four, five, six, or seven essentially planar electro-chemical battery cells, as long as the cells together form an essentially planar electro-chemical battery, i.e. that an extension of the essentially planar electro-chemical battery is substantially greater in a first and a second direction than in a third direction where each direction is perpendicular to the other two directions. - The first and the second supporting
sheets sheets sheets sandwich structure 3 is strong and light weight, whereby thevehicle component 1, having energy storing capabilities, also is strong and light weight. Therefore, by using such avehicle component 1 in a vehicle, the total weight of the vehicle can be reduced. - At least the first supporting
sheet 10 may be arranged to conduct heat from the essentially planar electro-chemical battery 5 to an ambient environment of thevehicle component 1. For the purpose of conducting heat the first supportingsheet 10 may be thin, i.e. having substantially smaller extension in thethird direction 13 than in the first and thesecond direction sheet 10 may be arranged to conduct heat from the essentially planar electro-chemical battery 5 to an ambient environment of thevehicle component 1 by the first supportingsheet 10 being arranged adjacent to an external environment of thevehicle component 1 and of a corresponding vehicle. - According to some embodiments, the first and the second supporting
sheets connection 6, 9. Due to the at least one connection 6, 9 arigid vehicle component 1 is provided and shear forces between the first andsecond sheets connection 6, 9. Some shear forces between the first andsecond sheets chemical battery 5. The at least oneconnection 6, 9 may comprise a bolt, a rivet, a spar, and/or glue. However, in embodiments wherein first and the second supportingsheets sheets connection 6, 9 between the first and the second supportingsheets uniform sandwich structure 3 is provided having flat surfaces and a rigid structure. - According to some embodiments, the at least one connection 6 is provided adjacent to the essentially planar electro-
chemical battery 5. Thereby, the at least one connection 6 is easy to manufacture. Also, since the least one connection is provided adjacent to the essentially planar electro-chemical battery thevehicle component 1 may be easy to recycle. InFig 2a , the at least one connection 6 is illustrated as being provided adjacent to the essentially planar electro-chemical battery 5. The at least one connection 6 is illustrated inFig. 2a may comprise glue or a bond between the binders of the composite materials of the respective first and the second supportingsheets - According to some embodiments, the essentially planar electro-
chemical battery 5 is provided with at least one throughhole 7, wherein the at least oneconnection 9 is provided via the at least one throughhole 7. As indicated inFig. 2a andFig. 2b , the essentially planar electro-chemical battery 5 may be provided with a plurality of throughholes 7, where the at least oneconnection 9 is provided via the plurality of throughholes 7. In embodiments where the essentially planar electro-chemical battery 5 comprises two or more essentially planar electro-chemical battery cells 5.1, 5.2, 5.3, as illustrated inFig. 2b , the throughhole 7 may extend through all essentially planar electro-chemical battery cells 5.1, 5.2, 5.3. Due to theconnection 9 via the at least on throughhole 7, arigid vehicle component 1 is provided and shear forces between the first andsecond sheets connection 9. In embodiments wherein first and the second supportingsheets second sheets hole 7 and meet to thereby form a bond where the bond forms the at least oneconnection 9 between the first and the second supportingsheets uniform sandwich structure 3 is provided having flat surfaces and a rigid structure. -
Fig. 3 illustratesvehicle 8 comprisingvehicle components vehicle components vehicle roof 21, avehicle hood 22, avehicle door 23, avehicle trunk lid 24, a vehicleengine plenum cover 25, or a vehiclespare wheel box 26. By arranging one or more of such components in a vehicle, the need for heavy and bulky battery packs and/or lead-acid batteries is reduced. Thereby, the total weight of a hybrid electric vehicle or purely electrically propelled vehicle may be reduced whereby the CO2 emissions of such a vehicle may be reduced. Also, since such solution occupies less internal space of the vehicle than battery packs and/or lead-acid batteries, the internal space of such a vehicle may be enlarged. The first supporting sheet ofsuch components such components
Claims (8)
- A vehicle component (1) having a rigid structure and comprising a sandwich structure (3) comprising a first supporting sheet (10) and a second supporting sheet (20), wherein the sandwich structure (3) further comprises an essentially planar electro-chemical battery (5) arranged between, and abutting against, the first and the second supporting sheets (10, 20), and wherein the first and the second supporting sheets (10, 20) are connected via at least one connection (9) characterized in that the essentially planar electro-chemical battery (5) is provided with at least one through hole (7), and wherein the at least one connection (9) is provided via the at least one through hole (7), and wherein shear forces between said first supporting sheet (10) and said second supporting sheet (20) are transferrable directly via said at least one connection (9).
- The vehicle component (1) according to claim 1, characterized in that the sandwich structure extends in a first, a second, and a third direction (11, 12, 13), where each direction (11, 12, 13) is perpendicular to the other two directions, and an extension of the sandwich structure is substantially greater in the first and the second direction (11, 12) than in the third direction (13).
- The vehicle component (1) according to claim 1 or 2, characterized in that the essentially planar electro-chemical battery (5) comprises a thin film lithium ion battery or a thin film lithium polymer battery.
- The vehicle component (1) according to any of the preceding claims, characterized in that at least the first supporting sheet (10) is arranged to conduct heat from the essentially planar electro-chemical battery (5) to an ambient environment of the vehicle component (1).
- The vehicle component (1) according to any of the preceding claims, characterized in that the first and the second supporting sheets (10, 20) comprise a composite material such as carbon fibre composite, carbon net composite or glass fibre composite.
- The vehicle component (1) according to any of the preceding claims, characterized in that the first and the second supporting sheets (10, 20) are connected via at least one connection (6) provided adjacent to the essentially planar electro-chemical battery (5).
- The vehicle component (1) according to any of the preceding claims, characterized in that the component (1) is one of a vehicle roof (21), a vehicle hood (22), a vehicle door (23), a vehicle trunk lid (24), a vehicle engine plenum cover (25), or a vehicle spare wheel box (26).
- A vehicle (8), characterized in that the vehicle (8) comprises a vehicle component (1) according to any of the preceding claims.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13160142.9A EP2822061B1 (en) | 2013-03-20 | 2013-03-20 | Vehicle component comprising sandwich structure |
US14/209,287 US9561736B2 (en) | 2013-03-20 | 2014-03-13 | Vehicle component comprising sandwich structure |
CN201410091563.6A CN104064700B (en) | 2013-03-20 | 2014-03-13 | Traffic tool parts including sandwich |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13160142.9A EP2822061B1 (en) | 2013-03-20 | 2013-03-20 | Vehicle component comprising sandwich structure |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2822061A1 EP2822061A1 (en) | 2015-01-07 |
EP2822061B1 true EP2822061B1 (en) | 2019-05-08 |
Family
ID=48143050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13160142.9A Active EP2822061B1 (en) | 2013-03-20 | 2013-03-20 | Vehicle component comprising sandwich structure |
Country Status (3)
Country | Link |
---|---|
US (1) | US9561736B2 (en) |
EP (1) | EP2822061B1 (en) |
CN (1) | CN104064700B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3062381B1 (en) * | 2015-02-26 | 2018-04-11 | Magneti Marelli S.p.A. | Cooling circuit with cooling fluid for lithium batteries, and a vehicle comprising said cooling circuit |
WO2017162292A1 (en) * | 2016-03-24 | 2017-09-28 | Volvo Truck Corporation | A vehicle cab body for a vehicle |
CN106476898B (en) * | 2016-09-27 | 2019-01-01 | 北京新能源汽车股份有限公司 | Vehicle with a steering wheel |
DE102016220538A1 (en) | 2016-10-20 | 2018-04-26 | Robert Bosch Gmbh | Structural part for a motor vehicle and motor vehicle |
CN112793519A (en) * | 2021-01-13 | 2021-05-14 | 北京航空航天大学 | Interior trim part for vehicle, preparation method of interior trim part and vehicle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120251896A1 (en) * | 2000-10-20 | 2012-10-04 | Massachusetts Institute Of Technology | Battery structures, self-organizing structures, and related methods |
EP2747184A2 (en) * | 2011-09-20 | 2014-06-25 | LG Chem, Ltd. | Porous electrode assembly and secondary cell including same |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4255485A (en) * | 1979-11-08 | 1981-03-10 | Owens-Corning Fiberglas Corporation | Binder for glass fiber mat |
US5567544A (en) * | 1995-05-26 | 1996-10-22 | Boundless Corp. | Battery |
DE19615096A1 (en) | 1996-04-17 | 1996-09-12 | Siegmar Seyfarth | Car passenger head and neck spine protection system |
US5793603A (en) * | 1996-11-19 | 1998-08-11 | Boundless Corp. | Ultracapacitor design having a honey comb structure |
US6248262B1 (en) * | 2000-02-03 | 2001-06-19 | General Electric Company | Carbon-reinforced thermoplastic resin composition and articles made from same |
DE10050512A1 (en) * | 2000-10-11 | 2002-05-23 | Freudenberg Carl Kg | Conductive nonwoven |
EP1294032B1 (en) | 2001-09-17 | 2005-10-19 | Nissan Motor Co., Ltd. | Assembled battery |
JP4000961B2 (en) * | 2002-09-04 | 2007-10-31 | 日産自動車株式会社 | Assembled battery |
DE602004001528T2 (en) | 2003-02-25 | 2007-02-22 | Takata Corp. | Child seat. |
US8470417B2 (en) * | 2004-04-02 | 2013-06-25 | Curwood, Inc. | Packaging inserts with myoglobin blooming agents, packages and methods for packaging |
DE102005027506A1 (en) | 2004-07-15 | 2007-01-18 | Martin Dietmaier | Personal safety system for vehicles |
KR100880386B1 (en) * | 2005-06-03 | 2009-01-23 | 주식회사 엘지화학 | Secondary Battery of Novel Structure and Battery Pack Having the Same |
CN100429806C (en) * | 2005-06-20 | 2008-10-29 | 比亚迪股份有限公司 | Battery pack of electric vehicle |
JP2007018917A (en) * | 2005-07-08 | 2007-01-25 | Nissan Motor Co Ltd | Stacked battery, and battery pack |
JP2010083384A (en) | 2008-10-01 | 2010-04-15 | Toyota Motor Corp | Occupant restraint system |
US8846227B2 (en) * | 2009-12-18 | 2014-09-30 | MAGNA STEYR Battery Systems GmbH & Co. OG | Cooling/heating element for a rechargeable battery |
EP2534716B1 (en) | 2010-02-09 | 2017-08-02 | BAE Systems PLC | Component including a rechargeable battery |
US9368830B2 (en) * | 2010-11-04 | 2016-06-14 | Samsung Sdi Co., Ltd. | Battery |
KR101293952B1 (en) * | 2010-11-23 | 2013-08-07 | 주식회사 엘지화학 | Bus Bar Assembly of Novel Structure |
WO2012114162A1 (en) * | 2011-02-26 | 2012-08-30 | Etv Energy Ltd. | Pouch cell comprising an empty -volume defining component |
CN102386355B (en) * | 2011-06-14 | 2014-06-11 | 刘继福 | Flexible package film for external resistance layer of polymer lithium ion battery |
KR101383629B1 (en) * | 2012-03-14 | 2014-04-14 | 주식회사 엘지화학 | Battery Cell Havig Through Hole and Battery Pack Comprising The Same |
-
2013
- 2013-03-20 EP EP13160142.9A patent/EP2822061B1/en active Active
-
2014
- 2014-03-13 US US14/209,287 patent/US9561736B2/en active Active
- 2014-03-13 CN CN201410091563.6A patent/CN104064700B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120251896A1 (en) * | 2000-10-20 | 2012-10-04 | Massachusetts Institute Of Technology | Battery structures, self-organizing structures, and related methods |
EP2747184A2 (en) * | 2011-09-20 | 2014-06-25 | LG Chem, Ltd. | Porous electrode assembly and secondary cell including same |
Also Published As
Publication number | Publication date |
---|---|
CN104064700A (en) | 2014-09-24 |
EP2822061A1 (en) | 2015-01-07 |
US9561736B2 (en) | 2017-02-07 |
US20140284124A1 (en) | 2014-09-25 |
CN104064700B (en) | 2018-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220169105A1 (en) | Electric bus | |
CN209389111U (en) | Single battery, power battery pack and electric vehicle | |
EP2822061B1 (en) | Vehicle component comprising sandwich structure | |
US10434894B2 (en) | Vehicle battery pack assembly | |
US20080245587A1 (en) | Vehicle Hybrid Energy System | |
CN103168377A (en) | Enhanced-stability rechargeable battery | |
CN110035953A (en) | Aircraft with battery, especially hybrid power aeroplane | |
DE102009043384A1 (en) | Construction part with electric energy cells | |
CN212113791U (en) | Battery pack with group structure of soft package battery core | |
US20160308178A1 (en) | Electrified vehicle plate with integrated compression limiter | |
JP2005302502A (en) | Housing for battery cell | |
CN218414824U (en) | Box, battery and power consumption device | |
JP2008226610A (en) | Vehicle mounting structure of battery pack | |
CN218769118U (en) | Automobile part based on super capacitor material and electric automobile | |
CN221176327U (en) | Battery cell, battery and electricity utilization device | |
CN216958332U (en) | Unmanned aerial vehicle's power battery and unmanned aerial vehicle | |
JP2021009787A (en) | Power supply device and electric vehicle and power storage device having the power supply device | |
CN219591578U (en) | Battery box, battery and power consumption device | |
CN112563611B (en) | Ultrathin heat-conducting carbon fiber composite material structure battery and application thereof | |
EP4350859A1 (en) | Battery pack and device including same | |
CN202319859U (en) | Long-driving-range electric car without trunk | |
US20220140299A1 (en) | Supercapacitor Housing for Battery Packs | |
Gopi et al. | Review of Battery-supercapacitor Hybrid Energy Storage Systems for Electric Vehicles | |
CN118336257A (en) | Battery pack assembly, motor vehicle and method for fixing battery pack assembly using quick setting adhesive | |
Brslica | Plug-in hybrids and new energy storages |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130320 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
R17P | Request for examination filed (corrected) |
Effective date: 20150707 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180115 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01M 2/10 20060101AFI20180817BHEP Ipc: H01M 10/0585 20100101ALN20180817BHEP Ipc: H01M 10/613 20140101ALI20180817BHEP Ipc: H01M 10/625 20140101ALI20180817BHEP Ipc: B60L 11/18 20060101ALI20180817BHEP Ipc: H01M 10/04 20060101ALI20180817BHEP Ipc: H01M 10/0525 20100101ALN20180817BHEP Ipc: H01M 10/6554 20140101ALI20180817BHEP Ipc: H01M 10/647 20140101ALI20180817BHEP Ipc: H01M 2/02 20060101ALI20180817BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01M 10/613 20140101ALI20180927BHEP Ipc: H01M 10/0525 20100101ALN20180927BHEP Ipc: H01M 10/6554 20140101ALI20180927BHEP Ipc: H01M 10/647 20140101ALI20180927BHEP Ipc: H01M 10/04 20060101ALI20180927BHEP Ipc: H01M 2/02 20060101ALI20180927BHEP Ipc: B60L 11/18 20060101ALI20180927BHEP Ipc: H01M 10/625 20140101ALI20180927BHEP Ipc: H01M 2/10 20060101AFI20180927BHEP Ipc: H01M 10/0585 20100101ALN20180927BHEP |
|
INTG | Intention to grant announced |
Effective date: 20181024 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1131627 Country of ref document: AT Kind code of ref document: T Effective date: 20190515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013054902 Country of ref document: DE Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190508 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190808 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190908 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190809 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190808 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1131627 Country of ref document: AT Kind code of ref document: T Effective date: 20190508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013054902 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
26N | No opposition filed |
Effective date: 20200211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602013054902 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H01M0002100000 Ipc: H01M0050200000 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200320 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190908 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20231212 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240220 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240220 Year of fee payment: 12 Ref country code: FR Payment date: 20240220 Year of fee payment: 12 |