EP2820299B1 - Flüssigkolbenanordnung mit plattentauscher für die quasi-isotherme verdichtung und entspannung von gasen - Google Patents
Flüssigkolbenanordnung mit plattentauscher für die quasi-isotherme verdichtung und entspannung von gasen Download PDFInfo
- Publication number
- EP2820299B1 EP2820299B1 EP13703838.6A EP13703838A EP2820299B1 EP 2820299 B1 EP2820299 B1 EP 2820299B1 EP 13703838 A EP13703838 A EP 13703838A EP 2820299 B1 EP2820299 B1 EP 2820299B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- liquid
- piston
- valve
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/0005—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
- F04B39/0011—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons liquid pistons
Definitions
- the invention relates to a liquid piston arrangement with plate exchanger for the quasi-isothermal compression and expansion of gases.
- High-pressure air storage uses the energy contained in compressed air. For example, at times when more power is produced than consumed, the excess energy can be used to pump air under pressure into a storage tank. When electricity is needed, the energy stored in the compressed air is re-absorbed into other forms of energy, such as energy. As electric power, converted or machines or vehicles are driven directly.
- Compaction and relaxation in higher pressure ranges are still lossy processes, since the coupling between Heating and pressure increase (or between cooling and pressure reduction) prevents efficient operation and only intermittently intercooled adiabatic processes can be strung together.
- the multi-stage compressors with a variety of valves and topologically related dead spaces thus achieve energy efficiencies that exceed 50% barely, and this with considerable effort, such. B. with high pressure suitable heat exchangers for each stage. These low efficiencies complicate the technique of compression and relaxation for energy storage in high pressure vessels.
- a conventional liquid piston arrangement for compressing and relaxing gases with a liquid piston which is embodied by a liquid level formed by a liquid in a high-pressure space, is known from the publication EP 2 273 119 B1 known.
- Other conventional liquid piston assemblies are in the references DE 10 2008 042 828 A1 .
- the invention is therefore based on the object to provide a liquid piston arrangement for approximately isothermal processes in the higher pressure range.
- liquid piston arrangements described below and shown schematically in the figures have liquid pistons which each contain a laminated core with fixed distances between the sheets.
- the laminated core fills the entire rectangular liquid piston working space.
- the free surface of the liquid between the sheets embodies the piston.
- the laminated core is displaceable in order to move the valve cone fastened to the upper package side surface without clearance in the metal sheets and to guide it for a gap-free circuit between low-pressure chamber and high-pressure chamber. In the closed state, therefore, no air dead space remains in the high-pressure chamber.
- the laminated core absorbs the heat generated during the working cycles. Since the laminated core is completely lapped at each stroke, it remains close to the temperature of the liquid. From the liquid, the heat is released through a heat exchanger to the environment.
- the rectangular high-pressure chamber is arranged obliquely, whereby the low-pressure valve cone can shut off the working space of a low-pressure piston with the high-pressure chamber in the closed position dead volume and enforces the position of the high-pressure valve flap at the upper corner of the laminated core a funnel-like inflow during compression and thus prevents swirling cross currents.
- liquid piston arrangements described here prevent any dead space, make high-pressure heat exchangers superfluous and ensure process-oriented switching accuracy.
- the plate exchangers described below are inserted in a respective kinematic chain whose losses wave / air or electricity / air does not negate the achieved efficiency again.
- There are topological designs are provided which avoid in particular air pockets by turbulence and high accelerations, friction by lateral forces and aging, by means of harmonious interaction of the elements of the "liquid connecting rod".
- Fig. 1 schematically shows a liquid piston assembly 1 for the quasi-isothermal compression and relaxation of gases with two liquid pistons 2a, 2b. Due to the same structure of the two liquid pistons 2 a, 2 b, the mutually corresponding elements of the liquid piston 2 a, 2 b, such. As high pressure spaces, laminated cores, etc., with number words ("first Element “or” second element "), as is the case in the subsequent patent claims, but for the sake of clarity the number words are omitted in the description.
- the liquid pistons 2 a, 2 b each include a high-pressure chamber 3 a, 3 b and a laminated core 4 a, 4 b stored in the high-pressure chamber 3 a, 3 b.
- the laminated cores 4a, 4b each consist of a plurality of sheets, which are arranged in particular parallel to each other. Further, the sheets of a laminated core 4a, 4b may be arranged equidistantly and in particular have a distance between two adjacent sheets in the range of 0.3 to 0.8 mm.
- a liquid level 5a, 5b in the respective high-pressure chambers 3a, 3b and between the sheets of laminated cores 4a, 4b represents the respective piston.
- the laminated cores 4a, 4b are slidably mounted in the high-pressure chambers 3a, 3b in order to forcibly control the low-pressure valve poppets 6a, 6b fastened to their upper sides, as a result of which low-pressure valves 7a, 7b are opened or closed.
- the undersides of the laminated cores 4a, 4b are fastened to spring-loaded control pistons 8a, 8b, by means of which the laminated cores 4a, 4b can be displaced in the high-pressure spaces 3a, 3b.
- the liquid piston assembly 1 further comprises a low pressure generator or expander 10, the z. B. can be configured as a reversible scroll unit or rotor rotor.
- the low pressure generator or expander 10 is connected via an air line 11 to the low pressure valves 7a, 7b in order to generate a form in the high pressure chambers 3a, 3b can.
- the other connection of the low pressure generator or expander 10 is equipped with a suction filter and / or muffler 12.
- the low-pressure generator or expander 10 is mounted on a shaft 13 and is driven by this.
- two variable, working in push-pull hydrostatic units 14a and 14b are provided, which can also be driven by the shaft 13 or can drive the shaft 13 during engine operation.
- the hydrostatic units 14a, 14b are connected via lines 15a, 15b to the high-pressure chambers 3a, 3b, so that they can feed liquid into the high-pressure chambers 3a, 3b or take them out.
- the hydrostatic unit 14a controls the spool 8b via a pipe
- the hydrostatic unit 14b controls the spool 8a via a pipe 16b.
- a speed command 21 can be input, from which the actuator 20 together with the respective rotational speed ⁇ of the shaft 13 and the delivery volume setting ⁇ of the hydrostatic units 14a, 14b, the effective liquid feed or removal through the lines 15a, 15b calculated wherein the abutment of the respective high-pressure valve flap 31a, 31b on the magnetic coil 33a or 33b supplies the essential "reset" signal.
- the hydrostatic units 14a, 14b are connected to a container 22 via filters 23a, 23b, an outer heat exchanger 24 and check valves 25. As shown in FIG.
- high-pressure valves 30a, 30b are arranged on the high-pressure chambers 3a, 3b.
- the high-pressure valves 30a, 30b are made of high-pressure valve flaps 31a, 31b, which are arranged in cavities 32a, 32b and can be controlled by magnetic coils 33a, 33b. Connections from the high-pressure valves 30a, 30b to a storage space 35 are provided via lines 34a, 34b.
- a first operating mode schematically in the FIGS. 2A and 2B is shown, gas is compressed with the application of energy.
- a second operating mode schematically in the Fig. 2C and 2D is shown, the gas is relaxed again and the energy released thereby converted into a movement of the shaft 13.
- triangles symbolize the flow direction of the liquid in the respective lines. Filled triangles indicate a high pressure area, unfilled triangles a low pressure area. Flowless lines are shown in dashed lines.
- FIGS. 2A and 2B show the two positions of the controlled by the control piston 8a, 8b laminated cores 4a, 4b.
- Fig. 2A is the laminated core 4a in the upper position, so that the low-pressure valve 7a is closed, whereas the laminated core 4b is in the lower position and the low-pressure valve 7b is opened accordingly.
- Fig. 2B the positions of the laminated cores 4a, 4b are exactly reversed.
- Fig. 2A shows that the hydrostatic unit 14a via the filter 23a promotes liquid from the container 22 and the liquid pumped further into the high-pressure chamber 3a, which there has a rising liquid level 5a result.
- the high pressure chamber 3 a by means of the low pressure generator or expander 10, a form of z. B. 1 to 6 bar generated. Due to the rising liquid level 5a, this pressure now increases successively. As soon as the same pressure as in the storage space 35 prevails in the high-pressure chamber 3a, the high-pressure valve 30a opens and an injection into the storage space 35 can take place.
- the liquid contained in the high pressure space 3b is pumped from the hydrostatic unit 14b via the heat exchanger 24 into the tank 22. Since the low-pressure valve 7b is opened, prevails in the high pressure chamber 3b of the low pressure generator or expander 10 generated form.
- control pistons 8a, 8b are switched so that the positions of the sheet metal pawls 4a, 4b and thus the low-pressure valve cone 7a, 7b as in Fig. 2B shown result.
- the liquid level 5b rises due to the liquid supplied from the tank 22 from the hydrostatic unit 14b.
- the high pressure valve 30b opens and the gas in the storage space 35 is further compressed.
- Fig. 2C The two working phases of the engine operation are in the Fig. 2C and 2D shown.
- the control piston 8a pushes the laminated core 4a into the upper position, so that the low-pressure valve 7a is closed, whereas the laminated core 4b is in the lower position and the low-pressure valve 7b is accordingly opened.
- Fig. 2D the positions of the laminated cores 4a, 4b are exactly reversed.
- High-pressure valve flaps 31a, 31 b are mounted, through which the high pressure valves 30 a, 30 b can be influenced by means of the magnetic coils 33 a, 33 b in such a way that as long as a current flows through the connecting wires of the magnetic coils 33 a, 33 b High-pressure valve flaps 31a, 31b are held in the open position after opening in order to maintain the pre-pressure by means of precise metering.
- the engine operation can be supplied to the high-pressure chambers 3a, 3b by the targeted opening and closing of the high pressure valves 30a, 30b of the pressure previously generated in the storage space 35.
- Fig. 2C shows, by the high pressure generated in the high-pressure chamber 3a, the shaft 13 is driven via the hydrostatic unit 14a. The liquid which is thereby pressed out of the high-pressure space 3a flows via the hydrostatic unit 14a and the outer heat exchanger 24 into the container 22.
- the hydrostatic unit 14b pumps liquid from the container 22 into the high-pressure space 3b in which the low-pressure generator or expander 10 generates the form via the opened low-pressure valve 7b.
- the energy that is used to operate the hydrostatic unit 14b and the low-pressure generator or expander 10 ultimately comes from the energy that has been transferred from the hydrostatic unit 14a to the shaft 13. Furthermore, other machines can be driven by the shaft 13, for example, a generator for power generation.
- the laminated cores 4a, 4b in the high-pressure chambers 3a, 3b act as heat exchangers and ensure an approximately isothermal operation even in higher pressure ranges.
- the resulting in the compression and relaxation temperature fluctuations are transmitted in the high-pressure chambers 3a, 3b of the air to the metal plates of the laminated cores 4a, 4b and from these to the liquid that flows around the laminated cores 4a, 4b. From the liquid, the temperature fluctuations are finally discharged via the outer heat exchanger 24 to the environment.
- liquid piston assembly 1 is a basic version of a push-pull circuit that meets all the above conditions without the volumetric flask, but with two hydrostatic units 14a, 14b and with the separate low pressure generator or expander 10, which is not the optimum in terms of price and efficiency (in a combined operation it would be four hydrostatic units, with a single low pressure generator or expander would suffice). From this basic version, all further liquid piston arrangements described below can be derived.
- FIG. 3A schematically shows a liquid piston assembly 50 with two volumetric flasks as entrainment of a Vordruckkolbens, whereby a second hydrostatic unit and the low pressure generator or expander are dispensable, but with the aid of a reversing valve and a circulation pump in the processing unit, as described below becomes.
- Various operating states of the liquid piston assembly 50 are in the Fig. 3A to 3D shown.
- the liquid piston arrangement 50 has two liquid pistons 51a, 51b, each of which comprises a high-pressure chamber 52a, 52b and a laminated core 53a, 53b mounted in the high-pressure chamber 52a, 52b.
- the laminated cores 53a, 53b of sheet stacks which are mounted by means of spring-loaded control piston 54a, 54b in the longitudinal axis slidably in the high-pressure chambers 52a, 52b.
- the movement of the laminations 53a, 53b determines the movement of low pressure poppets 55a, 55b and thus the opening and closing of low pressure valves 56a, 56b because the low pressure poppets 55a, 55b are fixedly connected to the respective stack of laminations on the upper stacking surface.
- the metal plates of the laminated cores 53a, 53b may be provided with a spacing notation 57a, 57b or other inserts, by which the distance between the metal plates is specified. In particular, the distances between two adjacent sheet metal plates in the laminated cores 53a, 53b may be constant.
- the metal plates may be aligned parallel to each other, and the distance between adjacent metal plates is in particular between 0.3 and 0.8 mm.
- the laminated cores 53a, 53b may be in the form of a rectangular prism, as shown schematically in FIG Fig. 4 showing a section of the laminated core 53a in the cylinder block 58a along the in Fig.
- 3A drawn line A-A ' ie a section perpendicular to the longitudinal axis of the laminated core 53a, shows.
- the laminated cores 53a, 53b fill the respective high pressure chamber 52a, 52b perpendicular to the longitudinal axis, ie in the in Fig. 4 shown level, completely off.
- the low-pressure valves 56a, 56b mutatis mutandis connect the pre-pressure chambers 59a, 59b of the pilot pressure piston 60 with the respective high-pressure chambers 52a, 52b.
- the cylinder blocks 58a, 58b in which the respective high pressure spaces 52a, 52b are located also include the seat of the high pressure valve flaps 65a, 65b of the high pressure valves 66a, 66b.
- the high-pressure valve flaps 65a, 65b are arranged in a respective cavity 67a, 67b together with holding magnet coils 68a, 68b and are guided coaxially therefrom.
- the respective liquid piston mirror 70a, 70b is moved by a measuring piston 72a, 72b coupled to the liquid connection 71a, 71b, which also carries the preliminary pressure piston 60 (the measuring pistons 72a, 72b and the primary pressure piston 60 are connected to one another via a rod) and a complete one at each stroke Flushing of the respective laminated core 53a, 53b causes and thus an indirect exchange with an outer heat exchanger 75.
- This stream flows through a 7/2-way switch valve 76a, 76b, the pressure-free circuit with the outer heat exchanger 75, a filter 77 and a Reservoir 78 operated.
- This arrangement allows a perfect replacement of the piston fluid at each stroke, since these depending on the direction of flow either directly from - as in Fig.
- a dead space on the pre-pressure chamber 59a arranged suction / exhaust valve 86a closed to produce the required form in the pre-pressure chamber 59a.
- a suction / exhaust valve 86b arranged dead-space-free on the pre-pressure space 59b is opened so that a pressure equalization in the pre-compression space 59b with the environment can take place.
- the suction / exhaust valves 86a, 86b are each opened and closed by means of a control piston.
- the volumetric pistons 72a, 72b are inserted in the respective hydraulic path between the controllable hydrostatic unit 87 and the 7/2-way diverter valve 76a, 76b and thus obey the mechanically or electronically impressed modified sinusoidal velocity profiles indicating the acceleration of the liquid piston mirrors 70a, Limit 70b.
- the operating fluid should preferably have a very low vapor pressure, such as.
- a very low vapor pressure such as.
- water or an ionic liquid from the methylimidazolium group and in particular the hydrophobic ionic liquid 1-ethyl-3-methylimidazolium bis (trifluoromethyl-sulfonyl) amide (EMIM BTA) since this solubility of air under pressure is minimal and the condensation easily sorted out.
- the hydrostatic unit 87 is controlled by a control unit 88, which in turn is controlled by running on a processor or other processing unit software.
- the high pressure valve flaps 65a, 65b perform a complex task, especially in the case of engine operation, because here the switching point is not tied to the dead centers and must be determined in the motor case by means of computers and sensors. Indeed, working with a liquid piston allows fixing the upper delivery dead point of the respective volumetric flask 72a, 72b over the valve seat plane, the liquid will only bypass the high pressure valve flap 65a, 65b and partially fill the cavity 67a, 67b. In order for the liquid to drain again after the dead point, the closure of the respective high-pressure valve flap 65a, 65b must be delayed such that the liquid piston mirror 70a, 70b passes the seating plane at the moment when the high-pressure valve flap 65a, 65b hits its seat.
- the Control of the magnetic retaining coils 68a, 68b is performed by a control unit, such as the processor.
- Fig. 3A While in Fig. 3A is shown as in the compression of the gas, a high pressure in the high-pressure chamber 52b is generated, is in Fig. 3B the high-pressure compression of the gas in the high-pressure chamber 52a is shown (the storage space in which the compressed gas is stored is in the Fig. 3A to 3D for the sake of clarity, however, the connections for the storage space at the high-pressure valves 66a, 66b are shown). While in Fig. 3B shown operating phase, the control piston 54a, 54b are driven such that the low pressure valve 56a is closed, ie, the laminated core 53a is in the upper position, and the low pressure valve 56b is opened, ie, the laminated core 53b is in the lower position.
- the liquid located in the right chamber of the volumetric flask 72a is pumped by the hydrostatic unit 87 via the check valve 82a into the high-pressure space 52a, whereby a high pressure is generated there.
- the liquid in the high-pressure chamber 52b is transferred via the 7/2 way switch valve 76b and the check valve 81b promoted in the left chamber of the volumetric flask 72b.
- the suction / exhaust valve 86a is opened so that a pressure equalization can take place in the pre-pressure space 59a with the environment.
- the suction / exhaust valve 86b is closed to produce the required pre-pressure in the pre-compression space 59b.
- the liquid contained in the exchange volume 80 a is in Fig. 3B circulated by the pump 85.
- the exchange volume 80a is emptied into the reservoir 78 and new liquid pumped from the reservoir 78 in the exchange volume 80a.
- Fig. 3C and 3D show the two phases of work in the relaxation of the gas, ie the engine operation, in which the energy stored in the compressed gas from the hydrostatic unit 87 or units connected thereto in other forms of energy, eg. As electrical energy or mechanical work is converted.
- Fig. 3C shows a working phase in which the low pressure valve 56a is opened and the low pressure valve 56b is closed. Further, the suction / exhaust valves 86a, 86b are closed and opened, respectively. About the open high-pressure valve 66b of the first filled with the liquid high-pressure chamber 52b is acted upon by the pressure present in the storage space. As a result, liquid is passed from the high-pressure chamber 52b via the 7/2-way switch valve 76b, the exchange volume 80b and the check valve 81b into the left-hand chamber of the volumetric flask 72b. The volumetric flask 72b thus moves to the right and drives the hydrostatic unit 87.
- the liquid from the right chamber of the volumetric flask 72a is pumped via the 7/2-way diverter valve 76a and the check valve 82a into the high-pressure chamber 52a, in which via the opened low-pressure valve 56a by means of is also generated at the volumetric flask 72b coupled form piston 60 of the form.
- the liquid contained in the exchange volume 80 a is in Fig. 3C circulated by the pump 85.
- Fig. 3D the second working phase is shown in the engine operation.
- the low-pressure valve 56a is closed, and the low-pressure valve 56b is opened.
- the suction / exhaust valves 86a, 86b are opened and closed, respectively.
- About the open high-pressure valve 66a of the first filled with liquid high-pressure chamber 52a is acted upon by the pressure present in the storage space.
- liquid from the high-pressure chamber 52 a via the 7/2-way switch valve 76 a, the exchange volume 80 a and the check valve 81 a is pressed into the right chamber of the volumetric flask 72 a.
- the volumetric flask 72 a thus moves to the left and drives the hydrostatic unit 87.
- the liquid from the left chamber of the volumetric flask 72b is pumped via the check valve 82b into the high-pressure chamber 52b, in which the pre-pressure is generated via the opened low-pressure valve 56b by means of the pre-pressure piston 60 likewise coupled to the volumetric flask 72a becomes.
- the liquid contained in the exchange volume 80b is in Fig. 3D circulated by the pump 85.
- a liquid piston assembly with four liquid pistons as shown schematically in Fig. 5 is shown.
- the four pistons enable a compact speed controllable unit with low torque pulsations, whose characteristics are reflected in the Fig. 6 disclose diagram shown.
- the liquid piston arrangement comprises two push-pull elements 101 and 101 'with volumetric flasks 102a, 102b, 102a', 102b ', which are hydraulically connected to a common shaft 115 via a cross-section, each with a variable hydrostatic unit 103, 103'.
- Each of the push-pull elements 101, 101 ' contains two liquid pistons, which are operated in push-pull mode.
- the two displacement volumes Q (V1) and Q (V2) are shifted by half a stroke in push-pull against each other.
- pressure p (V) of the absorption volume By applying pressure p (V) of the absorption volume, the individual torque of the respective unit M (V1) , M (V2) arises mutatis mutandis and by the sum of the shifted individual torques of the torque curve M.
- Fig. 5 also shows the versatility of the switch valve concept with the arrangement of a single processing unit 105 in connection with the respective switch valve housings 106, 106 'and the exchange containers 107, 107' on the four liquid piston housings 108a, 108b, 108a ', 108b'.
- the liquid piston assembly is also suitable, purely mechanical links speed adjustment with "impressed pressure” (this is called the speed control from the pressure source, the torque against the load determines the speed) in engine operation, with the help of steam engine linkage:
- the Suction volume curve Q (V) of the Fig. 6 is determined by scanning a cam profile 110, which is transmitted by the movement of the piston rod 111 to the rocker 112, wherein the amplitude of the transmission to the displacement volume adjustment 104 by the height adjustment of the sliding engagement of the rod 113 by means of screw handwheel 114 results.
- the curve Q (V) can thus be modulated up to the reversal of the direction of rotation as soon as the height adjustment reaches beyond the pivot point of the rocker 112.
- Fig. 7A schematically shows a liquid piston assembly 150 with a simplified switch valve concept.
- the liquid piston assembly 150 is equipped with only one switch valve 151, which controls two measuring piston 152 a, 152 b of this push-pull element in response to the pressure difference across the hydrostatic unit 153, which occurs between the lines 154 a, 154 b and the switch valve 151 acts.
- the further elements of this simplified volumetric piston push-pull element are two liquid pistons 165a, 165b with valves and control piston and a storage space 166. Connecting lines 167a, 167b lead from the liquid pistons 165a, 165b to the storage space 166.
- a liquid tank 168 is provided as a maintenance unit with filter and heat exchanger , where no circulation pump is required here.
- a computer actuator 169 moves the displacement volume adjustment of the hydrostatic unit 153 in response to the feedback 170 of the piston position and the setpoint input 171, wherein the possibility of a direct coupling of Vordruckkolben 172 a, 172 b is indicated by dashed lines.
- FIGS Figs. 7A to 7D Various operating states of the liquid piston assembly 150 are shown in FIGS Figs. 7A to 7D shown, wherein the Figs. 7A and 7B the compression of the gas with the expenditure of energy and the Figs. 7C and 7D show the relaxation of the gas.
- the hydrostatic unit 153 pumps liquid into the left chamber of the measuring piston 152 a.
- the right chamber of the volumetric flask 152a is in the Liquid tank 168 emptied. Further, the liquid is pumped from the right chamber of the measuring piston 152b into the liquid piston 165a.
- the liquid piston 165b is drained. In this case, the air in the liquid piston 165a is compressed until the pressure is high enough that the high-pressure valve of the liquid piston 165a opens.
- Fig. 7B the second position of the switch valve 151 is shown.
- the hydrostatic unit 153 pumps liquid into the right chamber of the measuring piston 152b, and the left chamber of the measuring piston 152b is discharged into the liquid tank 168.
- the volumetric flask 152a pumps liquid into the liquid piston 165b while the liquid piston 165a is being emptied. Thereby, the pressure in the storage space 166 is increased via the liquid piston 165b.
- the exchanger piston working space in the Fig. 1 to 7 shown only as a tilted rectangular prism for receiving the laminated core, with the high pressure valve at the top tip.
- the exchanger piston working space in the Fig. 1 to 7 shown only as a tilted rectangular prism for receiving the laminated core, with the high pressure valve at the top tip.
- other solutions are conceivable, for. B. as a metal roll as described below.
- the funneling action of the tilted rectangular prism has the most favorable behavior with respect to the stability of the liquid level during fast movements, so that this structure would probably even be suitable for spray-exchange.
- Fig. 8 schematically shows a part of a liquid piston assembly 180 with a (heat) exchanger roller 181 as an alternative to the rectangular prism.
- the exchanger roller 181 consists of a rolled-up piece of sheet metal.
- the (heat) exchanger roller 181 is embedded in the cylinder body 182, the oblique parting line 183 with the piston block 184 produces a convergence to the high pressure valve 185 out, similar to the prismatic laminated core 53 a, 53 b of Fig. 3A ,
- the (heat) exchanger roller 181 is wound around a cylinder body 186 of the piston block 184.
- the (heat) exchanger roller 181 together with the cylinder body 186, is penetrated laterally from the bottom upwards by a pin-shaped seat valve body 187, so that via a cone 188 the connection between admission pressure chamber 189 and the liquid piston space in the (heat) exchange roller 181 can be switched.
- the cone 188 is moved here in order to open or close the connection between the admission pressure chamber 189 and the liquid piston space in the (heat) exchange roller 181.
- the movement of the cone 188 is effected by acting on a control piston 190 via a connection nipple 191, whereby a retaining spring 192 is compressed.
- Fig. 8 they are already out Fig. 3A provided known elements, such as suction / exhaust valve, volumetric flasks, Vordruckkolben, hydraulic switch, etc., which ensure friction-free operation.
- the roller part including control valves can of course be operated without a volumetric flask, in the sense of Fig. 1 with separate low-pressure generator or expander.
- exchanger roller 181 including control valves can also in the in the Fig. 1 . 3 . 5 and 7 inserted liquid piston assemblies are inserted.
- the indirect exchanger made of sheet metal plates with fine and fixed distances between the plates is inserted in push-pull circuits with adjustable hydrostatic units for the purpose of low-loss kinematic connection with a fast-rotating shaft. It is on the rigorous cyclical Pay attention to the replacement of the liquid, so that an optimal heat dissipation with continuous treatment (degassing, decantation, water separation) in a pressureless sump container is possible.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Reciprocating Pumps (AREA)
Description
- Die Erfindung betrifft eine Flüssigkolbenanordnung mit Plattentauscher für die quasi-isotherme Verdichtung und Entspannung von Gasen.
- Die Hochdruck-Luftspeicherung ist seit dem 19. Jahrhundert bekannt, konnte sich bislang aber nur in spezifischen Anwendungen durchsetzen. In letzter Zeit ist jedoch das Interesse an dieser Technologie gestiegen, da nach Wegen gesucht wird, erneuerbare Energien in dezentraler Anordnung zu nutzen und die bestehenden Netze mit lokalen Speichern zu stützen.
- Herkömmliche Anordnungen zur Verdichtung und Entspannung von Gasen sind aus folgenden Druckschriften bekannt:
-
DE 34 08 633 A1 , -
US 586 100 A , -
EP 2 273 119 B1 , - Eidgenössisches Department für Umwelt, Verkehr, Energie und Kommunikation UVEK, Bundesamt für Energie BFE, Schlussbericht Mai 2004, Einsatz von Druckluftspeichersystemen, I. Cyphelly, A. Rufer, Ph. Brückmann, W. Menhardt, A. Reller, Cyphelly & Co, Champ de Rive, CP 18, 2416 Les Brenets, DIS-Projekt Nr. 100406, DIS-Vertrags Nr. 150504,
- Eidgenössisches Department für Umwelt, Verkehr, Energie und Kommunikation UVEK, Bundesamt für Energie BFE, Jahresbericht 2004, 27. Dezember 2004, Projekt Machbarkeit des Druckluftspeicherkonzeptes BOP-B, Philipp Brückmann, Iván Cyphelly, Markus Lindegger, Bahnhofstr. 17, 7260 Davos Dorf, BFE-Projekt-Nr. 100985, BFE-Vertrag-Nr. 151155,
- Eidgenössisches Department für Umwelt, Verkehr, Energie und Kommunikation UVEK, Bundesamt für Energie BFE, Jahresbericht 2005, 2. Dezember 2005, Projekt Machbarkeit des Druckluftspeicherkonzeptes BOP-B, Philipp Brückmann, Iván Cyphelly, Markus Lindegger, Bahnhofstr. 17, 7260 Davos Dorf, BFE-Projekt-Nr. 100985, BFE-Vertrag-Nr. 151155, und
- Eidgenössisches Department für Umwelt, Verkehr, Energie und Kommunikation UVEK, Bundesamt für Energie BFE, Druckluftspeicherung: Optimierung/Ausmessung bestehendes Projektmuster, Schlussbericht, 01.06.2007, Philipp Brückmann, Brückmann Elekotronik (Projektleitung), Bahnhofstr. 17, 7260 Davos Dorf, Iván Cyphelly, Cyphelly & Cie (Versuche und Bericht), POB18, 2416 Les Brenets.
- Die Hochdruck-Luftspeicherung nutzt die Energie, die in komprimierter Luft steckt. Zu Zeiten, zu denen beispielsweise mehr Strom produziert als verbraucht wird, kann mit der überschüssigen Energie Luft unter Druck in einen Speicher gepumpt werden. Bei Strombedarf wird die in der Druckluft gespeicherte Energie wieder in andere Formen von Energie, z. B. elektrischen Strom, umgewandelt oder aber es werden Maschinen oder Fahrzeuge direkt angetrieben.
- Verdichtung und Entspannung in höheren Druckbereichen (100 bis 300 bar) sind nach wie vor verlustbehaftete Vorgänge, da die Koppelung zwischen Erwärmung und Druckerhöhung (bzw. zwischen Abkühlung und Druckabbau) einen effizienten Betrieb verhindert und nur abschnittweise zwischengekühlte adiabatische Vorgänge aneinandergereiht werden können. Die mehrstufigen Kompressoren mit einer Vielzahl von Ventilen und topologisch bedingten Toträumen erreichen demzufolge energetische Wirkungsgrade, die 50 % kaum überschreiten, und dies mit erheblichem Aufwand, wie z. B. mit hochdrucktauglichen Wärmetauschern für jede einzelne Stufe. Diese niedrigen Wirkungsgrade erschweren die Technik von Kompression und Entspannung zwecks Energiespeicherung in Hochdruckbehältern.
- Um diese Problematik zu beseitigen, bedarf es eines Wärmetausches während der Druckänderung, damit ein annähernd isothermes Verhalten erzwungen werden kann, und dies noch kombiniert mit einer Ausschaltung der Toträume. Es sind diesbezüglich Problemlösungen bekannt, die dank mittelbarem Wärmetausch durch Sprühnebeleinspritzung in Schraubenkompressoren, Scrollkompressoren oder Flüssigkolbenkompressoren die Temperaturschwankungen begrenzen, wobei hier die Wärme zuerst auf die Tropfen übergeht und anschließend an einen außenstehenden Tauscher gelangt. Die Rückführung der Sprühnebel-Ausfällung aus dem Hochdruckbereich ist jedoch technisch aufwändig. Im motorischen Betrieb (Entspannung) muss noch ein zusätzlicher Flüssigkeitskreislauf die Sprühung sicherstellen, die wiederum im Auspuff ausgesondert werden muss, um in den Kreislauf zurückzukommen.
- Eine herkömmliche Flüssigkolbenanordnung zur Verdichtung und Entspannung von Gasen mit einem Flüssigkolben, der durch einen von einer Flüssigkeit gebildeten Flüssigkeitsspiegel in einem Hochdruckraum verkörpert wird, ist aus der Druckschrift
EP 2 273 119 B1 bekannt. Weitere herkömmliche Flüssigkolbenanordnungen sind in den DruckschriftenDE 10 2008 042 828 A1 ,WO 2010 / 128 224 A1 undDE 44 30 716 A1 beschrieben. - Der Erfindung liegt daher die Aufgabe zugrunde, eine Flüssigkolbenanordnung für annähernd isotherme Vorgänge im höheren Druckbereich zu schaffen.
- Die der Erfindung zugrunde liegende Aufgabenstellung wird durch die Merkmale des Anspruchs 1 gelöst.
- Die Erfindung wird nachfolgend in beispielhafter Weise unter Bezugnahme auf die Zeichnungen näher erläutert. In diesen zeigen:
- Fig. 1
- eine Flüssigkolbenanordnung mit zwei Flüssigkolben, zwei hydrostatischen Regeleinheiten und einem Niederdruckgenerator bzw. Entspanner;
- Fig. 2A bis 2D
- die Flüssigkolbenanordnung aus
Fig. 1 während des Betriebs; - Fig. 3A bis 3D
- eine Flüssigkolbenanordnung mit Messkolben als Mitnahme eines Vordruckkolbens während des Betriebs;
- Fig. 4
- einen Schnitt durch ein Blechpaket aus
Fig. 3A ; - Fig. 5
- eine Flüssigkolbenanordnung mit zwei Gegentaktelementen im Verbundbetrieb;
- Fig. 6
- den Drehmomentverlauf als Resultat des Verbundbetriebs der Flüssigkolbenanordnung aus
Fig. 5 ; - Fig. 7A bis 7D
- eine Flüssigkolbenanordnung mit einem einzigen Weichenventil während des Betriebs; und
- Fig. 8
- einen Teil einer Flüssigkolbenanordnung mit einer Wärmetauscherrolle gemäß einem Ausführungsbeispiel der Erfindung.
- Die im Folgenden beschriebenen und in den Figuren schematisch dargestellten Flüssigkolbenanordnungen weisen Flüssigkolben auf, die jeweils ein Blechpaket mit festen Abständen zwischen den Blechen enthalten. Insbesondere füllt das Blechpaket den ganzen rechteckigen Flüssigkolben-Arbeitsraum aus. Die freie Oberfläche der Flüssigkeit zwischen den Blechen verkörpert dabei den Kolben. Das Blechpaket ist verschiebbar, um den an der oberen Paketseitenfläche befestigten Ventilkegel ohne Freiraum in den Blechen zu bewegen und zu führen für eine totraumfreie Schaltung zwischen Niederdruckraum und Hochdruckraum. Im geschlossenen Zustand bleibt folglich kein Luft-Totraum im Hochdruckraum. Das Blechpaket nimmt die während den Arbeitszyklen entstehende Wärme auf. Da das Blechpaket bei jedem Hub vollständig umspült wird, bleibt es annähernd auf der Temperatur der Flüssigkeit. Von der Flüssigkeit wird die Wärme über einen Wärmetauscher an die Umwelt abgegeben.
- Eine Ausgestaltung sieht vor, dass der rechteckige Hochdruckraum schräg angeordnet ist, wodurch der Niederdruck-Ventilkegel den Arbeitsraum eines Niederdruckkolbens mit dem Hochdruckraum in geschlossener Stellung totvolumenfrei absperren kann und die Stellung der Hochdruckventilklappe an der oberen Ecke des Blechpakets ein trichterartiges Zufließen bei Verdichtung erzwingt und somit aufwirbelnde Querströme verhindert.
- Insbesondere verhindern die hier beschriebenen Flüssigkolbenanordnungen jeglichen Totraum, machen Hochdruck-Wärmetauscher überflüssig und sichern eine prozessgerechte Schaltgenauigkeit.
- Die im Folgenden beschriebenen Plattentauscher sind in eine jeweilige kinematische Kette eingefügt, deren Verluste Welle/Luft oder Strom/Luft den erreichten Wirkungsgrad nicht wieder zunichtemachen. Es sind dabei topologische Ausgestaltungen vorgesehen, die insbesondere Lufteinschlüsse durch Verwirbelung und hohe Beschleunigungen, Reibungen durch Querkräfte und Alterung vermeiden, und zwar mittels harmonischem Zusammenspiel der Elemente des "flüssigen Pleuels".
- Die in den
Fig. 1 bis 8 gezeigten Flüssigkolbenanordnungen genügen insbesondere einer oder mehreren oder gar allen der folgenden Bedingungen: - 1. Die Schaltung in Luft soll leckfrei sein, vorzugsweise mittels Sitzventilen zwischen Hochdruckzylinder und Vordruckraum sowie druckseitig zum Speicher, und außerdem vollständig totraumfrei bleiben, um Verwirbelungen zu vermeiden.
- 2. Die Integrierung eines Niederdruckzylinders oder einer anderen Vordruckerzeugung sollen vorgesehen sein, denn eine ununterbrochene Kompression/Entspannung von 1 bar auf 200 bar würde gewaltige Ausmaße bedingen (diese einstufige Ausführung ist jedoch dank Platten-Tauscheffekt durchaus möglich).
- 3. Eine Untersetzung zwischen Welle und Kolbenbewegung soll gesichert sein, da die Hubfrequenz 1 bis 2 Hz nicht überschritten wird und die Welle mindestens 1500 Upm aufweisen sollte.
- 4. Die Untersetzung sowie die Hubbewegung sollen auf Lösungen verzichten, die Querkräfte und große Lagerkräfte bedingen (bei den langsamen Bewegungen der Kolben würde schon bei bescheidenen Leistungen die Wälzlager überfordert).
- 5. Um die Flüssigkeit im Betrieb aufzubereiten, soll das Pleuel/Kolben-Volumen periodisch über einen Tank drucklos umgewälzt werden, damit Blasen, Staub und Feuchtigkeit entfernt werden können.
- 6. Der Außentauscher soll niederdruckseitig angeschlossen sein, da geringstmögliche Temperaturdifferenzen mit der Umwelt angestrebt werden, die über Hochdruck-Rohrtauscher kaum mit vernünftigem Aufwand zu erzielen sind. Außerdem kann somit ein einziger Außentauscher auch mehrkolbige Anlagen bedienen.
- 7. Die Kolben-Bewegungsumsteuerung soll mit geringen Beschleunigungen geschehen, vornehmlich gemäß einer vorgegebenen Geschwindigkeitskurve, die eine Glättung der Druck- bzw. Drehmomentpulsationen bei Verbundanordnungen ermöglicht.
- 8. Es soll verhindert werden, dass bei Lösungen mit hin- und hergehenden Kolben ein Totraum entsteht, der im Betrieb nicht genügend durchspült wird und somit Verunreinigungen und Wärme speichert.
-
Fig. 1 zeigt schematisch eine Flüssigkolbenanordnung 1 für die quasi-isotherme Verdichtung und Entspannung von Gasen mit zwei Flüssigkolben 2a, 2b. Aufgrund des gleichen Aufbaus der beiden Flüssigkolben 2a, 2b können die einander entsprechenden Elemente der Flüssigkolben 2a, 2b, wie z. B. Hochdruckräume, Blechpakete usw., mit Zahlwörtern ("erstes Element" bzw. "zweites Element") versehen werden, wie dies in den nachfolgenden Patentansprüchen der Fall ist. Der Übersichtlichkeit halber wird jedoch in der Beschreibung auf die Zahlwörter verzichtet. - Die Flüssigkolben 2a, 2b umfassen jeweils einen Hochdruckraum 3a, 3b sowie ein in dem Hochdruckraum 3a, 3b gelagertes Blechpaket 4a, 4b. Die Blechpakete 4a, 4b bestehen jeweils aus einer Mehrzahl von Blechen, die insbesondere parallel zueinander angeordnet sind. Ferner können die Bleche eines Blechpakets 4a, 4b äquidistant angeordnet sein und insbesondere einen Abstand zwischen zwei benachbarten Blechen im Bereich von 0,3 bis 0,8 mm aufweisen. Ein Flüssigkeitsspiegel 5a, 5b in den jeweiligen Hochdruckräumen 3a, 3b und zwischen den Blechen der Blechpakete 4a, 4b verkörpert den jeweiligen Kolben.
- Die Blechpakete 4a, 4b sind in den Hochdruckräumen 3a, 3b verschiebbar gelagert, um die an ihren Oberseiten befestigten Niederdruck-Ventilkegel 6a, 6b zwangszusteuern, wodurch Niederdruckventile 7a, 7b geöffnet oder geschlossen werden. Die Unterseiten der Blechpakete 4a, 4b sind an federbelasteten Steuerkolben 8a, 8b befestigt, durch welche die Blechpakete 4a, 4b in den Hochdruckräumen 3a, 3b verschoben werden können.
- Die Flüssigkeitskolbenanordnung 1 umfasst ferner einen Niederdruckgenerator bzw. Entspanner 10, der z. B. als reversierbare Scroll-Einheit oder Kreiselläufer ausgestaltet sein kann. Der Niederdruckgenerator bzw. Entspanner 10 ist über eine Luftleitung 11 mit den Niederdruckventilen 7a, 7b verbunden, um in den Hochdruckräumen 3a, 3b einen Vordruck erzeugen zu können. Der andere Anschluss des Niederdruckgenerators bzw. Entspanners 10 ist mit einem Saugfilter und/oder Schalldämpfer 12 bestückt. Der Niederdruckgenerator bzw. Entspanner 10 ist auf eine Welle 13 montiert und wird von dieser angetrieben.
- Des Weiteren sind zwei variable, im Gegentakt arbeitende hydrostatische Einheiten 14a und 14b vorgesehen, die ebenfalls von der Welle 13 angetrieben werden können oder aber im motorischen Betrieb die Welle 13 antreiben können. Die hydrostatischen Einheiten 14a, 14b sind über Leitungen 15a, 15b mit den Hochdruckräumen 3a, 3b verbunden, so dass sie Flüssigkeit in die Hochdruckräume 3a, 3b einspeisen bzw. diesen entnehmen können. Darüber hinaus steuert die hydrostatische Einheit 14a den Steuerkolben 8b über eine Leitung, und die hydrostatische Einheit 14b steuert den Steuerkolben 8a über eine Leitung 16b. Wenn die Steuerkolben 8a, 8b über die Leitungen mit einem Hochdruck beaufschlagt werden, drücken diese die Blechpakete 4a, 4b nach unten und öffnen dadurch die Niederdruckventile 7a, 7b. Demgegenüber haben nicht beaufschlagte Leitungen aufgrund der in den Steuerkolben 8a, 8b enthaltenen Federn geschlossene Niederdruckventile 7a, 7b zur Folge.
- In ein Stellglied 20 kann eine Drehzahlvorgabe 21 eingegeben werden, aus welcher das Stellglied 20 zusammen mit der jeweiligen Drehzahl ω der Welle 13 und der Fördervolumeneinstellung α der hydrostatischen Einheiten 14a, 14b die effektive Flüssigkeitseinspeisung bzw. -entnahme durch die Leitungen 15a, 15b berechnet, wobei der Anschlag der jeweiligen Hochdruckventilklappe 31a, 31b auf die Magnetspule 33a bzw. 33b das unentbehrliche Synchronisierungssignal ("reset") liefert.
- Wie
Fig. 1 zeigt sind die hydrostatischen Einheiten 14a, 14b mit einem Behälter 22 über Filter 23a, 23b, einen äußeren Wärmetauscher 24 und Rückschlagventile 25 verbunden. - Neben den Niederdruckventilen 7a, 7b sind Hochdruckventile 30a, 30b an den Hochdruckräumen 3a, 3b angeordnet. Die Hochdruckventile 30a, 30b bestehen aus Hochdruckventilklappen 31 a, 31 b, die in Hohlräumen 32a, 32b angeordnet sind und von Magnetspulen 33a, 33b gesteuert werden können. Über Leitungen 34a, 34b bestehen Verbindungen von den Hochdruckventilen 30a, 30b zu einem Speicherraum 35.
- Die Funktionsweise der Flüssigkolbenanordnung 1 wird nachfolgend anhand der
Fig. 2A bis 2D erläutert, wobei zwischen zwei Betriebsmodi der Flüssigkolbenanordnung 1 unterschieden wird. In einem ersten Betriebsmodus, der schematisch in denFig. 2A und 2B dargestellt ist, wird Gas unter Aufbringung von Energie verdichtet. In einem zweiten Betriebsmodus, der schematisch in denFig. 2C und 2D dargestellt ist, wird das Gas wieder entspannt und die dabei freigesetzte Energie in eine Bewegung der Welle 13 umgesetzt. - In den
Fig. 2A bis 2D wie auch allen anderen Figuren symbolisieren Dreiecke die Flussrichtung der Flüssigkeit in den jeweiligen Leitungen. Ausgefüllte Dreiecke kennzeichnen einen Hochdruckbereich, nicht-ausgefüllte Dreiecke einen Niederdruckbereich. Durchflusslose Leitungen sind gestrichelt dargestellt. - Bei der in den
Fig. 2A und 2B gezeigten Verdichtung des Gases, beispielsweise Luft, wird zunächst mit Hilfe des von dem Niederdruckgenerator bzw. Entspanner 10 bereitgestellten Drucks ein Vordruck in dem jeweiligen Hochdruckraum 3a, 3b geschaffen. Anschließend wird dieser Druck erhöht, indem Flüssigkeit in den Hochdruckraum 3a, 3b gepumpt wird. Sobald der in dem Speicherraum 35 herrschende Druck erreicht ist, öffnet sich das Hochdruckventil 30a, 30b und es kann eine Druckerhöhung in dem Speicherraum 35 erzielt werden. - Die
Fig. 2A und 2B zeigen die beiden Stellungen der durch die Steuerkolben 8a, 8b gesteuerten Blechpakete 4a, 4b. InFig. 2A ist das Blechpaket 4a in der oberen Position, so dass das Niederdruckventil 7a geschlossen ist, wohingegen sich das Blechpaket 4b in der unteren Position befindet und das Niederdruckventil 7b dementsprechend geöffnet ist. InFig. 2B sind die Positionen der Blechpakete 4a, 4b genau vertauscht. -
Fig. 2A zeigt, dass die hydrostatische Einheit 14a über den Filter 23a Flüssigkeit aus dem Behälter 22 fördert und die Flüssigkeit weiter in den Hochdruckraum 3a pumpt, was dort einen steigenden Flüssigkeitsspiegel 5a zur Folge hat. In der vorangehenden Arbeitsphase war im Hochdruckraum 3a mittels des Niederdruckgenerators bzw. Entspanners 10 ein Vordruck von z. B. 1 bis 6 bar erzeugt worden. Aufgrund des steigenden Flüssigkeitsspiegels 5a erhöht sich nun dieser Druck sukzessive. Sobald in dem Hochdruckraum 3a der gleiche Druck wie im Speicherraum 35 herrscht, öffnet sich das Hochdruckventil 30a und es kann eine Einspeisung in den Speicherraum 35 stattfinden. - Zur gleichen Zeit wird die in dem Hochdruckraum 3b enthaltene Flüssigkeit von der hydrostatischen Einheit 14b über den Wärmetauscher 24 in den Behälter 22 gepumpt. Da das Niederdruckventil 7b geöffnet ist, herrscht in dem Hochdruckraum 3b der von dem Niederdruckgenerator bzw. Entspanner 10 erzeugte Vordruck.
- Anschließend werden die Steuerkolben 8a, 8b umgeschaltet, so dass sich die Positionen der Blechpakte 4a, 4b und damit der Niederdruck-Ventilkegel 7a, 7b wie in
Fig. 2B dargestellt ergeben. - Während der in
Fig. 2B dargestellten Arbeitsphase wird die zuvor in den Hochdruckraum 3a gepumpte Flüssigkeit von der hydrostatischen Einheit 14a wieder abgepumpt und fließt über den Wärmetauscher 24 in den Behälter 22. Über das geöffnete Niederdruckventil 7a erzeugt der Niederdruckgenerator bzw. Entspanner 10 den Vordruck im Hochdruckraum 3a. - Im Hochdruckraum 3b steigt währenddessen der Flüssigkeitsspiegel 5b aufgrund der von der hydrostatischen Einheit 14b aus dem Behälter 22 zugeführten Flüssigkeit. Sobald im Hochdruckraum 3b der Druck des Speicherraums 35 erreicht ist, öffnet sich das Hochdruckventil 30b und das Gas im Speicherraum 35 wird weiter verdichtet.
- Danach wird der aus den beiden in den
Fig. 2A und 2B gezeigten Arbeitsphasen bestehende Zyklus wiederholt, wodurch ein gewünschter Druck im Speicherraum 35 im Bereich von beispielsweise 200 bis 300 bar erzeugt werden kann. Die Energie, die zum Erzeugen dieses Drucks aufgewendet worden ist, kann im sogenannten motorischen Betrieb in eine Bewegung der Welle 13 umgewandelt werden. - Die beiden Arbeitsphasen des motorischen Betriebs sind in den
Fig. 2C und 2D dargestellt. InFig. 2C drückt der Steuerkolben 8a das Blechpaket 4a in die obere Position, so dass das Niederdruckventil 7a geschlossen ist, wohingegen sich das Blechpaket 4b in der unteren Position befindet und das Niederdruckventil 7b dementsprechend geöffnet ist. InFig. 2D sind die Positionen der Blechpakete 4a, 4b genau vertauscht. - An den Rücken der Hochdruckventilklappen 31 a, 31 b sind Stahlscheiben angebracht, durch welche sich die Hochdruckventile 30a, 30b mit Hilfe der Magnetspulen 33a, 33b beeinflussen lassen und zwar so, dass solange über die Anschlussdrähte der Magnetspulen 33a, 33b ein Strom fließt, die Hochdruckventilklappen 31a, 31b nach dem Öffnen in offener Stellung gehalten werden zwecks Erhaltung des Vordruckes mittels genauer Dosierung.
- Im motorischen Betrieb kann durch das gezielte Öffnen und Schließen der Hochdruckventile 30a, 30b der zuvor im Speicherraum 35 erzeugte Druck den Hochdruckräumen 3a, 3b zugeführt werden. Wie
Fig. 2C zeigt, wird durch den im Hochdruckraum 3a erzeugten Hochdruck die Welle 13 über die hydrostatische Einheit 14a angetrieben. Die Flüssigkeit, die dabei aus dem Hochdruckraum 3a gedrückt wird, fließt über die hydrostatische Einheit 14a und den äußeren Wärmetauscher 24 in den Behälter 22. Zur gleichen Zeit pumpt die hydrostatische Einheit 14b Flüssigkeit aus dem Behälter 22 in den Hochdruckraum 3b, in dem der Niederdruckgenerator bzw. Entspanner 10 über das geöffnete Niederdruckventil 7b den Vordruck erzeugt. Die Energie, die zum Betrieb der hydrostatischen Einheit 14b und des Niederdruckgenerators bzw. Entspanners 10 aufgewendet wird, stammt dabei letztlich aus der Energie, die von der hydrostatischen Einheit 14a auf die Welle 13 übertragen worden ist. Ferner können weitere Maschinen von der Welle 13 angetrieben werden, beispielsweise ein Generator zur Stromerzeugung. - Während der in
Fig. 2D gezeigten Arbeitsphase sind die Funktionalitäten der beiden Flüssigkolben 2a, 2b genau umgekehrt wie inFig. 2C . Durch das gezielte Öffnen und Schließen des Hochdruckventils 30b wird ein Hochdruck im Hochdruckraum 3b geschaffen, welcher die von der hydrostatischen Einheit 14b zuvor in den Hochdruckraum 3b gepumpte Flüssigkeit wieder zurückpresst. Dadurch wandelt die hydrostatische Einheit 14b einen Teil der im Speicherraum 35 gespeicherten Energie in eine Bewegung der Welle 13 um. Ein Teil dieser Energie wiederum wird von der hydrostatischen Einheit 14a und dem Niederdruckgenerator bzw. Entspanner 10 verwendet, um Flüssigkeit aus dem Behälter 22 in den Hochdruckraum 3a zu pumpen und um den Vordruck im Hochdruckraum 3a zu erzeugen. Anschließend wird der aus den in denFig. 2C und 2D gezeigten Arbeitsphasen bestehende Zyklus wiederholt. - Die Blechpakete 4a, 4b in den Hochdruckräumen 3a, 3b fungieren als Wärmetauscher und gewährleisten einen annähernd isothermen Betrieb auch in höheren Druckbereichen. Die bei der Verdichtung und Entspannung entstehenden Temperaturschwankungen werden in den Hochdruckräumen 3a, 3b von der Luft auf die Blechplatten der Blechpakete 4a, 4b übertragen und von diesen auf die Flüssigkeit, die die Blechpakete 4a, 4b umspült. Von der Flüssigkeit werden schließlich die Temperaturschwankungen über den äußeren Wärmetauscher 24 an die Umwelt abgegeben.
- Die in
Fig. 1 gezeigte Flüssigkolbenanordnung 1 ist eine Basisausführung einer Gegentaktschaltung, die ohne Messkolben alle oben genannten Bedingungen erfüllt, allerdings mit zwei hydrostatischen Einheiten 14a, 14b und mit dem separaten Niederdruckgenerator bzw. Entspanner 10, was bezüglich Preis und Wirkungsgrad nicht das Optimum darstellt (im Verbundbetrieb wären es vier hydrostatische Einheiten, wobei ein einziger Niederdruckgenerator bzw. Entspanner genügen würde). Aus dieser Basisausführung lassen sich alle weiteren im Folgenden beschriebenen Flüssigkolbenanordnungen ableiten. -
Fig. 3A zeigt schematisch eine Flüssigkolbenanordnung 50 mit zwei Messkolben als Mitnahme eines Vordruckkolbens, wodurch eine zweite hydrostatische Einheit und der Niederdruckgenerator bzw. Entspanner entbehrlich werden, allerdings unter Zuhilfenahme eines Umsteuerventils und einer Umwälzpumpe in der Aufbereitungseinheit, wie nachfolgend beschrieben wird. Verschiedene Betriebszustände der Flüssigkolbenanordnung 50 sind in denFig. 3A bis 3D dargestellt. - Ähnlich wie die Flüssigkolbenanordnung 1 aus
Fig. 1 weist die Flüssigkolbenanordnung 50 zwei Flüssigkolben 51a, 51b auf, die jeweils einen Hochdruckraum 52a, 52b sowie ein in dem Hochdruckraum 52a, 52b gelagertes Blechpaket 53a, 53b umfassen. - In der vorliegenden Ausgestaltung bestehen die Blechpakete 53a, 53b aus Blechstapeln, die mittels federbelasteten Steuerkolben 54a, 54b in der Längsachse verschiebbar in den Hochdruckräumen 52a, 52b gelagert sind. Die Bewegung der Blechpakete 53a, 53b bestimmt die Bewegung von Niederdruck-Ventilkegeln 55a, 55b und somit das Öffnen und Schließen von Niederdruckventilen 56a, 56b, da die Niederdruck-Ventilkegel 55a, 55b fest mit dem jeweiligen Blechstapel an der oberen Stapelfläche verbunden sind.
- Die Blechplatten der Blechpakete 53a, 53b können mit einer Abstandsnoppelung 57a, 57b oder sonstigen Einlagen versehen sein, durch die der Abstand zwischen den Blechplatten vorgegeben wird. Insbesondere können die Abstände zwischen zwei jeweils benachbarten Blechplatten in den Blechpaketen 53a, 53b konstant sein. Die Blechplatten können parallel zueinander ausgerichtet sein, und der Abstand zwischen benachbarten Blechplatten beträgt insbesondere zwischen 0,3 und 0,8 mm. Die Blechpakete 53a, 53b können die Form eines Rechteck-Prismas haben, wie dies schematisch in
Fig. 4 gezeigt ist, die einen Schnitt des Blechpakets 53a im Zylinderblock 58a entlang der inFig. 3A eingezeichneten Linie A-A', d. h. einen Schnitt senkrecht zur Längsachse des Blechpakets 53a, zeigt. Die Blechpakete 53a, 53b füllen den jeweiligen Hochdruckraum 52a, 52b senkrecht zur Längsachse, d. h. in der inFig. 4 gezeigten Ebene, vollständig aus. - Die Niederdruckventile 56a, 56b verbinden sinngemäß die Vordruckräume 59a, 59b des Vordruckkolbens 60 mit den jeweiligen Hochdruckräumen 52a, 52b. Die Zylinderblöcke 58a, 58b, in denen sich die jeweiligen Hochdruckräume 52a, 52b befinden, beinhalten auch den Sitz der Hochdruckventilklappen 65a, 65b der Hochdruckventile 66a, 66b. Die Hochdruckventilklappen 65a, 65b sind in einem jeweiligen Hohlraum 67a, 67b zusammen mit Haftmagnetspulen 68a, 68b angeordnet und werden von diesen koaxial geführt.
- Der jeweilige Flüssigkolbenspiegel 70a, 70b wird durch einen am Flüssigkeitsanschluss 71a, 71b angekoppelten Messkolben 72a, 72b bewegt, der auch den Vordruckkolben 60 mitnimmt (die Messkolben 72a, 72b und der Vordruckkolben 60 sind über eine Stange miteinander verbunden) und bei jedem Hub ein vollständiges Umspülen des jeweiligen Blechpakets 53a, 53b bewirkt und somit einen mittelbaren Tausch mit einem äußeren Wärmetauscher 75. Dieser Strom fließt durch ein 7/2-Wege-Weichenventil 76a, 76b, das einen drucklosen Kreis mit dem äußeren Wärmetauscher 75, einem Filter 77 und einem Vorratsbehälter 78 bedient. Diese Anordnung erlaubt einen einwandfreien Austausch der Kolbenflüssigkeit bei jedem Hub, da diese je nach Fließrichtung entweder direkt vom - wie in
Fig. 3A auf der linken Seite beispielhaft gezeigt - Blechstapel 53a zum Messkolben 72a über ein Austauschvolumen 80a und ein Rückschlagventil 81a strömt, bei Bewegung des Messkolbens 72a nach links (Niederdruckverdichtung), entsprechend der dargestellten Schieberstellung des 7/2-Wege-Weichenventils 76a, oder bei Hochdruckverdichtung - wie inFig. 3B auf der rechten Seite beispielhaft gezeigt - vom Messkolben 72b zurück in den Hochdruckraum 52b über ein Rückschlagventil 82b, wobei der Schieber des 7/2-Wege-Weichenventils 76b in die druckseitige Sperrstellung für das Austauschvolumen 80b geschoben wird und hiermit eine Pumpe 85 dank der Freigabe der entsprechenden Anschlüsse während dieses Hubes die Flüssigkeit des Austauschvolumens 80b umwälzen kann (das Umwälzen der in einem der Austauschvolumen 80a, 80b enthaltenen Flüssigkeit mittels der Pumpe 85 ist in denFig. 3A bis 3D durch mit gestrichelten Linien ausgefüllte Dreiecke dargestellt.). - Bei der in
Fig. 3A dargestellten Arbeitsphase ist ein an dem Vordruckraum 59a totraumfrei angeordnetes Saug-/Auspuffventil 86a geschlossen, um den benötigten Vordruck im Vordruckraum 59a zu erzeugen. Zur gleichen Zeit ist ein an dem Vordruckraum 59b totraumfrei angeordnetes Saug-/ Auspuffventil 86b geöffnet, damit ein Druckausgleich in dem Vordruckraum 59b mit der Umgebung stattfinden kann. Die Saug-/Auspuffventile 86a, 86b werden jeweils mittels eines Steuerkolbens geöffnet und geschlossen. - Die Messkolben 72a, 72b sind in den jeweiligen hydraulischen Pfad zwischen der steuerbaren hydrostatischen Einheit 87 und dem 7/2-Wege-Weichenventil 76a, 76b eingefügt und gehorchen somit den mechanisch oder elektronisch eingeprägten modifizierten Sinus-Geschwindigkeitsprofilen, welche die Beschleunigung der Flüssigkolbenspiegel 70a, 70b begrenzen.
- Die Betriebsflüssigkeit soll vorzugsweise einen sehr geringen Dampfdruck aufweisen, wie z. B. Wasser oder eine ionische Flüssigkeit aus der Methylimidazolium-Gruppe und insbesondere die hydrophobe ionische Flüssigkeit 1-Ethyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl)amid (EMIM BTA), da hiermit die Löslichkeit von Luft unter Druck minimal ist und das Kondenswasser problemlos ausgesondert wird.
- Da in der in
Fig. 3A gezeigten Topologie (unechte Zweistufigkeit ohne Zwischendruckraum) die Hochdruckräume 53a, 53b immer unter Druck bleiben (bei Niederdruckverdichtung oder Entspannung zwischen 1 bar und dem Volumenverhältnis von Niederdruckraum 59a, 59b zu Hochdruckraum 53a, 53b, bei Hochdruckverdichtung oder Entspannung zwischen eben diesem Verhältnis und dem Speicherdruck) ist die Umwälzung mittels Weichenventil praktisch unumgänglich (bis auf die Lösung mit zwei hydrostatischen Einheiten), da ansonsten ein eingeschlossenes Volumen hin und her pendeln würde ohne Entlüftungs- und Reinigungsmöglichkeit und mit einem Wärmetausch nur durch die Wand von Hochdruckrohren, was ja ein Nachteil der mehrstufigen teiladiabatischen Kompressoren ist. - Die hier gewählte pseudo-Zweistufigkeit vereinfacht die Ventiltechnik maßgeblich, müssen doch im motorischen Betrieb nur noch die Hochdruckventile 66a, 66b in Abhängigkeit mehrerer Betriebsparameter angesteuert werden, wogegen die Schaltung der Niederdruckventile 56a, 56b über die Steuerkolben 54a, 54b synchron mit dem jeweiligen Saug-/ Auspuffventil 86a, 86b über seinen Steuerkolben durch die Richtungsumkehr des Messkolbens 72a, 72b bzw. die Umkehrung des Stromes einer hydrostatischen Einheit 87 an den Totpunkten eingeleitet wird. Mit dieser Anordnung lassen sich also höchste Drücke mit nur zwei "unechten" Stufen bewältigen (bzw. mit einer kleinen Vorstufe von 5 bis 6 bar und der Hauptstufe von 200 bis 300 bar, wobei das jeweilige Blechpaket 53a, 53b immer in Verbindung mit beiden Arbeitsräumen bleibt), was eine markante Wirkungsgradverbesserung gegenüber den üblichen 4- oder 5-kolbigen Maschinen bedeutet.
- Die hydrostatische Einheit 87 wird von einer Steuereinheit 88 angesteuert, welche wiederum von einer auf einem Prozessor oder einer anderen Recheneinheit ablaufenden Software gesteuert wird.
- Die Hochdruckventilklappen 65a, 65b erfüllen eine komplexe Aufgabe, insbesondere im Falle des motorischen Betriebs, denn hier ist der Schaltpunkt nicht an die Totpunkte gebunden und muss im motorischen Fall mittels Rechner und Sensoren ermittelt werden. Das Arbeiten mit einem Flüssigkolben erlaubt ja die Festsetzung des oberen Fördertotpunkts des jeweiligen Messkolbens 72a, 72b über die Ventilsitzebene hinweg, die Flüssigkeit wird lediglich die Hochdruckventilklappe 65a, 65b umspülen und den Hohlraum 67a, 67b teilweise auffüllen. Damit die Flüssigkeit nach dem Totpunkt wieder abfließen kann, muss die Schließung der jeweiligen Hochdruckventilklappe 65a, 65b derart verzögert werden, dass der Flüssigkolbenspiegel 70a, 70b die Sitzebene genau in dem Augenblick passiert, in dem die Hochdruckventilklappe 65a, 65b auf ihren Sitz auftrifft. Somit wird ein totvolumenfreier Verdichterbetrieb garantiert, der technisch relativ einfach realisierbar ist, indem man die Hochdruckventilklappen 65a, 65b schwimmbar gestaltet, was die gewünschte Verzögerung automatisch herbeiführt. Anders sieht es beim motorischen Betrieb aus, denn hier muss nach der Öffnung der jeweiligen Hochdruckventilklappe 65a, 65b, die durch den versetzten Flüssigkolbentotpunkt mittels Anhebung eingeleitet wird, der Durchgang eine Weile frei bleiben, nachdem der Flüssigkolbenspiegel 70a, 70b die Sitzebene passiert hat (Verschiebevolumen-Einspeisung). Dies wird dadurch erreicht, dass die am Rücken der jeweiligen Hochdruckventilklappe 65a, 65b angebrachte Stahlscheibe, die nach dem Öffnen am Haftmagnet anliegt, und die Haftkraft die Hochdruckventilklappe 65a, 65b in offener Stellung halten, solange über die Anschlussdrähte der Haftmagnetspule 68a, 68b ein Strom fließt. Die Steuerung der Haftmagnetspulen 68a, 68b wird von einer Steuereinheit vorgenommen, beispielsweise dem Prozessor.
- Wohl sind andere Betätigungsarten an dieser Stelle denkbar, aber der Weg über den Haftmagneten erlaubt zusätzlich die genaue Erfassung des Öffnungszeitpunkts dank der Veränderung des Spulenstromes im Augenblick des Anschlags der Stahlscheibe auf die jeweilige Haftmagnetspule 68a, 68b, die als Signal zwecks genauer Bestimmung des aktiven Flüssigkeitsüberschusses und entsprechender Steuerung dienen kann, und zwar über die Messung der Zeitspanne zwischen Anschlag und Totpunkt. Außerdem ist diese Lösung energetisch außerordentlich sparsam trotz schnellem Ventilschließen. Diese Vorteile werden allerdings durch die Notwendigkeit erkauft, beim Start jeweils einige Kompressorhübe auszuführen, bevor der motorische Betrieb eingeleitet wird.
- Während in
Fig. 3A gezeigt ist, wie bei der Verdichtung des Gases ein Hochdruck im Hochdruckraum 52b erzeugt wird, ist inFig. 3B die Hochdruckverdichtung des Gases im Hochdruckraum 52a dargestellt (der Speicherraum, in dem das verdichtete Gas gespeichert wird, ist in denFig. 3A bis 3D der Übersichtlichkeit halber nicht dargestellt, jedoch sind die Anschlüsse für den Speicherraum an den Hochdruckventilen 66a, 66b gezeigt). Während der inFig. 3B gezeigten Arbeitsphase werden die Steuerkolben 54a, 54b derart angesteuert, dass das Niederdruckventil 56a geschlossen ist, d. h., das Blechpaket 53a befindet sich in der oberen Position, und das Niederdruckventil 56b geöffnet ist, d. h., das Blechpaket 53b befindet sich in der unteren Position. Die in der rechten Kammer des Messkolbens 72a befindliche Flüssigkeit wird von der hydrostatischen Einheit 87 über das Rückschlagventil 82a in den Hochdruckraum 52a gepumpt, wodurch dort ein Hochdruck erzeugt wird. Gleichzeitig wird die im Hochdruckraum 52b befindliche Flüssigkeit über das 7/2-Wege-Weichenventil 76b und das Rückschlagventil 81b in die linke Kammer des Messkolbens 72b gefördert. - Bei der in
Fig. 3B dargestellten Arbeitsphase ist das Saug-/Auspuffventil 86a geöffnet, damit ein Druckausgleich in dem Vordruckraum 59a mit der Umgebung stattfinden kann. Zur gleichen Zeit ist das Saug-/Auspuffventil 86b geschlossen, um den benötigten Vordruck im Vordruckraum 59b zu erzeugen. - Die in dem Austauschvolumen 80a befindliche Flüssigkeit wird in
Fig. 3B von der Pumpe 85 umgewälzt. Dabei wird beispielsweise das Austauschvolumen 80a in den Vorratsbehälter 78 entleert und neue Flüssigkeit aus dem Vorratsbehälter 78 in das Austauschvolumen 80a gepumpt. - Die
Fig. 3C und3D zeigen die beiden Arbeitsphasen bei der Entspannung des Gases, d. h. dem motorischen Betrieb, bei dem die in dem verdichteten Gas gespeicherte Energie von der hydrostatischen Einheit 87 oder daran angeschlossenen Einheiten in andere Energieformen, z. B. elektrische Energie oder mechanische Arbeit, umgewandelt wird. -
Fig. 3C zeigt eine Arbeitsphase, bei der das Niederdruckventil 56a geöffnet ist und das Niederdruckventil 56b geschlossen ist. Ferner sind die Saug-/Auspuffventile 86a, 86b geschlossen bzw. geöffnet. Über das geöffnete Hochdruckventil 66b wird der zunächst mit der Flüssigkeit gefüllte Hochdruckraum 52b mit dem im Speicherraum vorliegenden Druck beaufschlagt. Dadurch wird Flüssigkeit aus dem Hochdruckraum 52b über das 7/2-Wege-Weichenventil 76b, das Austauschvolumen 80b und das Rückschlagventil 81b in die linke Kammer des Messkolbens 72b geführt. Der Messkolben 72b bewegt sich somit nach rechts und treibt die hydrostatische Einheit 87 an. - Durch die Kopplung des Messkolbens 72a an den Messkolben 72b wird die Flüssigkeit aus der rechten Kammer des Messkolbens 72a, über das 7/2-Wege-Weichenventil 76a und das Rückschlagventil 82a in den Hochdruckraum 52a gepumpt, in dem über das geöffnete Niederdruckventil 56a mittels des ebenfalls an den Messkolben 72b gekoppelten Vordruckkolbens 60 der Vordruck erzeugt wird.
- Die in dem Austauschvolumen 80a befindliche Flüssigkeit wird in
Fig. 3C von der Pumpe 85 umgewälzt. - In
Fig. 3D ist die zweite Arbeitsphase im motorischen Betrieb gezeigt. Hier ist das Niederdruckventil 56a geschlossen, und das Niederdruckventil 56b ist geöffnet. Ferner sind die Saug-/Auspuffventile 86a, 86b geöffnet bzw. geschlossen. Über das geöffnete Hochdruckventil 66a wird der zunächst mit Flüssigkeit gefüllte Hochdruckraum 52a mit dem im Speicherraum vorliegenden Druck beaufschlagt. Dadurch wird Flüssigkeit aus dem Hochdruckraum 52a über das 7/2-Wege-Weichenventil 76a, das Austauschvolumen 80a und das Rückschlagventil 81 a in die rechte Kammer des Messkolbens 72a gepresst. Der Messkolben 72a bewegt sich somit nach links und treibt die hydrostatische Einheit 87 an. - Durch die Kopplung des Messkolbens 72b an den Messkolben 72a wird die Flüssigkeit aus der linken Kammer des Messkolbens 72b über das Rückschlagventil 82b in den Hochdruckraum 52b gepumpt, in dem über das geöffnete Niederdruckventil 56b mittels des ebenfalls an den Messkolben 72a gekoppelten Vordruckkolbens 60 der Vordruck erzeugt wird.
- Die in dem Austauschvolumen 80b befindliche Flüssigkeit wird in
Fig. 3D von der Pumpe 85 umgewälzt. - Anschließend wird der Zyklus, wie in den
Fig. 3C und3D dargestellt, wiederholt. - Die Einfachheit der in
Fig.1 gezeigten Grundschaltung wird durch die Komplexität der Erfassung des Hubverlaufs und durch den zusätzlichen Einsatz einer hydrostatischen Einheit samt Niederdruckgenerator bzw. Entspanner erkauft, was preislich und wirkungsgradmäßig Nachteile bringen kann, obschon bei größeren Anlagen, die aus vielen Hochdruck-Flüssigkolbenräumen in parallelen Strängen zusammengesetzt werden, ein einziger Vordruckapparat alle Stränge bedienen kann. Insofern ist das inFig. 3A dargestellte Gegentaktelement mit einfachem Messkolben eher für kleine Systeme geeignet, da lediglich zu den zwei Flüssigkolben zwei Hydroweichen, zwei Messkolben mit dazwischenliegendem Vordruckkolben und einer Umwälzpumpe addiert werden müssen, um ein autonomes Gegentaktelement zu bilden, das durch Verdoppelung zu einer pulsationsarmen Verbundeinheit wird. - Obschon zumindest für Verdichtungszwecke der Einsatz eines einzigen Kolbenaufbaus gemäß
Fig. 1 sinnvoll sein kann, empfiehlt sich für motorische Zwecke (Entspannungsbetrieb) eine Flüssigkolbenanordnung mit vier Flüssigkolben, wie sie schematisch inFig. 5 gezeigt ist. Die vier Kolben ermöglichen eine kompakte drehzahlsteuerbare Einheit mit geringen Drehmomentpulsationen, deren Charakteristiken sich in dem inFig. 6 dargestellten Diagramm offenbaren. - Die Flüssigkolbenanordnung umfasst zwei Gegentaktelemente 101 und 101' mit Messkolben 102a, 102b, 102a', 102b', die über Kreuz mit je einer variablen hydrostatischen Einheit 103, 103' an einer gemeinsamen Welle 115 hydraulisch verbunden sind. Jedes der Gegentaktelemente 101, 101' enthält zwei Flüssigkolben, die im Gegentakt betrieben werden. Die Gegentaktelemente 101, 101' erzeugen durch Rückkoppelung der Schluckvolumenverstellungen 104, 104'zum Messkolbenhub einen in
Fig. 6 gezeigten Schluckvolumenverlauf Q(V1) + Q(V2), der einer leicht modifizierten Sinuskurve entspricht. Die beiden Schluckvolumenverläufe Q(V1) und Q(V2) sind um einen halben Hub im Gegentakt gegeneinander verschoben. Über die Druckbeaufschlagung p(V) des Schluckvolumens entsteht sinngemäß das Einzeldrehmoment der jeweiligen Einheit M(V1), M(V2) und durch die Summe der verschobenen Einzeldrehmomente der Drehmomentverlauf M. Wir sehen also, dass sich durch den Schluckvolumenverlauf Q(V) die Hyperbeldruckspitze "herausfiltern" lässt, was ja ein bekanntes Hindernis bei Druckluftantrieben darstellt. -
Fig. 5 zeigt außerdem die Vielseitigkeit des Weichenventil-Konzepts mit der Anordnung einer einzigen Aufbereitungseinheit 105 in Verbindung mit den jeweiligen Weichenventilgehäusen 106, 106'und den Austauschbehältern 107, 107'an den vier Flüssigkolbengehäusen 108a, 108b, 108a', 108b'. - Die Flüssigkolbenanordnung ist außerdem geeignet, anhand rein mechanischen Gliedern die Drehzahlverstellung mit "eingeprägtem Druck" (so nennt man die Drehzahlregelung ab Druckquelle, wobei das Drehmoment gegen die Last die Drehzahl bestimmt) im motorischen Betrieb zu erläutern, und zwar mit Hilfe von Dampfmaschinengestänge: der Schluckvolumenverlauf Q(V) der
Fig. 6 wird durch Abtasten eines Nockenprofiles 110 bestimmt, das durch die Bewegung der Kolbenstange 111 auf die Schwinge 112 übertragen wird, wobei sich die Amplitude der Übertragung auf die Schluckvolumenverstellung 104 durch die Höheneinstellung des Kulisseneingriffs der Stange 113 mittels Schraubenhandrad 114 ergibt. Die Kurve Q(V) kann somit moduliert werden bis hin zur Drehrichtungsumkehr, sobald die Höheneinstellung über den Drehpunkt der Schwinge 112 reicht. -
Fig. 7A zeigt schematisch eine Flüssigkolbenanordnung 150 mit einem vereinfachten Weichenventilkonzept. Die Flüssigkolbenanordnung 150 kommt mit nur einem Weichenventil 151 aus, das zwei Messkolben 152a, 152b dieses Gegentaktelements ansteuert und zwar in Abhängigkeit von der Druckdifferenz an der hydrostatischen Einheit 153, die zwischen den Leitungen 154a, 154b auftritt und das Weichenventil 151 beaufschlägt. - Die weiteren Elemente dieses vereinfachten Messkolben-Gegentaktelements sind zwei Flüssigkolben 165a, 165b mit Ventilen und Steuerkolben sowie ein Speicherraum 166. Verbindungsleitungen 167a, 167b führen von den Flüssigkolben 165a, 165b zu dem Speicherraum 166. Ein Flüssigkeitstank 168 ist als Wartungseinheit mit Filter und Wärmetauscher vorgesehen, wobei hier keine Umwälzpumpe erforderlich ist. Ein Rechnerstellglied 169 bewegt die Schluckvolumenverstellung der hydrostatischen Einheit 153 in Abhängigkeit von der Rückmeldung 170 der Kolbenstellung und der Sollwerteingabe 171, wobei die Möglichkeit einer direkten Ankoppelung von Vordruckkolben 172a, 172b durch gestrichelte Linien angedeutet ist.
- Verschiedene Betriebszustände der Flüssigkolbenanordriung 150 sind in den
Fig. 7A bis 7D dargestellt, wobei dieFig. 7A und 7B die Verdichtung des Gases unter Aufwendung von Energie und dieFig. 7C und 7D die Entspannung des Gases zeigen. - Bei der in
Fig. 7A dargestellten ersten Stellung des Weichenventils 151 pumpt die hydrostatische Einheit 153 Flüssigkeit in die linke Kammer des Messkolbens 152a. Die rechte Kammer des Messkolbens 152a wird in den Flüssigkeitstank 168 entleert. Ferner wird die Flüssigkeit aus der rechten Kammer des Messkolbens 152b in den Flüssigkolben 165a gepumpt. Der Flüssigkolben 165b wird entleert. Dabei wird die Luft im Flüssigkolben 165a verdichtet, bis der Druck groß genug ist, dass sich das Hochdruckventil des Flüssigkolbens 165a öffnet. - In
Fig. 7B ist die zweite Stellung des Weichenventils 151 dargestellt. Hier pumpt die hydrostatische Einheit 153 Flüssigkeit in die rechte Kammer des Messkolbens 152b, und die linke Kammer des Messkolbens 152b wird in den Flüssigkeitstank 168 entleert. Der Messkolben 152a pumpt Flüssigkeit in den Flüssigkolben 165b, während der Flüssigkolben 165a entleert wird. Dadurch wird der Druck im Speicherraum 166 über den Flüssigkolben 165b erhöht. - Im motorischen Betrieb, d. h. der Entspannung des in dem Speicherraum 166 enthaltenen Gases, wird in der in
Fig. 7C dargestellten Stellung des Weichenventils 151 Flüssigkeit aus dem Flüssigkolben 165b durch den Druck des Gases aus dem Speicherraum 166 in die linke Kammer des Messkolbens 152a gepumpt. Die Flüssigkeit aus der rechten Kammer des Messkolbens 152a wird in den Flüssigkolben 165a gepumpt. Da die beiden Messkolben 152a und 152b miteinander gekoppelt sind, treibt der Messkolben 152b über seine rechte Kammer die hydrostatische Einheit 153 und die damit verbundene Welle an. - Bei der in
Fig. 7D gezeigten Stellung des Weichenventils 151 sind die Funktionalitäten vertauscht. Der Flüssigkolben 165a überträgt den Hochdruck aus dem Speicherraum 166 auf den Messkolben 152b, wodurch der Messkolben 152a die hydrostatische Einheit 153 antreibt, welche die Energie in eine Bewegung der Welle umsetzt. - In der vorliegenden Beschreibung sind alle Welle/Flüssigkeitswandler mit gutem Grund als reversierbare hydrostatische 4-Quadranten-Einheiten dargestellt, denn damit kann der Hubverlauf verlustarm vorgegeben werden. Dies schließt andere Antriebslösungen nicht aus, allerdings sind die bekannten Lösungen problembehaftet. So scheitert beispielsweise die mechanische Anordnung mit Pleuel und Kolben - obschon mit einigermaßen brauchbarem Kurvenverlauf mit Verlangsamung an den Hubenden - an den Lagerkräften, die bei höherer Leistung und niedrigen Drehzahlen auftreten, abgesehen von den dazu erforderlichen Reduktionsgetrieben.
- Des Weiteren wird der Tauscherkolben-Arbeitsraum in den
Fig. 1 bis 7 ausschließlich als gekipptes Rechteck-Prisma zur Aufnahme des Blechpaketes dargestellt, mit dem Hochdruckventil an der obersten Spitze. Auch hier sind andere Lösungen denkbar, z. B. als Blechrolle wie nachfolgend beschrieben. Jedoch hat die Trichterwirkung des gekippten Rechteck-Prismas das günstigste Verhalten bezüglich der Stabilität des Flüssigkeitsspiegels bei schnellen Bewegungen, so dass diese Struktur vermutlich sogar für die Sprühtauschung geeignet wäre. -
Fig. 8 zeigt schematisch einen Teil einer Flüssigkolbenanordnung 180 mit einer (Wärme-) Tauscherrolle 181 als Alternative zum Rechteck-Prisma. Die Tauscherrolle 181 besteht aus einem zusammengerollten Stück Blech. Die (Wärme-) Tauscherrolle 181 ist im Zylinderkörper 182 eingelassen, dessen schräge Trennfuge 183 mit dem Kolbenblock 184 eine Konvergenz zum Hochdruckventil 185 hin erzeugt, ähnlich wie bei dem prismatischen Blechpaket 53a, 53b derFig. 3A . Die (Wärme-) Tauscherrolle 181 ist dabei um einen Zylinderkörper 186 des Kolbenblocks 184 gewickelt. Die (Wärme-) Tauscherrolle 181 wird samt Zylinderkörper 186 von einem stiftförmigen Sitzventilkörper 187 seitlich von unten nach oben durchdrungen, so dass über einen Kegel 188 die Verbindung zwischen Vordruckraum 189 und dem Flüssigkolbenraum in der (Wärme-) Tauscherrolle 181 geschaltet werden kann. - Mittels der (Wärme-) Tauscherrolle 181 ist eine totvolumenfreie Schaltung ohne Bewegung des Blechtauscher möglich. Anstelle des Blechtauschers wird hier der Kegel 188 bewegt, um die Verbindung zwischen Vordruckraum 189 und dem Flüssigkolbenraum in der (Wärme-) Tauscherrolle 181 zu öffnen oder zu schließen. Die Bewegung des Kegels 188 erfolgt durch Beaufschlagung eines Steuerkolbens 190 über einen Anschlussnippel 191, wodurch eine Haltefeder 192 zusammengedrückt wird.
- Ansonsten sind in
Fig. 8 die schon ausFig. 3A bekannten Elemente vorgesehen, wie Saug-/Auspuffventil, Messkolben, Vordruckkolben, Hydroweiche usw., die einen reibungsfreien Betrieb sichern. Der Rollenteil samt Steuerventilen kann selbstverständlich auch ohne Messkolben betrieben werden, im Sinne derFig. 1 mit separatem Niederdruckgenerator bzw. Entspanner. Die inFig. 8 gezeigte Tauscherrolle 181 samt Steuerventilen kann auch in die in denFig. 1 ,3 ,5 und7 gezeigten Flüssigkolbenanordnungen eingefügt werden. - Abschließend ist zu unterstreichen, dass rund um den isothermen Flüssigkolben - sei es mit Platten oder Sprühung - ein komplexes Umfeld mit reibungsfrei zusammenwirkenden Organen erforderlich ist, die in der Funktion innig verzahnt sind.
- Zusammenfassend kann festgehalten werden, dass der mittelbare Tauscher aus Blechplatten mit feinen und festen Abständen zwischen den Blechen in Gegentakt-Schaltkreise mit verstellbaren hydrostatischen Einheiten zwecks verlustarmer kinematischer Verbindung mit einer schnell drehenden Welle eingefügt wird. Dabei wird auf den rigorosen zyklischen Austausch der Flüssigkeit geachtet, damit eine optimale Wärmeabfuhr mit ununterbrochener Aufbereitung (Entgasung, Dekantierung, Wasserabscheidung) in einem drucklosen Sumpfbehälter möglich wird. Es sind verschiedene Bauarten von Gegentaktelementen möglich (mit zwei hydrostatischen Einheiten und fremder Vordruckerzeugung, mit Weichenventilen und Messkolben zwecks Mitnahme eines Vordruckkolbens, mit einem einzigen zentralen Weichenventil für beide Messkolben und Mischungen dieser Varianten), wobei ein Verbund von zwei phasenverschobenen Gegentaktelementen ein pulsationsarmes Gerät möglich macht, das als schwungradloser Luft/Welle-Transformator mit variabler Drehzahl zusammen mit einem Hochdruck-Luftbehälter einen flexiblen Energiespeicher darstellt, der gegenüber elektrochemischen Batterien den Vorteil hat, direkt ab Welle Maschinen oder Fahrzeuge antreiben zu können.
Claims (1)
- Flüssigkolbenanordnung (180) zur Verdichtung und Entspannung von Gasen, umfassend- einen Flüssigkolben, der durch einen von einer Flüssigkeit gebildeten Flüssigkeitsspiegel in einem Hochdruckraum verkörpert wird,gekennzeichnet durch- eine Blechrolle (181), die in dem Hochdruckraum als Wärmetauscher gelagert ist und von der Flüssigkeit umspült wird,- einen Niederdruckventilkegel (188) zur Verbindung des Hochdruckraums mit einem Niederdruckraum (189), und- eine Steuerung (187) des Niederdruckventilkegels (188), die sich durch den Hochdruckraum erstreckt.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012003288A DE102012003288B3 (de) | 2012-02-20 | 2012-02-20 | Flüssigkolbenanordnung mit Plattentauscher für die quasi-isotherme Verdichtung und Entspannung von Gasen |
PCT/EP2013/052946 WO2013124202A1 (de) | 2012-02-20 | 2013-02-14 | Flüssigkolbenanordnung mit plattentauscher für die quasi-isotherme verdichtung und entspannung von gasen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2820299A1 EP2820299A1 (de) | 2015-01-07 |
EP2820299B1 true EP2820299B1 (de) | 2016-09-28 |
Family
ID=47710178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13703838.6A Not-in-force EP2820299B1 (de) | 2012-02-20 | 2013-02-14 | Flüssigkolbenanordnung mit plattentauscher für die quasi-isotherme verdichtung und entspannung von gasen |
Country Status (7)
Country | Link |
---|---|
US (1) | US9234534B2 (de) |
EP (1) | EP2820299B1 (de) |
BR (1) | BR112014020814A2 (de) |
CA (1) | CA2864610A1 (de) |
DE (1) | DE102012003288B3 (de) |
DK (1) | DK2820299T3 (de) |
WO (1) | WO2013124202A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160069359A1 (en) * | 2013-04-12 | 2016-03-10 | Edward John Hummelt | Pressure vessel having plurality of tubes for heat exchange |
US20160305413A1 (en) * | 2013-04-12 | 2016-10-20 | Eaton Corporation | Pressure vessel graded media for heat exchange in a compression system |
WO2015006761A1 (en) | 2013-07-12 | 2015-01-15 | Eaton Corporation | Hydraulic system for pressurization of gas with reduction of dead volume |
DE102013227017B4 (de) * | 2013-12-20 | 2015-07-16 | Carnoo Ug (Haftungsbeschränkt) | Verdichtervorrichtung sowie Verfahren und Vorrichtung zum Betreiben eines links- oder rechtsdrehenden Kreisprozesses, insbesondere unter Einsatz einer solchen Verdichtervorrichtung |
EP3807539A1 (de) | 2016-05-17 | 2021-04-21 | Enairys Powertech SA | Hybride mehrstufige gasverdichtungs-/-expansionssysteme und -verfahren |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US586100A (en) * | 1897-07-13 | Air-compressor | ||
DE3408633A1 (de) * | 1984-03-09 | 1985-09-19 | Manfred Dr. 8060 Dachau Eckert | Prinzip und anlage fuer isotherme verdichtung von gasen und daempfen |
US5454426A (en) | 1993-09-20 | 1995-10-03 | Moseley; Thomas S. | Thermal sweep insulation system for minimizing entropy increase of an associated adiabatic enthalpizer |
DE4430716A1 (de) | 1994-08-30 | 1996-03-07 | Roland Bitzer | Isotherm-hydraulischer Hochdruckverdichter |
WO1998017492A1 (de) | 1996-10-18 | 1998-04-30 | Tcg Unitech Aktiengesellschaft | Antriebssystem für ein kraftfahrzeug |
CN1274050A (zh) | 1999-05-14 | 2000-11-22 | 杨双来 | 高压气泵 |
WO2008139267A1 (en) | 2007-05-09 | 2008-11-20 | Ecole Polytechnique Federale De Lausanne (Epfl) | Energy storage systems |
WO2009034421A1 (en) * | 2007-09-13 | 2009-03-19 | Ecole polytechnique fédérale de Lausanne (EPFL) | A multistage hydro-pneumatic motor-compressor |
US7802426B2 (en) | 2008-06-09 | 2010-09-28 | Sustainx, Inc. | System and method for rapid isothermal gas expansion and compression for energy storage |
DE102008042828B4 (de) * | 2008-10-14 | 2010-12-16 | Ago Ag Energie + Anlagen | Verfahren und Vorrichtung zum Betreiben eines Stirling-Kreisprozesses |
FR2944992B1 (fr) | 2009-05-04 | 2011-07-01 | Cerlase | Procede de transfert d'un motif sur un objet |
FR2945327A1 (fr) | 2009-05-07 | 2010-11-12 | Ecoren | Procede et equipement de transmission d'energie mecanique par compression et/ou detente quasi-isotherme d'un gaz |
EP2433000A2 (de) | 2009-05-22 | 2012-03-28 | General Compression Inc. | Verdichter und/oder expander |
EP2273119B1 (de) * | 2009-06-02 | 2011-10-12 | AGO AG Energie + Anlagen | Flüssigkolbenwandler |
US8196395B2 (en) | 2009-06-29 | 2012-06-12 | Lightsail Energy, Inc. | Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange |
EP2516952A2 (de) | 2009-12-24 | 2012-10-31 | General Compression Inc. | Verfahren und vorrichtungen für optmierte wärmeübertragung im inneren einer kompressions- und/oder expansionsvorrichtung |
-
2012
- 2012-02-20 DE DE102012003288A patent/DE102012003288B3/de not_active Expired - Fee Related
-
2013
- 2013-01-29 US US13/752,840 patent/US9234534B2/en not_active Expired - Fee Related
- 2013-02-14 DK DK13703838.6T patent/DK2820299T3/en active
- 2013-02-14 CA CA2864610A patent/CA2864610A1/en not_active Abandoned
- 2013-02-14 WO PCT/EP2013/052946 patent/WO2013124202A1/de active Application Filing
- 2013-02-14 BR BR112014020814A patent/BR112014020814A2/pt not_active Application Discontinuation
- 2013-02-14 EP EP13703838.6A patent/EP2820299B1/de not_active Not-in-force
Also Published As
Publication number | Publication date |
---|---|
EP2820299A1 (de) | 2015-01-07 |
DE102012003288B3 (de) | 2013-03-14 |
CA2864610A1 (en) | 2013-08-29 |
WO2013124202A1 (de) | 2013-08-29 |
BR112014020814A2 (pt) | 2019-08-27 |
US20130213213A1 (en) | 2013-08-22 |
DK2820299T3 (en) | 2017-01-09 |
US9234534B2 (en) | 2016-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2820299B1 (de) | Flüssigkolbenanordnung mit plattentauscher für die quasi-isotherme verdichtung und entspannung von gasen | |
DE102009038438A1 (de) | Verdrängermaschine | |
EP2761180A2 (de) | Verdrängerpumpe und betriebsverfahren derselben | |
EP0857877A2 (de) | Pneumatisch-hydraulischer Wandler | |
WO2017084792A1 (de) | Energiespeichersystem | |
EP2420681B1 (de) | Hydraulischer Linearantrieb | |
DE102011056894A1 (de) | Hydraulischer Linearantrieb | |
DE19646913A1 (de) | Hydraulische Antriebseinheit einer Presse und eine Taumelscheiben-Axialkolbenpumpe mit variabler Kapazität zur Verwendung mit dieser Vorrichtung | |
DE102004051993B4 (de) | Antriebssystem einer Umformpresse | |
DE69813048T2 (de) | Leistungsveränderlicher Verdichter und Klimaanlage mit einem solchen Verdichter | |
DE3042328C2 (de) | Kolbenpumpe | |
DE102017000523B4 (de) | Hydraulikvorrichtung für eine Formgebungsmaschine | |
EP1718866A1 (de) | Kolben-dickstoffpumpe | |
EP2771571A1 (de) | Hydrostatische kolbenmaschine | |
WO2000037800A1 (de) | Vorrichtung zur umwandlung von in druckluft gespeicherter energie in mechanische arbeit | |
DE102008060596A1 (de) | Hydrotransformator | |
DE102008036528A1 (de) | Verfahren zum Betrieb einer mehrpulsigen Kolbenpumpe, mehrpulsige Kolbenpumpe sowie Herstellung einer solchen | |
DE102012006290A1 (de) | Hydrotransformator | |
WO2013092456A2 (de) | Scrollverdichter mit axial verschiebbarer scrollspirale | |
DE102011077253A1 (de) | Axialkolbenmaschine in Schrägscheibenbauweise | |
EP3091230B1 (de) | Hydrostatische kolbenmaschine | |
WO2009060091A1 (de) | Hydraulischer drucktransformator und verfahren zu dessen betrieb | |
EP2765280A2 (de) | Verfahren zur direkten Umwandlung von Dampfenergie in Druck-Energie auf ein Fördermedium und Anordnung zur Durchführung des Verfahrens | |
DE19823086C2 (de) | Ventilsteuerung für strömungsmittelbetriebene schwungradlose Hubkolbenmaschine | |
DE102019214110A1 (de) | Dampfbetriebene Kolbenmaschine, insbesondere dampfbetriebene Freikolbenmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140919 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160407 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 833018 Country of ref document: AT Kind code of ref document: T Effective date: 20161015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013004768 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20170104 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161229 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170130 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170128 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013004768 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502013004768 Country of ref document: DE |
|
26N | No opposition filed |
Effective date: 20170629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170901 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 833018 Country of ref document: AT Kind code of ref document: T Effective date: 20180214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20190719 Year of fee payment: 7 Ref country code: DK Payment date: 20190723 Year of fee payment: 7 Ref country code: SE Payment date: 20190719 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190719 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20200229 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200214 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 |