EP2815499A2 - Procédé pour faire fonctionner une unité électrique conçue pour une centrale hydraulique d'accumulation par pompage - Google Patents
Procédé pour faire fonctionner une unité électrique conçue pour une centrale hydraulique d'accumulation par pompageInfo
- Publication number
- EP2815499A2 EP2815499A2 EP13709412.4A EP13709412A EP2815499A2 EP 2815499 A2 EP2815499 A2 EP 2815499A2 EP 13709412 A EP13709412 A EP 13709412A EP 2815499 A2 EP2815499 A2 EP 2815499A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- pump
- machine
- turbine
- frequency
- frequency converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000001360 synchronised effect Effects 0.000 claims abstract description 22
- 238000005086 pumping Methods 0.000 claims description 15
- 230000002441 reversible effect Effects 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 11
- 230000005611 electricity Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/04—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D19/00—Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/06—Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/02—Details
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/36—Arrangements for transfer of electric power between ac networks via a high-tension dc link
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/40—Synchronising a generator for connection to a network or to another generator
- H02J3/42—Synchronising a generator for connection to a network or to another generator with automatic parallel connection when synchronisation is achieved
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
- H02K7/1807—Rotary generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P1/00—Arrangements for starting electric motors or dynamo-electric converters
- H02P1/16—Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
- H02P1/46—Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
- H02P1/52—Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor by progressive increase of frequency of supply to motor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
- H02P25/024—Synchronous motors controlled by supply frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
- H02P27/14—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation with three or more levels of voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/04—Control effected upon non-electric prime mover and dependent upon electric output value of the generator
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/08—Control of generator circuit during starting or stopping of driving means, e.g. for initiating excitation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/16—Mechanical energy storage, e.g. flywheels or pressurised fluids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
Definitions
- the invention relates to a pumped storage power plant, in particular an electrical unit for this, comprising a frequency converter and a rotating electrical synchronous machine and method for operating the electrical unit.
- renewable energy sources such as wind and solar energy provide a steadily increasing share of the electricity demand. These energy sources have unsteady operating times. Thus, a direct and permanent supply of consumers with electricity from these sources of energy can not be guaranteed. For this purpose, energy storage must be used, which allow rapid changes between electricity surplus and electricity deficit and their performance and energy flow direction can be changed quickly and continuously.
- thermodynamic storage tanks compressed air storage tanks, electrothermal storage tanks
- large amounts of energy typically over 100 MWh and usually over 1 GWh pumped storage are used.
- Pumped storage or pumped storage power plants are particularly interesting due to the large amount of energy that can be stored.
- water is pumped from a first natural or artificially created reservoir into a second, higher-lying reservoir.
- the electrical energy is converted into potential energy.
- water from the higher storage tanks are routed via a turbine back to the lower reservoir. Minimizing losses in the conversion processes is particularly important to this system.
- variable-speed drives By decoupling the speed of the machines from a grid frequency, pump and turbine rotational speeds can be adjusted to operate close to optimum efficiency. In addition, it allows the variation of the speed in pumping mode, the power consumption freely. In particular, variable speed systems can be quickly connected from standstill to the network or synchronized.
- Pumped storage according to the prior art have double-fed asynchronous machines and power electronic frequency converter, whereby a speed control of a pump and a turbine is possible.
- a pumping power is controlled and on the other hand, if required, the efficiency of the system can be increased.
- a synchronous machine In an embodiment for controlling the speed of the pump or the turbine, a synchronous machine is used whose stator is fed by means of a three-phase current with adjustable frequency.
- the frequency conversion is generated by means of a combination of a rectifier and an inverter, which are connected to each other via a voltage or current link.
- the pump is first dewatered.
- additional auxiliary devices are often used. This is necessary because in the prior art not enough torque is available to start the pump under load.
- the pump in addition to an auxiliary drive such as an auxiliary turbine or launch a power electronic starter. Only when the pump is in operation, water is left from the reservoir into the pump and a shut-off valve is opened. This also puts a significant load on the pump, because when the water is admitted, a strong pulse is transmitted to the pump, which increases wear on the pump parts.
- pole switches are used to switch the orientation of the rotating field in the electrical machine. These are complicated and cost-intensive in production and maintenance.
- the present invention is based on the object to simplify the operation of a pumped storage power plant and to accelerate change of operation.
- the invention provides a method for starting up in turbine operation of an electric unit for a pumped storage power plant.
- the pumped storage power plant comprises a rotary synchronous electric machine and a frequency converter, wherein the machine is connectable to a turbine and a pump or a combined pumping turbine. Furthermore, the machine can be connected to a power grid via the frequency converter.
- the method provides that the frequency converter is used to start the turbine and power of the electric machine is fed directly, for example after starting up in the power grid.
- a method for starting in the pumping operation of an electric unit for a pumped storage power plant is provided.
- the pumped storage power plant comprises a rotary synchronous electric machine and a frequency converter, wherein the machine is connectable to a turbine and a pump or a combined pumping turbine. Furthermore, the machine can be connected to a power grid via the frequency converter.
- the process provides that the frequency converter is used to start the pump and the pump is approached directly from the state and under load, for example, a flooded pump or a water column
- the pumped storage power plant comprises a rotary synchronous electric machine and a frequency converter, wherein the machine is connectable to a turbine and a pump or a combined pumping turbine. Furthermore, the machine can be connected to a power grid via the frequency converter.
- the method provides that the electrical machine is operated synchronously with the power supply system regardless of the operating state of the pump or turbine and supplies active power and reactive power.
- the invention further relates to an electrical unit for a pumped storage power plant.
- the pumped storage power plant comprises a rotary synchronous electric machine and a frequency converter, wherein the machine is connectable to a turbine and a pump or a combined pumping turbine. Furthermore, the machine can be connected to a power grid via the frequency converter.
- the frequency converter consists of at least two electrically connectable elements, wherein depending on the operation of the machine one element each as a rectifier and an element as an inverter is used and the frequency converter as a self-commutated converter with a Voltage intermediate circuit or is formed with a current intermediate circuit.
- one element each can be used as a rectifier and one element as an inverter, wherein the machine-side element is also called inverter unit INU and the network-side element is also called Active Rectifier Unit ARU.
- Synchronous machine and a frequency converter Synchronous machine and a frequency converter.
- FIG. 1 shows a schematic representation of an electrical unit 1 comprising a rotating electrical synchronous machine 2 and a frequency converter 3.
- the machine 2 is housed in a cavern, for example due to local conditions or for protection.
- the machine also has a stator, which is fed by means of a three-phase current with adjustable frequency.
- the operation of the machine 2 with the frequency converter 3 in pumped storage plants allows an improvement of the dynamic behavior, so that start, stop and switching times can be reduced.
- the invention provides a method for starting up in turbine operation of the electrical unit 1 for a pumped storage power plant.
- the method provides that the frequency converter 3 is used to start the turbine and power of the electric machine 2 is fed directly, for example, after starting up in the power grid 6.
- a method for starting in the pumping operation of the electric unit 1 for a pumped storage power plant is provided.
- the method provides that the frequency converter 3 is used to start the pump 5 and the pump. 5 is approached directly from a stand and under load, for example, a flooded pump or a water column.
- the frequency converter 3 can supply the pump 5 with sufficient torque to start directly from a state without prior dewatering of the pump 5.
- the pump 5 can be operated immediately without delay and a start is possible without much effort.
- the power drawn from the power grid 6 may increase in a ramped manner and it is not necessary to interrupt the supply for synchronization.
- a method for operating the electric unit 1 for a pumped storage power plant is provided.
- the method provides that the electric machine 2 is synchronized with a frequency of the power grid 6 and is operated synchronously with the power grid 6 irrespective of the operating state of the pump 5 or the turbine 4 and supplies active power and reactive power.
- the methods for starting up and switching over the operation are significantly faster by using the frequency converter 3 than in the prior art.
- no additional transformer between the frequency converter 3 and the machine 2 is provided in the electrical unit 1, thereby the method can be additionally accelerated compared to the prior art.
- the frequency converter 3 is used to switch the rotational direction of a rotating field of the engine 2.
- a Polwendeschalter from the prior art is no longer necessary.
- the frequency converter 3 ensures that the power plant during the switching always on the power grid 6 and thus remains synchronized. It is therefore possible to control the switching time and the power gradient. Over the entire speed range while the machine 2 can be fed so that the speed reversal is supported by the torque of the machine 2.
- switching between pumps and turbines can be done very quickly even if the water column has to come to a standstill in a pump turbine, since gravity additionally brakes the water column.
- the frequency converter 3 and thus also the machine 2 need not be disconnected from the mains for this process.
- the frequency converter 3 and the machine 2 remain connected to the power grid 6. Furthermore, a magnetization of a block transformer for connection to the power grid 6 via the frequency converter 3 for shock-free connection.
- the frequency converter 3 comprises, for example, two elements which, depending on the operating mode of the machine, can be used, for example, in motor or generator operation as an inverter or rectifier.
- a speed control is made possible by the fact that the machine 2 has a stator, which is fed by means of a three-phase current with adjustable frequency.
- the machine-side element or inverter unit INU of the frequency converter 3 is operated as an inverter in pump mode and as a rectifier in turbine mode.
- the grid-side element or Actife Rectifier Unit ARU of the frequency converter 3 is operated as a rectifier in pump mode and as an inverter in turbine mode.
- the frequency conversion is generated by means of a combination of a rectifier and an inverter, which are connected to one another via a concentrated or distributed voltage intermediate circuit or current intermediate circuit.
- the intermediate circuit furthermore has units for storing energy, for example, capacitors in the case of a voltage intermediate circuit and inductors in a current intermediate circuit.
- the intermediate circuit is provided between the elements and can be formed concentrated or distributed.
- the operation of the machine with a freely selectable speed has considerable advantages, in particular, in the embodiment with a frequency converter and a synchronous machine, an established, reliable and low-maintenance generator technology can be used. Furthermore, it is possible to operate a pump 5 and a turbine 4 independently of each other in their optimum speed range. By using the synchronous machine 2, high speeds can be realized, for example, for high gradients, especially at high powers. In addition, the operationally accessible speed range extends continuously from zero to the maximum speed and is limited only by the operational limits of the pump 5 and the turbine. 4
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Control Of Eletrric Generators (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Ac Motors In General (AREA)
- Motor And Converter Starters (AREA)
- Rectifiers (AREA)
- Control Of Non-Positive-Displacement Pumps (AREA)
Abstract
L'invention concerne une centrale hydraulique d'accumulation par pompage, en particulier une unité électrique (1) conçue pour une centrale hydraulique d'accumulation par pompage, comprenant une machine synchrone électrique rotative (2) et un convertisseur de fréquence (3), ainsi qu'un procédé pour faire fonctionner cette unité électrique (1). L'invention concerne un procédé de démarrage de fonctionnement de turbine de l'unité électrique (1) pour une centrale hydraulique d'accumulation par pompage. Selon ce procédé, le convertisseur de fréquence (3) est utilisé pour faire démarrer la turbine et la puissance de la machine électrique (2) est injectée dans le réseau électrique (6), directement, par exemple après le démarrage. L'invention concerne en outre un procédé de démarrage de fonctionnement de pompe de l'unité électrique (1) pour une centrale hydraulique d'accumulation par pompage. Selon ce procédé, le convertisseur de fréquence (3) est utilisé pour faire démarrer la pompe (5) et cette pompe (5) est démarrée directement sans préparation et sous l'effet de la charge d'une colonne d'eau ou d'une pompe noyée (5) par exemple. Cette invention concerne par ailleurs un procédé pour faire fonctionner l'unité électrique (1) pour une centrale hydraulique d'accumulation par pompage. Selon ce procédé, la machine électrique (2) est synchronisée avec une fréquence du réseau électrique (6) et fonctionne de manière synchrone indépendamment de l'état de fonctionnement de la pompe (5) ou de la turbine (4) avec le réseau électrique (6) et fournit une puissance active et une puissance réactive.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13709412.4A EP2815499A2 (fr) | 2012-03-09 | 2013-03-11 | Procédé pour faire fonctionner une unité électrique conçue pour une centrale hydraulique d'accumulation par pompage |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12158786 | 2012-03-09 | ||
EP13709412.4A EP2815499A2 (fr) | 2012-03-09 | 2013-03-11 | Procédé pour faire fonctionner une unité électrique conçue pour une centrale hydraulique d'accumulation par pompage |
PCT/EP2013/054884 WO2013132105A2 (fr) | 2012-03-09 | 2013-03-11 | Procédé pour faire fonctionner une unité électrique conçue pour une centrale hydraulique d'accumulation par pompage |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2815499A2 true EP2815499A2 (fr) | 2014-12-24 |
Family
ID=47844349
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13709412.4A Withdrawn EP2815499A2 (fr) | 2012-03-09 | 2013-03-11 | Procédé pour faire fonctionner une unité électrique conçue pour une centrale hydraulique d'accumulation par pompage |
EP13709409.0A Withdrawn EP2815480A2 (fr) | 2012-03-09 | 2013-03-11 | Unité électrique conçue pour une centrale hydraulique d'accumulation par pompage |
EP13710818.9A Revoked EP2823543B1 (fr) | 2012-03-09 | 2013-03-11 | Procédé d'utilisation d'un groupe électrique |
EP13709408.2A Active EP2823557B2 (fr) | 2012-03-09 | 2013-03-11 | Unité électrique pour centrale de pompage |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13709409.0A Withdrawn EP2815480A2 (fr) | 2012-03-09 | 2013-03-11 | Unité électrique conçue pour une centrale hydraulique d'accumulation par pompage |
EP13710818.9A Revoked EP2823543B1 (fr) | 2012-03-09 | 2013-03-11 | Procédé d'utilisation d'un groupe électrique |
EP13709408.2A Active EP2823557B2 (fr) | 2012-03-09 | 2013-03-11 | Unité électrique pour centrale de pompage |
Country Status (5)
Country | Link |
---|---|
US (4) | US9683540B2 (fr) |
EP (4) | EP2815499A2 (fr) |
JP (4) | JP2015516790A (fr) |
CN (4) | CN104145390B (fr) |
WO (7) | WO2013132100A2 (fr) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013132100A2 (fr) * | 2012-03-09 | 2013-09-12 | Abb Technology Ag | Unité électrique conçue pour une centrale hydraulique d'accumulation par pompage |
CN104410172A (zh) * | 2014-11-28 | 2015-03-11 | 国家电网公司 | 一种基于直流发电电动机的抽水蓄能系统 |
CN104600726B (zh) * | 2014-11-28 | 2017-02-22 | 国家电网公司 | 一种基于轻型直流输电的抽水蓄能系统 |
JP2020525670A (ja) * | 2017-06-29 | 2020-08-27 | ヘンリー ケイ. オバーマイヤー, | 改良された可逆ポンプタービン敷設 |
DE102018107229A1 (de) * | 2018-03-27 | 2019-10-02 | Voith Patent Gmbh | Verfahren zum Betrieb eines Pumpspeicherkraftwerks |
DE102018109926B4 (de) * | 2018-04-25 | 2019-12-19 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Elektrische Anordnung |
WO2021207588A1 (fr) * | 2020-04-09 | 2021-10-14 | RCAM Technologies, Inc. | Stockage d'énergie hydroélectrique à pompage maritime |
US11685604B2 (en) | 2021-09-17 | 2023-06-27 | William Taggart, IV | Underground energy storage systems |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101924508A (zh) * | 2010-08-20 | 2010-12-22 | 上海交通大学 | 大功率抽水蓄能机组启动用变频调速系统 |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1247520A (en) * | 1907-06-07 | 1917-11-20 | Reginald A Fessenden | System of storing power. |
US1217165A (en) * | 1909-03-08 | 1917-02-27 | Reginald A Fessenden | Power plant. |
CH490609A (fr) * | 1969-04-24 | 1970-05-15 | Vevey Atel Const Mec | Installation hydro-électrique |
US3648147A (en) | 1970-11-12 | 1972-03-07 | Gen Electric | Starting control scheme for rectifier-inverter systems |
CH589178A5 (en) | 1973-03-05 | 1977-06-30 | Von Rotz Arthur | Hydroelectric power station turbine plant - incorporates pumps and turbines in circle with common pressure pipe |
US3846698A (en) * | 1973-09-25 | 1974-11-05 | Westinghouse Electric Corp | Overcurrent events monitoring system |
US3939356A (en) * | 1974-07-24 | 1976-02-17 | General Public Utilities Corporation | Hydro-air storage electrical generation system |
DE2536447B2 (de) * | 1974-09-16 | 1977-09-01 | Gebruder Sulzer AG, Winterthur (Schweiz) | Anlage zur speicherung von energie eines elektrischen versorgungsnetzes mittels druckluft und zur wiederverwertung derselben |
US4182128A (en) * | 1977-12-01 | 1980-01-08 | Oros Company | Underground pumped liquid energy storage system and method |
US4607169A (en) * | 1985-01-03 | 1986-08-19 | Donnelly Jr Joseph R | Artesian well generated power system |
EP0243937B1 (fr) | 1986-04-30 | 1991-05-29 | Hitachi, Ltd. | Système générateur d'énergie du type pompe-accumulation à vitesse variable |
US4786852A (en) * | 1986-07-18 | 1988-11-22 | Sundstrand Corporation | Inverter operated turbine engine starting system |
JPH0683593B2 (ja) * | 1987-08-14 | 1994-10-19 | 株式会社日立製作所 | 発電電動装置及び制御方法 |
US5015941A (en) | 1989-10-30 | 1991-05-14 | Sundstrand Corporation | Power conversion system with bi-directional power converter having prime mover start capability |
US5047654A (en) * | 1990-02-05 | 1991-09-10 | Edwin Newman | Solar powered electricity mine system |
DE4026955C2 (de) | 1990-08-25 | 1994-08-18 | Semikron Elektronik Gmbh | Umrichter |
US5864183A (en) * | 1996-08-28 | 1999-01-26 | Voith Hydro, Inc. | Method and apparatus for optimizing performance of a pump-turbine |
DE19845903A1 (de) | 1998-10-05 | 2000-04-06 | Aloys Wobben | Elektrische Energieübertragungsanlage |
DK199901436A (da) * | 1999-10-07 | 2001-04-08 | Vestas Wind System As | Vindenergianlæg |
EP1130764B1 (fr) * | 2000-02-23 | 2007-05-02 | ALSTOM Technology Ltd | Installation d'une centrale d'énergie |
DE10044262A1 (de) * | 2000-09-07 | 2002-03-21 | Stephan Joeckel | Getriebelose Windkraftanlage mit Blattwinkelverstellung zur aktiven Schwingungsdämpfung im Antriebsstrang |
DE10044261C2 (de) | 2000-09-07 | 2003-01-09 | Nsg Sanierungsgesellschaft In | Vorrichtung und Verfahren zur Stabilisierung der Wasserqualität fremdwassergefluteter Restlochseen von Braunkohlentagebauen |
CN1501564A (zh) * | 2002-11-12 | 2004-06-02 | 徐甫荣 | 交流电动机变频器供电与电网供电的同步切换控制装置 |
FI116174B (fi) * | 2003-04-08 | 2005-09-30 | Abb Oy | Kokoonpano ja menetelmä suuntaajavälineiden suojaamiseksi |
FI20030525A0 (fi) * | 2003-04-08 | 2003-04-08 | Abb Oy | Suuntaajavälineiden suojauskokoonpano |
DE10357292B4 (de) * | 2003-12-05 | 2006-02-02 | Voith Turbo Gmbh & Co. Kg | Verfahren für die Steuerung eines Antriebsstrangs für eine Strömungskraftmaschine mit Drehzahlführung, Kraftstoßreduktion und Kurzzeitenergiespeicherung |
DE102004005191A1 (de) | 2004-02-02 | 2005-09-01 | Voith Siemens Hydro Power Generation Gmbh & Co. Kg | Verfahren und Vorrichtung zum Anfahren der Pumpturbine eines Pumpspeicherkraftwerkes |
KR101117250B1 (ko) | 2005-08-18 | 2012-03-16 | 삼성전자주식회사 | 삼상 전력 제어 시스템 및 그 제어방법 |
US7239035B2 (en) * | 2005-11-18 | 2007-07-03 | General Electric Company | System and method for integrating wind and hydroelectric generation and pumped hydro energy storage systems |
US7281371B1 (en) * | 2006-08-23 | 2007-10-16 | Ebo Group, Inc. | Compressed air pumped hydro energy storage and distribution system |
FR2908481B1 (fr) * | 2006-11-10 | 2008-12-26 | Joseph Paoli | Adaptateur debit-pression convertisseur hydroelectrique sur une conduite |
US7843076B2 (en) * | 2006-11-29 | 2010-11-30 | Yshape Inc. | Hydraulic energy accumulator |
US7656050B2 (en) * | 2007-09-27 | 2010-02-02 | William Riley | Hydroelectric pumped-storage |
JP2009137322A (ja) * | 2007-12-03 | 2009-06-25 | Mazda Motor Corp | ハイブリッド車両の制御方法およびハイブリッド車両 |
DK2235367T3 (en) * | 2007-12-21 | 2016-06-27 | 2-B Energy Holding B V | Wind farm |
DE102008007659A1 (de) | 2008-02-06 | 2009-02-19 | Siemens Aktiengesellschaft | Umrichter |
DE102008022618A1 (de) * | 2008-05-07 | 2009-12-31 | Siemens Aktiengesellschaft | Stromversorgungseinrichtung |
US7940537B2 (en) * | 2008-12-31 | 2011-05-10 | Teco-Westinghouse Motor Company | Partial regeneration in a multi-level power inverter |
US20100253255A1 (en) * | 2009-04-02 | 2010-10-07 | Indian Institute Of Science | Wound field synchronous motor drive |
US7863766B2 (en) | 2009-06-30 | 2011-01-04 | Teco-Westinghouse Motor Company | Power converter for use with wind generator |
EP2290799A1 (fr) * | 2009-08-25 | 2011-03-02 | Converteam Technology Ltd | Arrangements de convertisseur bidirectionnel alternatif-continu |
CN201584856U (zh) | 2009-12-22 | 2010-09-15 | 西安久和能源科技有限公司 | 一种笼型异步风力发电机组 |
US8018083B2 (en) * | 2010-08-05 | 2011-09-13 | General Electric Company | HVDC connection of wind turbine |
ES2574707T3 (es) * | 2010-12-10 | 2016-06-21 | Vestas Wind Systems A/S | Un procedimiento para hacer funcionar una turbina eólica, así como un sistema adecuado para el mismo |
NO332201B1 (no) | 2011-01-07 | 2012-07-23 | Smartmotor As | Energiomformingssystem |
CN202059333U (zh) * | 2011-06-10 | 2011-11-30 | 北京康拓科技有限公司 | 一种变频器 |
WO2013132100A2 (fr) * | 2012-03-09 | 2013-09-12 | Abb Technology Ag | Unité électrique conçue pour une centrale hydraulique d'accumulation par pompage |
-
2013
- 2013-03-11 WO PCT/EP2013/054864 patent/WO2013132100A2/fr active Application Filing
- 2013-03-11 EP EP13709412.4A patent/EP2815499A2/fr not_active Withdrawn
- 2013-03-11 WO PCT/EP2013/054884 patent/WO2013132105A2/fr active Application Filing
- 2013-03-11 EP EP13709409.0A patent/EP2815480A2/fr not_active Withdrawn
- 2013-03-11 EP EP13710818.9A patent/EP2823543B1/fr not_active Revoked
- 2013-03-11 JP JP2014560408A patent/JP2015516790A/ja active Pending
- 2013-03-11 WO PCT/EP2013/054867 patent/WO2013132101A2/fr active Application Filing
- 2013-03-11 CN CN201380013138.9A patent/CN104145390B/zh active Active
- 2013-03-11 US US14/384,071 patent/US9683540B2/en active Active
- 2013-03-11 WO PCT/EP2013/054870 patent/WO2013132103A1/fr active Application Filing
- 2013-03-11 CN CN201380013199.5A patent/CN104145395A/zh active Pending
- 2013-03-11 JP JP2014560409A patent/JP2015509698A/ja not_active Withdrawn
- 2013-03-11 US US14/384,128 patent/US9657709B2/en active Active
- 2013-03-11 JP JP2014560407A patent/JP2015512244A/ja not_active Withdrawn
- 2013-03-11 CN CN201380013136.XA patent/CN104145415A/zh active Pending
- 2013-03-11 EP EP13709408.2A patent/EP2823557B2/fr active Active
- 2013-03-11 US US14/384,120 patent/US20150292469A1/en not_active Abandoned
- 2013-03-11 WO PCT/EP2013/054868 patent/WO2013132102A2/fr active Application Filing
- 2013-03-11 CN CN201380013200.4A patent/CN104145416B/zh active Active
- 2013-03-11 US US14/384,067 patent/US20150048623A1/en not_active Abandoned
- 2013-03-11 WO PCT/EP2013/054862 patent/WO2013132099A2/fr active Application Filing
- 2013-03-11 JP JP2014560410A patent/JP2015511108A/ja active Pending
- 2013-03-11 WO PCT/EP2013/054857 patent/WO2013132098A2/fr active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101924508A (zh) * | 2010-08-20 | 2010-12-22 | 上海交通大学 | 大功率抽水蓄能机组启动用变频调速系统 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013132105A2 (fr) | Procédé pour faire fonctionner une unité électrique conçue pour une centrale hydraulique d'accumulation par pompage | |
EP2826121A1 (fr) | Procédé de commande d'un système pour alimenter un réseau d'alimentation en courant électrique | |
WO2010121783A1 (fr) | Installation de production d'énergie électrique à vitesse de rotation variable, à fréquence de sortie constante, en particulier une éolienne | |
EP2562411B1 (fr) | Centrale électrique avec entrepôt pour la matière utilisée pour produire de l'énergie | |
EP2944019B1 (fr) | Unité électrique pour une centrale hydraulique d'accumulation par pompage | |
EP2696464B1 (fr) | Centrale photovoltaïque | |
EP2986846B1 (fr) | Mécanisme d'entraînement et procédé servant à faire fonctionner un mécanisme d'entraînement de ce type | |
AT511782A1 (de) | Energiegewinnungsanlage, insbesondere windkraftanlage | |
DE102015014117A1 (de) | Verfahren und Anordnung zur Bereitstellung von elektrischer Regelleistung zur Stabilisierung eines Wechselstromnetzes | |
WO2012104333A1 (fr) | Procédé de fourniture de courant réactif au moyen d'un convertisseur et ensemble convertisseur et installation d'alimentation en énergie | |
EP3688860B1 (fr) | Procédé pour alimenter en énergie des composants d'éolienne, dispositif d'alimentation en énergie et éolienne comprenant ce dispositif | |
EP2157676A2 (fr) | Procédé et dispositif de commutation d'une installation photovoltaïque sur un réseau d'alimentation | |
EP2926003A1 (fr) | Procédé d'exploitation d'une installation de production d'énergie et d'un système de production d'énergie équipé d'installations de production d'énergie de ce type | |
DE102013014830A1 (de) | Elektrische Einheit für ein Pumpspeicherkraftwerk | |
EP2689531B1 (fr) | Système d'accumulation par pompage | |
DE102004005191A1 (de) | Verfahren und Vorrichtung zum Anfahren der Pumpturbine eines Pumpspeicherkraftwerkes | |
WO2019110090A1 (fr) | Dispositif comportant une machine asynchrone et procédé permettant son fonctionnement | |
EP3759338B1 (fr) | Centrale électrique combinée et procédé pour son fonctionnement | |
EP3349350A1 (fr) | Procédé de fonctionnement d'une machine asynchrone en mode générateur | |
DE102010040613A1 (de) | Inselnetz und Verfahren zum Betreiben eines Inselnetzes | |
DE102012208946A1 (de) | Vorrichtung und Verfahren zum Anfahren eines Generators | |
DE102010034120A1 (de) | Modularer Umrichter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140917 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17Q | First examination report despatched |
Effective date: 20150410 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150821 |