EP2886629B1 - Process for the hydrodesulfuration of hydrocarbon fractions - Google Patents
Process for the hydrodesulfuration of hydrocarbon fractions Download PDFInfo
- Publication number
- EP2886629B1 EP2886629B1 EP14306951.6A EP14306951A EP2886629B1 EP 2886629 B1 EP2886629 B1 EP 2886629B1 EP 14306951 A EP14306951 A EP 14306951A EP 2886629 B1 EP2886629 B1 EP 2886629B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- stage
- metal
- weight
- hydrocarbons
- cut
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000002430 hydrocarbons Chemical class 0.000 title claims description 72
- 229930195733 hydrocarbon Natural products 0.000 title claims description 70
- 238000000034 method Methods 0.000 title claims description 49
- 239000004215 Carbon black (E152) Substances 0.000 title claims description 24
- 239000000203 mixture Substances 0.000 claims description 76
- 239000003054 catalyst Substances 0.000 claims description 73
- 229910052751 metal Inorganic materials 0.000 claims description 57
- 239000002184 metal Substances 0.000 claims description 57
- 238000009835 boiling Methods 0.000 claims description 53
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 45
- 229910052717 sulfur Inorganic materials 0.000 claims description 44
- 239000011593 sulfur Substances 0.000 claims description 43
- 239000001257 hydrogen Substances 0.000 claims description 36
- 229910052739 hydrogen Inorganic materials 0.000 claims description 36
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 35
- 239000007788 liquid Substances 0.000 claims description 27
- 150000001336 alkenes Chemical class 0.000 claims description 26
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 18
- 238000004523 catalytic cracking Methods 0.000 claims description 18
- 238000005984 hydrogenation reaction Methods 0.000 claims description 14
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 13
- 229910052750 molybdenum Inorganic materials 0.000 claims description 13
- 239000011733 molybdenum Substances 0.000 claims description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 239000010941 cobalt Substances 0.000 claims description 12
- 229910017052 cobalt Inorganic materials 0.000 claims description 12
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 12
- 238000004821 distillation Methods 0.000 claims description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims description 10
- 239000011574 phosphorus Substances 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 238000004939 coking Methods 0.000 claims description 7
- 150000001993 dienes Chemical class 0.000 claims description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 239000010937 tungsten Substances 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 238000004230 steam cracking Methods 0.000 claims description 6
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 239000003502 gasoline Substances 0.000 description 55
- 239000003921 oil Substances 0.000 description 13
- 150000003464 sulfur compounds Chemical class 0.000 description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 238000000926 separation method Methods 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000006477 desulfuration reaction Methods 0.000 description 8
- 230000023556 desulfurization Effects 0.000 description 8
- 239000000446 fuel Substances 0.000 description 8
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 8
- 239000003350 kerosene Substances 0.000 description 7
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 7
- 230000000737 periodic effect Effects 0.000 description 7
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 238000005987 sulfurization reaction Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 150000005673 monoalkenes Chemical class 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 4
- 230000008030 elimination Effects 0.000 description 4
- 238000003379 elimination reaction Methods 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001833 catalytic reforming Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000011066 ex-situ storage Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 235000012245 magnesium oxide Nutrition 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- 229910052815 sulfur oxide Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- QGAVSDVURUSLQK-UHFFFAOYSA-N ammonium heptamolybdate Chemical compound N.N.N.N.N.N.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Mo].[Mo].[Mo].[Mo].[Mo].[Mo].[Mo] QGAVSDVURUSLQK-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 extrudates Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000004231 fluid catalytic cracking Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical class [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000004525 petroleum distillation Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/08—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/04—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
- C10G67/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/104—Light gasoline having a boiling range of about 20 - 100 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1044—Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1048—Middle distillates
- C10G2300/1051—Kerosene having a boiling range of about 180 - 230 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1048—Middle distillates
- C10G2300/1055—Diesel having a boiling range of about 230 - 330 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1048—Middle distillates
- C10G2300/1059—Gasoil having a boiling range of about 330 - 427 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/02—Gasoline
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/04—Diesel oil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/06—Gasoil
Definitions
- the present invention relates to a process for the simultaneous production of two cuts of hydrocarbons with low sulfur contents.
- the process makes it possible to desulfurize jointly (as a mixture) a gasoline cut containing olefins and a cut heavier than the gasoline cut so as to subsequently produce a desulfurized gasoline cut with a limited loss of octane number and a heavy cut also desulfurized.
- the present invention is particularly interesting for producing two desulfurized cuts which can be sent respectively to the gasoline pool and to the diesel, kerosene and/or fuel oil pool.
- Sulfur in fuels is an undesirable impurity because it is converted to sulfur oxides when these products are burned.
- Sulfur oxides are unwanted air pollutants that can further deactivate most catalysts that have been developed for catalytic converters used in cars to catalyze the conversion of harmful exhaust gases. Therefore, it is desirable to reduce the sulfur content of products used in gasoline and diesel fuel compositions to the lowest possible levels.
- Catalytic cracking gasoline is the essential product of FCC (FCC "Fluid Catalytic Cracking” according to Anglo-Saxon terminology) obtained with a yield of around 50% and represents approximately 25 to 30% of the gasoline pool of refineries. 'Western Europe.
- FCC Fluid Catalytic Cracking
- the main negative characteristic of these FCC gasolines compared to commercial fuels is their high sulfur contents and thus constitute the main vector of the presence of sulfur in fuels.
- hydrocarbons produced from catalytic cracking processes are conventionally treated by hydrotreating.
- the hydrotreating process includes contacting the hydrocarbon feed with hydrogen in the presence of a catalyst so as to convert the sulfur contained in the impurities into hydrogen sulfide, which can then be separated and converted in elemental sulfur.
- Hydrotreating processes can result in partial destruction of feedstock olefins by converting them to saturated hydrocarbons through hydrogenation. This destruction of olefins by hydrogenation is not desirable in the case of cracked gasolines because it results in costly hydrogen consumption and a significant reduction in the octane number of hydrodesulfurized gasolines.
- the residual sulfur compounds generally present in desulfurized gasoline can be separated into two distinct families: the non-hydrodesulfurized sulfur compounds present in the feed and the sulfur compounds formed in the hydrodesulfurization reactor by secondary reactions known as recombination.
- the majority compounds are the mercaptans resulting from the addition of the H 2 S formed in the reactor to the mono-olefins present in the feed. Reducing the content of recombinant mercaptans can be achieved by catalytic hydrodesulphurization but at the cost of saturation of a significant part of the mono-olefins, which then leads to a sharp reduction in the octane number of the gasoline. as well as overconsumption of hydrogen.
- the document process EP 902 078 thus treats a distillate resulting from an atmospheric distillation step.
- This type of distillate contains practically no compounds olefinic hydrocarbons unlike the feed treated in the present invention, one of the cuts which compose it contains a significant content of olefins, typically greater than 20% by weight relative to the total weight of said cut.
- the majority of recombinant sulfur compounds encountered in the process of the document EP 902 078 are therefore not mercaptans resulting from the addition of the H 2 S formed in the reactor to the mono-olefins present in the feed, but probably the result of the addition of the H 2 S formed to olefins resulting cracking reactions induced by the high temperature necessary for very deep desulphurization of the feed.
- the solution recommended by the patent EP 902 078 consists of carrying out extensive hydrodesulfurization at high temperature in a first reactor followed by gentler hydrodesulfurization in a second reactor which makes it possible to eliminate any recombination mercaptans and/or olefins which would have been produced in the first reactor.
- This way of operating is unsuitable for a feed containing gasoline from a conversion unit with a high olefin content because it risks causing significant hydrogenation of said olefins during the first step, thus inducing a loss of octane number. unwanted.
- the document US 2013/0087484 describes a process for producing p-xylene from a mixture of naphtha and light cutting oil (LCO, “Light Cycle Oil” according to Anglo-Saxon terminology) from a catalytic cracking unit.
- the process comprises a step of hydrodesulfurization of said mixture followed by fractionation of the desulfurized effluent into three cuts, namely, a light C 2 -C 4 cut, a naphtha cut and a heavy cut.
- the intermediate naphtha cut is processed in a catalytic reforming unit to produce aromatics and the heavy cut is hydrocracked to give an aromatics-rich effluent which is recycled to the fractionation column.
- the second hydrodesulfurization step is carried out at a temperature lower by at least 10°C, preferably by at least 20°C, than that of the first hydrodesulfurization step.
- the prior art also includes the document FR 2811328 which teaches a process for hydrodesulfurization of a gasoline cut which can be a mixture of gasolines coming from different conversion processes such as steam cracking, coking or visbreaking processes or even gasolines directly resulting from the atmospheric distillation of petroleum.
- An aim of the invention is to propose a hydrodesulfurization process which can respond to the problems of overcapacity of gasoline hydrodesulfurization units.
- the boiling temperatures can fluctuate by plus or minus 5°C compared to the values mentioned.
- the inventors have surprisingly observed that it is possible to jointly hydrodesulfurize a mixture containing a gasoline cut and a distillate cut loaded with sulfur and with a low olefin content in order to produce a gasoline cut with a low sulfur content, in particular in mercaptans, without significant loss of octane number and a cut of distillate depleted in sulfur which can then be upgraded to the diesel and/or kerosene pool or as fuel for maritime use.
- the treatment in the first hydrodesulfurization step of the hydrocarbon mixture leads surprisingly to limit the formation of recombinant mercaptans, reaction products of the addition of H 2 S with the olefins, and thus to obtain at the end of the process a gasoline cut having a very low mercaptan content.
- the second hydrodesulfurization step is carried out under conditions which then favor the hydroconversion of the more refractory sulfur compounds which essentially come from the distillate cut.
- the process according to the invention responds well to the problem of overcapacity of gasoline hydrodesulphurization units to the extent that these same units can now be used to jointly desulphurize gasoline cuts and middle distillate cuts which are bases for the formulation of fuels.
- the invention therefore relates to a process implementing at least two successive hydrodesulphurization stages of a mixture of hydrocarbons consisting of a first and a second hydrocarbon fraction with an intermediate stage of elimination of the hydrogen sulfide (H 2 S) formed in the first hydrodesulfurization step and with a reaction temperature in the second hydrodesulfurization step which is higher than that in the first hydrodesulfurization step.
- H 2 S hydrogen sulfide
- the catalyst of step a) is a hydrodesulfurization catalyst which comprises a Group VIII metal chosen from nickel and cobalt and a Group VIB metal chosen from molybdenum and tungsten.
- the catalyst of step c) is also a hydrodesulfurization catalyst which comprises a metal from group VIII chosen from nickel and cobalt and a metal from group VIB chosen from molybdenum and tungsten.
- the first fraction of hydrocarbons containing olefins is an olefinic gasoline cut from a catalytic cracking, steam cracking, coking, visbreaking unit.
- the second hydrocarbon fraction of the mixture treated by the process according to the invention is a light oil cut from a catalytic cracking unit (LCO or "Light Cycle Oil” according to Anglo-Saxon terminology).
- LCO catalytic cracking unit
- the feed for the process according to the invention is a mixture containing a catlaytic cracked gasoline cut and an LCO light oil cut.
- said mixture is the product of a distillation of an effluent from a catalytic cracking unit.
- the light fraction of the LCO i.e. the compounds having a boiling point lower than 300°C, and very preferably lower than 265°C, is used in mixture with the catalytic cracking gasoline.
- the first fraction or hydrocarbon cut represents between 30 and 70% by weight of the mixture.
- the first fraction of the mixture is a heavy fraction of a catalytic cracked gasoline and the second fraction is a cut of light LCO oil.
- the heavy fraction of catalytically cracked gasoline is obtained by distillation of a catalytically cracked gasoline cut into two fractions, a light C5- fraction comprising hydrocarbons having a number of carbon atoms of between 2 and 5 atoms and a heavy C6+ fraction comprising hydrocarbons having a number of atoms of carbon greater than or equal to 6.
- said gasoline cut is treated in a step of selective hydrogenation of the diolefins.
- the first cut of hydrocarbons treated by the process according to the invention is sent via line 1 to a first hydrodesulphurization reactor 2.
- This first cut of hydrocarbons is combined (mixed) with a second cut of hydrocarbons supplied by line 3.
- the mixture which is made up of two fractions, is then treated in the first hydrodesulfurization reactor 2.
- the first hydrocarbon cut an olefinic gasoline cut from a catalytic cracking, steam cracking, coking, visbreaking unit.
- the gasoline cut is a catalytic cracked gasoline.
- the gasoline cut has an initial boiling temperature of between 35°C and 100°C and a final boiling temperature of between 130 and 200°C, preferably between 150 and 170°C and more preferably between 155 and 165°C.
- the olefin content of the first cut (or first fraction making up the mixture) is between 20 and 80% by weight of said cut.
- the second hydrocarbon cut has an initial boiling temperature of approximately 160°C and the final boiling temperature of between 260 and 340°C and comprises a fraction of at least 10% by weight of hydrocarbons having a temperature boiling temperature between 220°C and its final boiling temperature.
- This second hydrocarbon cut is a light oil cut from a catalytic cracking unit (LCO or “Light Cycle Oil” according to Anglo-Saxon terminology).
- LCO catalytic cracking unit
- This second cut has an olefin content lower than that of the first cut and a total sulfur content higher than that of the first cut.
- said second fraction comprises at least 10% by weight of hydrocarbons having a boiling temperature range between 220°C and the final boiling temperature of the mixture.
- the first hydrodesulfurization step converts part of the sulfur present in the mixture into hydrogen sulfide (H 2 S). It consists of passing the mixture of hydrocarbons to be treated in the presence of hydrogen (supplied via line 4), over a hydrodesulphurization catalyst, at a temperature between 200°C and 400°C, preferably between 250°C. C and 340°C and at a pressure of between 1 and 10 MPa, preferably between 1.5 and 4 MPa.
- the liquid space velocity is generally between 1 and 10 h -1 , preferably between 2 and 5 h -1 and the H 2 /HC ratio is between 50 Nliters/liter (l/l) and 500 Nliters/liter, preferably between 100 Nliters/liter and 450 Nliters/liter, and more preferably between 150 Nliters/liter and 400 Nliters/liter.
- the H 2 /HC ratio is the ratio between the volume flow rate of hydrogen under 1 atmosphere and at 0°C and the volume flow rate of hydrocarbons.
- the effluent resulting from this hydrodesulfurization step withdrawn by line 5 comprises the mixture of partially desulfurized hydrocarbons, the residual hydrogen and the H 2 S produced by decomposition of sulfur compounds.
- This hydrodesulfurization step is carried out for example in a fixed bed or moving bed reactor.
- the catalyst used during the first hydrodesulfurization step of the hydrodesulfurization process according to the invention comprises an active metal phase deposited on a support, said active phase comprising at least one metal from group VIII of the periodic table of elements (groups 8, 9 and 10 according to the new notation of the periodic classification of the elements: Handbook of Chemistry and Physics, 76th edition, 1995-1996 ) and at least one metal from group VIB of the periodic table of elements (group 6 according to the new notation of the periodic table of elements: Handbook of Chemistry and Physics, 76th edition, 1995-1996 ).
- the active phase of said catalyst further comprises phosphorus.
- the catalyst of the first hydrodesulfurization step may also additionally contain one or more organic compounds.
- the content of metal(s) from group VIB in said catalyst of the first hydrodesulfurization step is between 4 and 40% by weight of oxide(s) of metal(s) from group VIB, preferably between 8 and 35% by weight of metal oxide(s) from group VIB, very preferably between 10 and 30% by weight of metal oxide(s) from group VIB relative to the total weight of the catalyst.
- the Group VIB metal is molybdenum or tungsten or a mixture of these two elements, and more preferably the Group VIB metal consists solely of molybdenum or tungsten.
- the Group VIB metal is most preferably molybdenum.
- the content of metal(s) from Group VIII in said catalyst of the first hydrodesulfurization step is between 1.5 and 9% by weight of oxide(s) of metal(s) from Group VIII, of preferably between 2 and 8% by weight of oxide(s) of metal(s) from Group VIII relative to the total weight of the catalyst.
- the group VIII metal is a non-noble metal from group VIII of the periodic table of elements.
- said Group VIII metal is cobalt or nickel or a mixture of these two elements, and more preferably the Group VIII metal consists solely of cobalt or nickel.
- the Group VIII metal is most preferably cobalt.
- the molar ratio of metal(s) from group VIII to metal(s) from group VIB in the catalyst in oxide form is between 0.1 and 0.8, very preferably between 0.2 and 0.6, and so even more preferred between 0.3 and 0.5.
- the phosphorus content of the catalyst of the first hydrodesulfurization step is preferably between 0.1 and 20% by weight of P 2 O 5 , more preferably between 0.2 and 15% by weight of P 2 O 5 , very preferably between 0.3 and 10% by weight of P 2 O 5 relative to the total weight of the catalyst.
- the molar ratio of phosphorus to metal(s) of group VIB in the catalyst of the first hydrodesulfurization step is greater than or equal to 0.05, preferably greater than or equal to 0.1, more preferably between 0.15 and 0.6, even more preferably between 0.15 and 0.5.
- the support of the catalyst of the first hydrodesulfurization step on which the active phase is deposited is advantageously formed of at least one porous solid in oxide form chosen from the group consisting of aluminas, silicas, silica-alumina or even titanium or magnesium oxides used alone or mixed with alumina or silica-alumina. It is preferably chosen from the group consisting of silicas, transition aluminas and silica-alumina. More preferably, said support consists solely of a transition alumina or of a mixture of transition aluminas.
- the specific surface area of the catalyst is generally between 100 and 400 m 2 /g, preferably between 150 and 300 m 2 /g.
- the catalyst of the first hydrodesulfurization step is advantageously in the form of beads, extrudates, pellets, or irregular and non-spherical agglomerates whose specific shape can result from a crushing step.
- said support is in the form of balls or extrudates.
- the catalyst of the first hydrodesulfurization step is preferably used at least partly in its sulfurized form.
- Sulfurization consists of passing a charge containing at least one sulfur compound, which once decomposed leads to the fixation of sulfur on the catalyst.
- This charge can be gaseous or liquid, for example hydrogen containing H 2 S, or a liquid containing at least one sulfur compound.
- the sulfurization step can be carried out in situ, that is to say within the process according to the invention, or ex situ, that is to say in a unit dedicated to the sulfurization of catalysts.
- the process comprises a step where the H 2 S is at least partly eliminated from the effluent obtained at the end of the first hydrodesulfurization step.
- This step can be carried out using any techniques known to those skilled in the art. It can be carried out directly in the conditions in which the effluent is found at the end of this step or after the conditions have been changed in order to facilitate the elimination of at least part of the H 2 S.
- a gas/liquid separation following which the liquid effluent is sent to a stripping column while the gaseous effluent is sent to a stage of amine wash.
- the effluent from the reactor of the first hydrodesulphurization stage is sent via line 5 to a stripping column 6 which makes it possible to separate at the top of the column a gaseous flow 7 containing hydrogen and H 2 S and at the bottom an effluent containing a mixture of hydrocarbons 8 partially desulfurized and freed of H 2 S.
- a mixture of hydrocarbons is obtained having a total sulfur content of between 100 and 1000 ppm by weight, preferably between 200 and 500 ppm by weight.
- the effluent comprising the partially desulfurized hydrocarbon mixture is treated in an additional hydrodesulfurization step (HDS) aimed at improving the final desulfurization rate.
- This second step aims to transform the refractory sulfur compounds present in the mixture and which are essentially provided by the second cut implemented in the process according to the invention.
- the effluent is sent via line 8 to a hydrodesulfurization reactor 9 and is brought into contact with a hydrodesulfurization catalyst in the presence of hydrogen supplied by line 10.
- the temperature of the second HDS stage is higher than that of the first HDS stage, preferably higher by at least 5°C and even more preferably by at least 10°C.
- the second hydrodesulfurization step uses a catalyst having a selectivity in hydrodesulfurization with respect to the hydrogenation of olefins greater than the catalyst of the first hydrodesulfurization step.
- the catalyst suitable for this second hydrodesulfurization step comprises at least one metal from group VIII (groups 8, 9 and 10 according to the new notation of the periodic classification of the elements: Handbook of Chemistry and Physics, 76th edition, 1995-1996 ) and at least one metal from group VIB (group 6 according to the new notation of the periodic classification of the elements: Handbook of Chemistry and Physics, 76th edition, 1995-1996 ) on an appropriate support.
- the Group VIII metal content expressed as oxide is generally between 0.5 and 15% by weight, preferably between 1 and 10% by weight relative to the total weight of catalyst.
- the metal content of group VIB is generally between 1.5 and 60% by weight, preferably between 3 and 50% by weight per contribution to the total weight of catalyst.
- the Group VIII metal is preferably cobalt and the Group VIB metal is generally molybdenum or tungsten.
- the catalyst for the second hydrodesulfurization step further comprises phosphorus.
- the phosphorus content of said catalyst is preferably between 0.1 and 20% by weight of P 2 O 5 , more preferably between 0.2 and 15% by weight of P 2 O 5 , very preferably between 0.3 and 10% by weight of P 2 O 5 relative to the total weight of the catalyst.
- the catalyst further comprises one or more organic compounds.
- the catalyst support is usually a porous solid, such as for example alumina, silica-alumina or other porous solids, such as for example magnesia, silica or titanium oxide, alone or in combination. mixture with alumina or silica-alumina.
- a porous solid such as for example alumina, silica-alumina or other porous solids, such as for example magnesia, silica or titanium oxide, alone or in combination. mixture with alumina or silica-alumina.
- the catalyst according to the invention preferably has a specific surface area less than 200 m 2 /g, more preferably less than 180 m 2 /g, and very preferably less than 150 m 2 /g.
- the catalyst of the second hydrodesulfurization step is preferably used at least partly in its sulfurized form.
- Sulfurization consists of passing the charge containing at least one sulfur compound, which once decomposed leads to the fixation of sulfur on the catalyst.
- This charge can be gaseous or liquid, for example hydrogen containing H 2 S, or a liquid containing at least one sulfur compound.
- the sulfurization step can be carried out in situ, that is to say within the process according to the invention, or ex situ, that is to say in a unit dedicated to the sulfurization of catalysts.
- the desulfurized effluent has a total sulfur content generally less than 50 ppm by weight, preferably less than 30 ppm by weight and has a mercaptan content generally less than 10 ppm by weight.
- the effluent which is withdrawn from the second hydrodesulfurization reactor 9 is sent via line 11 to a separation unit 12.
- the effluent from the reactor is first sent to a balloon gas/liquid separation allowing the separation of a gas rich in H 2 S from the liquid effluent.
- This liquid effluent is then sent to a stabilization column in order to eliminate the last traces of solubilized H 2 S and produce a stabilized column bottom product, that is to say whose vapor pressure has been corrected by elimination of the lightest hydrocarbon compounds.
- the gas/liquid separation and stabilization steps are classic steps for those skilled in the art and are not shown on the figure 1 .
- the separation or distillation step consists of separating the stabilized effluent containing the mixture of hydrocarbons into at least two hydrocarbon cuts, namely a cut light hydrocarbons and a heavy hydrocarbon cut both desulfurized.
- the cutting point is generally between 160°C and 220°C, limits included.
- the separation unit used is a distillation column configured to separate at the top of the column a light desulphurized cut 13, equivalent to a gasoline cut and at the bottom a heavy desulphurized cut 14 equivalent to a distillate cut.
- the gasoline cut is sent to the gasoline pool and the desulfurized distillate cut is sent to the diesel, kerosene or fuel oil pool.
- the sulfur content in the desulfurized light cut is less than 50 ppm by weight, preferably less than 30 ppm by weight and even more preferably less than 10 ppm by weight.
- the sulfur content in the desulfurized heavy cut is less than 50 ppm by weight, optionally less than 30 ppm by weight or even less than 10 ppm by weight.
- distillate cut is recovered at the bottom, the gasoline cut is withdrawn laterally several trays below the top tray while the lightest compounds are eliminated at the top of the column in the gaseous effluent.
- the effluent from the stabilization column containing the desulfurized hydrocarbon mixture is separated into three cuts.
- the two cutting points will generally be around 160°C and around 220°C.
- the three hydrocarbon cuts have a total sulfur content of less than 50 ppm by weight, preferably less than 30 ppm by weight and even more preferably less than 10 ppm by weight.
- a first cut of gasoline type hydrocarbons is sent to a pretreatment reactor 15 before being mixed with a second cut of hydrocarbons.
- the hydrocarbon feedstock is preferably a catalytically cracked gasoline cut which generally contains diolefins at a content of between 0.1 and 3% by weight.
- the pretreatment consists of a step of selective hydrogenation of the diolefins into corresponding mono-olefins, which is carried out in the presence of a catalyst and hydrogen.
- the catalyst for selective hydrogenation of diolefins suitable for pretreatment comprises at least one metal from group VIB and at least one metal from group VIII deposited on a porous support described in the patent applications FR 2 988 732 And EP 2 161 076 of the plaintiff.
- the catalytic selective hydrogenation reaction is generally carried out in the presence of hydrogen, at a temperature between 80°C and 220°C, and preferably between 90°C and 200°C, with a liquid space velocity (LHSV) comprised between 1 and 10 h -1 , the unit of liquid space velocity being the liter of charge per liter of catalyst and per hour (l/lh).
- the operating pressure is between 0.5 MPa and 5 MPa, preferably between 1 and 4 MPa.
- the gasoline produced contains less than 0.5% by weight of diolefins, and preferably less than 0.25% by weight of diolefins.
- the first pretreated hydrocarbon cut is directed via line 16 to a separation column 17 (splitter according to Anglo-Saxon terminology) which is designed to split said pretreated charge respectively into a light fraction C5 - and a heavy fraction C6+.
- the light fraction is advantageously sent to the gasoline pool via line 18, while the heavy C6+ fraction entering line 1 is hydrodesulfurized by the process described above, that is to say mixed with a cut of middle distillate at low olefin content.
- An ⁇ hydrodesulfurization catalyst is obtained by impregnation “without excess solution” of a transition alumina in the form of beads with a specific surface area of 130 m 2 /g and a pore volume of 0.9 ml/g, by a aqueous solution containing molybdenum and cobalt in the form of ammonium heptamolybdate and cobalt nitrate.
- the catalyst is then dried and calcined in air at 500°C.
- the cobalt and molybdenum content of the ⁇ catalyst is 3% by weight of CoO and 10% by weight of MoOs.
- the catalyst is first sulfurized by treatment for 4 hours under a pressure of 3.4 MPa at 350°C, in contact with a charge consisting of 2% by weight of sulfur in the form of dimethyldisulfide in n-heptane.
- the treated feed C is a catalytic cracked gasoline whose initial boiling point is 61°C and the final point is 162°C. Its sulfur content is 765 ppm by weight and its bromine index (IBr) is 75.9 g/100 g, which corresponds approximately to 42% by weight of olefins.
- This charge C is treated with the catalyst ⁇ , under a pressure of 2 MPa, a volume ratio of hydrogen to charge to be treated (H 2 /HC) of 300 NI/l and a VVH of 4 h -1 .
- H 2 /HC volume ratio of hydrogen to charge to be treated
- VVH VVH of 4 h -1
- the effluent is cooled and the hydrogen rich in H 2 S is separated from the liquid gasoline, and the gasoline is subjected to a stripping treatment by injection of a flow of hydrogen in order to eliminate the residual traces of H 2 S dissolved in the desulfurized gasoline.
- Table 1 shows the influence of the temperature involved on the desulfurization rates and the RON index of the desulfurized effluents.
- Table 1 Analysis of desulfurized gasoline Temperature in the hydrodesulfurization reactor, 285 °C Temperature in the hydrodesulfurization reactor, 295 °C Mercaptans, ppm weight 16 7 Total sulfur, ppm weight 25 12 Desulfurization rate, % 96.7 98.4 RON loss 6.9 8.4
- a ⁇ hydrodesulfurization catalyst in the form of extrudates with a specific surface area of 180 m 2 /g whose content (weight of oxide(s) relative to the total weight of the catalyst) in cobalt, molybdenum and phosphorus are respectively 4.4% by weight of CoO and 21.3% by weight of MoO 3 and 6.0% by weight of P 2 O 5 are placed in a fixed bed tubular hydrodesulfurization reactor.
- the catalyst is first sulfurized by treatment for 4 hours under a pressure of 2 MPa at 350°C, in contact with a filler consisting of 2% by weight of sulfur in the form of dimethyldisulfide in n-heptane.
- the treated feed D has an initial boiling point of 160°C and an end point of 269°C. Its sulfur content is 5116 ppm by weight and its bromine index (IBr) is 19.5 g/100 g which corresponds approximately to 10% by weight of olefins.
- the fraction of charge D having a boiling point between 220°C and 269°C is 26.3% by weight.
- Charge D is treated with catalyst ⁇ , at a temperature of 300°C, under a pressure of 2 MPa, with a volume ratio of hydrogen to charge to be treated (H 2 /HC) of 300 NI/I and a VVH of 4 h -1 .
- H 2 /HC volume ratio of hydrogen to charge to be treated
- the effluent is cooled, the hydrogen rich in H 2 S is separated from the liquid effluent, and the effluent is subjected to a stripping treatment by injection of a flow of hydrogen in order to eliminate the residual traces of dissolved H 2 S before being analyzed.
- Table 2 shows the desulfurization rate and the sulfur and mercaptan content of the desulfurized effluent.
- Table2 Analysis Mercaptans, ppm weight 12 Total sulfur, ppm weight 34 Desulfurization rate, % 99.3
- a charge E tested in Example 3 is a mixture containing 50% by weight of charge C and 50% by weight of charge D.
- the initial boiling point of the mixture is 61°C and the final point is 269°C. vs.
- Its sulfur content is 2512 ppm by weight and its bromine index (IBr) is 53.4 g/100 g which corresponds approximately to 29.2% by weight of olefins.
- This charge E is first treated on the catalyst ⁇ , at a temperature of 330°C, under a pressure of 2 MPa, with a volume ratio of hydrogen to charge to be treated (H 2 /HC) of 300 NI/I and a VVH from 4 a.m. -1 .
- H 2 /HC volume ratio of hydrogen to charge to be treated
- VVH VVH from 4 a.m. -1 .
- the feed E used in Example 3 is treated in a first hydrodesulfurization step on the catalyst ⁇ , at a temperature of 260°C, under a pressure of 2 MPa, with a volume ratio of hydrogen to feed to be treated (H 2 /HC) of 300 NI/I and a VVH of 4 h -1 .
- H 2 /HC volume ratio of hydrogen to feed to be treated
- VVH volume ratio of hydrogen to feed to be treated
- the feedstock F is then treated in a second hydrodesulfurization step on the ⁇ catalyst, at a temperature of 280°C, under a pressure of 2 MPa, with a volume ratio of hydrogen to feedstock to be treated (H 2 /HC) of 300. l/l and a VVH of 4 h -1 .
- H 2 /HC volume ratio of hydrogen to feedstock to be treated
- VVH volume ratio of hydrogen to feedstock to be treated
- the effluent from the second hydrodesulfurization stage is then separated into two cuts: a first cut (petrol cut) with a final boiling point of 160°C and a second cut with an initial point of 160°C.
- a first cut petrol cut
- a second cut with an initial point of 160°C.
- Table 4 References 1st cut 2nd cut 61°C-160°C 160°C-269°C Mercaptans, ppm weight 7 11 Total sulfur, ppm weight 9 42 Desulfurization rate, % 98.8 99.2 RON loss 5.9 Not applicable
- Example 4 shows that it is possible, from a mixture of hydrocarbons comprising at least a first cut of hydrocarbons having a boiling temperature of between 61° and 160°C and whose olefin content is of 42% by weight and a second cut of hydrocarbons having a boiling point between 160° and 269°C of which the fraction having a boiling point greater than 220°C is 26.3%, to obtain two desulphurized cuts whose sulfur content are respectively less than 10 ppm by weight of sulfur for the desulphurized cut having a boiling temperature between 61°C and 160°C and less than 50 ppm by weight of sulfur for the desulphurized cut having a temperature of boiling between 160° and 269°C while limiting the loss of RON index linked in particular to the hydrogenation of part of the olefins present in the mixture.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Description
La présente invention concerne un procédé de production concomitante de deux coupes d'hydrocarbures à basses teneurs en soufre. En particulier le procédé permet de désulfurer conjointement (en mélange) une coupe essence contenant des oléfines et une coupe plus lourde que la coupe essence de manière à produire par la suite une coupe essence désulfurée avec une perte d'indice d'octane limitée et une coupe lourde également désulfurée.The present invention relates to a process for the simultaneous production of two cuts of hydrocarbons with low sulfur contents. In particular, the process makes it possible to desulfurize jointly (as a mixture) a gasoline cut containing olefins and a cut heavier than the gasoline cut so as to subsequently produce a desulfurized gasoline cut with a limited loss of octane number and a heavy cut also desulfurized.
La présente invention est notamment intéressante pour produire deux coupes désulfurées qui sont susceptibles d'être envoyées respectivement au pool essence et au pool diesel, kérosène et/ou fioul.The present invention is particularly interesting for producing two desulfurized cuts which can be sent respectively to the gasoline pool and to the diesel, kerosene and/or fuel oil pool.
Le soufre dans les carburants est une impureté indésirable car il est converti en oxydes de soufre lorsque ces produits sont brûlés. Les oxydes de soufre sont des polluants atmosphériques indésirables qui peuvent en outre désactiver la plupart des catalyseurs qui ont été développés pour les pots catalytiques utilisés dans les voitures pour catalyser la conversion des gaz d'échappement nocifs. Par conséquent, il est souhaitable de réduire la teneur en soufre des produits qui entrent dans les compositions de la carburante essence et gazole à des niveaux les plus bas possibles.Sulfur in fuels is an undesirable impurity because it is converted to sulfur oxides when these products are burned. Sulfur oxides are unwanted air pollutants that can further deactivate most catalysts that have been developed for catalytic converters used in cars to catalyze the conversion of harmful exhaust gases. Therefore, it is desirable to reduce the sulfur content of products used in gasoline and diesel fuel compositions to the lowest possible levels.
L'essence de craquage catalytique est le produit essentiel du FCC (FCC "Fluid Catalytic Cracking" selon la terminologie anglo-saxonne) obtenu avec un rendement de l'ordre de 50% et représente environ 25 à 30% du pool essence des raffineries d'Europe Occidentale. La principale caractéristique négative de ces essences de FCC vis-à-vis des carburants commerciaux est leurs teneurs en soufre élevées et constituent ainsi le principal vecteur de la présence de soufre dans les carburants.Catalytic cracking gasoline is the essential product of FCC (FCC "Fluid Catalytic Cracking" according to Anglo-Saxon terminology) obtained with a yield of around 50% and represents approximately 25 to 30% of the gasoline pool of refineries. 'Western Europe. The main negative characteristic of these FCC gasolines compared to commercial fuels is their high sulfur contents and thus constitute the main vector of the presence of sulfur in fuels.
Pour répondre aux contraintes des spécifications en soufre, les hydrocarbures produits à partir de procédés de craquage catalytique sont classiquement traités par hydrotraitement. Le procédé d'hydrotraitement comprend la mise en contact de la charge d'hydrocarbures avec de l'hydrogène en présence d'un catalyseur de manière à convertir le soufre contenu dans les impuretés en sulfure d'hydrogène, qui peut être ensuite séparé et converti en soufre élémentaire. Les procédés d'hydrotraitement peuvent entraîner une destruction partielle des oléfines de la charge en les convertissant en hydrocarbures saturés par hydrogénation. Cette destruction d'oléfines par hydrogénation n'est pas souhaitable dans le cas des essences de craquage car il en résulte une consommation coûteuse en hydrogène et une diminution significative de l'indice d'octane des essences hydrodésulfurées.To meet the constraints of sulfur specifications, hydrocarbons produced from catalytic cracking processes are conventionally treated by hydrotreating. The hydrotreating process includes contacting the hydrocarbon feed with hydrogen in the presence of a catalyst so as to convert the sulfur contained in the impurities into hydrogen sulfide, which can then be separated and converted in elemental sulfur. Hydrotreating processes can result in partial destruction of feedstock olefins by converting them to saturated hydrocarbons through hydrogenation. This destruction of olefins by hydrogenation is not desirable in the case of cracked gasolines because it results in costly hydrogen consumption and a significant reduction in the octane number of hydrodesulfurized gasolines.
Les composés soufrés résiduels généralement présents dans l'essence désulfurée peuvent être séparés en deux familles distinctes : les composés soufrés non hydrodésulfurés présents dans la charge et les composés soufrés formés dans le réacteur d'hydrodésulfuration par des réactions secondaires dites de recombinaison. Parmi cette dernière famille de composés soufrés, les composés majoritaires sont les mercaptans issus de l'addition de l'H2S formé dans le réacteur sur les mono-oléfines présentes dans la charge. La réduction de la teneur en mercaptans de recombinaison peut être réalisée par hydrodésulfuration catalytique mais au prix d'une saturation d'une partie importante des mono-oléfines, ce qui entraîne alors une forte diminution de l'indice d'octane de l'essence ainsi qu'une surconsommation d'hydrogène.The residual sulfur compounds generally present in desulfurized gasoline can be separated into two distinct families: the non-hydrodesulfurized sulfur compounds present in the feed and the sulfur compounds formed in the hydrodesulfurization reactor by secondary reactions known as recombination. Among this last family of sulfur compounds, the majority compounds are the mercaptans resulting from the addition of the H 2 S formed in the reactor to the mono-olefins present in the feed. Reducing the content of recombinant mercaptans can be achieved by catalytic hydrodesulphurization but at the cost of saturation of a significant part of the mono-olefins, which then leads to a sharp reduction in the octane number of the gasoline. as well as overconsumption of hydrogen.
De nos jours, dans de nombreux pays et en particulier en Europe, le marché des carburants s'est essentiellement orienté vers celui du diesel et du kérosène, ce qui a pour effet que de nombreux raffineurs européens sont confrontés à des problèmes de surcapacité pour leurs unités dédiées à la production de coupes essence désulfurées et de sous capacité vis-à-vis des unités d'hydrodésulfuration qui traitent des coupes de distillats intermédiaires rentrant dans la composition du carburant diesel et/ou kérosène.Nowadays, in many countries and particularly in Europe, the fuel market has mainly shifted towards that of diesel and kerosene, which has the effect that many European refiners are faced with overcapacity problems for their units dedicated to the production of desulphurized gasoline cuts and undercapacity vis-à-vis hydrodesulphurization units which process intermediate distillate cuts used in the composition of diesel and/or kerosene fuel.
Il existe donc aujourd'hui un besoin pour des procédés qui permettent au raffineur de mieux répondre à la demande du marché en utilisant les surcapacités existantes au niveau des unités d'hydrodésulfuration des coupes essences.There is therefore a need today for processes that allow the refiner to better respond to market demand by using existing excess capacity at the hydrodesulphurization units for gasoline cuts.
On connaît dans l'état de la technique le document
- une étape de distillation atmosphérique du pétrole afin de séparer un distillat comprenant du gasoil et des fractions dont le point d'ébullition est inférieur à celui du gasoil;
- une première étape d'hydrodésulfuration du distillat;
- une seconde étape d'hydrodésulfuration du distillat partiellement désulfuré qui est réalisée à une température inférieure à celle de la première étape d'hydrodésulfuration; et
- une étape de séparation du distillat désulfuré en des fractions de gasoil, de kérosène, de naphta lourd et de naphta léger.
- an atmospheric petroleum distillation step in order to separate a distillate comprising gas oil and fractions whose boiling point is lower than that of the gas oil;
- a first step of hydrodesulfurization of the distillate;
- a second step of hydrodesulfurization of the partially desulfurized distillate which is carried out at a temperature lower than that of the first hydrodesulfurization step; And
- a step of separating the desulphurized distillate into fractions of diesel, kerosene, heavy naphtha and light naphtha.
Le procédé du document
La solution préconisée par le brevet
Le document
Le document
- une première étape d'hydrodésulfuration de ladite coupe essence;
- une étape de séparation de la majeure partie de l'H2S de l'effluent issu de la première hydrodésulfuration;
- une seconde étape d'hydrodésulfuration de ladite coupe essence débarrassée de l'H2S.
- a first step of hydrodesulfurization of said gasoline cut;
- a step of separating the majority of the H 2 S from the effluent resulting from the first hydrodesulfurization;
- a second step of hydrodesulfurization of said gasoline cut freed of H 2 S.
Selon ce document, la seconde étape d'hydrodésulfuration est conduite à une température inférieure d'au moins 10°C, de préférence d'au moins 20°C à celle de la première étape d'hydrodésulfuration.According to this document, the second hydrodesulfurization step is carried out at a temperature lower by at least 10°C, preferably by at least 20°C, than that of the first hydrodesulfurization step.
L'art antérieur comprend également le document
Un but de l'invention est de proposer un procédé d'hydrodésulfuration qui puisse répondre aux problèmes de surcapacités des unités d'hydrodésulfuration des essences.An aim of the invention is to propose a hydrodesulfurization process which can respond to the problems of overcapacity of gasoline hydrodesulfurization units.
L'invention concerne donc un procédé de production concomitante de deux coupes d'hydrocarbures à basses teneurs en soufre à partir d'un mélange d'hydrocarbures ayant une température d'ébullition initiale comprise entre 35°C et 100°C et une température d'ébullition finale comprise entre 260°C et 340°C et ayant une teneur en soufre total comprise entre 30 et 10000 ppm poids, ledit mélange d'hydrocarbures est constitué de:
- une première fraction comprenant des hydrocarbures ayant une gamme de températures d'ébullition comprise entre la température d'ébullition initiale du mélange et 160°C et dont la teneur en oléfines est comprise entre 20 et 80% poids de ladite première fraction et la première fraction étant choisie parmi une coupe essence oléfinique issue d'une unité de craquage catalytique, de vapocraquage, de cokéfaction, de viscoréduction, la première fraction représentant entre 30 et 70 % poids du mélange, et
- une seconde fraction comprenant des hydrocarbures ayant une gamme de températures d'ébullition comprise entre 160°C et la température d'ébullition finale du mélange, ladite seconde fraction comprenant au moins 10% poids d'hydrocarbures ayant une gamme de températures d'ébullition comprise entre 220°C et la température d'ébullition finale du mélange, la seconde fraction étant une huile légère issue d'une unité de craquage catalytique,
- a) on traite dans un premier réacteur ledit mélange constitué de ladite première fraction et de ladite seconde fraction dans une première étape d'hydrodésulfuration en présence d'hydrogène et d'un catalyseur comprenant au moins un métal du groupe VIII, au moins un métal du groupe VIB et un support, la teneur en métal(ux) du groupe VIII étant comprise entre 1,5 et 9% poids d'oxyde(s) de métal(ux) du groupe VIII et la teneur en métal(ux) du groupe VIB étant comprise entre 4 et 40% poids d'oxyde(s) de métal(ux) du groupe VIB, le rapport molaire métal(ux) du groupe VIII sur métal(ux) du groupe VIB dans le catalyseur sous forme oxyde est compris entre 0,1 et 0,8, la première étape d'hydrodésulfuration étant réalisée à une température comprise entre 200 et 400°C, à une pression comprise entre 1 et 10 MPa, avec une vitesse spatiale liquide comprise entre 0,1 et 10 h-1 et avec un ratio (volume d'hydrogène / volume de mélange d'hydrocarbures) compris entre 50 et 500 Nlitre/litre;
- b) on élimine le sulfure d'hydrogène de l'effluent partiellement désulfuré issu de l'étape a);
- c) on traite dans un second réacteur le mélange partiellement désulfuré issu de l'étape b) dans une seconde étape d'hydrodésulfuration en présence d'hydrogène et d'un catalyseur comprenant au moins un élément du groupe VIII, au moins un élément du groupe VIB et un support, la teneur en métal(ux) du groupe VIII étant comprise entre 0,5 et 15% poids d'oxyde(s) de métal(ux) du groupe VIII et la teneur en métal(ux) du groupe VIB étant comprise entre 1,5 et 60% poids d'oxyde(s) de métal(ux) du groupe VIB, la seconde étape d'hydrodésulfuration étant réalisée à une température comprise entre 205 et 500°C, à une pression comprise entre 1 et 3 MPa, avec une vitesse spatiale liquide comprise entre 1 et 10 h-1 et avec un ratio (volume d'hydrogène / volume de mélange) compris entre 50 et 500 Nlitre/litre, la température de la seconde étape d'hydrodésulfuration c) étant supérieure à celle de la première étape d'hydrodésulfuration a); et
- d) on fractionne le mélange désulfuré issu de l'étape c) en au moins deux coupes d'hydrocarbures légère et lourde désulfurées, la coupe d'hydrocarbures légère ayant une température d'ébullition initiale comprise entre 35°C et 100°C et une température d'ébullition finale comprise entre 160°C et 220°C et dont la teneur en soufre total est inférieure à 50 ppm poids et la coupe d'hydrocarbures lourde ayant une température d'ébullition initiale comprise entre 160°C et 220°C et une température d'ébullition finale comprise entre 260°C et 340°C.
- a first fraction comprising hydrocarbons having a range of boiling temperatures between the initial boiling temperature of the mixture and 160°C and whose olefin content is between 20 and 80% by weight of said first fraction and the first fraction being chosen from an olefinic gasoline cut from a catalytic cracking, steam cracking, coking, visbreaking unit, the first fraction representing between 30 and 70% by weight of the mixture, and
- a second fraction comprising hydrocarbons having a boiling temperature range between 160°C and the final boiling temperature of the mixture, said second fraction comprising at least 10% by weight of hydrocarbons having a boiling temperature range between between 220°C and the final boiling temperature of the mixture, the second fraction being a light oil from a catalytic cracking unit,
- a) said mixture consisting of said first fraction and said second fraction is treated in a first reactor in a first hydrodesulfurization step in the presence of hydrogen and a catalyst comprising at least one metal from group VIII, at least one metal of group VIB and a support, the content of metal(s) of group VIII being between 1.5 and 9% by weight of oxide(s) of metal(s) of group VIII and the content of metal(s) of the group VIB being between 4 and 40% by weight of oxide(s) of metal(s) of group VIB, the molar ratio metal(s) of group VIII to metal(s) of group VIB in the catalyst in oxide form is between 0.1 and 0.8, the first hydrodesulfurization step being carried out at a temperature between 200 and 400°C, at a pressure between 1 and 10 MPa, with a liquid space velocity between 0.1 and 10 h -1 and with a ratio (volume of hydrogen / volume of hydrocarbon mixture) of between 50 and 500 Nliter/liter;
- b) the hydrogen sulphide is removed from the partially desulphurized effluent resulting from step a);
- c) the partially desulfurized mixture resulting from step b) is treated in a second reactor in a second hydrodesulfurization step in the presence of hydrogen and a catalyst comprising at least one element from group VIII, at least one element from group VIII, group VIB and a support, the content of metal(s) of group VIII being between 0.5 and 15% by weight of oxide(s) of metal(s) of group VIII and the content of metal(s) of group VIB being between 1.5 and 60% by weight of metal oxide(s) from group VIB, the second hydrodesulphurization step being carried out at a temperature between 205 and 500°C, at a pressure between 1 and 3 MPa, with a liquid space velocity between 1 and 10 h -1 and with a ratio (volume of hydrogen / volume of mixture) between 50 and 500 Nliter/liter, the temperature of the second hydrodesulfurization stage c) being greater than that of the first hydrodesulfurization step a); And
- d) the desulfurized mixture resulting from step c) is fractionated into at least two desulfurized light and heavy hydrocarbon cuts, the light hydrocarbon cut having an initial boiling temperature of between 35°C and 100°C and a final boiling temperature of between 160°C and 220°C and whose total sulfur content is less than 50 ppm by weight and the heavy hydrocarbon cut having an initial boiling temperature of between 160°C and 220° C and a final boiling temperature of between 260°C and 340°C.
Dans le contexte de l'invention, les températures d'ébullition peuvent fluctuer à plus ou moins 5°C par rapport aux valeurs mentionnées.In the context of the invention, the boiling temperatures can fluctuate by plus or minus 5°C compared to the values mentioned.
Les inventeurs ont observé de façon surprenante qu'il est possible d'hydrodésulfurer de manière conjointe un mélange contenant une coupe essence et une coupe de distillat chargée en soufre et à basse teneur en oléfines afin de produire une coupe essence à basse teneur en soufre, en particulier en mercaptans, sans perte significative de l'indice d'octane et une coupe de distillat appauvrie en soufre qui peut être ensuite valorisée au pool diesel et/ou kérosène ou comme combustible à usage maritime.The inventors have surprisingly observed that it is possible to jointly hydrodesulfurize a mixture containing a gasoline cut and a distillate cut loaded with sulfur and with a low olefin content in order to produce a gasoline cut with a low sulfur content, in particular in mercaptans, without significant loss of octane number and a cut of distillate depleted in sulfur which can then be upgraded to the diesel and/or kerosene pool or as fuel for maritime use.
En particulier le traitement dans la première étape d'hydrodésulfuration du mélange d'hydrocarbures conduit de façon surprenante à limiter la formation de mercaptans de recombinaison, produits de réaction de l'addition de l'H2S avec les oléfines, et à obtenir ainsi à l'issue du procédé une coupe essence ayant une teneur très faible en mercaptans. La seconde étape d'hydrodésulfuration est réalisée dans des conditions qui favorisent ensuite l'hydroconversion des composés soufrés plus réfractaires qui proviennent essentiellement de la coupe de distillat.In particular, the treatment in the first hydrodesulfurization step of the hydrocarbon mixture leads surprisingly to limit the formation of recombinant mercaptans, reaction products of the addition of H 2 S with the olefins, and thus to obtain at the end of the process a gasoline cut having a very low mercaptan content. The second hydrodesulfurization step is carried out under conditions which then favor the hydroconversion of the more refractory sulfur compounds which essentially come from the distillate cut.
Le procédé selon l'invention répond bien au problème de surcapacités des unités d'hydrodésulfuration des essences dans la mesure où ces mêmes unités peuvent maintenant servir à désulfurer conjointement des coupes essences et des coupes de distillat moyen qui sont des bases pour la formulation des carburants diesel et/ou kérosène ou utilisables comme combustibles à usage maritime à basse teneur en soufre.The process according to the invention responds well to the problem of overcapacity of gasoline hydrodesulphurization units to the extent that these same units can now be used to jointly desulphurize gasoline cuts and middle distillate cuts which are bases for the formulation of fuels. diesel and/or kerosene or usable as fuels for maritime use with low sulfur content.
L'invention concerne donc un procédé mettant en oeuvre au moins deux étapes d'hydrodésulfuration successives d'un mélange d'hydrocarbures constitué d'une première et d'une seconde fractions d'hydrocarbures avec une étape intermédiaire d'élimination du sulfure d'hydrogène (H2S) formé dans la première étape d'hydrodésulfuration et avec une température de réaction dans la seconde étape d'hydrodésulfuration qui est supérieure à celle de la première étape d'hydrodésulfuration.The invention therefore relates to a process implementing at least two successive hydrodesulphurization stages of a mixture of hydrocarbons consisting of a first and a second hydrocarbon fraction with an intermediate stage of elimination of the hydrogen sulfide (H 2 S) formed in the first hydrodesulfurization step and with a reaction temperature in the second hydrodesulfurization step which is higher than that in the first hydrodesulfurization step.
Dans un mode de réalisation préféré, le catalyseur de l'étape a) est un catalyseur d'hydrodésulfuration qui comprend un métal du groupe VIII choisi parmi le nickel et le cobalt et un métal du groupe VIB choisi parmi le molybdène et le tungstène.In a preferred embodiment, the catalyst of step a) is a hydrodesulfurization catalyst which comprises a Group VIII metal chosen from nickel and cobalt and a Group VIB metal chosen from molybdenum and tungsten.
De préférence le catalyseur de l'étape c) est également un catalyseur d'hydrodésulfuration qui comprend un métal du groupe VIII choisi parmi le nickel et le cobalt et un métal du groupe VIB choisi parmi le molybdène et le tungstène.Preferably the catalyst of step c) is also a hydrodesulfurization catalyst which comprises a metal from group VIII chosen from nickel and cobalt and a metal from group VIB chosen from molybdenum and tungsten.
La première fraction d'hydrocarbures contenant des oléfines est une coupe essence oléfinique issue d'une unité de craquage catalytique, de vapocraquage, de cokéfaction, de viscoréduction.The first fraction of hydrocarbons containing olefins is an olefinic gasoline cut from a catalytic cracking, steam cracking, coking, visbreaking unit.
La seconde fraction d'hydrocarbures du mélange traité par le procédé selon l'invention est une coupe d'huile légère issue d'une unité de craquage catalytique (LCO ou "Light Cycle Oil" selon la terminologie anglo-saxonne).The second hydrocarbon fraction of the mixture treated by the process according to the invention is a light oil cut from a catalytic cracking unit (LCO or "Light Cycle Oil" according to Anglo-Saxon terminology).
La charge du procédé selon l'invention est un mélange contenant une coupe essence de craquage catlaytique et une coupe d'huile légère LCO. De manière avantageuse, ledit mélange est le produit d'une distillation d'un effluent issu d'une unité de craquage catalytique.The feed for the process according to the invention is a mixture containing a catlaytic cracked gasoline cut and an LCO light oil cut. Advantageously, said mixture is the product of a distillation of an effluent from a catalytic cracking unit.
La fraction légère du LCO, i.e. les composés ayant un point d'ébullition inférieur à 300°C, et de manière très préférée inférieur à 265°C est utilisé en mélange avec l'essence de craquage catalytique.The light fraction of the LCO, i.e. the compounds having a boiling point lower than 300°C, and very preferably lower than 265°C, is used in mixture with the catalytic cracking gasoline.
La première fraction ou coupe d'hydrocarbures représente entre 30 et 70% poids du mélange.The first fraction or hydrocarbon cut represents between 30 and 70% by weight of the mixture.
Selon un mode de réalisation alternatif, la première fraction du mélange est une fraction lourde d'une essence de craquage catalytique et la seconde fraction est une coupe d'huile légère LCO. La fraction lourde de l'essence de craquage catalytique est obtenue par distillation d'une coupe essence de craquage catalytique en deux fractions, une fraction légère C5- comprenant les hydrocarbures ayant un nombre d'atomes de carbone compris entre 2 et 5 atomes et une fraction lourde C6+ comprenant les hydrocarbures ayant un nombre d'atomes de carbone supérieur ou égal à 6.According to an alternative embodiment, the first fraction of the mixture is a heavy fraction of a catalytic cracked gasoline and the second fraction is a cut of light LCO oil. The heavy fraction of catalytically cracked gasoline is obtained by distillation of a catalytically cracked gasoline cut into two fractions, a light C5- fraction comprising hydrocarbons having a number of carbon atoms of between 2 and 5 atoms and a heavy C6+ fraction comprising hydrocarbons having a number of atoms of carbon greater than or equal to 6.
Dans un mode de réalisation très préféré, avant l'étape de séparation de la coupe essence de craquage catalytique en deux fractions, on traite ladite coupe essence dans une étape d'hydrogénation sélective des dioléfines.In a very preferred embodiment, before the step of separating the catalytically cracked gasoline cut into two fractions, said gasoline cut is treated in a step of selective hydrogenation of the diolefins.
D'autres caractéristiques et avantages de l'invention vont apparaître à la lecture de la description qui va suivre, donnée à titre uniquement illustratif et non limitatif, et à laquelle est annexée :
- la
figure 1 qui montre un schéma de principe du procédé selon l'invention.
- there
figure 1 which shows a block diagram of the process according to the invention.
En référence à la
La première coupe d'hydrocarbures, une coupe essence oléfinique issue d'une unité de craquage catalytique, de vapocraquage, de cokéfaction, de viscoréduction. De préférence, la coupe essence est une essence de craquage catalytique. Typiquement, la coupe essence a une température d'ébullition initiale comprise entre 35°C et 100°C et une température d'ébullition finale comprise entre 130 et 200°C, de préférence comprise entre 150 et 170°C et de manière plus préférée comprise entre 155 et 165°C. Généralement la teneur en oléfines de la première coupe (ou première fraction composant le mélange) est comprise entre 20 et 80% poids de ladite coupe.The first hydrocarbon cut, an olefinic gasoline cut from a catalytic cracking, steam cracking, coking, visbreaking unit. Preferably, the gasoline cut is a catalytic cracked gasoline. Typically, the gasoline cut has an initial boiling temperature of between 35°C and 100°C and a final boiling temperature of between 130 and 200°C, preferably between 150 and 170°C and more preferably between 155 and 165°C. Generally the olefin content of the first cut (or first fraction making up the mixture) is between 20 and 80% by weight of said cut.
La seconde coupe d'hydrocarbures a une température d'ébullition initiale d'environ 160°C et la température d'ébullition finale comprise entre 260 et 340°C et comprend une fraction d'au moins 10% poids d'hydrocarbures ayant une température d'ébullition comprise entre 220°C et sa température d'ébullition finale.The second hydrocarbon cut has an initial boiling temperature of approximately 160°C and the final boiling temperature of between 260 and 340°C and comprises a fraction of at least 10% by weight of hydrocarbons having a temperature boiling temperature between 220°C and its final boiling temperature.
Cette seconde coupe d'hydrocarbures est une coupe d'huile légère issue d'une unité de craquage catalytique (LCO ou "Light Cycle Oil" selon la terminologie anglo-saxonne).This second hydrocarbon cut is a light oil cut from a catalytic cracking unit (LCO or “Light Cycle Oil” according to Anglo-Saxon terminology).
Cette seconde coupe présente une teneur en oléfines inférieure à celle de la première coupe et une teneur en soufre total supérieure à celle de la première coupe.This second cut has an olefin content lower than that of the first cut and a total sulfur content higher than that of the first cut.
Ainsi le mélange d'hydrocarbures traité a une température d'ébullition initiale comprise entre 35°C et 100°C et une température d'ébullition finale comprise entre 260°C et 340°C et une teneur en soufre total comprise entre 30 et 10000 ppm poids. Le mélange traité est constitué de :
- une première fraction comprenant des hydrocarbures ayant une gamme de températures d'ébullition comprise entre la température d'ébullition initiale du mélange et 160°C et dont la teneur en oléfines est comprise entre 20 et 80% poids de ladite première fraction, la première fraction étant choisie parmi une coupe essence oléfinique issue d'une unité de craquage catalytique, de vapocraquage, de cokéfaction, de viscoréduction, la première fraction représentant entre 30 et 70 % poids du mélange, et
- une seconde fraction comprenant des hydrocarbures ayant une gamme de températures d'ébullition comprise entre 160°C et la température d'ébullition finale du mélange, la seconde fraction étant une huile légère issue d'une unité de craquage catalytique.
- a first fraction comprising hydrocarbons having a boiling temperature range between the initial boiling temperature of the mixture and 160°C and whose olefin content is between 20 and 80% by weight of said first fraction, the first fraction being chosen from an olefinic gasoline cut from a catalytic cracking, steam cracking, coking, visbreaking unit, the first fraction representing between 30 and 70% by weight of the mixture, and
- a second fraction comprising hydrocarbons having a boiling temperature range between 160°C and the final boiling temperature of the mixture, the second fraction being a light oil from a catalytic cracking unit.
Selon l'invention, ladite seconde fraction comprend au moins 10% poids d'hydrocarbures ayant une gamme de températures d'ébullition comprise entre 220°C et la température d'ébullition finale du mélange.According to the invention, said second fraction comprises at least 10% by weight of hydrocarbons having a boiling temperature range between 220°C and the final boiling temperature of the mixture.
La première étape d'hydrodésulfuration permet de convertir une partie du soufre présent dans le mélange en sulfure d'hydrogène (H2S). Elle consiste à faire passer le mélange d'hydrocarbures à traiter en présence d'hydrogène (apporté par la conduite 4), sur un catalyseur d'hydrodésulfuration, à une température comprise entre 200°C et 400°C, de préférence entre 250°C et 340°C et à une pression comprise entre 1 et 10 MPa, de préférence entre 1,5 et 4 MPa. La vitesse spatiale liquide est généralement comprise entre 1 et 10 h-1, de préférence entre 2 et 5 h-1 et le rapport H2/HC est compris entre 50 Nlitres/litre (l/l) et 500 Nlitres/litre, de préférence entre 100 Nlitres/litre et 450 Nlitres/litre, et de façon plus préférée entre 150 Nlitres/litre et 400 Nlitres/litre. Le rapport H2/HC est le rapport entre le débit volumique d'hydrogène sous 1 atmosphère et à 0°C et le débit volumique d'hydrocarbures.The first hydrodesulfurization step converts part of the sulfur present in the mixture into hydrogen sulfide (H 2 S). It consists of passing the mixture of hydrocarbons to be treated in the presence of hydrogen (supplied via line 4), over a hydrodesulphurization catalyst, at a temperature between 200°C and 400°C, preferably between 250°C. C and 340°C and at a pressure of between 1 and 10 MPa, preferably between 1.5 and 4 MPa. The liquid space velocity is generally between 1 and 10 h -1 , preferably between 2 and 5 h -1 and the H 2 /HC ratio is between 50 Nliters/liter (l/l) and 500 Nliters/liter, preferably between 100 Nliters/liter and 450 Nliters/liter, and more preferably between 150 Nliters/liter and 400 Nliters/liter. The H 2 /HC ratio is the ratio between the volume flow rate of hydrogen under 1 atmosphere and at 0°C and the volume flow rate of hydrocarbons.
L'effluent issu de cette étape d'hydrodésulfuration soutiré par la ligne 5 comprend le mélange d'hydrocarbures partiellement désulfuré, l'hydrogène résiduel et l'H2S produit par décomposition des composés soufrés. Cette étape d'hydrodésulfuration est effectuée par exemple dans un réacteur en lit fixe ou en lit mobile.The effluent resulting from this hydrodesulfurization step withdrawn by line 5 comprises the mixture of partially desulfurized hydrocarbons, the residual hydrogen and the H 2 S produced by decomposition of sulfur compounds. This hydrodesulfurization step is carried out for example in a fixed bed or moving bed reactor.
Le catalyseur utilisé au cours de la première étape d'hydrodésulfuration du procédé d'hydrodésulfuration selon l'invention comprend une phase métallique active déposée sur un support, ladite phase active comprenant au moins un métal du groupe VIII de la classification périodique des éléments (groupes 8, 9 et 10 selon la nouvelle notation de la classification périodique des éléments :
De manière générale, la teneur en métal(ux) du groupe VIB dans ledit catalyseur de la première étape d'hydrodésulfuration est comprise entre 4 et 40% poids d'oxyde(s) de métal(ux) du groupe VIB, de manière préférée entre 8 et 35% poids d'oxyde(s) de métal(ux) du groupe VIB, de manière très préférée entre 10 et 30% poids d'oxyde(s) de métal(ux) du groupe VIB par rapport au poids total du catalyseur. De préférence, le métal du groupe VIB est le molybdène ou le tungstène ou un mélange de ces deux éléments, et de manière plus préférée le métal du groupe VIB est constitué uniquement de molybdène ou de tungstène. Le métal du groupe VIB est de manière très préférée le molybdène.Generally, the content of metal(s) from group VIB in said catalyst of the first hydrodesulfurization step is between 4 and 40% by weight of oxide(s) of metal(s) from group VIB, preferably between 8 and 35% by weight of metal oxide(s) from group VIB, very preferably between 10 and 30% by weight of metal oxide(s) from group VIB relative to the total weight of the catalyst. Preferably, the Group VIB metal is molybdenum or tungsten or a mixture of these two elements, and more preferably the Group VIB metal consists solely of molybdenum or tungsten. The Group VIB metal is most preferably molybdenum.
De manière générale, la teneur en métal(ux) du groupe VIII dans ledit catalyseur de la première étape d'hydrodésulfuration est comprise entre 1,5 et 9% poids d'oxyde(s) de métal(ux) du groupe VIII, de manière préférée comprise entre 2 et 8% poids d'oxyde(s) de métal(ux) du groupe VIII par rapport au poids total du catalyseur. De préférence, le métal du groupe VIII est un métal non noble du groupe VIII de la classification périodique des éléments. De manière très préférée, ledit métal du groupe VIII est le cobalt ou le nickel ou un mélange de ces deux éléments, et de manière plus préférée le métal du groupe VIII est constitué uniquement de cobalt ou de nickel. Le métal du groupe VIII est de manière très préférée le cobalt.In general, the content of metal(s) from Group VIII in said catalyst of the first hydrodesulfurization step is between 1.5 and 9% by weight of oxide(s) of metal(s) from Group VIII, of preferably between 2 and 8% by weight of oxide(s) of metal(s) from Group VIII relative to the total weight of the catalyst. Preferably, the group VIII metal is a non-noble metal from group VIII of the periodic table of elements. Very preferably, said Group VIII metal is cobalt or nickel or a mixture of these two elements, and more preferably the Group VIII metal consists solely of cobalt or nickel. The Group VIII metal is most preferably cobalt.
Le rapport molaire métal(ux) du groupe VIII sur métal(ux) du groupe VIB dans le catalyseur sous forme oxyde est compris entre 0,1 et 0,8, très préférentiellement compris entre 0,2 et 0,6, et de manière encore plus préférée compris entre 0,3 et 0,5.The molar ratio of metal(s) from group VIII to metal(s) from group VIB in the catalyst in oxide form is between 0.1 and 0.8, very preferably between 0.2 and 0.6, and so even more preferred between 0.3 and 0.5.
Lorsque le catalyseur contient du phosphore, la teneur en phosphore du catalyseur de la première étape d'hydrodésulfuration est de préférence comprise entre 0,1 et 20% poids de P2O5, de manière plus préférée entre 0,2 et 15% poids de P2O5, de manière très préférée entre 0,3 et 10% poids de P2O5 par rapport au poids total du catalyseur.When the catalyst contains phosphorus, the phosphorus content of the catalyst of the first hydrodesulfurization step is preferably between 0.1 and 20% by weight of P 2 O 5 , more preferably between 0.2 and 15% by weight of P 2 O 5 , very preferably between 0.3 and 10% by weight of P 2 O 5 relative to the total weight of the catalyst.
Le rapport molaire phosphore sur métal(ux) du groupe VIB dans le catalyseur de la première étape d'hydrodésulfuration est supérieur ou égal à 0,05, de préférence supérieur ou égal à 0,1, de manière plus préférée compris entre 0,15 et 0,6, de manière encore plus préférée compris entre 0,15 et 0,5.The molar ratio of phosphorus to metal(s) of group VIB in the catalyst of the first hydrodesulfurization step is greater than or equal to 0.05, preferably greater than or equal to 0.1, more preferably between 0.15 and 0.6, even more preferably between 0.15 and 0.5.
Le support du catalyseur de la première étape d'hydrodésulfuration sur lequel est déposée la phase active est avantageusement formé d'au moins un solide poreux sous forme oxyde choisi dans le groupe constitué par les alumines, les silices, les silices-alumine ou encore les oxydes de titane ou de magnésium utilisé(s) seul ou en mélange avec l'alumine ou la silice-alumine. Il est de préférence choisi dans le groupe constitué par les silices, les alumines de transition et les silices-alumine. De manière plus préférée, ledit support est constitué uniquement d'une alumine de transition ou d'un mélange d'alumines de transition. La surface spécifique du catalyseur est généralement comprise entre 100 et 400 m2/g, de préférence entre 150 et 300 m2/g. Le catalyseur de la première étape d'hydrodésulfuration se présente avantageusement sous forme de billes, d'extrudés, de pastilles, ou d'agglomérats irréguliers et non sphériques dont la forme spécifique peut résulter d'une étape de concassage. De manière très avantageuse, ledit support se présente sous forme de billes ou d'extrudés.The support of the catalyst of the first hydrodesulfurization step on which the active phase is deposited is advantageously formed of at least one porous solid in oxide form chosen from the group consisting of aluminas, silicas, silica-alumina or even titanium or magnesium oxides used alone or mixed with alumina or silica-alumina. It is preferably chosen from the group consisting of silicas, transition aluminas and silica-alumina. More preferably, said support consists solely of a transition alumina or of a mixture of transition aluminas. The specific surface area of the catalyst is generally between 100 and 400 m 2 /g, preferably between 150 and 300 m 2 /g. The catalyst of the first hydrodesulfurization step is advantageously in the form of beads, extrudates, pellets, or irregular and non-spherical agglomerates whose specific shape can result from a crushing step. Very advantageously, said support is in the form of balls or extrudates.
Le catalyseur de la première étape d'hydrodésulfuration est de préférence utilisé au moins en partie sous sa forme sulfurée. La sulfuration consiste à passer une charge contenant au moins un composé soufré, qui une fois décomposé conduit à la fixation de soufre sur le catalyseur. Cette charge peut être gazeuse ou liquide, par exemple de l'hydrogène contenant de l'H2S, ou un liquide contenant au moins un composé soufré. L'étape de sulfuration peut être réalisée in situ, c'est-à-dire au sein du procédé selon l'invention, ou ex situ, c'est à dire dans une unité dédiée aux sulfurations de catalyseurs.The catalyst of the first hydrodesulfurization step is preferably used at least partly in its sulfurized form. Sulfurization consists of passing a charge containing at least one sulfur compound, which once decomposed leads to the fixation of sulfur on the catalyst. This charge can be gaseous or liquid, for example hydrogen containing H 2 S, or a liquid containing at least one sulfur compound. The sulfurization step can be carried out in situ, that is to say within the process according to the invention, or ex situ, that is to say in a unit dedicated to the sulfurization of catalysts.
Selon l'invention, le procédé comprend une étape où l'H2S est au moins en partie éliminé de l'effluent obtenu à l'issu de la première étape d'hydrodésulfuration. Cette étape peut être réalisée au moyen de toutes techniques connues de l'homme du métier. Elle peut être réalisée directement dans les conditions dans lesquelles se trouve l'effluent à l'issue de cette étape ou après que les conditions aient été changées afin de faciliter l'élimination d'au moins une partie de l'H2S. Comme technique envisageable, on peut par exemple citer une séparation gaz/liquide (où le gaz se concentre en H2S et le liquide est appauvri en H2S), une étape de stripage l'effluent, une étape de lavage aux amines, une captation de l'H2S par une masse absorbante opérant sur l'effluent gazeux ou liquide, une séparation de l'H2S de l'effluent gazeux ou liquide par une membrane. Une combinaison de une ou plusieurs des possibilités présentées précédemment est aussi possible, comme par exemple une séparation gaz/liquide à la suite de laquelle l'effluent liquide est envoyé dans une colonne de stripage tandis que l'effluent gazeux est envoyé dans une étape de lavage aux amines.According to the invention, the process comprises a step where the H 2 S is at least partly eliminated from the effluent obtained at the end of the first hydrodesulfurization step. This step can be carried out using any techniques known to those skilled in the art. It can be carried out directly in the conditions in which the effluent is found at the end of this step or after the conditions have been changed in order to facilitate the elimination of at least part of the H 2 S. As possible technique, we can for example cite a gas/liquid separation (where the gas concentrates in H 2 S and the liquid is depleted in H 2 S), an effluent stripping step, an amine washing step, a capture of H 2 S by an absorbent mass operating on the gaseous or liquid effluent, separation of H 2 S from the gaseous or liquid effluent through a membrane. A combination of one or more of the possibilities presented previously is also possible, such as for example a gas/liquid separation following which the liquid effluent is sent to a stripping column while the gaseous effluent is sent to a stage of amine wash.
En référence à la
De manière surprenante, les inventeurs ont trouvé que la présence d'une coupe de distillat en mélange avec une coupe essence a un effet positif sur la réduction de la formation de mercaptans de recombinaison dans l'effluent partiellement désulfuré.Surprisingly, the inventors have found that the presence of a distillate cut mixed with a gasoline cut has a positive effect on reducing the formation of recombination mercaptans in the partially desulfurized effluent.
Généralement, à l'issue de l'étape de séparation de l'H2S, on obtient un mélange d'hydrocarbures ayant une teneur en soufre totale comprise entre 100 et 1000 ppm poids, de préférence comprise entre 200 et 500 ppm poids.Generally, at the end of the H 2 S separation step, a mixture of hydrocarbons is obtained having a total sulfur content of between 100 and 1000 ppm by weight, preferably between 200 and 500 ppm by weight.
En référence à la
Les conditions opératoires pour la seconde étape d'hydrodésulfuration sont les suivantes:
- une température comprise entre 205°C et 500°C, de préférence entre 250°C et 320°C ;
- une pression comprise entre 1 et 3 MPa, de préférence entre 1,5
et 2,5 MPa - une vitesse spatiale liquide est généralement comprise entre 1 et 10 h-1, de préférence entre 2 et 5 h-1,
- un rapport H2/HC est compris entre 50 Nlitres/litre (l/l) et 500 Nlitres/litre, de préférence entre 100 Nlitres/litre et 450 Nlitres/litre, et de façon plus préférée entre 150 Nlitres/litre et 400 Nlitres/litre. Le rapport H2/HC est le rapport entre le débit d'hydrogène sous 1 atmosphère et à 0°C et le débit d'hydrocarbures.
- a temperature between 205°C and 500°C, preferably between 250°C and 320°C;
- a pressure between 1 and 3 MPa, preferably between 1.5 and 2.5 MPa
- a liquid space velocity is generally between 1 and 10 h -1 , preferably between 2 and 5 h -1 ,
- an H 2 /HC ratio is between 50 Nliters/liter (l/l) and 500 Nliters/liter, preferably between 100 Nliters/liter and 450 Nliters/liter, and more preferably between 150 Nliters/liter and 400 Nliters /liter. The H 2 /HC ratio is the ratio between the hydrogen flow rate under 1 atmosphere and at 0°C and the hydrocarbon flow rate.
Selon l'invention, la température de la seconde étape d'HDS est supérieure à celle de la première étape d'HDS, de préférence supérieure d'au moins 5°C et de manière encore plus préférée d'au moins 10°C. De façon avantageuse, la seconde étape d'hydrodésulfuration met en oeuvre un catalyseur ayant une sélectivité en hydrodésulfuration par rapport à l'hydrogénation des oléfines supérieure au catalyseur de la première étape d'hydrodésulfuration.According to the invention, the temperature of the second HDS stage is higher than that of the first HDS stage, preferably higher by at least 5°C and even more preferably by at least 10°C. Advantageously, the second hydrodesulfurization step uses a catalyst having a selectivity in hydrodesulfurization with respect to the hydrogenation of olefins greater than the catalyst of the first hydrodesulfurization step.
Le catalyseur adapté pour cette seconde étape d'hydrodésulfuration comprend au moins un métal du groupe VIII (groupes 8, 9 et 10 selon la nouvelle notation de la classification périodique des éléments :
La teneur en métal du groupe VIII exprimée en oxyde est généralement comprise entre 0,5 et 15 % poids, préférentiellement entre 1 et 10% poids par rapport au poids total de catalyseur.The Group VIII metal content expressed as oxide is generally between 0.5 and 15% by weight, preferably between 1 and 10% by weight relative to the total weight of catalyst.
La teneur en métal du groupe VIB est généralement comprise entre 1,5 et 60% poids, préférentiellement entre 3 et 50% poids par apport au poids total de catalyseur.The metal content of group VIB is generally between 1.5 and 60% by weight, preferably between 3 and 50% by weight per contribution to the total weight of catalyst.
Le métal du groupe VIII est de préférence le cobalt et le métal du groupe VIB est généralement le molybdène ou le tungstène.The Group VIII metal is preferably cobalt and the Group VIB metal is generally molybdenum or tungsten.
De manière préférée, le catalyseur de la seconde étape d'hydrodésulfuration comprend en outre du phosphore. La teneur en phosphore dudit catalyseur est de préférence comprise entre 0,1 et 20% poids de P2O5, de manière plus préférée entre 0,2 et 15% poids de P2O5, de manière très préférée entre 0,3 et 10% poids de P2O5 par rapport au poids total du catalyseur.Preferably, the catalyst for the second hydrodesulfurization step further comprises phosphorus. The phosphorus content of said catalyst is preferably between 0.1 and 20% by weight of P 2 O 5 , more preferably between 0.2 and 15% by weight of P 2 O 5 , very preferably between 0.3 and 10% by weight of P 2 O 5 relative to the total weight of the catalyst.
De manière préférée, le catalyseur comprend en outre un ou plusieurs composés organiques.Preferably, the catalyst further comprises one or more organic compounds.
Le support du catalyseur est habituellement un solide poreux, tel que par exemple une alumine, une silice-alumine ou d'autres solides poreux, tels que par exemple de la magnésie, de la silice ou de l'oxyde de titane, seuls ou en mélange avec de l'alumine ou de la silice-alumine.The catalyst support is usually a porous solid, such as for example alumina, silica-alumina or other porous solids, such as for example magnesia, silica or titanium oxide, alone or in combination. mixture with alumina or silica-alumina.
Pour minimiser l'hydrogénation des oléfines présentes dans l'essence lourde il est avantageux d'utiliser préférentiellement un catalyseur dans lequel la densité de molybdène, exprimée en % poids de MoOs par unité de surface de catalyseur, est supérieure à 0,07 et de préférence supérieure à 0,10. Le catalyseur selon l'invention présente, de préférence, une surface spécifique inférieure à 200 m2/g, de manière plus préférée inférieure à 180 m2/g, et de manière très préférée inférieure à 150 m2/g.To minimize the hydrogenation of the olefins present in heavy gasoline, it is advantageous to preferably use a catalyst in which the density of molybdenum, expressed in weight% of MoOs per unit surface area of catalyst, is greater than 0.07 and preferably greater than 0.10. The catalyst according to the invention preferably has a specific surface area less than 200 m 2 /g, more preferably less than 180 m 2 /g, and very preferably less than 150 m 2 /g.
Dans un mode de réalisation préféré, le catalyseur sélectif de la seconde étape d'hydrodésulfuration comprend du cobalt, du molybdène et éventuellement du phosphore déposés sur un support alumine et ayant les teneurs suivantes:
- CoO comprise entre 1 et 6% poids par rapport au poids total de catalyseur;
- MoOs comprise entre 3 et 15% poids par rapport au poids total de catalyseur;
- P2O5 comprise entre 0 et 3 % poids par rapport au poids total de catalyseur;
- une surface spécifique de catalyseur inférieure à 150 m2/g, de préférence comprise entre 50 et 150 m2/g.
- CoO between 1 and 6% by weight relative to the total weight of catalyst;
- MoOs between 3 and 15% by weight relative to the total weight of catalyst;
- P 2 O 5 between 0 and 3% by weight relative to the total weight of catalyst;
- a specific catalyst surface area of less than 150 m 2 /g, preferably between 50 and 150 m 2 /g.
Le catalyseur de la seconde étape d'hydrodésulfuration est de préférence utilisé au moins en partie sous sa forme sulfurée. La sulfuration consiste à passer la charge contenant au moins un composé soufré, qui une fois décomposé conduit à la fixation de soufre sur le catalyseur. Cette charge peut être gazeuse ou liquide, par exemple de l'hydrogène contenant de l'H2S, ou un liquide contenant au moins un composé soufré. L'étape de sulfuration peut être réalisée in situ, c'est-à-dire au sein du procédé selon l'invention, ou ex situ, c'est à dire dans une unité dédiée aux sulfurations de catalyseurs.The catalyst of the second hydrodesulfurization step is preferably used at least partly in its sulfurized form. Sulfurization consists of passing the charge containing at least one sulfur compound, which once decomposed leads to the fixation of sulfur on the catalyst. This charge can be gaseous or liquid, for example hydrogen containing H 2 S, or a liquid containing at least one sulfur compound. The sulfurization step can be carried out in situ, that is to say within the process according to the invention, or ex situ, that is to say in a unit dedicated to the sulfurization of catalysts.
Après la seconde étape d'hydrodésulfuration, l'effluent désulfuré a une teneur en soufre total généralement inférieure à 50 ppm poids, de préférence inférieure à 30 ppm poids et présente une teneur en mercaptans généralement inférieure à 10 ppm poids.After the second hydrodesulfurization step, the desulfurized effluent has a total sulfur content generally less than 50 ppm by weight, preferably less than 30 ppm by weight and has a mercaptan content generally less than 10 ppm by weight.
Conformément à l'invention et comme représenté à la
L'étape de séparation ou de distillation consiste à séparer l'effluent stabilisé contenant le mélange d'hydrocarbures en au moins deux coupes d'hydrocarbures à savoir une coupe d'hydrocarbures légère et une coupe d'hydrocarbures lourde toutes deux désulfurées. De manière préférée, le point de coupe est généralement compris entre 160°C et 220°C, bornes incluses. En référence la
De préférence, la teneur en soufre dans la coupe légère (ou coupe essence) désulfurée est inférieure à 50 ppm poids, de manière préférée, inférieure à 30 ppm poids et de manière encore plus préférée inférieure à 10 ppm poids. De préférence, la teneur en soufre dans la coupe lourde (ou coupe de distillat) désulfurée est inférieure à 50 ppm poids, éventuellement inférieure à 30 ppm poids voire inférieure à 10 ppm poids.Preferably, the sulfur content in the desulfurized light cut (or gasoline cut) is less than 50 ppm by weight, preferably less than 30 ppm by weight and even more preferably less than 10 ppm by weight. Preferably, the sulfur content in the desulfurized heavy cut (or distillate cut) is less than 50 ppm by weight, optionally less than 30 ppm by weight or even less than 10 ppm by weight.
Il est également possible de réaliser la stabilisation et la distillation de manière concomitante dans une colonne à soutirage latéral et reflux externe total. La coupe de distillat est récupérée en fond, la coupe essence est soutirée latéralement plusieurs plateaux en dessous du plateau de tête tandis que les composés les plus légers sont éliminés en tête de colonne dans l'effluent gazeux.It is also possible to carry out stabilization and distillation concomitantly in a column with side withdrawal and total external reflux. The distillate cut is recovered at the bottom, the gasoline cut is withdrawn laterally several trays below the top tray while the lightest compounds are eliminated at the top of the column in the gaseous effluent.
De manière alternative, l'effluent issu de la colonne de stabilisation contenant le mélange d'hydrocarbures désulfuré est séparé en trois coupes. Dans ce cas, les deux points de coupe seront généralement à environ 160°C et à environ 220°C. Les trois coupes d'hydrocarbures présentent une teneur en soufre total inférieure à 50 ppm poids, de manière préférée, inférieure à 30 ppm poids et de manière encore plus préférée inférieure à 10 ppm poids.Alternatively, the effluent from the stabilization column containing the desulfurized hydrocarbon mixture is separated into three cuts. In this case, the two cutting points will generally be around 160°C and around 220°C. The three hydrocarbon cuts have a total sulfur content of less than 50 ppm by weight, preferably less than 30 ppm by weight and even more preferably less than 10 ppm by weight.
De façon surprenante, les inventeurs ont trouvé que la mise en oeuvre de deux étapes successivement d'hydrodésulfuration avec une étape intermédiaire d'élimination de l'H2S sur un mélange d'une coupe essence et de distillat moyen permet in fine de fournir une essence désulfurée avec une basse teneur en mercaptans et sans perte notable de l'indice d'octane et cela sans requérir à des conditions d'hydrodésulfuration particulièrement sévères qui s'accompagnent généralement d'une hydrogénation non négligeable des composés hydrocarbures mono-oléfiniques. En effet il est connu que la perte d'octane liée à l'hydrogénation des mono-oléfines lors des étapes d'hydrodésulfuration est d'autant plus grande que la teneur en soufre visée est basse, c'est à dire que lorsque l'on cherche à éliminer en profondeur les composés soufrés présents dans la charge.Surprisingly, the inventors have found that the implementation of two successive stages of hydrodesulfurization with an intermediate stage of elimination of H 2 S on a mixture of a gasoline cut and middle distillate ultimately makes it possible to provide a desulphurized gasoline with a low mercaptan content and without significant loss of octane number and this without requiring particularly severe hydrodesulphurization conditions which are generally accompanied by significant hydrogenation of the mono-olefinic hydrocarbon compounds. Indeed it is known that the loss of octane linked to the hydrogenation of mono-olefins during the hydrodesulfurization stages is all the greater as the targeted sulfur content is low, that is to say when the we seek to thoroughly eliminate the sulfur compounds present in the load.
Selon un mode de réalisation alternatif du procédé selon l'invention également représenté à la
Généralement, l'essence produite contient moins de 0,5% poids de dioléfines, et de préférence moins de 0,25% poids de dioléfines.Generally, the gasoline produced contains less than 0.5% by weight of diolefins, and preferably less than 0.25% by weight of diolefins.
De façon avantageuse et comme indiquée sur la
Un catalyseur α d'hydrodésulfuration est obtenu par imprégnation « sans excès de solution » d'une alumine de transition se présentant sous forme de billes de surface spécifique de 130 m2/g et de volume poreux 0,9 ml/g, par une solution aqueuse contenant du molybdène et du cobalt sous forme d'heptamolybdate d'ammonium et de nitrate de cobalt. Le catalyseur est ensuite séché et calciné sous air à 500°C. La teneur en cobalt et en molybdène du catalyseur α est de 3% poids de CoO et 10% poids de MoOs.An α hydrodesulfurization catalyst is obtained by impregnation “without excess solution” of a transition alumina in the form of beads with a specific surface area of 130 m 2 /g and a pore volume of 0.9 ml/g, by a aqueous solution containing molybdenum and cobalt in the form of ammonium heptamolybdate and cobalt nitrate. The catalyst is then dried and calcined in air at 500°C. The cobalt and molybdenum content of the α catalyst is 3% by weight of CoO and 10% by weight of MoOs.
50 ml du catalyseur α sont placés dans un réacteur d'hydrodésulfuration tubulaire à lit fixe. Le catalyseur est tout d'abord sulfuré par traitement pendant 4 heures sous une pression de 3,4 MPa à 350°C, au contact d'une charge constituée de 2% poids de soufre sous forme de diméthyldisulfure dans du n-heptane.50 ml of the α catalyst are placed in a tubular fixed-bed hydrodesulfurization reactor. The catalyst is first sulfurized by treatment for 4 hours under a pressure of 3.4 MPa at 350°C, in contact with a charge consisting of 2% by weight of sulfur in the form of dimethyldisulfide in n-heptane.
La charge traitée C est une essence de craquage catalytique dont le point initial d'ébullition est de 61°C et le point final de 162°C. Sa teneur en soufre est de 765 ppm poids et son indice de brome (IBr) est de 75,9 g/100 g ce qui correspond approximativement à 42% poids d'oléfines.The treated feed C is a catalytic cracked gasoline whose initial boiling point is 61°C and the final point is 162°C. Its sulfur content is 765 ppm by weight and its bromine index (IBr) is 75.9 g/100 g, which corresponds approximately to 42% by weight of olefins.
Cette charge C est traitée avec le catalyseur α, sous une pression de 2 MPa, un rapport volumique hydrogène sur charge à traiter (H2/HC) de 300 NI/l et une VVH de 4 h-1 . Après traitement, l'effluent est refroidi et l'hydrogène riche en H2S est séparé de l'essence liquide, et l'essence est soumise à un traitement de stripage par injection d'un flux d'hydrogène afin d'éliminer les traces résiduelles d'H2S dissous dans l'essence désulfurée.This charge C is treated with the catalyst α, under a pressure of 2 MPa, a volume ratio of hydrogen to charge to be treated (H 2 /HC) of 300 NI/l and a VVH of 4 h -1 . After treatment, the effluent is cooled and the hydrogen rich in H 2 S is separated from the liquid gasoline, and the gasoline is subjected to a stripping treatment by injection of a flow of hydrogen in order to eliminate the residual traces of H 2 S dissolved in the desulfurized gasoline.
Le tableau 1 montre l'influence de la température mise en jeu sur les taux de désulfuration et l'indice RON des effluents désulfurés.
On constate que lorsque la température mise en oeuvre augmente, le taux de désulfuration est amélioré mais au prix d'une augmentation du taux d'hydrogénation des oléfines.It is noted that when the temperature used increases, the rate of desulfurization is improved but at the cost of an increase in the rate of hydrogenation of the olefins.
50 ml d'un catalyseur β d'hydrodésulfuration se présentant sous forme de extrudés de surface spécifique de 180 m2/g dont la teneur (poids d'oxyde(s) par rapport au poids total du catalyseur) en cobalt, molybdène et phosphore sont respectivement de 4,4% poids de CoO et 21,3% poids de MoO3 et 6,0% poids de P2O5 sont placés dans un réacteur d'hydrodésulfuration tubulaire à lit fixe. Le catalyseur est tout d'abord sulfuré par traitement pendant 4 heures sous une pression de 2 MPa à 350°C, au contact d'une charge constituée de 2% poids de soufre sous forme de diméthyldisulfure dans du n-heptane.50 ml of a β hydrodesulfurization catalyst in the form of extrudates with a specific surface area of 180 m 2 /g whose content (weight of oxide(s) relative to the total weight of the catalyst) in cobalt, molybdenum and phosphorus are respectively 4.4% by weight of CoO and 21.3% by weight of MoO 3 and 6.0% by weight of P 2 O 5 are placed in a fixed bed tubular hydrodesulfurization reactor. The catalyst is first sulfurized by treatment for 4 hours under a pressure of 2 MPa at 350°C, in contact with a filler consisting of 2% by weight of sulfur in the form of dimethyldisulfide in n-heptane.
La charge traitée D a un point initial d'ébullition de 160°C et un point final de 269°C. Sa teneur en soufre est de 5116 ppm poids et son indice de brome (IBr) est de 19.5 g/100 g ce qui correspond approximativement à 10% poids d'oléfines. La fraction de la charge D ayant un point d'ébullition compris entre 220°C et 269°C est de 26,3% poids.The treated feed D has an initial boiling point of 160°C and an end point of 269°C. Its sulfur content is 5116 ppm by weight and its bromine index (IBr) is 19.5 g/100 g which corresponds approximately to 10% by weight of olefins. The fraction of charge D having a boiling point between 220°C and 269°C is 26.3% by weight.
La charge D est traitée avec le catalyseur β, à une température de 300°C, sous une pression de 2 MPa, avec un rapport volumique hydrogène sur charge à traiter (H2/HC) de 300 NI/I et une VVH de 4 h-1. Après traitement, l'effluent est refroidi, l'hydrogène riche en H2S est séparé de l'effluent liquide, et l'effluent est soumis à un traitement de stripage par injection d'un flux d'hydrogène afin d'éliminer les traces résiduelles d'H2S dissous avant d'être analysé. Le tableau 2 indique le taux de désulfuration et la teneur en soufre et en mercaptans de l'effluent désulfuré.
Une charge E testée dans l'exemple 3 est un mélange contenant 50% poids de la charge C et de 50% poids de la charge D. Le point initial d'ébullition du mélange est de 61°C et le point final de 269°C. Sa teneur en soufre est de 2512 ppm poids et son indice de brome (IBr) est de 53,4 g/100 g ce qui correspond approximativement à 29,2 % poids d'oléfines.A charge E tested in Example 3 is a mixture containing 50% by weight of charge C and 50% by weight of charge D. The initial boiling point of the mixture is 61°C and the final point is 269°C. vs. Its sulfur content is 2512 ppm by weight and its bromine index (IBr) is 53.4 g/100 g which corresponds approximately to 29.2% by weight of olefins.
Cette charge E est d'abord traitée sur le catalyseur α, à une température de 330°C, sous une pression de 2 MPa, avec un rapport volumique hydrogène sur charge à traiter (H2/HC) de 300 NI/I et une VVH de 4 h-1. Après traitement, l'effluent est refroidi, l'hydrogène riche en H2S est séparé de l'effluent liquide, et l'effluent est soumis à un traitement de stripage par injection d'un flux d'hydrogène afin d'éliminer les traces résiduelles d'H2S dissous.This charge E is first treated on the catalyst α, at a temperature of 330°C, under a pressure of 2 MPa, with a volume ratio of hydrogen to charge to be treated (H 2 /HC) of 300 NI/I and a VVH from 4 a.m. -1 . After treatment, the effluent is cooled, the hydrogen rich in H 2 S is separated from the liquid effluent, and the effluent is subjected to a stripping treatment by injection of a flow of hydrogen in order to eliminate the residual traces of dissolved H 2 S.
L'effluent est ensuite séparé en deux coupes : une première coupe (coupe essence) avec un point final d'ébullition de 160°C et une seconde coupe avec un point initial de 160°C.
La charge E utilisé dans l'exemple 3 est traitée dans un première étape d'hydrodésulfuration sur le catalyseur β, à une température de 260°C, sous une pression de 2 MPa, avec un rapport volumique hydrogène sur charge à traiter (H2/HC) de 300 NI/I et une VVH de 4 h-1. Après traitement, l'effluent issu de la première étape d'hydrodésulfuration est refroidi, l'hydrogène riche en H2S est séparé de l'effluent liquide, et l'effluent est soumis à un traitement de stripage par injection d'un flux d'hydrogène afin d'éliminer les traces résiduelles d'H2S dissous. L'effluent strippé constitue la charge F traitée dans la seconde étape d'hydrodésulfuration.The feed E used in Example 3 is treated in a first hydrodesulfurization step on the catalyst β, at a temperature of 260°C, under a pressure of 2 MPa, with a volume ratio of hydrogen to feed to be treated (H 2 /HC) of 300 NI/I and a VVH of 4 h -1 . After treatment, the effluent from the first hydrodesulfurization step is cooled, the hydrogen rich in H 2 S is separated from the liquid effluent, and the effluent is subjected to a stripping treatment by injection of a flow of hydrogen in order to eliminate residual traces of dissolved H 2 S. The stripped effluent constitutes the feedstock F treated in the second hydrodesulfurization step.
La charge F est ensuite traitée dans un deuxième étape d'hydrodésulfuration sur le catalyseur α, à une température de 280°C, sous une pression de 2 MPa, avec un rapport volumique hydrogène sur charge à traiter (H2/HC) de 300 l/l et une VVH de 4 h-1. Après traitement, l'effluent issu de la seconde étape d'hydrodésulfuration est refroidi, l'hydrogène riche en H2S est séparé de l'effluent liquide, et l'effluent est soumis à un traitement de stripage par injection d'un flux d'hydrogène afin d'éliminer les traces résiduelles d'H2S dissous.The feedstock F is then treated in a second hydrodesulfurization step on the α catalyst, at a temperature of 280°C, under a pressure of 2 MPa, with a volume ratio of hydrogen to feedstock to be treated (H 2 /HC) of 300. l/l and a VVH of 4 h -1 . After treatment, the effluent from the second hydrodesulfurization step is cooled, the hydrogen rich in H 2 S is separated from the liquid effluent, and the effluent is subjected to a stripping treatment by injection of a flow of hydrogen in order to eliminate residual traces of dissolved H 2 S.
L'effluent de la deuxième étape d'hydrodésulfuration est ensuite séparé en deux coupes : une première coupe (coupe essence) avec un point final d'ébullition de 160°C et une seconde coupe avec un point initial de 160°C.
L'exemple 4 montre qu'il est possible, à partir d'un mélange d'hydrocarbures comprenant au moins une première coupe d'hydrocarbures ayant une température d'ébullition comprise entre 61° et 160°C et dont la teneur en oléfines est de 42% poids et une seconde coupe d'hydrocarbures ayant une température d'ébullition comprise entre 160° et 269°C dont la fraction ayant un point d'ébullition supérieur à 220°C est de 26,3%, d'obtenir deux coupes désulfurées dont la teneur en soufre sont respectivement inférieure à 10 ppm poids soufre pour la coupe désulfurée ayant une température d'ébullition comprise entre 61°C et 160°C et inférieure à 50 ppm poids en soufre pour la coupe désulfurée ayant une température d'ébullition comprise entre 160° et 269°C tout en limitant la perte d'indice de RON liée notamment à l'hydrogénation d'une partie des oléfines présentes dans le mélange.Example 4 shows that it is possible, from a mixture of hydrocarbons comprising at least a first cut of hydrocarbons having a boiling temperature of between 61° and 160°C and whose olefin content is of 42% by weight and a second cut of hydrocarbons having a boiling point between 160° and 269°C of which the fraction having a boiling point greater than 220°C is 26.3%, to obtain two desulphurized cuts whose sulfur content are respectively less than 10 ppm by weight of sulfur for the desulphurized cut having a boiling temperature between 61°C and 160°C and less than 50 ppm by weight of sulfur for the desulphurized cut having a temperature of boiling between 160° and 269°C while limiting the loss of RON index linked in particular to the hydrogenation of part of the olefins present in the mixture.
Claims (12)
- Process for the concomitant production of two hydrocarbon cuts having low sulfur contents starting from a mixture of hydrocarbons having a starting boiling point of between 35°C and 100°C and a final boiling point of between 260°C and 340°C and having a total sulfur content of between 30 and 10 000 ppm by weight, said mixture of hydrocarbons consists of:• a first fraction comprising hydrocarbons having a range of boiling points of between the initial boiling point of the mixture and 160°C and the content of olefins of which is between 20% and 80% by weight of said first cut, the first fraction being chosen from an olefinic petrol cut resulting from a catalytic cracking, steam cracking, coking or visbreaking unit, the first fraction representing between 30% and 70% by weight of the mixture, and• a second fraction comprising hydrocarbons having a range of boiling points of between 160°C and the final boiling point of the mixture, said second fraction comprising at least 10% by weight of hydrocarbons having a range of boiling points of between 220°C and the final boiling point of the mixture, the second fraction being a light oil resulting from a catalytic cracking unit, the process comprising the following stages:a) in a first reactor, said mixture consisting of said first fraction and of said second fraction is treated in a first hydrodesulfurization stage in the presence of hydrogen and of a catalyst comprising at least one metal from group VIII, at least one metal from group VIB and a support, the content of metal(s) from group VIII being of between 1.5% and 9% by weight of oxide(s) of metal(s) from group VIII and the content of metal(s) from group VIB being of between 4% and 40% by weight of oxide(s) of metal (s) from group VIB, the molar ratio of metal(s) from group VIII to metal(s) from group VIB in the catalyst in oxide form is between 0.1 and 0.8, the first hydrodesulfurization stage being carried out at a temperature of between 200°C and 400°C, at a pressure of between 1 and 10 MPa, with a liquid space velocity of between 0.1 and 10 h-1 and with a volume of hydrogen/volume of mixture of hydrocarbons ratio of between 50 and 500 Slitre/litre;b) the hydrogen sulfide is removed from the partially desulfurized effluent resulting from stage a);c) in a second reactor, the partially desulfurized mixture resulting from stage b) is treated in a second hydrodesulfurization stage in the presence of hydrogen and of a catalyst comprising at least one element from group VIII, at least one element from group VIB and a support, the content of metal(s) from group VIII being of between 0.5% and 15% by weight of oxide(s) of metal(s) from group VIII and the content of metal (s) from group VIB being of between 1.5% and 60% by weight of oxide(s) of metal(s) from group VIB, the second hydrodesulfurization stage being carried out at a temperature of between 205°C and 500°C, at a pressure of between 1 and 3 MPa, with a liquid space velocity of between 1 and 10 h-1 and with a volume of hydrogen/volume of mixture ratio of between 50 and 500 Slitre/litre, the temperature of the second hydrodesulfurization stage c) being greater than that of the first hydrodesulfurization stage a); andd) the desulfurized mixture resulting from stage c) is fractionated into at least two light and heavy cuts of hydrocarbons, the light cut of hydrocarbons having an initial boiling point of between 35°C and 100°C and a final boiling point of between 160°C and 220°C and the total sulfur content of which is less than 50 ppm by weight and the heavy cut of hydrocarbons having an initial boiling point of between 160°C and 220°C and a final boiling point of between 260°C and 340°C.
- Process according to Claim 1, in which the catalyst of stage a) comprises a metal from group VIII chosen from nickel and cobalt and a metal from group VIB chosen from molybdenum and tungsten.
- Process according to Claim 2, in which the catalyst of stage a) comprises phosphorus.
- Process according to one of the preceding claims, in which the catalyst of stage c) comprises a metal from group VIII chosen from nickel and cobalt and a metal from group VIB chosen from molybdenum and tungsten.
- Process according to Claim 4, in which the catalyst of stage c) additionally comprises phosphorus.
- Process according to one of the preceding claims, in which the first fraction of hydrocarbons is a petrol cut resulting from a catalytic cracking unit.
- Process according to Claim 6, in which the first fraction of hydrocarbons is a cut of C6+ hydrocarbons obtained by distillation of a petrol cut resulting from a catalytic cracking unit.
- Process according to Claim 7, in which, before the distillation stage, the petrol cut was subjected to a stage of selective hydrogenation of the diolefins present in said petrol cut.
- Process according to one of the preceding claims, in which the temperature of stage c) is greater by at least 5°C than the temperature of stage a).
- Process according to one of the preceding claims, in which the temperature of stage c) is greater by at least 10°C than the temperature of stage a).
- Process according to Claims 6 and 8, in which, before stage a), a stage of mixing the first and second cuts of hydrocarbons is carried out upstream of the reactor of the first hydrodesulfurization stage.
- Process according to Claims 6 and 8, in which a mixing of the first and second cuts of hydrocarbons is carried out in the reactor of the first hydrodesulfurization stage.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1362892A FR3014896B1 (en) | 2013-12-18 | 2013-12-18 | PROCESS FOR HYDRODESULFURIZATION OF HYDROCARBON CUT |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2886629A1 EP2886629A1 (en) | 2015-06-24 |
EP2886629B1 true EP2886629B1 (en) | 2023-11-01 |
Family
ID=50179804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14306951.6A Active EP2886629B1 (en) | 2013-12-18 | 2014-12-04 | Process for the hydrodesulfuration of hydrocarbon fractions |
Country Status (8)
Country | Link |
---|---|
US (1) | US9505993B2 (en) |
EP (1) | EP2886629B1 (en) |
KR (1) | KR102276776B1 (en) |
CN (1) | CN104726132B (en) |
ES (1) | ES2968680T3 (en) |
FR (1) | FR3014896B1 (en) |
PL (1) | PL2886629T3 (en) |
RU (1) | RU2652982C2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3056599B1 (en) * | 2016-09-26 | 2018-09-28 | IFP Energies Nouvelles | PROCESS FOR TREATING GASOLINE BY SEPARATING INTO THREE CUTS |
FR3099174B1 (en) | 2019-07-23 | 2021-11-12 | Ifp Energies Now | PROCESS FOR THE PRODUCTION OF A GASOLINE WITH LOW SULFUR AND MERCAPTANS |
FR3099172B1 (en) * | 2019-07-23 | 2021-07-16 | Ifp Energies Now | PROCESS FOR TREATING A GASOLINE BY SEPARATION IN THREE CUTS |
FR3142487A1 (en) * | 2022-11-30 | 2024-05-31 | IFP Energies Nouvelles | Hydrodesulfurization process for finishing gasolines using a catalyst based on group VIB and VIII metals and phosphorus on an alumina support with low specific surface area |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3265610A (en) * | 1963-12-18 | 1966-08-09 | Inst Francais Du Petrole | Combined process for hydrocracking of hydrocarbons |
US3968026A (en) * | 1975-04-28 | 1976-07-06 | Gulf Research & Development Company | Hydrodesulfurization process with parallel first stages in series with a unified second stage |
US4016070A (en) * | 1975-11-17 | 1977-04-05 | Gulf Research & Development Company | Multiple stage hydrodesulfurization process with extended downstream catalyst life |
US5346609A (en) * | 1991-08-15 | 1994-09-13 | Mobil Oil Corporation | Hydrocarbon upgrading process |
JP4050364B2 (en) * | 1997-09-11 | 2008-02-20 | 日揮株式会社 | Oil processing method and oil processing apparatus |
FR2811328B1 (en) | 2000-07-06 | 2002-08-23 | Inst Francais Du Petrole | PROCESS INCLUDING TWO STAGES OF GASOLINE HYDRODESULFURATION AND AN INTERMEDIATE REMOVAL OF THE H2S FORMED DURING THE FIRST STAGE |
US6623622B2 (en) * | 2000-10-10 | 2003-09-23 | Exxonmobil Research And Engineering Company | Two stage diesel fuel hydrotreating and stripping in a single reaction vessel |
FR2837831B1 (en) | 2002-03-29 | 2005-02-11 | Inst Francais Du Petrole | PROCESS FOR THE PRODUCTION OF HYDROCARBONS WITH LOW SULFUR CONTENT AND MERCAPTANS |
US20040129606A1 (en) * | 2003-01-07 | 2004-07-08 | Catalytic Distillation Technologies | HDS process using selected naphtha streams |
US8435400B2 (en) * | 2005-12-16 | 2013-05-07 | Chevron U.S.A. | Systems and methods for producing a crude product |
FR2935389B1 (en) | 2008-09-04 | 2012-05-11 | Inst Francais Du Petrole | SELECTIVE HYDROGENATION PROCESS USING SULFIDE CATALYST OF SPECIFIC COMPOSITION |
CN101942331B (en) * | 2009-07-09 | 2013-06-19 | 中国石油化工股份有限公司 | Gasoline and diesel oil combined hydrogenation method |
US8617384B2 (en) | 2011-10-07 | 2013-12-31 | Uop Llc | Integrated catalytic cracking gasoline and light cycle oil hydroprocessing to maximize p-xylene production |
FR2988732B1 (en) | 2012-03-29 | 2015-02-06 | IFP Energies Nouvelles | METHOD FOR SELECTIVELY HYDROGENATING A GASOLINE |
US9365781B2 (en) * | 2012-05-25 | 2016-06-14 | E I Du Pont De Nemours And Company | Process for direct hydrogen injection in liquid full hydroprocessing reactors |
-
2013
- 2013-12-18 FR FR1362892A patent/FR3014896B1/en active Active
-
2014
- 2014-12-04 EP EP14306951.6A patent/EP2886629B1/en active Active
- 2014-12-04 ES ES14306951T patent/ES2968680T3/en active Active
- 2014-12-04 PL PL14306951.6T patent/PL2886629T3/en unknown
- 2014-12-15 RU RU2014150770A patent/RU2652982C2/en active
- 2014-12-17 US US14/572,946 patent/US9505993B2/en active Active
- 2014-12-17 KR KR1020140182363A patent/KR102276776B1/en active IP Right Grant
- 2014-12-18 CN CN201410787367.2A patent/CN104726132B/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR102276776B1 (en) | 2021-07-12 |
FR3014896A1 (en) | 2015-06-19 |
FR3014896B1 (en) | 2018-07-27 |
RU2014150770A (en) | 2016-07-10 |
KR20150071665A (en) | 2015-06-26 |
PL2886629T3 (en) | 2024-03-25 |
EP2886629A1 (en) | 2015-06-24 |
CN104726132B (en) | 2018-12-07 |
US9505993B2 (en) | 2016-11-29 |
RU2652982C2 (en) | 2018-05-04 |
ES2968680T3 (en) | 2024-05-13 |
CN104726132A (en) | 2015-06-24 |
US20150166907A1 (en) | 2015-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1923452B1 (en) | Method of deep sulphur removal from cracked petrol with minimum loss of octane number | |
EP1849850B1 (en) | Method of desulphurating olefin gasolines comprising at least two distinct hydrodesulphuration steps | |
EP3018189B1 (en) | Process for converting petroleum feedstocks comprising a visbreaking stage, a maturation stage and a stage of separating the sediments for the production of fuel oils with a low sediment content | |
EP2816094B1 (en) | Method for producing gasoline with low sulphur and mercaptan content | |
EP3299441B1 (en) | Method for treating a gasoline by separation into three cuts | |
EP1369468B1 (en) | Process of production of hydrocarbons with low content of sulfur and of nitrogen | |
EP1354930A1 (en) | Process for the preparation of hydrocarbons of low sulfur and mercaptans content. | |
EP2644683A1 (en) | Method for selective hydrogenation of a gasoline | |
EP2886629B1 (en) | Process for the hydrodesulfuration of hydrocarbon fractions | |
EP3312260B1 (en) | Method for hydrodesulphurisation of olefinic gasoline | |
WO2014013154A1 (en) | Method of petrol desulphurisation | |
EP3228683B1 (en) | Method for treating a gasoline | |
WO2016096364A1 (en) | Process for sweetening an olefinic gasoline of sulphide type compounds | |
EP1370627B1 (en) | Method for producing petrol having a low sulphur content | |
FR3099175A1 (en) | PROCESS FOR THE PRODUCTION OF A GASOLINE WITH LOW SULFUR AND MERCAPTANS | |
EP1661965B1 (en) | process for hydrotreating an olefinic gasoline comprising a selective hydrogenation step | |
WO2015165664A1 (en) | Method for producing a gasoline with a low sulphur and mercaptans content | |
WO2021013526A1 (en) | Method for producing a petrol with low sulphur and mercaptan content | |
EP3283601B1 (en) | Method for sweetening an olefinic petrol of sulphide-type compounds | |
FR3130831A1 (en) | Process for producing a low sulfur light gasoline cut | |
WO2021013525A1 (en) | Process for treating a gasoline by separation into three cuts | |
WO2023117531A1 (en) | Method for treating a petrol containing sulphur compounds | |
WO2024115276A1 (en) | Finishing hydrodesulfurization catalyst comprising a group vib metal, a group viii metal and phosphorus on an alpha alumina support | |
WO2016192893A1 (en) | Method for converting feedstocks comprising a visbreaking step, a precipitation step and a sediment separation step, in order to produce fuel oils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141204 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
R17P | Request for examination filed (corrected) |
Effective date: 20160104 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: IFP ENERGIES NOUVELLES |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190425 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230606 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014088728 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1627227 Country of ref document: AT Kind code of ref document: T Effective date: 20231101 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240119 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240301 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240202 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240201 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240301 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231227 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2968680 Country of ref document: ES Kind code of ref document: T3 Effective date: 20240513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240201 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20231229 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014088728 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20231231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231204 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240802 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231231 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20240201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231101 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231204 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231231 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20241224 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241227 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240201 |