EP2878712A1 - Aluminium-lithium alloy component including a ceramic coating and method for forming the coating - Google Patents
Aluminium-lithium alloy component including a ceramic coating and method for forming the coating Download PDFInfo
- Publication number
- EP2878712A1 EP2878712A1 EP14192317.7A EP14192317A EP2878712A1 EP 2878712 A1 EP2878712 A1 EP 2878712A1 EP 14192317 A EP14192317 A EP 14192317A EP 2878712 A1 EP2878712 A1 EP 2878712A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- component
- coating
- thickness
- voltage
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000005524 ceramic coating Methods 0.000 title claims abstract description 9
- 238000000576 coating method Methods 0.000 title claims description 69
- 239000011248 coating agent Substances 0.000 title claims description 68
- 229910001148 Al-Li alloy Inorganic materials 0.000 title description 17
- 239000001989 lithium alloy Substances 0.000 title description 12
- FCVHBUFELUXTLR-UHFFFAOYSA-N [Li].[AlH3] Chemical compound [Li].[AlH3] FCVHBUFELUXTLR-UHFFFAOYSA-N 0.000 title description 2
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 17
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 14
- 238000007745 plasma electrolytic oxidation reaction Methods 0.000 claims description 10
- 238000002360 preparation method Methods 0.000 claims description 4
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 2
- 238000005238 degreasing Methods 0.000 claims description 2
- 230000004075 alteration Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 abstract description 20
- 230000003647 oxidation Effects 0.000 abstract description 17
- 244000005700 microbiome Species 0.000 abstract 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 14
- 239000010410 layer Substances 0.000 description 12
- 230000007797 corrosion Effects 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 238000002468 ceramisation Methods 0.000 description 5
- 239000002585 base Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000010949 copper Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 210000004243 sweat Anatomy 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241001080024 Telles Species 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- -1 potassium or sodium Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/022—Anodisation on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/024—Anodisation under pulsed or modulated current or potential
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/026—Anodisation with spark discharge
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/12—Anodising more than once, e.g. in different baths
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B37/00—Cases
- G04B37/22—Materials or processes of manufacturing pocket watch or wrist watch cases
- G04B37/223—Materials or processes of manufacturing pocket watch or wrist watch cases metallic cases coated with a nonmetallic layer
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/16—Pretreatment, e.g. desmutting
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
Definitions
- the present invention relates to a component comprising an aluminum and lithium alloy coated with a ceramic coating. As well as the process for forming the coating.
- Aluminum alloys containing lithium have interesting properties. Among them we can mention their lightness compared to other conventional aluminum alloys. Indeed, lithium is the lightest of the metallic elements and, for each 1% of lithium added to the aluminum alloy makes it possible to reduce by 3% the density of the aluminum and to increase by 5% its elastic modulus . This type of alloy also has a high resistance to fatigue and corrosion, thus extending the life of the product. These alloys are 100% recyclable. Aluminum alloys containing lithium find their applications in the fields of aeronautics, aerospace and the military.
- An object of the present invention is to provide a coated component free from the limitations of known components.
- a component comprising an aluminum alloy comprising between 0.1 and 10% by weight of lithium, characterized in that said component is treated using a process of oxidation by micro-arc plasma to obtain a ceramic coating on the surface of the aluminum alloy.
- the invention also relates to a method for growing a ceramic coating on the surface of the component, the process being a plasma micro-arc oxidation process and comprising the steps of immersing the component to be coated in an electrolytic bath composed of an aqueous solution of alkali metal hydroxide, the component forming one of the electrodes; and applying an alternating current having a frequency of between 10 Hz to 10,000 Hz, so as to apply a voltage between the component and another electrode varying between 0 V and a value between 100 V and 1000 V.
- This solution has the advantage over the prior art of providing a component having a high hardness, excellent resistance to wear, impact, and corrosion.
- micro-arc plasma The oxidation process by micro-arc plasma is also a technology so the environmental impact is low, especially in view of conventional anodizing techniques so acidic baths are strongly discouraged for the protection of the environment.
- a component 1 comprises an aluminum alloy comprising between 0.1 and 10% by weight of lithium.
- the component is treated using a plasma micro-arc oxidation process (also known as “micro-arc oxidation” and acronym “MAO") so as to obtain a ceramic coating 2 on the surface of the aluminum alloy.
- a plasma micro-arc oxidation process also known as "micro-arc oxidation” and acronym “MAO”
- the aluminum alloy containing lithium may be one of the commercial alloys available on the market.
- the aluminum-lithium alloy may include any of the alloys listed in Table 1.
- the first line gives the name of the alloy and the left column the element as well as the content of the element in% by weight in the successive columns.
- Such an aluminum-lithium alloy will therefore contain up to 2.45% by weight of lithium, more particularly between 0.88 and 2.45% by weight of lithium.
- the figure 1 illustrates an arrangement of an installation, in which a tank 3 contains an electrolytic bath 4. Inside the electrolyte 4 plunges a counter-electrode, or cathode, and an anode which corresponds to the component 1 to be coated. To the figure 1 are equally represented a power supply block 6 able to generate an alternating current 31.
- the micro-arc plasma oxidation process comprises the steps of immersing the component 1 to be coated in the electrolyte 4 and of passing the alternating current 31 so as to apply a voltage between the component 1 and the cathode 5.
- the electrolyte 4 may comprise an aqueous solution of alkali metal hydroxide, such as potassium or sodium, and an oxyacid salt of an alkali metal.
- the electrolyte 4 is typically maintained at a temperature between 10 ° C and 55 ° C.
- the applied current comprises positive and negative current pulses alternating with a frequency of between 10 Hz and 10,000 Hz.
- the amplitude of the current pulses is between 2 and 200 A / dm 2 so as to apply a voltage between the component 1 and the cathode 5 of the order of 100 V to 1000 V. Indeed, a voltage of 100 and 1000V makes it possible to create an electrolytic plasma necessary for the formation of the coating 2 on the component 1.
- the current pulses are separated by a dead time where no current is applied.
- the duration of the dead time is preferably about 10% of the total duration of the current pulse.
- the duration of the dead time is such that the voltage drops to zero.
- each of the positive and negative current pulses may have a maximum amplitude followed by a decrease of the current to a zero value.
- the duration of the pulse where the value of the current is zero is about 10% of the total duration of the current pulse.
- the voltage must drop to zero, that is to say that the voltage is cycled between a base voltage (baseline) and a ceiling voltage, or ceiling (ceiling line).
- the minimum base voltage is preferably adjusted to a voltage of between 0 and 99.9% of the maximum peak of the ceiling voltage.
- the base voltage (for example 30% of the ceiling voltage) will promote the formation of micro-arcs emission visible to the naked eye, while a larger base voltage (for example 60% of the voltage ceiling), will promote the creation of a continuous plasma, also visible to the naked eye (relative to the retinal perception of 0.1 to 0.2 seconds).
- the influence of the choice of the basic minimum average voltages with respect to the maximum voltage and thus the type of micro-arcs obtained thus makes it possible to master a more or less dense and homogeneous layer.
- the densification of the layer is also subject to the frequency of alternation between the anode and cathode currents. Indeed in the first case the growth of the nanoporous layer will be realized whereas in the second case the densification of the nanoporosities will operate.
- the growth rate of the coating 1 depends on the type of frequency and the shape of the pulse, in particular the passage between a cathodic and anodic current (and vice versa) and the current amplitude (and therefore the applied voltage) .
- the growth rate of the coating is of the order of 1 micron / minute for an applied voltage of 100 to 400 V and a frequency of the order of 1000 Hz.
- the thickness of the coating thus obtained can range from a few microns, homogeneously on the part, as long as the setting used to maintain the component in the bath is adapted and does not modify the formation of micro arcs and do not extinguish them,) to a few hundred microns.
- the micro-arc plasma oxidation process is described, for example, in the document WO03 / 083181 .
- the figure 2 shows a sectional view of the component with the coating 1 formed by the plasma micro-arc oxidation process.
- the coating comprises a thick functional ceramic layer 21 thick forming about two thirds of the total thickness of the coating 2, and a porous outer layer 22 forming about one third of the total thickness of the coating 2 Moreover, during its growth, the coating 2 is formed in part by the transformation of the substrate material 7 and partly by growth beyond the initial surface 8 of the component (represented by the hatched line in the figure 2 ). In the figure 2 , the excess thickness of the coating 2 is represented by the difference in thickness between the initial surface 8 and the upper surface of the layer 22.
- the coating 1 formed by the plasma micro-arc oxidation process on the aluminum-lithium alloy component has a high hardness, close to 2000 Hv. It also has excellent resistance to wear, shock, corrosion.
- the coating 1 is of color corresponding to the natural color of the oxidized aluminum. For example, the coating 1 is dark brown in the case of the aluminum-lithium alloy 2050 (see Table 1).
- the oxidation process may comprise a preliminary step of preparing the surface 8 of the component 1.
- This preparation step may comprise the cleaning and degreasing of the surface 8, for example with boiling water or with an alkaline cleaning agent such as a PARCO cleaner solution (product of Henkel Surface Technologies division of Henkel Corporation, Madison Heights, Michigan).
- the preparation step may be followed by a rinsing step, for example with distilled water.
- a tribofinishing step can be carried out after the formation of the coating 1 by the oxidation process.
- This tribofinishing step may include, for example, microsablage.
- the figure 3 shows a coating 1 formed by the oxidation process of the invention.
- Figures 3a and 3c show the coating 2 seen from the front, respectively after its formation ( figure 3a ) and after the tribofinition stage ( figure 3c ).
- the figure 3b is a sectional view showing the Al-Li alloy substrate 7 and the coating 2.
- the component 1 to be coated may also be derived from a conventional shaping process such as machining, bar turning or setting. form by molding process of liquid aluminum (Cobapress process type).
- the plasma micro-arc oxidation process has been applied to different parts of a watch case made of an aluminum-lithium alloy.
- the figure 4 illustrates a perspective of such a watch case 9.
- the coating 1 has been formed on parts of the watch case 9 comprising a middle part 91, a middle horn 92, a lever 93, a fastening bridge 94 , a bottom (not visible in the figure), a bezel 95 and a crown cover 96.
- the Figures 5 to 9 show micrographs of views of a metallographic section of the coatings 2 formed by the oxidation process on the different parts of the watch case 9.
- the figure 5 shows the coating 2 formed on the lever 93.
- the figure 6 shows the coating 2 formed on the bezel 95.
- figure 7 shows the coating 2 formed on the middle part 91.
- the figure 8 shows the coating 2 formed on the middle horn 92.
- the visible layer in pale gray corresponds to a copper plating layer 10 deposited on the coating for protection purposes during the preparation of the metallographic section.
- the portion of the component 1 comprises one or more areas having a fine structuring, for example a thread, holes or tappings
- a fine structuring for example a thread, holes or tappings
- the coating 2 having a lower thickness than on the rest of the surface of the component 1.
- the formation of a thick coating in the fine structuring zones can result in a leveling of the structuring. This is particularly the case when the structuring has a dimension smaller than 100 ⁇ m.
- the oxidation process comprises a step of forming the coating 2 on the zone or zones having fine structuring.
- the zone or zones with fine structuring are then masked so as to form the coating 2 on the rest of the component 1 without affecting the zone or zones having fine structuring.
- the coating is formed on the remainder of the surface of the component 1.
- the thickness of the coating in the area or areas with fine structuring will depend on the size of the patterning.
- the coating can be formed on the area or areas with fine structuring with a thickness of about 10% of the dimension of the structuring.
- the area or areas with fine structuring can include threads, holes, tapping, etc.
- the figure 9 shows a sectional view of a threaded portion of the middle horn 92.
- the thread has a dimension (distance between the valley and the top) of a few tens of microns.
- the threaded portion, as well as the rest of the middle horn 92, was first oxidized according to the oxidation process of the invention so as to form the coating 2 (black layer) with a thickness of a few microns (typically between 1 and 5 ⁇ m).
- the threaded portion was then masked and the rest of the middle horn 92 was again oxidized according to the oxidation process of the invention, making it possible to form the coating 2 with a thickness of several tens to hundreds of microns, such illustrated in figure 8 .
- the threaded portion being masked during this step, the coating 2 does not believe more in this place and its thickness remains unchanged.
- the coating 2 having a small thickness in the zone or zones with the fine structuring makes it possible to densify and harden these zones without however leveling the structuring.
- the masking of the area or zones with fine structuring can be achieved using silicone gaskets or any other protective means resistant to oxidation treatment by micro-arc plasma and can be removed at the end of the process.
- the graph of the figure 10 relates the measured thicknesses of the coating 2 formed on the different parts of the watch case 9 as discussed above.
- the bottom line of the graph gives the value of the thickness.
- the coating 2 with a thickness of 50 ⁇ m is formed on the middle part 91 and the bottom of the box 9.
- the coating 2 has a thickness of 45 ⁇ m on the fixing bridge 94 and the crown cover 96, ect.
- Table 2 reports the thickness measured for the coating 2 formed on the various threads present on the watch case 9, for example, in the threaded axis of the middle part 91, for fixing the lever 93 on the fixing bridge 94 for fixing the fixing bridge 94 on the middle part 91.
- the three lines 1, 2 and 3 in the table 2 correspond to the thickness of the coating 2 measured at the top of three successive threads, as shown in FIG. figure 11 .
- the graph of the figure 12 summarizes different thickness measurements of the coating 2 at the holes and threads of the various elements of the box 9.
- the figure 16a shows a photograph of an aluminum-lithium alloy watch case 9 which has undergone the oxidation process of the invention.
- the figure 16b shows a detail of the housing 9, in particular a portion of the fixing bridge 94, the lever 93 and the bezel 95. photographs allow to assess the surface state of the component with the coating and, in this case, the final step of microsablage.
- the figure 13 shows the state of the surface of the watchband of lithium aluminum alloy on which the coating was formed by the oxidation process of the invention after 6 hours of wear according to the test above.
- Fine scratch tests were also carried out.
- the conditions of these tests included the rotation of the test sample at 90 rpm, in a box with a volume of 0.6 liter with a diameter of 80 mm, height of 60 mm, blotter wall with 5 to 15 markers and 10g of bremor BR 650 glass powder.
- the duration of the test was 24 hours.
- the figure 17 shows tables 3 and 4 which represent the observations made for different durations of solicitations from 1 min to 24 hours.
- the figure 14 shows a photomicrograph of the state of the surface of the middle part after 12 hours of fine scratches. These tests show that the ceramization process also allows excellent scratch resistance.
- Gravel bed scrap tests were also performed using a test method according to ISO 23160 including falls in a bed of gravel and ceramic chips 8 cm by 500 cm 2 of ceramics 3 mm diameter, with a length of 12 mm and hardness of 900HV ⁇ 100Hv. The height of fall was 40cm.
- the watch case to be tested is "loaded" with a weight representing the weight of the mechanical movement normally integrated in the watch head. After a dozen falls on a gravel / ceramic bed, there are very slight impacts on the edges, as can be seen in the diagram. figure 14 which shows the surface condition after ten of these tests to falls in gravel bed height 40cm of a weighted middle with a weight representing the weight of the mechanical movement. These tests show that the ceramization process also allows excellent impact and impact resistance 40cm on a gravel / ceramic bed.
- Synthetic sweat tests were also performed. These tests were carried out according to the conditions of the NIHS 96-50 and ISO 3160-2 standards, in which the tested parts are put on a cotton pad soaked in sweat in an environment of 40 ° C ⁇ 2 ° C humidity 95 to 100 % relative humidity test duration over 6 days.
- a lithium aluminum provides the following properties: 25% lighter than conventional materials, thus optimizing the design of structural parts and reducing the weight of a watch case, for example, better resistance to fatigue and fatigue. corrosion, which makes the product more reliable and lengthier, 100% recyclable, making a major contribution to a sustainable watch industry.
- the coating 2 obtained by the process of the invention is advantageous for the components of a mechanical watch subjected to friction or mechanical stress. It is also advantageous for treating watchmaking components, such as the example of the watch case 9 above, which are subject to aggressive environmental constraints such as wear, humidity, salinity (sea, tropical climates or other ). Of course, the component 1 comprising the coating 2 is not only of interest in the watch industry but can also be used in various fields such as eyewear and writing instruments.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
L'invention concerne un composant (1) comprenant un alliage d'aluminium comprenant entre 0.1 et 10 % en poids de lithium, caractérisé en ce ledit composant (1) est traité à l'aide d'un procédé d'oxydation par micro-arc plasma permettant d'obtenir un revêtement céramique (2) à la surface de l'alliage d'aluminium. L'invention concerne également un procédé permettant de croître le revêtement céramique (2) à la surface du composant.The invention relates to a component (1) comprising an aluminum alloy comprising between 0.1 and 10% by weight of lithium, characterized in that said component (1) is treated using a microorganism oxidation process. plasma arc for obtaining a ceramic coating (2) on the surface of the aluminum alloy. The invention also relates to a method for growing the ceramic coating (2) on the surface of the component.
Description
La présente invention concerne un composant comprenant un alliage d'aluminium et de lithium revêtu d'un revêtement céramique. Ainsi que le procédé pour former le revêtement.The present invention relates to a component comprising an aluminum and lithium alloy coated with a ceramic coating. As well as the process for forming the coating.
Les alliages d'aluminium contenant le lithium possèdent des propriétés intéressantes. Parmi elles on peut mentionner leur légèreté en comparaison aux autres alliages d'aluminium conventionnels. En effet, le lithium est le plus léger des éléments métallique et, pour chaque 1 % de lithium ajouté à l'alliage d'aluminium permet de réduire de 3 % la densité de l'aluminium et d'augmenter de 5% son module élastique. Ce type d'alliage a également une grande résistance à la fatigue et à la corrosion, permettant ainsi d'allonger la durée de vie du produit. Ces alliages sont 100% recyclables. Les alliages d'aluminium contenant le lithium trouvent leurs applications dans les domaines de l'aéronautique, de l'aérospatiale et dans le militaire.Aluminum alloys containing lithium have interesting properties. Among them we can mention their lightness compared to other conventional aluminum alloys. Indeed, lithium is the lightest of the metallic elements and, for each 1% of lithium added to the aluminum alloy makes it possible to reduce by 3% the density of the aluminum and to increase by 5% its elastic modulus . This type of alloy also has a high resistance to fatigue and corrosion, thus extending the life of the product. These alloys are 100% recyclable. Aluminum alloys containing lithium find their applications in the fields of aeronautics, aerospace and the military.
Cependant, ces alliages présentent une mauvaise résistance à l'usure et à la corrosion. En effet, malgré l'ajout de lithium, cet alliage, comme tous les alliages d'aluminium brut, présente des faiblesses à la corrosion et à l'usure et impacts.However, these alloys have poor resistance to wear and corrosion. Indeed, despite the addition of lithium, this alloy, like all raw aluminum alloys, has weaknesses in corrosion and wear and impacts.
Un but de la présente invention est de proposer un composant revêtu exempt des limitations des composants connus.An object of the present invention is to provide a coated component free from the limitations of known components.
Selon l'invention, ces buts sont atteints notamment au moyen d'un composant comprenant un alliage d'aluminium comprenant entre 0.1 et 10 % en poids de lithium, caractérisé en ce ledit composant est traité à l'aide d'un procédé d'oxydation par micro-arc plasma permettant d'obtenir un revêtement céramique à la surface de l'alliage d'aluminium.According to the invention, these objects are achieved in particular by means of a component comprising an aluminum alloy comprising between 0.1 and 10% by weight of lithium, characterized in that said component is treated using a process of oxidation by micro-arc plasma to obtain a ceramic coating on the surface of the aluminum alloy.
L'invention concerne également un procédé permettant de croître un revêtement céramique à la surface du composant, le procédé étant un procédé d'oxydation par micro-arc plasma et comprenant les étapes d'immerger le composant à revêtir dans un bain électrolytique composé d'une solution aqueuse d'hydroxyde de métal alcalin, le composant formant l'une des électrodes; et d'appliquer un courant alternatif ayant une fréquence comprise entre 10 Hz à 10'000 Hz, de façon à appliquer une tension entre le composant et une autre électrode variant entre 0 V et une valeur comprise entre 100 V et 1000 V.The invention also relates to a method for growing a ceramic coating on the surface of the component, the process being a plasma micro-arc oxidation process and comprising the steps of immersing the component to be coated in an electrolytic bath composed of an aqueous solution of alkali metal hydroxide, the component forming one of the electrodes; and applying an alternating current having a frequency of between 10 Hz to 10,000 Hz, so as to apply a voltage between the component and another electrode varying between 0 V and a value between 100 V and 1000 V.
Cette solution présente notamment l'avantage par rapport à l'art antérieur de fournir un composant ayant une dureté élevée, une excellente résistance à l'usure, aux chocs, et à la corrosion.This solution has the advantage over the prior art of providing a component having a high hardness, excellent resistance to wear, impact, and corrosion.
Le procédé d'oxydation par micro-arc plasma est également une technologie donc l'impact environnemental est faible, en particulier au vu des techniques d'anodisation conventionnelle donc les bains acides sont fortement déconseillés pour la protection de l'environnement.The oxidation process by micro-arc plasma is also a technology so the environmental impact is low, especially in view of conventional anodizing techniques so acidic baths are strongly discouraged for the protection of the environment.
Des exemples de mise en oeuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :
- la
figure 1 illustre une installation d'électrolyse; - la
figure 2 montre une vue en coupe du composant avec le revêtement formé par le procédé d'oxydation par micro-arc plasma; - la
figure 3 montre un revêtement formé par le procédé d'oxydation de l'invention; - la
figure 4 illustre une perspective d'une telle boite de montre; - la
figure 5 montre le revêtement formé sur un levier; - la
figure 6 montre le revêtement formé sur une lunette; - la
figure 7 montre le revêtement formé sur une carrure; - la
figure 8 montre le revêtement formé sur la corne de carrure; - la
figure 9 montre un vue en coupe d'une portion filetée de la corne de carrure; - la
figure 10 est un graphique qui rapporte les épaisseurs mesurée du revêtement formé sur les différentes parties de la boite de montre; - la
figure 11 montre les endroits de mesure d'épaisseur du revêtement; - la
figure 12 est un graphique qui rapporte les épaisseurs mesurée du revêtement formé sur les différentes parties de la boite de montre. - la
figure 13 montre l'état de la surface de la carrure de montre en alliage d'aluminium-lithium sur laquelle le revêtement a été formé, après usure; - la
figure 14 montre l'état de la surface de la carrure de montre en alliage d'aluminium-lithium sur laquelle le revêtement a été formé, après des tests de chocs; - la
figure 15 montre l'état de la surface de la carrure de montre en alliage d'aluminium-lithium sur laquelle le revêtement a été formé, après des tests de corrosion; et - la
figure 16 montre une photographie d'un boîtier de montre en alliage aluminium-lithium ayant subi le procédé d'oxydation de l'invention.
- the
figure 1 illustrates an electrolysis plant; - the
figure 2 shows a sectional view of the component with the coating formed by the plasma micro-arc oxidation process; - the
figure 3 shows a coating formed by the oxidation process of the invention; - the
figure 4 illustrates a perspective of such a watch case; - the
figure 5 shows the coating formed on a lever; - the
figure 6 shows the coating formed on a telescope; - the
figure 7 shows the coating formed on a middle part; - the
figure 8 shows the coating formed on the middle horn; - the
figure 9 shows a sectional view of a threaded portion of the middle horn; - the
figure 10 is a graph that reports the measured thicknesses of the coating formed on the different parts of the watch case; - the
figure 11 shows the places of thickness measurement of the coating; - the
figure 12 is a graph that reports the measured thicknesses of the coating formed on the different parts of the watch case. - the
figure 13 shows the condition of the surface of the aluminum-lithium alloy watchband on which the coating was formed, after wear; - the
figure 14 shows the condition of the surface of the aluminum-lithium alloy watchband on which the coating was formed, after shock tests; - the
figure 15 shows the condition of the surface of the aluminum-lithium alloy watchband on which the coating was formed, after corrosion tests; and - the
figure 16 shows a photograph of an aluminum-lithium alloy watch case that has undergone the oxidation process of the invention.
Selon l'invention, un composant 1 comprend un alliage d'aluminium comprenant entre 0.1 et 10 % en poids de lithium. Le composant est traité à l'aide d'un procédé d'oxydation par micro-arc plasma (aussi connu sou le nom anglais de "micro-arc oxydation" et l'acronyme "MAO") de sorte à obtenir un revêtement céramique 2 à la surface de l'alliage d'aluminium.According to the invention, a
L'alliage d'aluminium contenant du lithium peut être un des alliages commerciaux disponibles sur le marché. Par exemple, l'alliage d'aluminium-lithium peut comprendre l'un des alliages mentionnés dans la table 1. Dans la table, la première ligne donne le nom de l'alliage et la colonne de gauche l'élément ainsi que le contenu de l'élément en % en poids dans les colonnes successives. Un tel alliage d'aluminium-lithium contiendra donc jusqu'à 2.45 % en poids de lithium, plus particulièrement entre 0.88 et 2.45 % en poids de lithium.
La
Selon un mode de réalisation, le procédé d'oxydation par micro-arc plasma comprend les étapes d'immerger le composant 1 à revêtir dans l'électrolyte 4 et de faire passer le courant alternatif 31 de façon à appliquer une tension entre le composant 1 et la cathode 5.According to one embodiment, the micro-arc plasma oxidation process comprises the steps of immersing the
L'électrolyte 4 peut comprendre une solution aqueuse d'hydroxyde de métal alcalin, tel que le potassium ou le sodium, et d'un sel oxyacide d'un métal alcalin. L'électrolyte 4 est typiquement maintenu à une température comprise entre 10°C et 55°C.The
De façon préférée, le courant appliqué comprend des pulses de courant positifs et négatifs alternant avec une fréquence comprise entre 10 Hz à 10'000 Hz. L'amplitude des pulses de courant est comprise entre 2 et 200 A/dm2 de manière à appliquer une tension entre le composant 1 et la cathode 5 de l'ordre de 100 V à 1000 V. En effet, une tension comprise de 100 et 1000V permet de créer un plasma électrolytique nécessaire à la formation du revêtement 2 sur le composant 1.Preferably, the applied current comprises positive and negative current pulses alternating with a frequency of between 10 Hz and 10,000 Hz. The amplitude of the current pulses is between 2 and 200 A / dm 2 so as to apply a voltage between the
Dans un mode de réalisation, les pulses de courants sont séparés par un temps mort où aucun courant n'est appliqué. La durée du temps mort est de préférence d'environ 10% de la durée totale du pulse de courant. La durée du temps mort est telle que la tension chute à zéro. Par exemple, chacun des pulses de courant positif et négatif peut présenter une amplitude maximale suivie d'une décroissance du courant jusqu'à une valeur nulle. La durée du pulse où la valeur du courant est nulle est d'environ 10% de la durée totale du pulse de courant.In one embodiment, the current pulses are separated by a dead time where no current is applied. The duration of the dead time is preferably about 10% of the total duration of the current pulse. The duration of the dead time is such that the voltage drops to zero. For example, each of the positive and negative current pulses may have a maximum amplitude followed by a decrease of the current to a zero value. The duration of the pulse where the value of the current is zero is about 10% of the total duration of the current pulse.
Autrement dit, lors du temps mort la tension doit chuter à zéro, c'est-à-dire que la tension est cyclée entre une tension de base (baseline) et une tension plafond, ou maximale (ceiling line). La tension de base minimale est préférablement ajustée à une tension comprise entre 0 et 99,9% du pic maximum de la tension plafond. La tension de base (par exemple 30% de la tension plafond) permettra de favoriser la formation d'émission de micro arcs électriques visible à l'oeil nu, alors qu'une tension de base plus conséquente (par exemple 60% de la tension plafond), permettra de favoriser la création d'un plasma continu, également visible à l'oeil nu (relatif à la perception rétinienne de 0.1 à 0.2 secondes). L'influence du choix des tensions moyennes minimales de base par rapport à la tension maximale et donc du type de micro-arcs obtenus permet donc de maitriser une couche plus ou moins dense et homogène. La densification de la couche étant également sujette à la fréquence d'alternance entre les courants anodiques et cathodiques. En effet dans le premier cas la croissance de la couche nanoporeuse se réalisera alors que dans le second la densification des nanoporosités opérera.In other words, during the dead time the voltage must drop to zero, that is to say that the voltage is cycled between a base voltage (baseline) and a ceiling voltage, or ceiling (ceiling line). The minimum base voltage is preferably adjusted to a voltage of between 0 and 99.9% of the maximum peak of the ceiling voltage. The base voltage (for example 30% of the ceiling voltage) will promote the formation of micro-arcs emission visible to the naked eye, while a larger base voltage (for example 60% of the voltage ceiling), will promote the creation of a continuous plasma, also visible to the naked eye (relative to the retinal perception of 0.1 to 0.2 seconds). The influence of the choice of the basic minimum average voltages with respect to the maximum voltage and thus the type of micro-arcs obtained thus makes it possible to master a more or less dense and homogeneous layer. The densification of the layer is also subject to the frequency of alternation between the anode and cathode currents. Indeed in the first case the growth of the nanoporous layer will be realized whereas in the second case the densification of the nanoporosities will operate.
La vitesse de croissance du revêtement 1 dépend du type de fréquence et de la forme du pulse, en particulier du passage entre un courant cathodique et anodique (et vice-versa) et de l'amplitude de courant (et donc de la tension appliquée). Par exemple, la vitesse de croissance du revêtement est de l'ordre de 1 micron/ minute pour une tension appliquée de 100 à 400 V et une fréquence de l'ordre de 1000 Hz.. L'épaisseur du revêtement ainsi obtenu peut aller de quelques microns, de manière homogène sur la pièce, pour autant que le posage utilisé pour maintenir le composant dans le bain soit adapté et ne modifie pas la formation des micro arcs et ne les éteignent pas,) à quelques centaines de microns. Le procédé d'oxydation par micro-arc plasma est décrit, par exemple, dans le document
La
Le revêtement 1 formé par le procédé d'oxydation par micro-arc plasma sur le composant en alliage aluminium-lithium a une dureté élevée, proche de 2000 Hv. Il a également une excellente résistance à l'usure, aux chocs, à la corrosion. Le revêtement 1 est de coloration correspondant à la coloration naturelle de l'aluminium oxydé. Par exemple, le revêtement 1 a une coloration brun foncée dans le cas de l'alliage aluminium-lithium 2050 (voir table 1).The
Le procédé d'oxydation peut comporter une étape préalable de préparation de la surface 8 du composant 1. Cette étape de préparation peut comprendre le nettoyage et dégraissage de la surface 8, par exemple à l'eau bouillante ou à un nettoyant alcalin tel qu'une solution de nettoyant PARCO (produit de Henkel Surface Technologies division de Henkel Corporation, Madison Heights, Michigan). L'étape de préparation peut être suivie d'une étape de rinçage, par exemple à l'eau distillée.The oxidation process may comprise a preliminary step of preparing the
Afin d'obtenir un état de surface optimum et retirer les derniers microns de la couche poreuse 22 de céramique, une étape de tribofinition peut être réalisée à l'issue de la formation du revêtement 1 par le procédé d'oxydation. Cette étape de tribofinition peut comprendre, par exemple, un microsablage.In order to obtain an optimum surface state and remove the last microns of the porous
La
Le composant 1 à revêtir peut aussi bien être issu d'un procédé de mise en forme conventionnel de type usinage, décolletage ou mise en forme par procédé de moulage de l'aluminium liquide (type procédé Cobapress).The
A titre d'exemple, le procédé d'oxydation par micro-arc plasma a été appliqué à différentes parties d'une boite de montre fabriqué dans un alliage aluminium-lithium. La
Les
Dans le cas où la portion du composant 1 comprend une ou des zones comportant une structuration fine, par exemple un filetage, des trous ou des taraudages, il peut être avantageux que ces zones soient revêtues avec le revêtement 2 présentant une épaisseur plus faible que sur le reste de la surface du composant 1. En effet, la formation d'un revêtement épais dans les zones structuration fine peut résulter dans un nivellement de la structuration. Ceci est particulièrement le cas lorsque la structuration a une dimension inférieure à 100 µm.In the case where the portion of the
Dans un mode de réalisation, le procédé d'oxydation comprend une étape de former le revêtement 2 sur la ou les zones ayant la structuration fine. La ou les zones avec la structuration fine sont ensuite masquées de façon à pouvoir former le revêtement 2 sur le reste du composant 1 sans affecter la ou les zones ayant la structuration fine. Ensuite, le revêtement est formé sur le reste de la surface du composant 1. L'épaisseur du revêtement dans la ou les zones avec la structuration fine dépendra de la dimension de la structuration. Par exemple, le revêtement peut être formé sur la ou les zones avec la structuration fine avec une épaisseur d'environ 10% de la dimension de la structuration.In one embodiment, the oxidation process comprises a step of forming the
Dans le cas de l'exemple de la boite de montre 9 ci-dessus, la ou les zones avec la structuration fine peut comprendre des filetages, trous, taraudage, etc. La
Le masquage de la ou les zones avec la structuration fine peut être réalisé à l'aide de joints en silicone ou tout autre moyen de protection résistant au traitement d'oxydation par micro-arc plasma et pouvant être éliminé à la fin du procédé.The masking of the area or zones with fine structuring can be achieved using silicone gaskets or any other protective means resistant to oxidation treatment by micro-arc plasma and can be removed at the end of the process.
Le graphique de la
La table 2 rapporte l'épaisseur mesurée pour le revêtement 2 formé sur les différents filetages présents sur la boîte de montre 9, par exemple, dans l'axe fileté de la carrure 91, pour la fixation du levier 93 sur le pont de fixation 94, pour la fixation du pont de fixation 94 sur la carrure 91. Les trois lignes 1, 2 et 3 dans la table 2 correspondent à l'épaisseur du revêtement 2 mesurée au sommet de trois filets successifs, comme montré à la
Le graphique de la
La
Des tests à l'usure réalisés dans des conditions d'usure de billes à une vitesse de 46 tr/min et avec un mélange de 2 kg de billes céramiques d'un diamètre de 3 mm dans un-demi litre d'eau et 10 cc de mouillant. La durée du test a été de 36 heures. Après 6h de ce test, un brillantage de la surface est observé. Après 36 heures de ce test, aucune évolution ultérieure n'a été observée. Le procédé de céramisation permet donc une excellente résistance à l'usure. L'état de la surface après usure du revêtement de céramisation sur un aluminium lithium est montré à la
La
Des tests de rayures fines ont également été réalisés. Les conditions de ces tests comprenaient la rotation de l'échantillon à tester à 90 tr/min, dans une boite d'un volume de 0.6 litre d'un diamètre de 80mm, hauteur de 60mm, paroi en buvard avec 5 à 15 feutres et 10g de poudre de verre « bremor BR 650 ». La durée du test était de 24 heures. La
La
Des tests de chutes dans lit de gravier ont également été réalisés à l'aide d'une méthode de tests selon la norme ISO 23160 comprenant des chutes dans un lit de gravier et chips céramiques de 8 cm sur 500 cm2 de berlingots céramiques de diamètre 3 mm, d'une longueur de 12 mm et de dureté de 900HV ±100Hv. La hauteur de chute était de 40cm.Gravel bed scrap tests were also performed using a test method according to ISO 23160 including falls in a bed of gravel and
La boite de montre à tester est « chargée » avec une masselotte représentant le poids du mouvement mécanique normalement intégré dans la tête de montre. On observe après une dizaine de chutes sur lit de gravier/céramique de très faibles impacts aux niveaux des arêtes, tels que visibles dans la
Des tests de sueur synthétique ont également été réalisés. Ces tests ont été réalisés selon les conditions des normes NIHS 96-50 et ISO 3160-2, dans lesquelles les pièces testées sont mises sur un support de coton imbibé de sueur dans un environnement de 40°C±2°C humidité 95 à 100% humidité relative durée du test sur 6 jours.Synthetic sweat tests were also performed. These tests were carried out according to the conditions of the NIHS 96-50 and ISO 3160-2 standards, in which the tested parts are put on a cotton pad soaked in sweat in an environment of 40 ° C ± 2 °
Après 6 jours, des piqures de corrosion apparaissent sur des zones de mise à nu de l'aluminium. La couche de céramisation permet de créer une couche de protection de l'aluminium substrat (voir la
Globalement un aluminium lithium apporte les propriétés suivantes : 25% plus légère que les matériaux conventionnels, permettant ainsi d'optimiser la conception des pièces structurelles et de réduire le poids d'une boite de montre, par exemple, Meilleure résistance à la fatigue et à la corrosion, ce qui permet de fiabiliser et d'allonger la durée de vie du produit, 100% recyclable, ce qui apporte une contribution majeure à une industrie horlogère durable.Overall, a lithium aluminum provides the following properties: 25% lighter than conventional materials, thus optimizing the design of structural parts and reducing the weight of a watch case, for example, better resistance to fatigue and fatigue. corrosion, which makes the product more reliable and lengthier, 100% recyclable, making a major contribution to a sustainable watch industry.
Le revêtement 2 obtenu par le procédé de l'invention est avantageux pour les composants d'une montre mécanique soumis à des frottements ou contraintes mécaniques. Il est également avantageux pour traiter des composant d'habillage horloger, comme l'exemple de la boîte de montre 9 ci-dessus, qui sont soumis à des contraintes environnementales agressives type usure, humidité, taux de salinité (mer, climats tropicaux ou autres). Bien sûr, le composant 1 comprenant le revêtement 2 n'est pas seulement d'intérêt dans l'horlogerie mais peut également être également utilisé dans des domaines divers tels que la lunetterie et les instruments d'écritures.The
- 11
- composantcomponent
- 22
- revêtementcoating
- 2121
- couche durehard layer
- 2222
- seconde portionsecond portion
- 33
- cuvetank
- 3131
- courant alternatifalternating current
- 44
- bain électrolytiqueelectrolytic bath
- 55
- cathodecathode
- 66
- bloc d'alimentation en courantpower supply
- 77
- substrat d'aluminium-lithiumaluminum-lithium substrate
- 88
- surface initialeinitial surface
- 99
- boite de montrewatch box
- 9191
- carrureshoulders
- 9292
- corne de carrurehorn of middle
- 9393
- levierthe sink
- 9494
- pont de fixationfixing bridge
- 9595
- lunetteglasses
- 9696
- cache-couronnecover ring
- 1010
- couche de cuivragecopper plating
Claims (15)
comprenant entre 0.1 et 10 % en poids de lithium, caractérisé en ce ledit composant (1) est traité à l'aide d'un procédé d'oxydation par micro-arc plasma permettant d'obtenir un revêtement céramique (2) à la surface de l'alliage d'aluminium.Component (1) comprising an aluminum alloy
comprising between 0.1 and 10% by weight of lithium, characterized in that said component (1) is treated using a plasma micro-arc oxidation process to obtain a ceramic coating (2) on the surface aluminum alloy.
dans lequel le revêtement (2) a une épaisseur comprise entre 1 µm et 100 µm.The component of claim 1,
wherein the coating (2) has a thickness of between 1 μm and 100 μm.
comprenant au moins une portion comportant une structuration de surface ayant une dimension inférieure à 100 µm; et
dans lequel le revêtement a une épaisseur comprise entre 1 µm et 5 µm.The component of claim 2,
comprising at least one portion having a surface pattern having a size smaller than 100 μm; and
wherein the coating has a thickness of between 1 μm and 5 μm.
dans lequel le revêtement a une épaisseur comprise entre 5 µm et 100 µm sur le reste du composant, et de préférence entre 20 µm et 50 µm sur le reste du composant.The component of claim 3,
wherein the coating has a thickness of between 5 μm and 100 μm on the rest of the component, and preferably between 20 μm and 50 μm on the rest of the component.
comprenant entre 0.88 et 2.45 % en poids de lithium.The component according to one of claims 1 to 4,
comprising between 0.88 and 2.45% by weight of lithium.
dans lequel le revêtement a une dureté comprise entre 1800 et 2000 Hv.The component according to one of claims 1 to 5,
wherein the coating has a hardness of between 1800 and 2000 Hv.
dans lequel le revêtement est intact après un essai de dix chutes dans lit de gravier à une hauteur de 40 cm du composant, selon la norme ISO 23160.The component according to one of claims 1 to 6,
in which the coating is intact after a trial of ten falls in gravel bed at a height of 40 cm of the component, according to ISO 23160.
dans lequel le revêtement montre un état de surface comporte de légères altérations (indice 4) après 36 heures d'un test selon la norme ISO 23160.The component according to one of claims 1 to 7,
in which the coating shows a surface condition has slight alterations (index 4) after 36 hours of a test according to ISO 23160.
dans lequel la durée du pulse de courant donnant une tension de 0 V est de 10% de la durée totale du pulse donnant une tension comprise entre 100 V et 1000 V.The process according to claim 10,
in which the duration of the current pulse giving a voltage of 0 V is 10% of the total pulse duration giving a voltage of between 100 V and 1000 V.
dans lequel la tension moyenne minimale est ajustée de façon à être comprise entre 0 et 99,9% de la tension maximale et de préférence entre 30 % et 60% de la tension maximale.The process according to claim 10 or 11,
wherein the minimum average voltage is adjusted to be between 0 and 99.9% of the maximum voltage and preferably between 30% and 60% of the maximum voltage.
dans lequel une zone du composant (1) comporte une structuration fine ayant une dimension inférieure à 100 µm; et dans lequel le procédé comprend en outre:
wherein an area of the component (1) has a fine structuring having a size less than 100 μm; and wherein the method further comprises:
comportant en outre une préparation de surface comprenant une étape de nettoyage et dégraissage.The process according to one of claims 10 to 13,
further comprising a surface preparation comprising a cleaning and degreasing step.
comportant en outre une étape de microsablage.The process according to one of claims 10 to 14,
further comprising a microsablage step.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH01881/13A CH708829A1 (en) | 2013-11-11 | 2013-11-11 | An aluminum-lithium alloy component comprising a ceramic coating and a method for forming the coating. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2878712A1 true EP2878712A1 (en) | 2015-06-03 |
EP2878712B1 EP2878712B1 (en) | 2020-05-13 |
Family
ID=49553960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14192317.7A Active EP2878712B1 (en) | 2013-11-11 | 2014-11-07 | Aluminium-lithium alloy component including a ceramic coating and method for forming the coating |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2878712B1 (en) |
CH (1) | CH708829A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111876811A (en) * | 2020-07-27 | 2020-11-03 | 上海交通大学 | Aluminum-lithium alloy micro-arc oxidation method and electrolyte adopted by same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2998358A (en) * | 1957-10-02 | 1961-08-29 | Nippon Light Metal Co | Method of forming a colored film on an aluminum alloy |
WO2003083181A2 (en) | 2002-03-27 | 2003-10-09 | Isle Coat Limited | Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process |
GB2421959A (en) * | 2005-01-10 | 2006-07-12 | Short Brothers Plc | Anodising aluminium alloy |
US20060207884A1 (en) * | 2005-03-17 | 2006-09-21 | Volodymyr Shpakovsky | Method of producing corundum layer on metal parts |
EP1818428A1 (en) * | 2004-11-05 | 2007-08-15 | Nihon Parkerizing Co., Ltd. | Method of electrolytic ceramic coating for metal, electrolyte for use in electrolytic ceramic coating for metal and metal material |
-
2013
- 2013-11-11 CH CH01881/13A patent/CH708829A1/en not_active Application Discontinuation
-
2014
- 2014-11-07 EP EP14192317.7A patent/EP2878712B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2998358A (en) * | 1957-10-02 | 1961-08-29 | Nippon Light Metal Co | Method of forming a colored film on an aluminum alloy |
WO2003083181A2 (en) | 2002-03-27 | 2003-10-09 | Isle Coat Limited | Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process |
EP1818428A1 (en) * | 2004-11-05 | 2007-08-15 | Nihon Parkerizing Co., Ltd. | Method of electrolytic ceramic coating for metal, electrolyte for use in electrolytic ceramic coating for metal and metal material |
GB2421959A (en) * | 2005-01-10 | 2006-07-12 | Short Brothers Plc | Anodising aluminium alloy |
US20060207884A1 (en) * | 2005-03-17 | 2006-09-21 | Volodymyr Shpakovsky | Method of producing corundum layer on metal parts |
Non-Patent Citations (1)
Title |
---|
K. TZOGANAKOU ET AL: "Mobility of lithium ions in anodic alumina formed on an Al-Li alloy", CORROSION SCIENCE, vol. 42, no. 6, 1 June 2000 (2000-06-01), pages 1083 - 1091, XP055102031, ISSN: 0010-938X, DOI: 10.1016/S0010-938X(99)00130-4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111876811A (en) * | 2020-07-27 | 2020-11-03 | 上海交通大学 | Aluminum-lithium alloy micro-arc oxidation method and electrolyte adopted by same |
CN111876811B (en) * | 2020-07-27 | 2022-02-25 | 上海交通大学 | A kind of aluminum-lithium alloy micro-arc oxidation method and electrolyte used therefor |
Also Published As
Publication number | Publication date |
---|---|
EP2878712B1 (en) | 2020-05-13 |
CH708829A1 (en) | 2015-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0258283B1 (en) | Method for depositing on a substrate a wear-resistant decorative coating layer, and object produced according to this method | |
TWI586845B (en) | Anodized aluminum alloy products having improved appearance and/or abrasion resistance, and methods of making the same | |
EP0725166B1 (en) | Process for plating a face of an aluminium or aluminium alloy workpiece | |
CN110644031A (en) | Treatment to reduce grain texture differential growth rate in mirror-modified anodized aluminum | |
US10590514B2 (en) | Nanostructured aluminum zirconium alloys for improved anodization | |
JP6322294B2 (en) | Mold manufacturing method and antireflection film manufacturing method | |
EP2207915A2 (en) | Method for making an ordered porous structure from an aluminium substrate | |
CA2934843C (en) | Landing rods for aircraft coated with a zinc-nickel alloy | |
JP6309081B2 (en) | Mold manufacturing method and antireflection film manufacturing method | |
EP2878712B1 (en) | Aluminium-lithium alloy component including a ceramic coating and method for forming the coating | |
US20150016030A1 (en) | Reducing appearance of physical damage on cosmetic surfaces | |
US7018521B2 (en) | Method of producing bright anodized finishes for high magnesium, aluminum alloys | |
EP3835452A1 (en) | Method for manufacturing a decorative surface | |
EP3623877A1 (en) | Method for manufacturing a clock component | |
EP4071558A1 (en) | Method for manufacturing a clock component by surface structuring | |
CH706408A2 (en) | Component, useful for applications in e.g. watch industry, comprises metal substrate, coating including metal valve covering whole or a part of substrate, and oxide layer obtained by anodization of coating | |
CH710708B1 (en) | Titanium-molybdenum component comprising a ceramized surface layer and ceramization process. | |
EP0879901B1 (en) | Protective coating for metal pieces with a good resistance against corrosion in a saline atmosphere and metal pieces with such a protective coating | |
FR2956123A1 (en) | METHOD FOR PROTECTING A METAL SUBSTRATE AGAINST CORROSION AND ABRASION, AND METAL SUBSTRATE OBTAINED BY THIS METHOD. | |
WO2024176086A1 (en) | Titanium component comprising a ceramized surface layer and method for obtaining the component | |
CH720536A1 (en) | Titanium component comprising a ceramic coating on the surface and method of obtaining the component | |
CH707986A2 (en) | Room to watch. | |
EP3339968A1 (en) | Part for clock movement | |
JP7332446B2 (en) | Golden ornament and method for producing golden ornament | |
TWI441949B (en) | Method for forming an interference film on surface of aluminum alloy substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141107 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
R17P | Request for examination filed (corrected) |
Effective date: 20151202 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170914 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200109 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: P&TS SA, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014065369 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1270401 Country of ref document: AT Kind code of ref document: T Effective date: 20200615 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200914 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200913 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200813 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200814 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200813 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1270401 Country of ref document: AT Kind code of ref document: T Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014065369 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201107 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602014065369 Country of ref document: DE Owner name: RICHEMONT INTERNATIONAL SA, CH Free format text: FORMER OWNER: OFFICINE PANERAI AG, STEINHAUSEN, CH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20241114 AND 20241120 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241121 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241120 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241128 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20241201 Year of fee payment: 11 |