EP2865983B1 - Heat-exchanger header and heat exchanger provided therewith - Google Patents
Heat-exchanger header and heat exchanger provided therewith Download PDFInfo
- Publication number
- EP2865983B1 EP2865983B1 EP13780882.0A EP13780882A EP2865983B1 EP 2865983 B1 EP2865983 B1 EP 2865983B1 EP 13780882 A EP13780882 A EP 13780882A EP 2865983 B1 EP2865983 B1 EP 2865983B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- refrigerant
- header
- holes
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003507 refrigerant Substances 0.000 claims description 147
- 239000007788 liquid Substances 0.000 claims description 26
- 238000011144 upstream manufacturing Methods 0.000 claims description 18
- 230000000694 effects Effects 0.000 claims description 14
- 238000005057 refrigeration Methods 0.000 claims description 9
- 238000004378 air conditioning Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 15
- 230000004048 modification Effects 0.000 description 12
- 238000012986 modification Methods 0.000 description 12
- 238000005192 partition Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005219 brazing Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/026—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
- F28F9/0265—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/026—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
- F28F9/0265—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
- F28F9/0268—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0068—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
- F28D2021/0071—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F2009/0285—Other particular headers or end plates
- F28F2009/0292—Other particular headers or end plates with fins
Definitions
- the present invention relates to a heat exchanger having a heat exchanger header used in a refrigeration cycle apparatus such as an air-conditioning apparatus, a refrigeration cycle apparatus and an air-conditioning apparatus.
- an inlet side header is required to have a function of equally distributing refrigerant.
- a header having such a function hitherto, there has been a header in which a looped flow passage that makes a U-turn in the vertical direction is formed in the header, and an incoming two-phase refrigerant flow is circulated and homogenized in the header, and is distributed to each of a plurality of heat transfer tubes (see, for example, Patent Literature 1).
- Patent Literature 1 Japanese Unexamined Patent Application Publication No. 2011-85324 (Abstract, Fig. 1 )
- US2006081363A1 discloses a cooling system for a reciprocating engine including a main cooling device and a side tank.
- the main cooling device includes at least one heat dissipation tube that contains an internal fluid for transporting excess heat developed by a reciprocating engine.
- the side tank is attached to the main cooling device and includes a plurality of exterior fins for dissipating heat to cool airflow.
- the exterior fins form an adjustable mounting location.
- JPS63271099A discloses a heat exchanger according to the preamble of claim 1.
- US2004031598A1 discloses a heat exchanger comprising a hollow header and a plurality of heat exchanging tubes which are in fluid communication with the header, the cross-sectional shape of the header is formed into an angular cross-sectional shape including a rectangular cross-sectional shape and a square cross-sectional shape.
- JPH11325785A provides a radiator with integrated oil cooler in which heat exchanging efficiency is enhanced through simple structure while enhancing the recycle performance of each part.
- JPH11337289A improves pressure resistance without introducing a reduction in an effective front surface area by forming a header in a flat tubular state in which its inner diameter in a tube inserting direction is shorter than its inner diameter in a direction perpendicular to the tube inserting direction, and coupling opposed walls via a reinforcing wall.
- the present invention has been made in view of such points, and it is an object of the present invention to provide a heat exchanger having a heat exchanger header that can suppress pressure loss, can equally distribute refrigerant without degrading heat transfer performance of a heat exchanger, and has a simple structure, a heat exchanger having the heat exchanger header, a refrigeration cycle apparatus and an air-conditioning apparatus.
- a heat exchanger according to claim 1 is provided.
- a heat exchanger according to the present invention is a heat exchanger in which refrigerant is flowed in parallel through a plurality of heat transfer tubes disposed in parallel, and comprises a heat exchanger header being configured to distribute the refrigerant to the plurality of heat transfer tubes in parallel by effect of surface tension, wherein a plurality of through-holes to which ends of the plurality of heat transfer tubes are connected are arranged side by side in a longitudinal direction, wherein at least one chamber communicating with the plurality of through-holes and serving as a refrigerant flow passage is formed, and wherein each of the plurality of through-holes is an inlet side through-hole or an outlet side through-hole to which a refrigerant inlet side or refrigerant outlet side end of the plurality of heat transfer tubes is connected, and in a part of the chamber that faces the inlet side through-holes, a plurality of grooves extending in the longitudinal direction of the header are formed in a lateral direction
- a heat exchanger header that can suppress pressure loss, can equally distribute refrigerant without degrading heat transfer performance of a heat exchanger, and has a simple structure can be obtained.
- Fig. 1 is a schematic perspective view of a heat exchanger employing a heat exchanger header according to Embodiment 1.
- the same reference signs are used for the same or corresponding components, and this is common throughout the specification.
- the forms of components described in the whole specification are illustrative only, and the present invention is not limited to these descriptions.
- the heat exchanger 1 is a parallel flow heat exchanger in which refrigerant is flowed in parallel, particularly a one-way flow passage type heat exchanger in which refrigerant is flowed from one side to the other side in the whole heat exchanger 1.
- the heat exchanger 1 has a pair of headers 10 and 20 spaced from each other, a plurality of flat tubes (heat transfer tubes) 30 that are disposed in parallel between the pair of headers 10 and 20 and both ends of which are connected to the pair of headers 10 and 20, and a plurality of fins 40.
- the pair of headers 10 and 20, the flat tubes 30, and the fins 40 are all formed of aluminum or aluminum alloy.
- the fins 40 are plate-like fins that are stacked at intervals between the pair of headers 10 and 20 and between which air passes, and the plurality of flat tubes 30 are passed therethrough.
- the fins 40 do not necessarily have to be plate-like fins, and only have to be fins 40 disposed such that air passes in the air passage direction.
- the fins 40 may be, for example, corrugated fins or the like alternately stacked with the flat tubes 30 in the vertical direction. In short, the fins 40 only have to be fins disposed such that air passes in the air passage direction.
- the flat tubes 30 have a plurality of through-holes 30a serving as refrigerant flow passages as shown in Fig. 2 .
- Heat transfer tubes are not limited to flat tubes, and circular tubes and tubes having any other shape can be used.
- the inlet header 10 on the refrigerant inlet side of the plurality of flat tubes 30 is connected to a refrigerant inlet pipe 10a
- the outlet header 20 on the refrigerant outlet side of the plurality of flat tubes 30 is connected to a refrigerant outlet pipe 20a.
- the present invention has a characteristic in, of the pair of headers 10 and 20, particularly the header on the inlet side (hereinafter referred to as inlet header 10). The structure thereof will be described with reference to Fig. 3 below.
- Fig. 3 is an exploded perspective view of the inlet header 10 of Fig. 1 .
- Fig. 4 is a sectional view of the inlet header part of Fig. 1 taken along line A-A.
- the inlet header 10 has a box-like header main body 11 with one side open, and a plate-like lid body 13 covering an opening 11a of the header main body 11, and at least one chamber 10A serving as a refrigerant flow passage is formed therebetween.
- a plurality of through-holes 12 serving as inlet side through-holes are arranged side by side along the longitudinal direction of the header main body 11.
- the refrigerant inlet side ends of the plurality of flat tubes 30 are connected to the plurality of through-holes 12, and communicate with the chamber 10A.
- the refrigerant inlet pipe 10a is connected to the inlet header 10.
- a plurality of grooves 14 extending in the longitudinal direction are formed over the entire length in the lateral direction perpendicular to the longitudinal direction.
- the grooves 14 are formed by the gaps between a plurality of protrusions 15 protruding from the lid body 13.
- the grooves 14 are provided in order to draw refrigerant liquid flowing into the inlet header 10 into the grooves by the effect of surface tension and to thereby equally distribute the refrigerant from the inlet header 10 to each pass.
- the box-like header main body 11 is formed by cutting or the like, and the through-holes 12 are formed in the header main body 11.
- the lid body 13 is formed by cutting or the like.
- the lid body 13 is fittably configured so as to be able to be temporarily fastened to the opening 11a of the header main body 11, and brazing filler metal is applied to the fitting parts.
- the lid body 13 When manufacturing the whole heat exchanger 1, the lid body 13 is fitted in and temporarily fastened to the opening 11a of the header main body 11, and, in a state where the outlet header 20, the flat tubes 30, and the fins 40 are all assembled, the whole is joined by brazing at the same time.
- Fig. 5 is a diagram showing a refrigerant circuit of a refrigeration cycle apparatus 50 to which the heat exchanger 1 of Fig. 1 is applied.
- the refrigeration cycle apparatus 50 includes a compressor 51, a condenser 52, an expansion valve 53 as a pressure reducing device, and a evaporator 54.
- the heat exchanger 1 is used as at least one of the condenser 52 and the evaporator 54.
- Gas refrigerant discharged from the compressor 51 flows into the condenser 52, exchanges heat with air passing through the condenser 52 to become high-pressure liquid refrigerant, and flows out.
- the high-pressure liquid refrigerant flowing out of the condenser 52 is reduced in pressure by the expansion valve 53 to become low-pressure two-phase gas-liquid refrigerant, and flows into the evaporator 54.
- the low-pressure two-phase gas-liquid refrigerant flowing into the evaporator 54 exchanges heat with air passing through the evaporator 54 to become low-pressure gas refrigerant, and is sucked into the compressor 51 again.
- Fig. 6 is a diagram showing the flow of refrigerant in the case where the heat exchanger 1 of Fig. 1 is used as an evaporator.
- Two-phase gas-liquid refrigerant flowing out of the expansion valve 53 flows through the refrigerant inlet pipe 10a into the inlet header 10.
- the refrigerant flowing into the inlet header 10 flows from one end to the other end of the flat tubes 30 constituting each pass of the heat exchanger 1, merges in the outlet header 20, and flows through the refrigerant outlet pipe 20a to the outside.
- Fig. 7 is a diagram showing the flow state of refrigerant in the inlet header 10.
- Fig. 8 is a sectional view taken along line B-B of Fig. 7 , and is a schematic diagram showing a state where liquid refrigerant is accumulated between the grooves in the inlet header 10.
- Fig. 9 includes diagrams (a) and (b) showing the flow state of refrigerant in a header not provided with grooves 14 as a comparative example.
- Embodiment 1 by providing the lid body 13 with a plurality of grooves 14 and causing surface tension to act, unevenness of liquid refrigerant can be suppressed, and refrigerant can be equally distributed to and caused to flow into each of the plurality of flat tubes 30.
- the heat exchange efficiency can be improved, and the capacity in the case where the heat exchanger 1 is used as an evaporator can be exerted to the maximum.
- Embodiment 1 utilizes the action of surface tension of liquid refrigerant to prevent uneven refrigerant distribution, the pressure loss can be suppressed as compared to the conventional configuration, and the performance degradation in the case where the heat exchanger 1 is used as an evaporator can be suppressed.
- the inlet header 10 of Embodiment 1 is composed of a header main body 11 and a lid body 13 having grooves 14, and has a simple structure, it is easy to manufacture, and can be reduced in cost.
- the inlet header is not limited to the structure shown in Fig. 3 , and various modifications, such as the following (1) and (2), may be made without departing from of the scope of the present invention.
- Fig. 12 is a diagram showing a heat exchanger 1A according to Embodiment 2 of the present invention.
- the heat exchanger 1A is a parallel flow heat exchanger in which refrigerant is flowed in parallel, particularly a U-turn flow passage type heat exchanger.
- a configuration example is shown in which the number of passes is five.
- the heat exchanger 1A has a pair of headers 70 and 80 spaced from each other, a plurality of (20 here) flat tubes (heat transfer tubes) 30 that are disposed in parallel between the pair of headers 70 and 80 and both ends of which are connected to the pair of headers 70 and 80, and a plurality of fins 40.
- the pair of headers 70 and 80, the flat tubes 30, and the fins 40 are all formed of aluminum or aluminum alloy.
- the configurations of the flat tubes 30 and the fins 40 are the same as Embodiment 1.
- Fig. 13 is an exploded perspective view of the header 70 of Fig. 12 .
- the header 70 has a box-like header main body 71 with one side open.
- a plurality of through-holes 72 to which a plurality of flat tubes 30 are connected are arranged side by side along the longitudinal direction of the header main body 71.
- Two partition plates 73 are provided inside the header main body 71, and three independent chambers A, B, and C that communicate with the plurality of through-holes 72 and serve as refrigerant flow passages are formed, and are covered by lid bodies 74A, 74B, and 74C, respectively.
- a plurality of grooves 14 having the same function as Embodiment 1 are formed in parts of the lid bodies 74A, 74B, and 74C that face the refrigerant inlet side ends of the flat tubes 30. A specific description will be given below.
- the chamber A is an inflow chamber into which refrigerant from the outside flows.
- the refrigerant inlet side ends of the flat tubes 30 are connected to the plurality of through-holes 72 communicating with the chamber A, and therefore grooves 14 are formed on the whole of the lid body 74A.
- the chamber B is a U-turn chamber serving as a U-turn flow passage. Of the plurality of through-holes 72 communicating with the chamber B, the upper half is connected to the refrigerant inlet side ends of the flat tubes 30, and the lower half is connected to the refrigerant outlet side ends of the flat tubes 30, and therefore grooves 14 are formed on the upper half of the lid body 74B.
- the chamber C is an outflow chamber from which refrigerant flows to the outside.
- the plurality of through-holes 72 communicating with the chamber C are connected to the refrigerant outlet side ends of the flat tubes 30, and therefore grooves 14 are not formed on the lid body 74C.
- the through-holes to which the refrigerant inlet side ends of the flat tubes 30 are connected may be referred to as inlet side through-holes
- the through-holes to which the refrigerant outlet side ends of the flat tubes 30 are connected may be referred to as outlet side through-holes.
- the header 80 is provided with one partition plate 83 as shown in Fig. 12 , and the inside thereof is divided into two chambers D and E.
- the chambers D and E are covered by lid bodies 84D and 84E, respectively.
- a plurality of grooves 14 are formed in parts of the lid bodies 84D and 84E that face the inlet side through-holes of the flat tubes 30. Specifically, in each of the lid bodies 84D and 84E, a plurality of grooves 14 are formed on the upper half thereof.
- the header main body 71 is formed by cutting or the like, and the through-holes 72 are formed in the header main body 71.
- the lid bodies 74A, 74B, and 74C are formed by cutting or the like.
- the lid bodies 74A, 74B, and 74C are fittably configured so as to be able to be temporarily fastened to the openings of the chambers A, B, and C of the header main body 71, and brazing filler metal is applied to the fitting parts.
- the header 80 can be manufactured in the same manner.
- the lid bodies 74A, 74B, and 74C are fitted in and temporarily fastened to the openings of the chambers A, B, and C, respectively, of the header 70, and similarly, the lid bodies 84D and 84E are fitted in and temporarily fastened to the openings of the chambers D and E, respectively, of the header 80.
- the whole is joined by brazing at the same time.
- Two-phase gas-liquid refrigerant flowing through the refrigerant inlet pipe 10a flows into the chamber A, flows from one end to the other end of a flat tube group connected to the chamber A, and flows into the chamber D.
- the refrigerant flowing into the chamber D makes a U-turn here, flows from one end to the other end of another flat tube group connected to the chamber D, and flows into the chamber B.
- the refrigerant flowing into the chamber B makes a U-turn here, flows from one end to the other end of another flat tube group connected to the chamber B, and flows into the chamber E.
- the refrigerant flowing into the chamber E makes a U-turn here, and flows from one end to the other end of another flat tube group connected to the chamber E.
- the refrigerant flowing out of this other end merges in the chamber C, and flows through the refrigerant outlet pipe 20a to the outside.
- Embodiment 2 also in a U-turn flow passage type heat exchanger, the same advantageous effects as Embodiment 1 can be obtained.
- the positions of the ends closest to the border between the inlet side through-hole group and the outlet side through-hole group are all the same. However, they may be as shown in Fig. 14 .
- Fig. 14 shows modifications of the grooves 14 of Fig. 13 and includes views of the lid body 74B, 84D, 84E as viewed from the side of the surface on which grooves 14 are formed.
- the positions of the ends closest to the border between the inlet side through-hole group and the outlet side through-hole group may be alternately staggered in the lateral direction of the lid body.
- the end faces of the grooves 14 closest to the border are inclined surfaces, the end faces are wide as compared to a configuration in which the positions of the ends are all the same as shown in Fig. 13 , and therefore it can be expected that the effect of drawing liquid refrigerant is improved.
- the positions of the ends of the protrusions 15 are not limited to such an alternately staggered configuration. As long as every two of the protrusions 15 adjacent in the lateral direction of the lid body differ in position, the same effect can be expected.
- Fig. 14 (b) shows another example of the configuration in which every two of the protrusions 15 adjacent in the lateral direction of the lid body differ in position. As shown, the length in the longitudinal direction of the protrusions 15 may decrease toward the central part in the lateral direction, or, although not shown, the length in the longitudinal direction of the protrusions 15 may increase toward the central part in the lateral direction.
- Embodiment 3 corresponds to a configuration in which a plurality of (two here) lines of U-turn flow passage type heat exchangers of Embodiment 2 are provided in the air passage direction.
- Fig. 15 includes diagrams showing a heat exchanger according to Embodiment 3 of the present invention.
- Fig. 15 (a) is a schematic side view of the heat exchanger as viewed from a direction perpendicular to the air passage direction shown by dashed arrows.
- Fig. 15 (b) is a schematic sectional view of an upstream side heat exchanging unit 1Ba on the upstream side in the air passage direction.
- Fig. 15 (c) is a schematic sectional view of a downstream side heat exchanging unit 1Bb on the downstream side in the air passage direction.
- Fig. 15 (d) is a plan view of the heat exchanger.
- Embodiment 3 will be described below focusing on differences from Embodiment 2.
- the heat exchanger 1 B has a heat exchanger 1A that is the same as Embodiment 2, as the upstream side heat exchanging unit 1 Ba, and has the downstream side heat exchanging unit 1 Bb on the downstream side in the air passage direction.
- the upstream side heat exchanging unit 1 Ba and the downstream side heat exchanging unit 1Bb are connected by an inter-line pipe 90.
- the downstream side heat exchanging unit 1Bb has ten passes.
- the downstream side heat exchanging unit 1Bb has more passes than the upstream side heat exchanging unit 1Ba. The reason that the number of passes differs between the upstream side heat exchanging unit 1Ba and the downstream side heat exchanging unit 1 Bb will be described later.
- the downstream side heat exchanging unit 1Bb is the same as the upstream side heat exchanging unit 1Ba except that it differs in the configuration of the header part from the upstream side heat exchanging unit 1Ba.
- a header 700 to which the inter-line pipe 90 is connected in the downstream side heat exchanging unit 1Bb differs in the number of partition plates from the upstream side heat exchanging unit 1Ba.
- the header 700 is provided with one partition plate 703, and two chambers F and G are formed therein.
- a header 800 is provided with no partition plate, and one chamber H is formed in the whole thereof.
- grooves 14 are provided in parts of the headers 700 and 800 of the downstream side heat exchanging unit 1 Bb that face the refrigerant inlet side end of each flat tube 30.
- the flow of refrigerant in the upstream side heat exchanging unit 1Ba of the heat exchanger 1B is the same as that in Embodiment 2.
- Refrigerant flowing out of the refrigerant outlet pipe 20a of the upstream side heat exchanging unit 1B flows through the inter-line pipe 90 and the refrigerant inlet pipe 100a into the chamber F of the downstream side heat exchanging unit 1 Bb.
- the refrigerant flowing into the chamber F flows from one end to the other end of a flat tube group communicating with the chamber F, and flows into the chamber H.
- the refrigerant flowing into the chamber H makes a U-turn here, flows from one end to the other end of another flat tube group connected to the chamber H.
- the refrigerant flowing out of this other end merges in the chamber G, and flows through the refrigerant outlet pipe 200a to the outside.
- the heat exchanger 1B When the heat exchanger 1B is used as an evaporator, refrigerant inflows in a two-phase gas-liquid state, and finally outflows in a state of gas refrigerant. Therefore, the quality increases as refrigerant flows toward the second half of the flow passage.
- the quality When the quality is low, the pressure loss during passing through the flow passage is small, and therefore it is preferable to increase the flow rate of refrigerant to increase the heat transfer coefficient.
- the quality when the quality is high, the pressure loss during passing through the flow passage is large, and therefore it is preferable to decrease the flow rate of refrigerant. The larger the number of passes, the lower the flow rate of refrigerant.
- the quality of refrigerant is low. Therefore, the number of passes is reduced to increase the flow rate of refrigerant, and to increase the heat transfer coefficient.
- the downstream side heat exchanging unit 1Bb corresponding to the second half of the flow passage the quality is high. Therefore, the number of passes is increased to reduce the flow rate of refrigerant, and to reduce the pressure loss.
- Embodiment 3 the same advantageous effects as Embodiment 1 and 2 can be obtained, and owing to the multi-line configuration, the heat exchange capacity can be improved. Since the number of passes on the upstream side in the air passage direction where the quality of passing refrigerant is low is reduced to increase the flow rate of refrigerant, and to increase the heat transfer coefficient, the heat exchange capacity can also be improved thereby.
- Embodiment 3 Although a two-line configuration is described in Embodiment 3, a three or more-line configuration may be used.
- the outer shape of header is square
- the outer shape of header is not limited to a square shape, and may be a cylindrical shape.
- a square shape is preferable in terms of securing the size required as a header and causing lines to interfere with each other.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
Description
- The present invention relates to a heat exchanger having a heat exchanger header used in a refrigeration cycle apparatus such as an air-conditioning apparatus, a refrigeration cycle apparatus and an air-conditioning apparatus.
- Hitherto, there has been a heat exchanger configured such that a pair of headers extending in the vertical direction are spaced in the lateral direction, a plurality of flat tubes are disposed in parallel between the pair of headers, and both ends of the plurality of heat exchanging tubes communicate with the plurality of headers. In this type of heat exchanger, when it is used as an evaporator, two-phase gas-liquid refrigerant flows into it, and therefore liquid is accumulated in the gravity direction in an inlet side header, whereas gas is accumulated in the upper part in the header. Therefore, there is a problem that refrigerant cannot be equally distributed to each flat tube, and the performance of the heat exchanger degrades.
- So, when a heat exchanger is used as an evaporator, an inlet side header is required to have a function of equally distributing refrigerant. As a header having such a function, hitherto, there has been a header in which a looped flow passage that makes a U-turn in the vertical direction is formed in the header, and an incoming two-phase refrigerant flow is circulated and homogenized in the header, and is distributed to each of a plurality of heat transfer tubes (see, for example, Patent Literature 1).
- Patent Literature 1:
Japanese Unexamined Patent Application Publication No. 2011-85324 Fig. 1 ) -
US2006081363A1 discloses a cooling system for a reciprocating engine including a main cooling device and a side tank. The main cooling device includes at least one heat dissipation tube that contains an internal fluid for transporting excess heat developed by a reciprocating engine. The side tank is attached to the main cooling device and includes a plurality of exterior fins for dissipating heat to cool airflow. The exterior fins form an adjustable mounting location. - JPS63271099A discloses a heat exchanger according to the preamble of
claim 1. -
US2004031598A1 discloses a heat exchanger comprising a hollow header and a plurality of heat exchanging tubes which are in fluid communication with the header, the cross-sectional shape of the header is formed into an angular cross-sectional shape including a rectangular cross-sectional shape and a square cross-sectional shape. - JPH11325785A provides a radiator with integrated oil cooler in which heat exchanging efficiency is enhanced through simple structure while enhancing the recycle performance of each part.
- JPH11337289A improves pressure resistance without introducing a reduction in an effective front surface area by forming a header in a flat tubular state in which its inner diameter in a tube inserting direction is shorter than its inner diameter in a direction perpendicular to the tube inserting direction, and coupling opposed walls via a reinforcing wall.
- However, in the header of
Patent Literature 1, since refrigerant is passed through a looped flow passage, there is a problem that pressure loss occurs, and results in a degradation of the heat transfer performance of the heat exchanger. - In addition, in the header of
Patent Literature 1, since it is necessary to separately form a looped flow passage inside the header, there is a problem that the complicated structure results in an increase in cost. - The present invention has been made in view of such points, and it is an object of the present invention to provide a heat exchanger having a heat exchanger header that can suppress pressure loss, can equally distribute refrigerant without degrading heat transfer performance of a heat exchanger, and has a simple structure, a heat exchanger having the heat exchanger header, a refrigeration cycle apparatus and an air-conditioning apparatus.
- A heat exchanger according to
claim 1 is provided. A heat exchanger according to the present invention is a heat exchanger in which refrigerant is flowed in parallel through a plurality of heat transfer tubes disposed in parallel, and comprises a heat exchanger header being configured to distribute the refrigerant to the plurality of heat transfer tubes in parallel by effect of surface tension, wherein a plurality of through-holes to which ends of the plurality of heat transfer tubes are connected are arranged side by side in a longitudinal direction, wherein at least one chamber communicating with the plurality of through-holes and serving as a refrigerant flow passage is formed, and wherein each of the plurality of through-holes is an inlet side through-hole or an outlet side through-hole to which a refrigerant inlet side or refrigerant outlet side end of the plurality of heat transfer tubes is connected, and in a part of the chamber that faces the inlet side through-holes, a plurality of grooves extending in the longitudinal direction of the header are formed in a lateral direction perpendicular to the longitudinal direction. - According to the present invention, a heat exchanger header that can suppress pressure loss, can equally distribute refrigerant without degrading heat transfer performance of a heat exchanger, and has a simple structure can be obtained.
-
- [
Fig. 1] Fig. 1 is a schematic front view of aheat exchanger 1 employing a heat exchanger header according toEmbodiment 1 which is not part of the present invention. - [
Fig. 2] Fig. 2 is a perspective view showing one of theflat tubes 30 ofFig. 1 . - [
Fig. 3] Fig. 3 is an exploded perspective view of theinlet header 10 ofFig. 1 . - [
Fig. 4] Fig. 4 is a sectional view of the inlet header part ofFig. 1 taken along line A-A. - [
Fig. 5] Fig. 5 is a diagram showing a refrigerant circuit of arefrigeration cycle apparatus 50 to which theheat exchanger 1 ofFig. 1 is applied. - [
Fig. 6] Fig. 6 is a diagram showing the flow of refrigerant in the case where theheat exchanger 1 ofFig. 1 is used as an evaporator. - [
Fig. 7] Fig. 7 is a diagram showing the flow state of refrigerant in theinlet header 10. - [
Fig. 8] Fig. 8 is a sectional view taken along line B-B ofFig. 7 . - [
Fig. 9] Fig. 9 shows the flow state of refrigerant in a header not provided with grooves as a comparative example. - [
Fig. 10] Fig. 10 is adiagram showing Modification 1 of thegrooves 14 ofFig. 3 . - [
Fig. 11] Fig. 11 is a diagram showing Modification 2 of thegrooves 14 ofFig. 3 . - [
Fig. 12] Fig. 12 is a diagram showing aheat exchanger 1A according to Embodiment 2 of the present invention. - [
Fig. 13] Fig. 13 is an exploded perspective view of theheader 70 ofFig. 12 . - [
Fig. 14] Fig. 14 shows modifications of thegrooves 14 ofFig. 13 . - [
Fig. 15] Fig. 15 shows aheat exchanger 1B according to Embodiment 3 of the present invention. -
Fig. 1 is a schematic perspective view of a heat exchanger employing a heat exchanger header according toEmbodiment 1. InFig. 1 and the other figures described later, the same reference signs are used for the same or corresponding components, and this is common throughout the specification. The forms of components described in the whole specification are illustrative only, and the present invention is not limited to these descriptions. - The
heat exchanger 1 is a parallel flow heat exchanger in which refrigerant is flowed in parallel, particularly a one-way flow passage type heat exchanger in which refrigerant is flowed from one side to the other side in thewhole heat exchanger 1. Theheat exchanger 1 has a pair ofheaders headers headers fins 40. The pair ofheaders flat tubes 30, and thefins 40 are all formed of aluminum or aluminum alloy. - The
fins 40 are plate-like fins that are stacked at intervals between the pair ofheaders flat tubes 30 are passed therethrough. Thefins 40 do not necessarily have to be plate-like fins, and only have to befins 40 disposed such that air passes in the air passage direction. Thefins 40 may be, for example, corrugated fins or the like alternately stacked with theflat tubes 30 in the vertical direction. In short, thefins 40 only have to be fins disposed such that air passes in the air passage direction. - The
flat tubes 30 have a plurality of through-holes 30a serving as refrigerant flow passages as shown inFig. 2 . Heat transfer tubes are not limited to flat tubes, and circular tubes and tubes having any other shape can be used. - Of the pair of
headers inlet header 10 on the refrigerant inlet side of the plurality offlat tubes 30 is connected to arefrigerant inlet pipe 10a, and theoutlet header 20 on the refrigerant outlet side of the plurality offlat tubes 30 is connected to arefrigerant outlet pipe 20a. - The present invention has a characteristic in, of the pair of
headers Fig. 3 below. -
Fig. 3 is an exploded perspective view of theinlet header 10 ofFig. 1 .Fig. 4 is a sectional view of the inlet header part ofFig. 1 taken along line A-A. - The
inlet header 10 has a box-like headermain body 11 with one side open, and a plate-like lid body 13 covering anopening 11a of the headermain body 11, and at least onechamber 10A serving as a refrigerant flow passage is formed therebetween. In abottom surface 11b of the headermain body 11 that faces the opening 11a, a plurality of through-holes 12 serving as inlet side through-holes are arranged side by side along the longitudinal direction of the headermain body 11. The refrigerant inlet side ends of the plurality offlat tubes 30 are connected to the plurality of through-holes 12, and communicate with thechamber 10A. Therefrigerant inlet pipe 10a is connected to theinlet header 10. - On a
surface 13a of thelid body 13 that faces the through-holes 12 in the at least onechamber 10A, a plurality ofgrooves 14 extending in the longitudinal direction are formed over the entire length in the lateral direction perpendicular to the longitudinal direction. Specifically, thegrooves 14 are formed by the gaps between a plurality ofprotrusions 15 protruding from thelid body 13. Thegrooves 14 are provided in order to draw refrigerant liquid flowing into theinlet header 10 into the grooves by the effect of surface tension and to thereby equally distribute the refrigerant from theinlet header 10 to each pass. - When manufacturing the
inlet header 10 thus configured, the box-like headermain body 11 is formed by cutting or the like, and the through-holes 12 are formed in the headermain body 11. Thelid body 13 is formed by cutting or the like. Thelid body 13 is fittably configured so as to be able to be temporarily fastened to theopening 11a of the headermain body 11, and brazing filler metal is applied to the fitting parts. - When manufacturing the
whole heat exchanger 1, thelid body 13 is fitted in and temporarily fastened to theopening 11a of the headermain body 11, and, in a state where theoutlet header 20, theflat tubes 30, and thefins 40 are all assembled, the whole is joined by brazing at the same time. -
Fig. 5 is a diagram showing a refrigerant circuit of arefrigeration cycle apparatus 50 to which theheat exchanger 1 ofFig. 1 is applied. - The
refrigeration cycle apparatus 50 includes acompressor 51, acondenser 52, anexpansion valve 53 as a pressure reducing device, and aevaporator 54. Theheat exchanger 1 is used as at least one of thecondenser 52 and theevaporator 54. Gas refrigerant discharged from thecompressor 51 flows into thecondenser 52, exchanges heat with air passing through thecondenser 52 to become high-pressure liquid refrigerant, and flows out. The high-pressure liquid refrigerant flowing out of thecondenser 52 is reduced in pressure by theexpansion valve 53 to become low-pressure two-phase gas-liquid refrigerant, and flows into theevaporator 54. The low-pressure two-phase gas-liquid refrigerant flowing into theevaporator 54 exchanges heat with air passing through theevaporator 54 to become low-pressure gas refrigerant, and is sucked into thecompressor 51 again. -
Fig. 6 is a diagram showing the flow of refrigerant in the case where theheat exchanger 1 ofFig. 1 is used as an evaporator. - Two-phase gas-liquid refrigerant flowing out of the
expansion valve 53 flows through therefrigerant inlet pipe 10a into theinlet header 10. The refrigerant flowing into theinlet header 10 flows from one end to the other end of theflat tubes 30 constituting each pass of theheat exchanger 1, merges in theoutlet header 20, and flows through therefrigerant outlet pipe 20a to the outside. - Next, the operation inside the inlet header will be described.
Fig. 7 is a diagram showing the flow state of refrigerant in theinlet header 10.Fig. 8 is a sectional view taken along line B-B ofFig. 7 , and is a schematic diagram showing a state where liquid refrigerant is accumulated between the grooves in theinlet header 10.Fig. 9 includes diagrams (a) and (b) showing the flow state of refrigerant in a header not provided withgrooves 14 as a comparative example. - First, the flow state of refrigerant in the comparative example will be described with reference to
Fig. 9 . When the amount of refrigerant circulating in the refrigerant circuit is large, two-phase gas-liquid refrigerant flowing through therefrigerant inlet pipe 10a into theinlet header 10 accumulates in the upper part of theinlet header 10 owing to momentum at the time of inflow as shown inFig. 9 (a) . In contrast, when the amount of refrigerant circulating in the refrigerant circuit is small, two-phase gas-liquid refrigerant flowing through therefrigerant inlet pipe 10a into theinlet header 10 accumulates in the lower part of theinlet header 10 by the influence of gravity. As described above, in the case of a configuration in which aninlet header 10 is not provided withgrooves 14, liquid refrigerant concentrates in the upper part or the lower part, and distribution to each pass is unequal. - Next, the flow state of refrigerant in the
inlet header 10 ofEmbodiment 1 will be described with reference toFig. 7 and Fig. 8 . Two-phase gas-liquid refrigerant flowing through therefrigerant inlet pipe 10a into theinlet header 10 flows in theinlet header 10, and liquid refrigerant is drawn into thegrooves 14 by the effect of surface tension. Thus, the liquid refrigerant is held equally in the longitudinal direction in theinlet header 10, and the amount of liquid refrigerant flowing into eachflat tube 30 is equalized. - As described above, according to
Embodiment 1, by providing thelid body 13 with a plurality ofgrooves 14 and causing surface tension to act, unevenness of liquid refrigerant can be suppressed, and refrigerant can be equally distributed to and caused to flow into each of the plurality offlat tubes 30. Thus, the heat exchange efficiency can be improved, and the capacity in the case where theheat exchanger 1 is used as an evaporator can be exerted to the maximum. - Since
Embodiment 1 utilizes the action of surface tension of liquid refrigerant to prevent uneven refrigerant distribution, the pressure loss can be suppressed as compared to the conventional configuration, and the performance degradation in the case where theheat exchanger 1 is used as an evaporator can be suppressed. - Since the
inlet header 10 ofEmbodiment 1 is composed of a headermain body 11 and alid body 13 havinggrooves 14, and has a simple structure, it is easy to manufacture, and can be reduced in cost. - The inlet header is not limited to the structure shown in
Fig. 3 , and various modifications, such as the following (1) and (2), may be made without departing from of the scope of the present invention. - (1)
Fig. 10 is adiagram showing Modification 1 of thegrooves 14 ofFig. 3 . In the configuration of thegrooves 14 ofEmbodiment 1 shown inFig. 4 , theprotrusions 15 are all the same in height. As shown inFig. 10 , the height of theprotrusions 15 may be alternately larae and small in the lateral direction of the lid body 13 (the vertical direction inFig. 10 ). In this case, the end faces (inclined surfaces) of thegrooves 14 closest to the flat tubes 30 (shown by dashedline 14a inFig. 10 ) are wide as compared to the configuration in which theprotrusions 15 are all the same in height as shown inFig. 5 . Therefore, it can be expected that the effect of drawing liquid refrigerant is improved. The height of theprotrusions 15 is not limited to the configuration in which the height of theprotrusions 15 is alternately long and short. As long as every two of theprotrusions 15 adjacent in the lateral direction of thelid body 13 differ in height, the same effects can be expected. The following Modification 2 is another example of the configuration in which every two of theprotrusions 15 adjacent in the lateral direction of thelid body 13 differ in height. - (2)
Fig. 11 is a diagram showing Modification 2 of thegrooves 14 ofFig. 3 . - The smaller the width (the length in the vertical direction in
Fig. 11 ) of thegrooves 14 and the larger the height of thegrooves 14, the larger the refrigerant holding action in thegrooves 14 due to surface tension. Liquid refrigerant flowing into theinlet header 10 tends to accumulate at both ends in the lateral direction of thelid body 13. So, in Modification 2, the height of theprotrusions 15 increases from both ends toward the central part in the lateral direction and the height of thegrooves 14 is adjusted so that the refrigerant holding force increases toward the central part in the lateral direction. Thus, unevenness of refrigerant is suppressed also in the lateral direction, and the amount of refrigerant in eachgroove 14 can be equalized in both the longitudinal direction and the lateral direction. As a result, it can be expected that refrigerant can be more equally distributed to each of theflat tubes 30. Although an example is shown here in which only the height of thegrooves 14 is varied, the width of thegrooves 14 may be decreased toward the central part. - As described above, an example of a one-way flow passage type heat exchanger is shown in which refrigerant flows from one side to the other in the whole heat exchanger. The character can also be applied to a U-turn flow passage type heat exchanger in which refrigerant flows while making U-turns. The configuration in which the present invention is applied to a U-turn flow passage type heat exchanger will be described below with reference to the following Embodiment 2 and Embodiment 3.
-
Fig. 12 is a diagram showing aheat exchanger 1A according to Embodiment 2 of the present invention. - The
heat exchanger 1A is a parallel flow heat exchanger in which refrigerant is flowed in parallel, particularly a U-turn flow passage type heat exchanger. Here, a configuration example is shown in which the number of passes is five. - The
heat exchanger 1A has a pair ofheaders headers headers fins 40. The pair ofheaders flat tubes 30, and thefins 40 are all formed of aluminum or aluminum alloy. The configurations of theflat tubes 30 and thefins 40 are the same asEmbodiment 1. -
Fig. 13 is an exploded perspective view of theheader 70 ofFig. 12 . - The
header 70 has a box-like headermain body 71 with one side open. In abottom surface 71b of the headermain body 71 that faces theopening 71a, a plurality of through-holes 72 to which a plurality offlat tubes 30 are connected are arranged side by side along the longitudinal direction of the headermain body 71. Twopartition plates 73 are provided inside the headermain body 71, and three independent chambers A, B, and C that communicate with the plurality of through-holes 72 and serve as refrigerant flow passages are formed, and are covered bylid bodies - The flow of refrigerant in the
heat exchanger 1A will be described later. A plurality ofgrooves 14 having the same function asEmbodiment 1 are formed in parts of thelid bodies flat tubes 30. A specific description will be given below. - The chamber A is an inflow chamber into which refrigerant from the outside flows. The refrigerant inlet side ends of the
flat tubes 30 are connected to the plurality of through-holes 72 communicating with the chamber A, and thereforegrooves 14 are formed on the whole of thelid body 74A. The chamber B is a U-turn chamber serving as a U-turn flow passage. Of the plurality of through-holes 72 communicating with the chamber B, the upper half is connected to the refrigerant inlet side ends of theflat tubes 30, and the lower half is connected to the refrigerant outlet side ends of theflat tubes 30, and thereforegrooves 14 are formed on the upper half of thelid body 74B. The chamber C is an outflow chamber from which refrigerant flows to the outside. The plurality of through-holes 72 communicating with the chamber C are connected to the refrigerant outlet side ends of theflat tubes 30, and thereforegrooves 14 are not formed on thelid body 74C. Hereinafter, of the plurality of through-holes 72, the through-holes to which the refrigerant inlet side ends of theflat tubes 30 are connected may be referred to as inlet side through-holes, and the through-holes to which the refrigerant outlet side ends of theflat tubes 30 are connected may be referred to as outlet side through-holes. - On the other hand, the
header 80 is provided with onepartition plate 83 as shown inFig. 12 , and the inside thereof is divided into two chambers D and E. As with theheader 70, the chambers D and E are covered bylid bodies grooves 14 are formed in parts of thelid bodies flat tubes 30. Specifically, in each of thelid bodies grooves 14 are formed on the upper half thereof. - When manufacturing the
header 70 thus configured, the headermain body 71 is formed by cutting or the like, and the through-holes 72 are formed in the headermain body 71. Thelid bodies lid bodies main body 71, and brazing filler metal is applied to the fitting parts. Theheader 80 can be manufactured in the same manner. - When manufacturing the
whole heat exchanger 1B, thelid bodies header 70, and similarly, thelid bodies header 80. In a state where theflat tubes 30 and thefins 40 are all assembled, the whole is joined by brazing at the same time. - The flow of refrigerant in the
heat exchanger 1A will be described with reference toFig. 12 below. Here, the flow of refrigerant in the case where theheat exchanger 1A is used as an evaporator. InFig. 12 , the solid arrows show the flow of refrigerant. - Two-phase gas-liquid refrigerant flowing through the
refrigerant inlet pipe 10a flows into the chamber A, flows from one end to the other end of a flat tube group connected to the chamber A, and flows into the chamber D. The refrigerant flowing into the chamber D makes a U-turn here, flows from one end to the other end of another flat tube group connected to the chamber D, and flows into the chamber B. The refrigerant flowing into the chamber B makes a U-turn here, flows from one end to the other end of another flat tube group connected to the chamber B, and flows into the chamber E. The refrigerant flowing into the chamber E makes a U-turn here, and flows from one end to the other end of another flat tube group connected to the chamber E. The refrigerant flowing out of this other end merges in the chamber C, and flows through therefrigerant outlet pipe 20a to the outside. - In the above flow of refrigerant, since
grooves 14 are provided so as to face the refrigerant inlet side end of each flat tube group, as inEmbodiment 1, an uneven flow of refrigerant is suppressed by the effect of surface tension of liquid refrigerant, and refrigerant is substantially equally distributed from each chamber to each pass. - As described above, according to Embodiment 2, also in a U-turn flow passage type heat exchanger, the same advantageous effects as
Embodiment 1 can be obtained. - In Embodiment 2, in the plurality of
protrusions 15 formed on thelid bodies Fig. 14 . -
Fig. 14 shows modifications of thegrooves 14 ofFig. 13 and includes views of thelid body grooves 14 are formed. - As shown in
Fig. 14 (a) , in the plurality ofprotrusions 15, the positions of the ends closest to the border between the inlet side through-hole group and the outlet side through-hole group may be alternately staggered in the lateral direction of the lid body. In this case, the end faces of thegrooves 14 closest to the border are inclined surfaces, the end faces are wide as compared to a configuration in which the positions of the ends are all the same as shown inFig. 13 , and therefore it can be expected that the effect of drawing liquid refrigerant is improved. The positions of the ends of theprotrusions 15 are not limited to such an alternately staggered configuration. As long as every two of theprotrusions 15 adjacent in the lateral direction of the lid body differ in position, the same effect can be expected. -
Fig. 14 (b) shows another example of the configuration in which every two of theprotrusions 15 adjacent in the lateral direction of the lid body differ in position. As shown, the length in the longitudinal direction of theprotrusions 15 may decrease toward the central part in the lateral direction, or, although not shown, the length in the longitudinal direction of theprotrusions 15 may increase toward the central part in the lateral direction. - Modifications applied to the same component part as that of
Embodiment 1 are also applied to Embodiment 2. Modifications described in Embodiment 2 may be combined with modifications described inEmbodiment 1. The same can be said also in Embodiment 3 described later. - Embodiment 3 corresponds to a configuration in which a plurality of (two here) lines of U-turn flow passage type heat exchangers of Embodiment 2 are provided in the air passage direction.
-
Fig. 15 includes diagrams showing a heat exchanger according to Embodiment 3 of the present invention.Fig. 15 (a) is a schematic side view of the heat exchanger as viewed from a direction perpendicular to the air passage direction shown by dashed arrows.Fig. 15 (b) is a schematic sectional view of an upstream side heat exchanging unit 1Ba on the upstream side in the air passage direction.Fig. 15 (c) is a schematic sectional view of a downstream side heat exchanging unit 1Bb on the downstream side in the air passage direction.Fig. 15 (d) is a plan view of the heat exchanger. Embodiment 3 will be described below focusing on differences from Embodiment 2. - The
heat exchanger 1 B has aheat exchanger 1A that is the same as Embodiment 2, as the upstream sideheat exchanging unit 1 Ba, and has the downstream sideheat exchanging unit 1 Bb on the downstream side in the air passage direction. The upstream sideheat exchanging unit 1 Ba and the downstream side heat exchanging unit 1Bb are connected by aninter-line pipe 90. - Whereas the upstream side heat exchanging unit 1Ba has five passes, the downstream side heat exchanging unit 1Bb has ten passes. The downstream side heat exchanging unit 1Bb has more passes than the upstream side heat exchanging unit 1Ba. The reason that the number of passes differs between the upstream side heat exchanging unit 1Ba and the downstream side
heat exchanging unit 1 Bb will be described later. The downstream side heat exchanging unit 1Bb is the same as the upstream side heat exchanging unit 1Ba except that it differs in the configuration of the header part from the upstream side heat exchanging unit 1Ba. - A
header 700 to which theinter-line pipe 90 is connected in the downstream side heat exchanging unit 1Bb differs in the number of partition plates from the upstream side heat exchanging unit 1Ba. Theheader 700 is provided with onepartition plate 703, and two chambers F and G are formed therein. Aheader 800 is provided with no partition plate, and one chamber H is formed in the whole thereof. As inEmbodiments 1 and 2,grooves 14 are provided in parts of theheaders heat exchanging unit 1 Bb that face the refrigerant inlet side end of eachflat tube 30. - The flow of refrigerant in the
heat exchanger 1B will be described with reference toFig. 15 below. Here, the flow of refrigerant in the case where theheat exchanger 1B is used as an evaporator. InFig. 15 , the solid arrows show the flow of refrigerant. - The flow of refrigerant in the upstream side heat exchanging unit 1Ba of the
heat exchanger 1B is the same as that in Embodiment 2. Refrigerant flowing out of therefrigerant outlet pipe 20a of the upstream sideheat exchanging unit 1B flows through theinter-line pipe 90 and therefrigerant inlet pipe 100a into the chamber F of the downstream sideheat exchanging unit 1 Bb. The refrigerant flowing into the chamber F flows from one end to the other end of a flat tube group communicating with the chamber F, and flows into the chamber H. The refrigerant flowing into the chamber H makes a U-turn here, flows from one end to the other end of another flat tube group connected to the chamber H. The refrigerant flowing out of this other end merges in the chamber G, and flows through therefrigerant outlet pipe 200a to the outside. - In the above flow of refrigerant, since
grooves 14 are provided so as to face the refrigerant inlet side end of each flat tube group, as inEmbodiments 1 and 2, an uneven flow of refrigerant is suppressed by the effect of surface tension of liquid refrigerant, and refrigerant is substantially equally distributed from each chamber to each pass. - Next, the reason that the number of passes differs between the upstream side heat exchanging unit 1Ba and the downstream side heat exchanging unit 1Bb will be described.
- When the
heat exchanger 1B is used as an evaporator, refrigerant inflows in a two-phase gas-liquid state, and finally outflows in a state of gas refrigerant. Therefore, the quality increases as refrigerant flows toward the second half of the flow passage. When the quality is low, the pressure loss during passing through the flow passage is small, and therefore it is preferable to increase the flow rate of refrigerant to increase the heat transfer coefficient. On the other hand, when the quality is high, the pressure loss during passing through the flow passage is large, and therefore it is preferable to decrease the flow rate of refrigerant. The larger the number of passes, the lower the flow rate of refrigerant. - In the upstream side heat exchanging unit 1Ba corresponding to the first half of the flow passage in the
heat exchanger 1B, the quality of refrigerant is low. Therefore, the number of passes is reduced to increase the flow rate of refrigerant, and to increase the heat transfer coefficient. On the other hand, in the downstream side heat exchanging unit 1Bb corresponding to the second half of the flow passage, the quality is high. Therefore, the number of passes is increased to reduce the flow rate of refrigerant, and to reduce the pressure loss. - As described above, according to Embodiment 3, the same advantageous effects as
Embodiment 1 and 2 can be obtained, and owing to the multi-line configuration, the heat exchange capacity can be improved. Since the number of passes on the upstream side in the air passage direction where the quality of passing refrigerant is low is reduced to increase the flow rate of refrigerant, and to increase the heat transfer coefficient, the heat exchange capacity can also be improved thereby. - Although a two-line configuration is described in Embodiment 3, a three or more-line configuration may be used.
- Although, in
Embodiments 1 to 3, examples are shown in which the outer shape of header is square, the outer shape of header is not limited to a square shape, and may be a cylindrical shape. In the case of a multi-line configuration as in Embodiment 3, a square shape is preferable in terms of securing the size required as a header and causing lines to interfere with each other. - 1
heat exchanger 1A heat exchanger 1B heat exchanger 1Ba upstream side heat exchanging unit 1Bb downstream sideheat exchanging unit 10 header (inlet header)10A chamber 10arefrigerant inlet pipe 11 headermain body 11a opening11b bottom surface 12 through-holes 13lid 14body 13a surfacegrooves 15protrusions 20 header (outlet header) 20arefrigerant outlet pipe 30flat tubes 30a through-holes 40fins 50refrigeration cycle apparatus 51compressor 52condenser 53expansion valve 54evaporator 70header 71 headermain body 71a opening71b bottom surface 72 through-holes 73partition plate 74A lid body 74B lid body 74C lid body 80header 83partition plate 84D lid body 84E lid body 90inter-line pipe 100arefrigerant inlet pipe 200arefrigerant outlet pipe 700header 703partition plate 800 header A to H chambers
Claims (12)
- A heat exchanger (1) in which a refrigerant is flowed in parallel through a plurality of heat transfer tubes (30) disposed in parallel, comprising a heat exchanger header (10)
wherein a plurality of through-holes (12) to which ends of the plurality of heat transfer tubes (30) are connected are arranged side by side in a longitudinal direction of the heat exchanger header (10),
wherein a plurality of chambers (A, B, C) communicating with the plurality of through-holes (12) and serving as a refrigerant flow passage separated in the longitudinal direction are formed in the heat exchanger header (10), and
wherein each of the plurality of through-holes (12) is either of an inlet side through-hole and an outlet side through-hole to which a refrigerant inlet side end and a refrigerant outlet side end, respectively, of the plurality of heat transfer tubes (30) are connected, and in a part of each of the plurality of chambers (A, B, C) that faces the inlet side through-holes (12) in the chambers, a plurality of grooves (14) of the heat exchanger header (10) are formed in a lateral direction perpendicular to the longitudinal direction, characterised in that the heat exchanger header (10) being configured to distribute the refrigerant to the plurality of heat transfer tubes (30) in parallel by effect of surface tension, wherein the plurality of grooves (14) draw liquid refrigerant into the grooves by the effect of surface tension. - The heat exchanger of claim 1,
wherein each of the plurality of chambers (A, B, C) is classified as any one of an inflow chamber (A) into which the refrigerant from outside flows, a U-turn chamber (B) serving as a U-turn flow passage, and an outflow chamber (C) from which refrigerant flows to the outside,
wherein through-holes (12) communicating with the inflow chamber (A) are all inlet side through-holes (12), and the plurality of grooves (14) are formed over an entire length in the longitudinal direction of the part forming the inflow chamber (A),
wherein through-holes (12) communicating with the U-turn chamber (B) are divided into an inlet side through-hole group and an outlet side through-hole group, and the plurality of grooves (14) are formed in a part facing the inlet side through-hole group, and
wherein through-holes (12) communicating with the outflow chamber (C) are all outlet side through-holes (12), and the plurality of grooves (14) are not formed in a part forming the outflow chamber (C). - The heat exchanger of claim 2, wherein the plurality of grooves (14) are formed by gaps between a plurality of protruding protrusions (15), and every two of the plurality of protrusions (15) formed in the U-turn chamber (B) that are adjacent in the 1 lateral direction differ in a position of an end closest to a border between the inlet side through-hole group and the outlet side through-hole group.
- The heat exchanger of any one of claims 1 to 3, wherein the plurality of grooves (14) are formed by gaps between a plurality of protruding protrusions (15), and every adjacent two of the plurality of protrusions (15) differ in height.
- The heat exchanger of claim 4, wherein heights of the plurality of protrusions (15) are alternately large and small in the lateral direction.
- The heat exchanger of claim 4, wherein heights of the plurality of protrusions (15) are configured to be increasingly large toward a central part in the lateral direction.
- The heat exchanger of any one of claims 1 to 6, wherein the header (10, 70) includes a header main body (11,71) that has a box-like shape with one side open and whose bottom surface (11 b, 71 b) facing the opening (11 a, 71 a) has the plurality of through-holes (12, 72) formed therein, and a lid body (13, 74A, 74B, 74C) formed in a plate-like shape covering the opening (11a, 71a).
- The heat exchanger of claim 7, wherein the grooves (14) are formed in the lid body (13).
- A heat exchanger (1B) comprising, in an air passing direction, at least two heat exchanging units (1 Ba, 1 Bb) including a pair of the heat exchanger headers (70) of claim 2 or 3 spaced from each other in a direction perpendicular to the air passage direction, a plurality of heat transfer tubes (30) disposed in parallel between the pair of heat exchanger headers (70) and both ends of which are connected to the plurality of through-holes (12) of the pair of heat exchanger headers (70), and a plurality of fins (40) disposed such that air passes in the air passage direction, wherein the heat exchanging units (1 Ba, 1 Bb) are connected by an inter-line pipe (90), and a refrigerant flow passage is formed in which the refrigerant flows through the plurality of heat transfer tubes (30) of the heat exchanging unit (1 Ba) on an upstream side in the air passage direction, from the inflow chamber (A) to the outflow chamber (C) while making a U-turn in the U-turn chamber (B), then flows through the inter-line pipe (90) into the heat exchanging unit (1 Ba) on a downstream side in the air passage direction, and flows from the inflow chamber (F) to the outflow chamber (G) of the heat exchanger header (70) while making a U-turn in the U-turn chamber (H), and
wherein when the heat exchanger (1) is used as an evaporator, a number of refrigerant passes of the refrigerant flowing through the heat exchanging unit (1 Ba) on the upstream side is less than a number of refrigerant passes of the refrigerant flowing through the heat exchanging unit (1 Bb) on the downstream side. - The heat exchanger (1, 1 A, 1B) of claims 1-9, wherein the heat transfer tubes (30) are flat tubes having a plurality of through-holes (12) serving as refrigerant flow passages.
- A refrigeration cycle apparatus (50) comprising a heat exchanger (1) of any one of claims 1 to 10.
- An air-conditioning apparatus comprising the refrigeration cycle apparatus (50) of claim 11.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/002879 WO2013160956A1 (en) | 2012-04-26 | 2012-04-26 | Heat-exchanger header and heat exchanger provided therewith |
PCT/JP2013/061858 WO2013161795A1 (en) | 2012-04-26 | 2013-04-23 | Heat-exchanger header and heat exchanger provided therewith |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2865983A1 EP2865983A1 (en) | 2015-04-29 |
EP2865983A4 EP2865983A4 (en) | 2016-05-25 |
EP2865983B1 true EP2865983B1 (en) | 2021-07-14 |
Family
ID=49482333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13780882.0A Active EP2865983B1 (en) | 2012-04-26 | 2013-04-23 | Heat-exchanger header and heat exchanger provided therewith |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150053384A1 (en) |
EP (1) | EP2865983B1 (en) |
CN (2) | CN104285121B (en) |
ES (1) | ES2883139T3 (en) |
WO (2) | WO2013160956A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10032693B2 (en) * | 2015-10-20 | 2018-07-24 | General Electric Company | Heat transfer chassis and method for forming the same |
CN107367089A (en) * | 2016-05-13 | 2017-11-21 | 浙江盾安热工科技有限公司 | Micro-channel heat exchanger |
US10883745B2 (en) | 2016-06-27 | 2021-01-05 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus |
US10794636B2 (en) * | 2016-09-29 | 2020-10-06 | Daikin Industries, Ltd. | Heat exchanger and air conditioner |
JP6772731B2 (en) * | 2016-09-30 | 2020-10-21 | ダイキン工業株式会社 | How to make a heat exchanger |
CN111433548B (en) * | 2017-12-11 | 2022-04-26 | 三菱电机株式会社 | Fin-less heat exchanger and refrigeration cycle device |
CN107941054B (en) * | 2017-12-13 | 2020-04-17 | 深圳易信科技股份有限公司 | Gas-liquid heat exchanger |
CN108592663B (en) * | 2018-02-12 | 2020-02-21 | 深圳易信科技股份有限公司 | Gas-liquid heat exchange device |
US11098966B2 (en) * | 2018-08-08 | 2021-08-24 | Denso International America, Inc. | Header tank for heat exchanger |
US11402161B2 (en) * | 2019-04-22 | 2022-08-02 | Hitachi-Johnson Controls Air Conditioning, Inc. | Distributor, heat exchanger, indoor unit, outdoor unit, and air-conditioning device |
JP6822525B2 (en) * | 2019-06-28 | 2021-01-27 | ダイキン工業株式会社 | Heat exchanger and heat pump equipment |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63271099A (en) * | 1987-04-27 | 1988-11-08 | Showa Alum Corp | Heat exchanger |
JP3211044B2 (en) * | 1994-03-24 | 2001-09-25 | 株式会社ゼクセルヴァレオクライメートコントロール | Temporary fixing method of inlet / outlet pipe of heat exchanger |
JPH11325785A (en) * | 1998-05-14 | 1999-11-26 | Zexel:Kk | Radiator with integrated oil cooler |
JPH11337289A (en) * | 1998-05-27 | 1999-12-10 | Showa Alum Corp | Heat exchanger |
US6308771B1 (en) * | 1998-10-29 | 2001-10-30 | Advanced Thermal Solutions, Inc. | High performance fan tail heat exchanger |
US20020139515A1 (en) * | 1999-07-02 | 2002-10-03 | Kaveh Azar | Heat sink with textured regions |
US7044194B2 (en) * | 1999-10-26 | 2006-05-16 | Duramax Marine, Llc | Heat exchanger with beveled header |
JP2002130979A (en) * | 2000-10-25 | 2002-05-09 | Showa Denko Kk | Heat exchanger |
JP4767408B2 (en) * | 2000-12-26 | 2011-09-07 | 株式会社ヴァレオジャパン | Heat exchanger |
DE10330268A1 (en) * | 2002-07-05 | 2004-01-15 | Behr Gmbh & Co. Kg | A method for constructing motor vehicle air conditioning condensers has a double manifold at both ends of the bank of condensing tubes |
JP2004301454A (en) * | 2003-03-31 | 2004-10-28 | Calsonic Kansei Corp | Header tank for heat exchanger |
US7775265B2 (en) * | 2004-09-15 | 2010-08-17 | Flex-A-Lite Consolidated, Inc. | Side tank design |
JPWO2008114381A1 (en) * | 2007-03-19 | 2010-07-01 | 富士通株式会社 | Heat sink, electronic device, and method of manufacturing electronic device |
JP2008256234A (en) * | 2007-04-03 | 2008-10-23 | Showa Denko Kk | Evaporator |
WO2009048451A1 (en) * | 2007-10-12 | 2009-04-16 | Carrier Corporation | Heat exchangers having baffled manifolds |
JP4827882B2 (en) * | 2008-05-08 | 2011-11-30 | 三菱電機株式会社 | Heat exchanger module, heat exchanger, indoor unit and air-conditioning refrigeration apparatus |
JP5020298B2 (en) | 2009-10-15 | 2012-09-05 | 三菱電機株式会社 | Refrigerant distributor and heat pump device using the refrigerant distributor |
JP5147894B2 (en) * | 2010-05-07 | 2013-02-20 | 三菱電機株式会社 | Refrigerant distributor and evaporator |
KR101826365B1 (en) * | 2012-05-04 | 2018-03-22 | 엘지전자 주식회사 | A heat exchanger |
-
2012
- 2012-04-26 WO PCT/JP2012/002879 patent/WO2013160956A1/en active Application Filing
-
2013
- 2013-04-23 WO PCT/JP2013/061858 patent/WO2013161795A1/en active Application Filing
- 2013-04-23 CN CN201380025220.3A patent/CN104285121B/en active Active
- 2013-04-23 ES ES13780882T patent/ES2883139T3/en active Active
- 2013-04-23 EP EP13780882.0A patent/EP2865983B1/en active Active
- 2013-04-23 US US14/394,124 patent/US20150053384A1/en not_active Abandoned
- 2013-04-26 CN CN201320216136.7U patent/CN203464829U/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
WO2013161795A1 (en) | 2013-10-31 |
CN104285121B (en) | 2016-10-12 |
EP2865983A1 (en) | 2015-04-29 |
WO2013160956A1 (en) | 2013-10-31 |
CN104285121A (en) | 2015-01-14 |
US20150053384A1 (en) | 2015-02-26 |
ES2883139T3 (en) | 2021-12-07 |
EP2865983A4 (en) | 2016-05-25 |
CN203464829U (en) | 2014-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2865983B1 (en) | Heat-exchanger header and heat exchanger provided therewith | |
EP2853843B1 (en) | A refrigerant distributing device, and heat exchanger equipped with such a refrigerant distributing device | |
US9291407B2 (en) | Multi-channel heat exchanger with improved uniformity of refrigerant fluid distribution | |
US20050061488A1 (en) | Automotive heat exchanger | |
WO2015180661A1 (en) | Heat exchanger | |
US7367388B2 (en) | Evaporator for carbon dioxide air-conditioner | |
US20110056667A1 (en) | Integrated multi-circuit microchannel heat exchanger | |
US20060102332A1 (en) | Minichannel heat exchanger with restrictive inserts | |
US10337808B2 (en) | Condenser | |
US10041710B2 (en) | Heat exchanger and air conditioner | |
WO2013190617A1 (en) | Heat exchanger | |
JP2015203506A (en) | heat exchanger | |
JP5147894B2 (en) | Refrigerant distributor and evaporator | |
US20100147501A1 (en) | Curled manifold for evaporator | |
JP5716496B2 (en) | Heat exchanger and air conditioner | |
JP2005030741A (en) | Heat exchanger | |
JP5194279B2 (en) | Evaporator | |
JP2012098016A (en) | Evaporator | |
JP5832642B2 (en) | Heat exchanger header, heat exchanger equipped with this heat exchanger header, refrigeration cycle apparatus, and air conditioner | |
JP5508818B2 (en) | Evaporator | |
JP2018087646A (en) | Evaporator | |
JP2007040605A (en) | Heat exchanger for multistage compression type refrigeration cycle device | |
JP2011158130A (en) | Heat exchanger | |
JP6213362B2 (en) | Heat exchanger and heat exchanger manufacturing method | |
JP2019152350A (en) | Heat exchange device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141112 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20160422 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F28D 21/00 20060101ALI20160418BHEP Ipc: F28F 9/02 20060101AFI20160418BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200330 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210204 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013078338 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1410990 Country of ref document: AT Kind code of ref document: T Effective date: 20210815 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210714 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2883139 Country of ref document: ES Kind code of ref document: T3 Effective date: 20211207 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1410990 Country of ref document: AT Kind code of ref document: T Effective date: 20210714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211115 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211014 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211014 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013078338 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 |
|
26N | No opposition filed |
Effective date: 20220419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220423 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220423 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230512 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 602013078338 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240229 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: GC2A Effective date: 20240514 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240327 Year of fee payment: 12 Ref country code: FR Payment date: 20240308 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20240603 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240227 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240507 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210714 |