[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2864087B1 - Holzverbundwerkstoff mit aerogele und entsprechendes herstellungsverfahren und verwendung - Google Patents

Holzverbundwerkstoff mit aerogele und entsprechendes herstellungsverfahren und verwendung Download PDF

Info

Publication number
EP2864087B1
EP2864087B1 EP13701407.2A EP13701407A EP2864087B1 EP 2864087 B1 EP2864087 B1 EP 2864087B1 EP 13701407 A EP13701407 A EP 13701407A EP 2864087 B1 EP2864087 B1 EP 2864087B1
Authority
EP
European Patent Office
Prior art keywords
wood
aerogels
composite material
range
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13701407.2A
Other languages
English (en)
French (fr)
Other versions
EP2864087A1 (de
Inventor
Martin Berger
Hermann GSCHWENTNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fritz Egger GmbH and Co OG
Original Assignee
Fritz Egger GmbH and Co OG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fritz Egger GmbH and Co OG filed Critical Fritz Egger GmbH and Co OG
Priority to PL13701407T priority Critical patent/PL2864087T3/pl
Priority to SI201330398A priority patent/SI2864087T1/sl
Publication of EP2864087A1 publication Critical patent/EP2864087A1/de
Application granted granted Critical
Publication of EP2864087B1 publication Critical patent/EP2864087B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/18Auxiliary operations, e.g. preheating, humidifying, cutting-off

Definitions

  • the present invention relates to a wood composite material according to the preamble of claim 1. Furthermore, the invention relates to a method for producing a wood composite material as defined above. Finally, the invention relates to uses of aerogels in a wood-based panel.
  • a corresponding wood composite material is for example from the EP 2 281 961 A1 known.
  • a wood composite material is understood to mean a composite material which predominantly consists of wood material, that is to say which is made from wood material more than 50%. The rest of the composite material (less than 50%) is different material.
  • Wood composites may, for example, at least one wood-based panel, in particular at least one chipboard, fiber and / or OSB board (OSB: oriented strand board, plate with aligned strands, that is special chips) have. Examples of wood composites are also WPC composites (WPC: wood plastic composites), cement-bonded particleboard or the like.
  • Wood material is understood to mean any form of wood, that is to say solid wood (uncrushed wood) or crushed wood, as well as fresh wood or wood recovered from recycling (recycled wood). Crushed wood also includes small boards in addition to boards and veneers Elements such as wood shavings, wooden strands, wood fibers, wood wool and wood flour. Wood chips are understood herein to mean particles of maximum size (length) of only a few millimeters, for example a maximum of 10 to 20 mm. Wood chips are used, for example, in the production of chipboard. This should be distinguished from wooden strands, which are elongated and relatively large wood particles. Wooden strands usually have a length of 100 to 200 mm and can be up to 1.5 mm thick.
  • Wooden strands are used to make OSB boards.
  • Another wood product to be distinguished is wood wool, which is so-called filament chips. Wood wool is usually used as a packing pad or as an insulating material, whereby the filament chips can be up to 500 mm long.
  • wood fibers are known for the production of so-called fiberboard. These are elongated, axially arranged wood cells, which are usually obtained from small pieces of wood such as wood chips by steaming, cooking and chemical or mechanical digestion (defibration of the wood). For example, high-density fibreboard (HDF), medium-density fibreboard (MDF) or light fiberboard (LDF) can be produced from it.
  • HDF high-density fibreboard
  • MDF medium-density fibreboard
  • LDF light fiberboard
  • Aerogels are highly porous solids that contain up to 99.98% of the volume of pores. There are several types of aerogels, with silicate-based ones being most common. Other materials, such as plastic or carbon based, are used in special cases. In principle, any metal oxide, polymer and other materials can be used as the starting point for the airgel synthesis by a sol-gel process. Aerogels have a strong dendritic structure, ie a branching of particle chains with very many spaces in the form of open pores. These chains have contact points, so that ultimately results in the image of a stable, sponge-like network. Its aggregates have a fractal dimension, so they are self-similar to a certain extent.
  • Aerogels can be used inter alia as insulation or filter material.
  • the fields of application of the aerogels will expand significantly with the discovery of further properties. Aerogels hold 15 entries in the Guinness Book of Material Properties records, including "best insulator” and "lightest solid” or least dense solid. Since especially silicate aerogels are comparatively well studied in their diversity, one can give quite accurate information for their spectrum. These properties are qualitatively as well as quantitatively quite similar in terms of quantity to those of the other aerogels, but with some specific peculiarities.
  • the exact material properties depend on the desired use and therefore - depending on the starting material and the manufacturing process - can vary considerably.
  • a silicate airgel appears milky blue against a dark background because the silica scatters the shorter wavelengths (that is, the blue portions of the white light) more than the longer wavelength radiation.
  • silica airgel refers to the structure rather than the chemical composition of the material. The latter corresponds approximately to SiO (OH) y (OR) z , with y and z as parameters dependent on the manufacturing process (source: http://en.wikipedia.org/wiki/Aerogel).
  • Aerogels are aerogels, especially those with porosities over 60% and densities less than 0.6 g / cm 3 , depending on the manufacturing process transparent, translucent or opaque and have an extremely low thermal conductivity. You will therefore find application as a thermal insulation material, such as. B. in the EP-A-0 171 722 described. Aerogels in the broad sense, ie in the sense of "gel with air as a dispersion medium", are prepared by drying a suitable gel. The term “airgel” in this sense covers aerogels in the narrower sense, xerogels and cryogels.
  • a dried gel is referred to as an airgel in the narrower sense, when the liquid of the gel at temperatures above the critical temperature and starting from pressures above the critical pressure is largely removed.
  • the liquid of the gel is removed undercritically, for example with the formation of a liquid-vapor boundary phase, then the resulting gel is often referred to as xerogel.
  • aerogels in the present application is it concerns aerogels in the broader sense, ie in the sense of "gel with air as dispersing agent".
  • aerogels are all those described above.
  • the DE 197 02 240 A1 describes multilayer composite materials, wherein at least one layer may contain aerogels and this layer may also contain up to 50 vol .-% fillers such as wood flour.
  • wood flour is very finely ground wood with a particle size of less than 0.1 mm (also known as wood dust).
  • the aerogels are used to create a heat-insulating composite material that can be made as simple and in any shape and size.
  • the EP 2 281 961 A1 describes materials wherein aerogels in the form of particles are added to a fibrous material.
  • the thread-like material may also be wood wool. Again, an insulating material to be produced in this way.
  • the panels produced are so-called wood wool lightweight panels (see http://de.wikipedia.org/ wiki / wood wool-lightweight board), which are characterized by the geometry of the wood particles used (wood wool) fundamentally of chipboard, OSB boards and fiberboard differ.
  • the binders used are different. Formaldehyde-based binders or those based on PMDI (Polymeric Diphenylmethanediisocyanate) are used for chipboards, OSB boards and fiberboards used, while wood wool lightweight panels are mineral bound. Details of the binder used makes the EP 281 961 A1 for the wood wool-based layers not, the mentioned binders refer exclusively to the use in a separate mineral layer.
  • flame retardants are substances which are intended to limit, slow down or prevent the spread of fires (see http://de.wikipedia.org/wiki/flammtikstoff).
  • the known flame retardants are mainly health or ecologically questionable or are unsatisfactory in their mode of action.
  • Some of these additives also have a strong coloring power, so that parts of the installation are subjected to severe contamination, which disadvantageously increases the maintenance effort, in particular to be observed in the use of graphite as a fire retardant.
  • the fire protection has a significant importance in building construction, in interior design, as well as in the application of wood materials in vehicle construction.
  • aerogels are used in a wooden material made from a wood material in the form of compressed wood chips, strands and / or fibers, namely either inside the compressed wood material and / or in a separate coating on the compressed wood material, which will be described below is explained in more detail, a new material (wood composite material) is created, the thermal conductivity is greatly reduced. This is particularly advantageous for LDF boards, as these are widely used for Dämm catalyste. In this way, the fire protection properties of wood-based materials continue to be significantly improved.
  • Pressed together means that from a variety of accumulated to a so-called cake wood chips, strands or fibers in a press a pressed part is produced, for example, when using predominantly wood chips a so-called particle board, when using predominantly wood strands one OSB board or when using predominantly wood fibers a fiberboard, preferably an LDF board.
  • the said pressing member has aerogels in its interior and in the case that the pressing member is provided with an aerogels coating, this is a wood material body, in particular a wood-based panel, which in the latter case coated is.
  • the wood material used according to the invention may contain, in addition to wood shavings, strands and / or fibers, other wood material, as mentioned for example in the introductory paragraphs, or else cellulose material.
  • the wood material is bound by adding a binder.
  • a binder is not absolutely necessary.
  • the binders used in particular are the abovementioned formaldehyde-based binders or those based on PMDI.
  • the aerogels are incorporated into a separate layer (matrix), which is applied (laminated) to the wood material, in particular to a molded article produced from the wood material by compression, and which in particular is free of wood particles, wherein the Wood material or the molding is in particular free of aerogels.
  • the aerogels may also be bonded together by a binder.
  • the binder may be the same binder as in the wood or molding. It should be mentioned again that too a molded body in which a separate layer has been applied with aerogels, as a wood material, in particular as a wood-based panel is to be regarded, namely as a coated wood material.
  • the wood-based material or wood composite material according to the invention can also be provided on both sides with a separate layer containing such an aerogels.
  • the thickness of the separate layer containing the aerogels is smaller than the thickness of the compressed wood material or molded body.
  • the proportion of aerogels in the wood composite material is less than 50% by volume and preferably in a range between 1 and 30% by volume, more preferably in a range between 1 and 20% by volume.
  • the wood material of the wood composite material consists of more than 50% by volume, preferably more than 75% by volume, particularly preferably more than 90% by volume, of wood chips, with more than 50% preferably more than 75%, more preferably more than 90%, of the wood chips has a length of less than 50 mm, preferably a length in a range of 1 to 20 mm, particularly preferably a length in a range of 1 to 10 mm
  • the wood material of the wood composite material to more than 50 vol .-%, preferably more than 75 vol .-%, more preferably more than 90 vol .-% consists of wood chips, in particular more than 50%, preferably more than 75%, particularly preferably more than 90%, of the wood chips has a width of less than 10 mm, preferably of less than 5 mm, more preferably less than 2 mm, and / or a thickness of less than 1.5 mm, preferably less than 1.0 mm, more preferably less than 0.5 mm.
  • the invention provides that the wood material of the wood composite material to more than 50 vol .-%, preferably more than 75 vol .-%, more preferably more than 90 vol .-%, consists of wood strands, wherein more than 50 %, preferably more than 75%, particularly preferably more than 90%, of the wood strands has a width of more than 4.5 mm, preferably a width in a range of 5 to 60 mm, particularly preferably a width in a range of 10 to 50 mm.
  • the wood material of the wood composite material to more than 50 vol .-%, preferably more than 75 vol .-%, more preferably more than 90 vol .-% consists of wood strands, in particular more than 50%, preferably more than 75%, particularly preferably more than 90%, of the wood strands has a length in a range from 80 to 300 mm, preferably in a range from 90 to 250 mm, particularly preferably in a range from 100 to 200 mm, and / or have a thickness of more than 0.5 mm, preferably in a range of 0.6 to 1.8 mm, more preferably in a range of 0.6 to 1.5 mm.
  • the wood material of the wood composite material consists of more than 50% by volume, preferably more than 75% by volume, particularly preferably more than 90% by volume, of wood fibers.
  • the aerogels in the compressed wood material, that is to say in the pressed part, and / or in the separate layer
  • the mean grain size of the aerogels in the wood composite material being in a range of 0, 3 to 4 mm, preferably in a range of 0.5 to 2.5 mm, more preferably in a range of 0.8 to 1.8 mm, and / or the average apparent density in a range of 0.001 to 0.6 g / cm 3 , preferably in a range from 0.01 to 0.3 g / cm 3 , particularly preferably in a range from 0.05 to 0.1 g / cm 3 .
  • the separate layer may have a thickness which is at least as large as the largest size of the aerogels used in the separate layer. If, for example, granules of aerogels whose particle size distribution ranges from 0.3 to 4 mm are present in the separate layer, the thickness of the separate layer is preferably at least 4 mm. If, for example, a granulate is used in which the maximum grain size of the aerogels is 2 mm, the thickness of the separate layer can be at least 2 mm. But there are also other thicknesses conceivable. Thus, the thickness of the separate layer may be in a range of 1 to 20 mm, preferably in a range of 1 to 10 mm, particularly preferably in a range of 2 to 8 mm.
  • the proportion of the wood material in the form of wood chips, strands and / or fibers is at least 50% and preferably in a range of 50 to 80% by volume, especially preferably in a range of 50 to 70% by volume.
  • other wood material may also be provided in the wood composite material, which is then not covered by the said portion.
  • the wood material of the wood composite material is more than 50% by volume, preferably more than 75% by volume, particularly preferably more than 90% by volume, of wood particles selected from the group containing wood shavings, wood strands and wood fibers.
  • wood particles selected from the group containing wood shavings, wood strands and wood fibers.
  • different types of wood particles from the group mentioned can also occur or be present in the wood composite material according to the invention.
  • the wood material in the wood composite material is formed by both wood shavings and wood strands and / or wood fibers, or both wood strands and wood fibers. All three types of wood particles mentioned, namely wood chips, wood strands and wood fibers, can also occur simultaneously in the wood material or form the wood material.
  • wood particle types from the aforementioned group may be provided as a mixture and / or in separate layers. That is, for example, if both wood chips and wood strands are provided, at least one layer of the wood composite material may have a mixture of wood chips and wood strands (although other types of wood particles may additionally be included in the mixture). Additionally or alternatively, it is also conceivable that in the case that the wood composite material has both wood chips and wood strands, at least one layer no wood shavings or no wooden strands or at least one layer has no wood shavings and another layer has no wooden strands.
  • At least one layer of the wood composite material may have a mixture of wood chips and wood fibers (in addition, other types of wood particles may be included in the mixture). Additionally or alternatively, it is also conceivable that in the case that the wood composite material has both wood chips and wood fibers, at least one layer has no wood chips or wood fibers or at least one layer has no wood chips and another layer has no wood fibers. If, for example, both wood strands and wood fibers are provided, at least one layer of the wood composite material may comprise a mixture of wood strands and wood fibers (although other types of wood particles may additionally be present in the mixture).
  • the wood composite material has both wood strands and wood fibers, at least one layer has no wood strands or no wood fibers or at least one layer has no wood strands and another layer has no wood fibers.
  • the previously defined wood composite material may also have an additional coating, which is either applied directly or connected to it by means of an adhesive.
  • a directly applied coating is for example a lacquer.
  • a coating applied by means of an adhesive is, for example, a film.
  • a wood composite material as defined above can, for example, also be used as part of a sandwich panel, for example as a cover layer of the sandwich panel.
  • the previously derived and indicated object is achieved according to a second teaching of the present invention by a method having the features of claim 10.
  • the aerogels form together with the wood material, the wood composite material.
  • the carrier is sprinkled before pressing with several layers with (not yet pressed) wood material, of which contains at least one aerogels.
  • the layer containing the aerogels may be at the bottom, at the top or in the middle. It is also possible to provide layers containing a plurality of aerogels which may be adjacent to one another or spaced from one another in the layer structure.
  • the wood material is provided as a shaped body, in particular plate-shaped molded body, of wood chips, strands and / or fibers pressed together, and the aerogels are applied to the shaped body as a separate layer (matrix) into which they are incorporated applied (laminated), wherein the molding is in particular free of aerogels.
  • the shaped body likewise has aerogels.
  • the (not yet compressed) wood material first in a first step, in particular without the addition of aerogels (but also the addition of aerogels is conceivable), is scattered on a support, and then in a second step the aerogels are applied to the material on the support (not yet pressed) as a separate layer into which they are bound.
  • the support is sprinkled before pressing with one or more layers with (not yet pressed) wood material, of which contains at least one aerogels. It can be the Aerogels containing layer to be bottom, top or center. It is also possible to provide layers containing a plurality of aerogels which may be adjacent to one another or spaced from one another in the layer structure.
  • the pressing is carried out in a double-belt press or calendering press.
  • the average compacting pressure during pressing may range from 1 to 50 kg / cm 2 , preferably from 5 to 50 kg / cm 2 , more preferably from 10 to 40 kg / cm 2 .
  • the average pressing temperature during pressing may be in the range from 100 ° to 300 ° C., preferably in a range from 150 ° to 250 ° C., particularly preferably in a range from 180 ° to 220 ° C.
  • "average" pressing pressure and "average” pressing temperature mean the pressing pressure averaged over the length of the pressing device or the pressing temperature averaged over the length of the pressing device.
  • the pressing speed may be in a range of 1 to 20 s / mm, preferably in a range of 2.5 to 15 s / mm, more preferably in a range of 3.5 to 10 s / mm (Note: because the pressing speed depends on the plate thickness, it is referred to this and expressed by the so-called pressing factor in seconds per mm plate thickness (s / mm)).
  • the present invention also relates to the use of aerogels in (ie in the interior or as a cover layer) of a wood-based panel, in particular chip, OSB or fiberboard, in particular in a previously defined Wood composite material to improve fire resistance.
  • the invention also relates to the use of aerogels in (ie in the interior or as a cover layer) of a wood-based panel, in particular chip, OSB or fiberboard, preferably LDF board, in particular in a wood composite material as defined above, to reduce the heat transfer.
  • a wood composite material 1 (a Wood material board), the wood material 2 in the form of wood chips, strands and / or fibers and aerogels 4 has.
  • the aerogels 4 are first mixed in a first step with the wood material 2 to a mixture 5, then in a second step, the mixture 5 is scattered on a support 6 and in turn in a third step, the on the support. 6 befindliches material 7 is pressed.
  • Fig. 1b several layers 7.1, 7.2 and 7.3 are sprinkled on the carrier 6 before pressing, of which the lower layer 7.1 and the upper layer 7.3 has aerogels 4.
  • the middle layer 7.2 is free of aerogels.
  • the wood material 2 is provided as a plate-shaped body 3 of compressed wood chips, strands and / or fibers and aerogels 4 are applied as a separate layer 1.1, in which they are integrated, on the molding 3, wherein the Shaped body 3 is in particular free of aerogels 4.
  • the thickness d of the separate layer 1.1 is smaller than the thickness D of the wood material 2.
  • the wood material 2 is first scattered in a first step, in particular without the addition of aerogels 4, on a support 6, and then in a second step the material 7 located on the support 6, the aerogels 4 as a separate layer 1.1, in which they are involved, are applied. Again, the thickness d of the separate layer 1.1 is smaller than the thickness D of the wood material.
  • a pressing device 8 a double belt press.
  • a calender press can be used.
  • the molded body 3 has been prepared in a comparable manner, which is not shown here.
  • the illustrated roller 9 serves in Fig. 2a ) not as part of a pressing device, but only for pressing (laminating) the separate layer 1.1.
  • separate layer 1.1 is a matrix, for example in the form of a plastic film or mat, in which aerogels are embedded in the form of granules.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Holzverbundwerkstoff gemäß Oberbegriff von Patentanspruch 1. Ferner betrifft die Erfindung ein Verfahren zur Herstellung eines wie zuvor definierten Holzverbundwerkstoffs. Schließlich betrifft die Erfindung Verwendungen von Aerogelen in einer Holzwerkstoffplatte. Ein entsprechender Holzverbundwerkstoff ist beispielsweise aus der EP 2 281 961 A1 bekannt.
  • Unter einem Holzverbundwerkstoff wird im Sinne der vorliegenden Erfindung ein Verbundmaterial verstanden, das überwiegend aus Holzmaterial besteht, also zu mehr als 50% aus Holzmaterial hergestellt ist. Der Rest des Verbundmaterials (weniger als 50%) ist anderes Material. Holzverbundwerkstoffe können beispielsweise mindestens eine Holzwerkstoffplatte, insbesondere mindestens eine Span-, Faser- und/oder OSB-Platte (OSB: oriented strand board, Platte mit ausgerichteten Strands, d.h speziellen Spänen) aufweisen. Beispiele für Holzverbundwerkstoffe sind auch WPC-Verbundwerkstoffe (WPC: wood plastic composites, Holz-Kunststoff-Verbundwerkstoffe), zementgebundene Spanplatten oder dergleichen.
  • Unter Holzmaterial wird jegliche Form von Holz verstanden, das heißt sowohl Massivholz (unzerkleinertes Holz) oder zerkleinertes Holz sowie Frischholz oder Holz, das aus der Wiederverwertung gewonnen ist (Recyclingholz). Zerkleinertes Holz umfasst neben Brettern und Furnieren auch kleine Elemente wie Holzspäne, Holzstrands, Holzfasern, Holzwolle und Holzmehl. Unter Holzspänen werden vorliegend Partikel einer maximalen Größe (Länge) von nur wenigen Millimetern, beispielsweise von maximal 10 bis 20 mm, verstanden. Holzspäne werden beispielsweise bei der Herstellung von Spanplatten eingesetzt. Davon zu unterscheiden sind Holzstrands, bei denen es sich um längliche und relativ große Holzpartikel handelt. Holzstrands haben in der Regel eine Länge von 100 bis 200 mm und können bis zu 1,5 mm dick sein. Holzstrands werden zu der Herstellung von OSB-Platten verwendet. Ein weiteres davon zu unterscheidendes Holzprodukt ist Holzwolle, bei der es sich um sogenannte Fadenspäne handelt. Holzwolle wird in der Regel als Verpackungspolster oder als Dämmstoff verwendet, wobei die Fadenspäne bis zu 500 mm lang sein können. Schließlich sind zur Herstellung sogenannter Faserplatten Holzfasern bekannt. Dabei handelt es sich um langgestreckte, axial angeordnete Holzzellen, die üblicherweise aus kleinstückigem Holz wie Hackschnitzeln durch Dämpfen, Kochen und chemisches oder mechanisches Aufschließen gewonnen werden (Zerfaserung des Holzes). Daraus hergestellt werden beispielsweise hochdichte Faserplatten (HDF-Platten), mitteldichte Faserplatten (MDF-Platten) oder leichte Faserplatten (LDF-Platten, low density fiberboard).
  • Aerogele sind hochporöse Festkörper, bei denen bis zu 99,98 % des Volumens aus Poren bestehen. Es gibt verschiedene Arten von Aerogelen, wobei solche auf Silicatbasis am verbreitetsten sind. Andere Materialien, beispielsweise auf Kunststoff- oder Kohlenstoffbasis, kommen in Spezialfällen zur Anwendung. Grundsätzlich können jedes Metalloxid, Polymer und andere Stoffe als Ausgangsbasis für die Aerogelsynthese mittels eines Sol-Gel-Prozesses verwendet werden. Aerogele weisen eine stark dendritische Struktur auf, also eine Verästelung von Partikelketten mit sehr vielen Zwischenräumen in Form von offenen Poren. Diese Ketten besitzen Kontaktstellen, so dass sich letztendlich das Bild eines stabilen, schwammartigen Netzes ergibt. Dessen Aggregate verfügen über eine fraktale Dimension, sind also in einem gewissen Ausmaß selbstähnlich. Die Porengröße liegt im Nanometerbereich und die inneren Oberflächen können mit bis zu 1000 qm pro Gramm außergewöhnlich groß werden. Dadurch können Aerogele u. a. als Isolier- oder Filtermaterial eingesetzt werden. Darüber hinaus besteht die Möglichkeit, biologisch aktive Moleküle, Proteine oder gar ganze Zellen einzulagern. Die Einsatzgebiete der Aerogele werden sich mit der Entdeckung weiterer Eigenschaften noch deutlich ausweiten. Aerogele halten 15 Einträge im Guinness-Buch der Rekorde für Materialeigenschaften, inklusive "bester Isolator" und "leichtester Feststoff" bzw. Feststoff mit der geringsten Dichte. Da besonders Silicat-Aerogele in ihrer Vielfalt vergleichsweise gut untersucht sind, kann man für ihr Spektrum recht genaue Angaben machen. Diese Eigenschaften gleichen dabei qualitativ wie zum Großteil auch quantitativ recht gut jenen der anderen Aerogele, mit jedoch teilweise spezifischen Eigenheiten. Die genauen Stoffeigenschaften hängen von der gewünschten Verwendung ab und können daher - je nach Ausgangsmaterial und Herstellungsprozess - durchaus stark voneinander abweichen. Die hohe optische Transparenz, zusammen mit einer Brechzahl von etwa 1,007 bis 1,24 und einem typischen Wert von 1,02, macht Aerogele auch in optischer Hinsicht interessant. Ein Silicat-Aerogel erscheint vor dunklem Hintergrund milchig-blau, weil das Siliciumdioxid die kürzeren Wellenlängen (das heißt, die blauen Anteile des weißen Lichts) mehr streut als die längerwellige Strahlung.
  • Dieser Effekt lässt sich in Form der Rayleigh-Streuung auch beim Tageslicht in der Erdatmosphäre beobachten. Trotz seiner durchsichtigen Erscheinung fühlt sich das Aerogel wie harter Plastik-Schaum an. Aufgrund dieser Eigenschaft erscheinen sie matt bis durchsichtig (siehe Abbildungen rechts) und tragen daher auch die Beinamen "gefrorener Rauch" oder "blauer Rauch". Die Bezeichnung Silica-Aerogel bezieht sich dabei jedoch auf die Struktur und weniger auf die chemische Zusammensetzung des Materials. Letztere entspricht etwa SiO(OH)y(OR)z, mit y und z als vom Herstellungsprozess abhängigen Parametern (Quelle: http://de.wikipedia.org/ wiki/Aerogel).
  • Gemäß der DE 197 02 240 A1 sind Aerogele, insbesondere solche mit Porositäten über 60% und Dichten unter 0,6 g/cm3, je nach Herstellungsverfahren transparent, transluzent oder opak und weisen eine äußerst geringe thermische Leitfähigkeit auf. Sie finden deshalb zum Beispiel Anwendung als Wärmeisolationsmaterial, wie z. B. in der EP-A-0 171 722 beschrieben. Aerogele im Weiteren Sinn, d. h. im Sinne von "Gel mit Luft als Dispersionsmittel", werden durch Trocknung eines geeigneten Gels hergestellt. Unter den Begriff "Aerogel" in diesem Sinne fallen Aerogele im engeren Sinn, Xerogele und Kryogele. Dabei wird ein getrocknetes Gel als Aerogel im engeren Sinn bezeichnet, wenn die Flüssigkeit des Gels bei Temperaturen oberhalb der kritischen Temperatur und ausgehend von Drücken oberhalb des kritischen Druckes weitestgehend entfernt wird. Wird die Flüssigkeit des Gels dagegen unterkritisch, beispielsweise unter Bildung einer Flüssig-Dampf-Grenzphase entfernt, dann bezeichnet man das entstandene Gel vielfach auch als Xerogel. Bei der Verwendung des Begriffs Aerogele in der vorliegenden Anmeldung handelt es sich um Aerogele im weiteren Sinn, d. h. im Sinn von "Gel mit Luft als Dispersionsmittel".
  • Im Sinne der vorliegenden Erfindung handelt es sich bei Aerogelen um all solche wie sie zuvor beschrieben wurden.
  • Die DE 197 02 240 A1 beschreibt mehrschichtige Verbundmaterialien, wobei mindestens eine Schicht Aerogele enthalten kann und diese Schicht auch bis zu 50 Vol.-% Füllstoffe wie zum Beispiel Holzmehl enthalten kann. Bei Holzmehl handelt es sich im Unterschied zu Holzspänen, -strands und -fasern um sehr fein zerriebenes Holz mit einer Partikelgröße von weniger als 0,1 mm (auch als Holzstaub bezeichnet). Die Aerogele werden dazu eingesetzt, ein wärmedämmendes Verbundmaterial zu schaffen, das möglichst einfach und in beliebiger Form und Größe hergestellt werden kann.
  • Die EP 2 281 961 A1 beschreibt Materialien, wobei Aerogele in Form von Partikeln zu einem fadenförmigen Material ("fibrous material") zugegeben werden. Bei dem fadenförmigen Material kann es sich auch um Holzwolle ("wood wool") handeln. Auch hier soll auf diese Weise ein Dämmstoff hergestellt werden. Bei den hergestellten Platten handelt es sich um sogenannte Holzwolle-Leichtbauplatten (siehe http://de.wikipedia.org/ wiki/holzwolle-leichtbauplatte), wobei sich diese durch die Geometrie der verwendeten Holzpartikel (Holzwolle) grundlegend von Spanplatten, OSB-Platten und Faserplatten unterscheiden. Auch die verwendeten Bindemittel sind unterschiedlich. So werden bei Spanplatten, OSB-Platten und Faserplatten formaldehydbasierte Bindemittel oder solche auf Basis von PMDI (Polymeres Diphenylmethandiisocyanant) eingesetzt, während Holzwolle-Leichtbauplatten mineralisch gebunden sind. Angaben zu dem verwendeten Bindemittel macht die EP 2 281 961 A1 für die holzwollebasierten Lagen nicht, die erwähnten Bindemittel beziehen sich ausschließlich auf die Verwendung in einer separaten mineralischen Lage.
  • Aus dem Stand der Technik sind verschiedenste Zusätze und Beschichtungsmaterialien bekannt, um Holzwerkstoffe, gemeint sind insbesondere Spanplatten, OSB-Platten und Faserplatten, auch mit Zusätzen bzw. Additiven, hinsichtlich der brandschutztechnischen Eigenschaften zu verbessern. Vielfach werden dazu sogenannte Flammschutzmittel eingesetzt. Flammschutzmittel (oder Brandhemmer) sind Stoffe, welche die Ausbreitung von Bränden einschränken, verlangsamen oder verhindern sollen (siehe http://de.wikipedia.org/wiki/ flammschutzmittel). Die bekannten Flammschutzmittel sind überwiegend gesundheitlich oder ökologisch bedenklich oder sind in ihrer Wirkungsweise unbefriedigend. Manche dieser Additive haben auch ein starkes Färbevermögen, so dass Anlagenteile starker Verschmutzung ausgesetzt werden, was den Wartungsaufwand nachteilig erhöht, insbesondere zu beobachten bei dem Einsatz von Grafit als Brandhemmer. Der Brandschutz hat im Hochbau, im Innenausbau, sowie auch bei der Anwendung von Holzwerkstoffen im Fahrzeugbau eine wesentliche Bedeutung.
  • Davon ausgehend ist es eine Aufgabe der vorliegenden Erfindung, die brandschutztechnischen Eigenschaften von Holzwerkstoffen zu verbessern.
  • Die zuvor hergeleitete und aufgezeigte Aufgabe wird gemäß einer ersten Lehre der vorliegenden Erfindung gelöst durch einen Holzverbundwerkstoff mit den Merkmalen von Patentanspruch 1.
  • Indem erfindungsgemäß erstmalig Aerogele in einem Holzwerkstoff aus einem Holzmaterial in Form von miteinander verpressten Holzspänen, -strands und/oder -fasern eingesetzt werden, nämlich entweder im Innern des verpressten Holzmaterials und/oder in einer separaten Beschichtung auf dem verpressten Holzmaterial, was im Folgenden noch näher erläutert wird, wird ein neuer Werkstoff (Holzverbundwerkstoff) geschaffen, dessen Wärmeleitfähigkeit stark reduziert ist. Dies ist insbesondere von Vorteil bei LDF-Platten, da diese verbreitet für Dämmzwecke verwendet werden. Auf diese Weise werden weiterhin die brandschutztechnischen Eigenschaften von Holzwerkstoffen deutlich verbessert.
  • "Miteinander verpresst" bedeutet dabei, dass aus einer Vielzahl von zu einem sogenannten Kuchen angehäuften Holzspänen, -strands oder -fasern in einer Presse ein Pressteil hergestellt wird, beispielsweise bei der Verwendung von überwiegend Holzspänen eine sogenannte Spanplatte, bei der Verwendung von überwiegend Holzstrands eine OSB-Platte oder bei der Verwendung von überwiegend Holzfasern eine Faserplatte, vorzugsweise eine LDF-Platte. Es sei angemerkt, dass sowohl in dem Fall, dass das besagte Pressteil in seinem Innern Aerogele aufweist als auch in dem Fall, dass das Pressteil mit einer Aerogele aufweisenden Beschichtung versehen ist, dieses ein Holzwerkstoffkörper ist, insbesondere eine Holzwerkstoffplatte, die in letzterem Fall beschichtet ist.
  • Das erfindungsgemäß eingesetzte Holzmaterial kann neben den Holzspänen, -strands und/oder -fasern auch anderes Holzmaterial, wie es beispielsweise in den einleitenden Absätzen erwähnt wurde, oder auch Zellulosematerial enthalten.
  • Vorzugsweise wird das Holzmaterial durch Zugabe eines Bindemittels gebunden. Dies ist aber nicht zwingend notwendig. Als Bindemittel werden insbesondere die zuvor genannten formaldehydbasierten Bindemittel oder die auf Basis von PMDI eingesetzt.
  • Im Folgenden werden nun verschiedene Ausgestaltungen des erfindungsgemäßen Holzverbundwerkstoffkörpers definiert:
    • Gemäß einer weiteren Ausgestaltung ist vorgesehen, dass die Aerogele in dem Holzmaterial, insbesondere gleichmäßig, verteilt sind. Dabei kann der Anteil an Aerogelen zur Oberfläche des Holzverbundwerkstoffs bzw. Holzwerkstoffs zunehmen oder aber abnehmen.
  • Gemäß einer Ausgestaltung ist vorgesehen, dass die Aerogele in eine separate Lage (Matrix) eingebunden sind, die auf das Holzmaterial, insbesondere auf einen aus dem Holzmaterial durch Verpressen hergestellten Formkörper, aufgebracht (aufkaschiert) ist und die insbesondere frei von Holzpartikeln ist, wobei das Holzmaterial oder der Formkörper insbesondere frei von Aerogelen ist. In der separaten Lage oder Matrix können die Aerogele ebenfalls durch ein Bindemittel miteinander verbunden sein. Bei dem Bindemittel kann es sich um dasselbe Bindemittel wie in dem Holzmaterial bzw. Formkörper handeln. Es sei nochmals erwähnt, dass auch ein Formkörper, bei dem eine separate Lage mit Aerogelen aufgebracht worden ist, als Holzwerkstoff, insbesondere als Holzwerkstoffplatte, anzusehen ist, nämlich als beschichteter Holzwerkstoff. Der erfindungsgemäße Holzwerkstoff bzw. Holzverbundwerkstoff kann auch beidseitig mit einer solchen Aerogele enthaltenden separaten Lage versehen sein.
  • Gemäß einer weiteren Ausgestaltung ist vorgesehen, dass die Dicke der separaten die Aerogele enthaltenden Lage kleiner als die Dicke des verpressten Holzmaterials oder Formkörpers ist.
  • Erfindungsgemäß ist vorgesehen, dass der Anteil an Aerogelen im Holzverbundwerkstoff weniger als 50 Vol.-% beträgt und bevorzugt in einem Bereich zwischen 1 und 30 Vol.-%, besonders bevorzugt in einem Bereich zwischen 1 und 20 Vol.-%, liegt.
  • Ferner ist erfindungsgemäß vorgesehen, dass das Holzmaterial des Holzverbundwerkstoffs zu mehr als 50 Vol.-%, bevorzugt zu mehr als 75 Vol.-%, besonders bevorzugt zu mehr als 90 Vol.-%, aus Holzspänen besteht, wobei mehr als 50%, bevorzugt mehr als 75%, besonders bevorzugt mehr als 90%, der Holzspäne eine Länge von weniger als 50 mm, bevorzugt eine Länge in einem Bereich von 1 bis 20 mm, besonders bevorzugt eine Länge in einem Bereich von 1 bis 10 mm.Gemäß einer weiteren Ausgestaltung ist vorgesehen, dass das Holzmaterial des Holzverbundwerkstoffs zu mehr als 50 Vol.-%, bevorzugt zu mehr als 75 Vol.-%, besonders bevorzugt zu mehr als 90 Vol.-% aus Holzspänen besteht, wobei insbesondere mehr als 50%, bevorzugt mehr als 75%, besonders bevorzugt mehr als 90%, der Holzspäne eine Breite von weniger als 10 mm, bevorzugt von weniger als 5 mm, besonders bevorzugt von weniger als 2 mm, und/oder eine Dicke von weniger als 1,5 mm, bevorzugt von weniger als 1,0 mm, besonders bevorzugt von weniger als 0,5 mm, haben.
  • Zusätzlich oder alternativ ist erfindungsgemäß vorgesehen, dass das Holzmaterial des Holzverbundwerkstoffs zu mehr als 50 Vol.-%, bevorzugt zu mehr als 75 Vol.-%, besonders bevorzugt zu mehr als 90 Vol.-%, aus Holzstrands besteht, wobei mehr als 50%, bevorzugt mehr als 75%, besonders bevorzugt mehr als 90%, der Holzstrands eine Breite von mehr als 4,5 mm, bevorzugt eine Breite in einem Bereich von 5 bis 60 mm, besonders bevorzugt eine Breite in einem Bereich von 10 bis 50 mm. Gemäß einer weiteren Ausgestaltung ist vorgesehen, dass das Holzmaterial des Holzverbundwerkstoffs zu mehr als 50 Vol.-%, bevorzugt zu mehr als 75 Vol.-%, besonders bevorzugt zu mehr als 90 Vol.-%, aus Holzstrands besteht, wobei insbesondere mehr als 50%, bevorzugt mehr als 75%, besonders bevorzugt mehr als 90%, der Holzstrands eine Länge in einem Bereich von 80 bis 300 mm, bevorzugt in einem Bereich von 90 bis 250 mm, besonders bevorzugt in einem Bereich von 100 bis 200 mm, und/oder eine Dicke von mehr als 0,5 mm, bevorzugt in einem Bereich von 0,6 bis 1,8 mm, besonders bevorzugt in einem Bereich von 0,6 bis 1,5 mm, haben.
  • Erfindungsgemäß ist ferner zusätzlich oder alternativ vorgesehen, dass das Holzmaterial des Holzverbundwerkstoffs zu mehr als 50 Vol.-%, bevorzugt zu mehr als 75 Vol.-%, besonders bevorzugt zu mehr als 90 Vol.-%, aus Holzfasern besteht.
  • Gemäß einer weiteren Ausgestaltung ist vorgesehen, dass die Aerogele (in dem verpressten Holzmaterial, das heißt in dem Pressteil, und/oder in der separaten Lage) in Form von Granulat vorliegen, wobei die mittlere Korngröße der Aerogele im Holzverbundwerkstoff in einem Bereich von 0,3 bis 4 mm, bevorzugt in einem Bereich von 0,5 bis 2,5 mm, besonders bevorzugt in einem Bereich von 0,8 bis 1,8 mm, liegt und/oder die mittlere Rohdichte in einem Bereich von 0,001 bis 0,6 g/cm3, bevorzugt in einem Bereich von 0,01 bis 0,3 g/cm3, besonders bevorzugt in einem Bereich von 0,05 bis 0,1 g/cm3, liegt. In dem Fall, dass die Areogele in einer separaten Lage Teil des Holzwerkstoffs bzw. Holzverbundwerkstoffs sind, kann die separate Lage eine Dicke haben, die mindestens so groß ist wie die größte in der separaten Lage verwendete Korngröße der Aerogele. Liegt beispielsweise in der separaten Lage ein Granulat von Aerogelen vor, deren Korngrößenverteilung von 0,3 bis 4 mm reicht, beträgt die Dicke der separaten Lage vorzugsweise mindestens 4 mm. Wird beispielsweise ein Granulat verwendet, bei dem die maximale Korngröße der Aerogele 2 mm beträgt, so kann die Dicke der separaten Lage mindestens 2 mm betragen. Es sind aber auch andere Dicken denkbar. So kann die Dicke der separaten Lage in einem Bereich von 1 bis 20 mm, bevorzugt in einem Bereich von 1 bis 10 mm, besonders bevorzugt in einem Bereich von 2 bis 8 mm, liegen.
  • Gemäß noch einer weiteren Ausgestaltung ist vorgesehen, dass der Anteil des Holzmaterials in Form von Holzspänen, -strands und/oder -fasern (d.h. der Anteil des Holzmaterials, welches in dem Holzverbundwerkstoff in Form von Holzspänen, -strands und/oder -fasern vorliegt) mindestens 50% beträgt und bevorzugt in einem Bereich von 50 bis 80 Vol.-%, besonders bevorzugt in einem Bereich von 50 bis 70 Vol.-%, liegt. Grundsätzlich kann in dem Holzverbundwerkstoff auch noch anderes Holzmaterial vorgesehen sein, welches dann aber nicht von dem genannten Anteil umfasst ist.
  • Schließlich ist gemäß noch einer Ausgestaltung vorgesehen, dass das Holzmaterial des Holzverbundwerkstoffs zu mehr als 50 Vol.-%, bevorzugt zu mehr als 75 Vol.-%, besonders bevorzugt zu mehr als 90 Vol.-%, aus Holzpartikeln besteht, die gewählt sind aus der Gruppe enthaltend Holzspäne, Holzstrands und Holzfasern. Mit anderen Worten können in dem erfindungsgemäßen Holzverbundwerkstoff auch verschiedene Arten von Holzpartikeln aus der genannten Gruppe gleichzeitig vorkommen bzw. vorhanden sein. So ist es denkbar, dass das Holzmaterial in dem Holzverbundwerkstoff gebildet wird von sowohl Holzspänen als auch Holzstrands und/oder Holzfasern, oder sowohl von Holzstrands als auch Holzfasern. Auch alle drei genannten Arten von Holzpartikeln, nämlich Holzspäne, Holzstrands und Holzfasern, können gleichzeitig in dem Holzmaterial vorkommen bzw. das Holzmaterial bilden.
  • Sind verschiedene Holzpartikelarten aus der zuvor genannten Gruppe vorgesehen, können diese als Gemisch und/oder in separaten Lagen vorgesehen sein. Das heißt, sind beispielsweise sowohl Holzspäne als auch Holzstrands vorgesehen, kann mindestens eine Lage des Holzverbundwerkstoffs ein Gemisch aus Holzspänen und Holzstrands aufweisen (wobei zusätzlich auch noch andere Arten von Holzpartikeln in dem Gemisch enthalten sein können). Zusätzlich oder alternativ ist es aber auch denkbar, dass in dem Fall, dass der Holzverbundwerkstoff sowohl Holzspäne als auch Holzstrands aufweist, zumindest eine Lage keine Holzspäne oder keine Holzstrands aufweist oder aber zumindest eine Lage keine Holzspäne und eine andere Lage keine Holzstrands aufweist. Sind beispielsweise sowohl Holzspäne als auch Holzfasern vorgesehen, kann mindestens eine Lage des Holzverbundwerkstoffs ein Gemisch aus Holzspänen und Holzfasern aufweisen (wobei zusätzlich auch noch andere Arten von Holzpartikeln in dem Gemisch enthalten sein können). Zusätzlich oder alternativ ist es aber auch denkbar, dass in dem Fall, dass der Holzverbundwerkstoff sowohl Holzspäne als auch Holzfasern aufweist, zumindest eine Lage keine Holzspäne oder keine Holzfasern aufweist oder aber zumindest eine Lage keine Holzspäne und eine andere Lage keine Holzfasern aufweist. Sind beispielsweise sowohl Holzstrands als auch Holzfasern vorgesehen, kann mindestens eine Lage des Holzverbundwerkstoffs ein Gemisch aus Holzstrands und Holzfasern aufweisen (wobei zusätzlich auch noch andere Arten von Holzpartikeln in dem Gemisch enthalten sein können). Zusätzlich oder alternativ ist es aber auch denkbar, dass in dem Fall, dass der Holzverbundwerkstoff sowohl Holzstrands als auch Holzfasern aufweist, zumindest eine Lage keine Holzstrands oder keine Holzfasern aufweist oder aber zumindest eine Lage keine Holzstrands und eine andere Lage keine Holzfasern aufweist.
  • Das in den vorangehenden Absätzen zu der Zusammensetzung des Holzmaterials Gesagte schließt nicht aus, dass zusätzlich zu Holzspänen und/oder Holzstrands und/oder Holzfasern auch andere Arten von Holzmaterial im Holzverbundwerkstoff vorgesehen sind, beispielsweise die in der Beschreibungseinleitung genannten Arten von Holzmaterial wie Holzwolle, Holzmehl etc.
  • Der zuvor definierte Holzverbundwerkstoff kann auch eine zusätzliche Beschichtung aufweisen, die entweder direkt aufgebracht oder mittels eines Klebemittels mit diesem verbunden ist. Eine direkt aufgebrachte Beschichtung ist beispielsweise ein Lack. Eine mittels eines Klebemittels aufgebrachte Beschichtung ist beispielsweise eine Folie.
  • Ein wie zuvor definierter Holzverbundwerkstoff kann beispielsweise auch als Bestandteil einer Sandwichplatte eingesetzt werden, beispielsweise als Decklage der Sandwichplatte.
  • Die zuvor hergeleitete und aufgezeigte Aufgabe wird gemäß einer zweiten Lehre der vorliegenden Erfindung gelöst durch ein Verfahren mit den Merkmalen von Patentanspruch 10. Die Aerogele bilden dabei zusammen mit dem Holzmaterial den Holzverbundwerkstoff.
  • Im Folgenden werden nun verschiedene Ausgestaltungen des erfindungsgemäßen Verfahrens definiert:
    • Gemäß einer Ausgestaltung ist vorgesehen, dass die Aerogele zunächst in einem ersten Schritt mit dem (noch nicht verpressten) Holzmaterial und gegebenenfalls einem Bindemittel zu einem Gemisch vermengt werden, anschließend in einem zweiten Schritt das Gemisch auf einen Träger gestreut wird und wiederum anschließend in einem dritten Schritt das auf dem Träger befindliche (noch nicht verpresste) Material verpresst wird. Bei dem Träger kann es sich beispielsweise um ein Transportband handeln.
  • Gemäß einer weiteren Ausgestaltung ist vorgesehen, dass der Träger vor dem Verpressen mit mehreren Schichten mit (noch nicht verpresstem) Holzmaterial bestreut wird, von denen mindestens eine Aerogele enthält. Dabei kann die die Aerogele enthaltende Schicht zu unterst, zu oberst oder in der Mitte sein. Es können auch mehrere Aerogele enthaltende Schichten vorgesehen sein, die in dem Schichtaufbau benachbart zueinander oder beabstandet voneinander sein können.
  • Gemäß einer weiteren Ausgestaltung ist vorgesehen, dass das Holzmaterial als Formkörper, insbesondere plattenförmiger Formkörper, aus miteinander verpressten Holzspänen, -strands und/oder -fasern bereitgestellt wird und die Aerogele als separate Lage (Matrix), in die sie eingebunden sind, auf den Formkörper aufgebracht (aufkaschiert) werden, wobei der Formkörper insbesondere frei von Aerogelen ist. Grundsätzlich ist es aber auch denkbar, dass der Formkörper ebenfalls Aerogele aufweist.
  • Gemäß einer weiteren Ausgestaltung ist vorgesehen, dass das (noch nicht verpresste) Holzmaterial zunächst in einem ersten Schritt, insbesondere ohne Zugabe von Aerogelen (wobei aber auch die Zugabe von Aerogelen denkbar ist), auf einen Träger gestreut wird, und anschließend in einem zweiten Schritt auf das auf dem Träger befindliche (noch nicht verpresste) Material die Aerogele als separate Lage, in die sie eingebunden sind, aufgebracht werden.
  • Gemäß einer weiteren Ausgestaltung ist vorgesehen, dass der Träger vor dem Verpressen mit einer oder mehreren Schichten mit (noch nicht verpresstem) Holzmaterial bestreut wird, von denen mindestens eine Aerogele enthält. Dabei kann die die Aerogele enthaltende Schicht zu unterst, zu oberst oder in der Mitte sein. Es können auch mehrere Aerogele enthaltende Schichten vorgesehen sein, die in dem Schichtaufbau benachbart zueinander oder beabstandet voneinander sein können.
  • Gemäß einer weiteren Ausgestaltung ist vorgesehen, dass das Verpressen in einer Doppelbandpresse oder Kalanderpresse durchgeführt wird. Der mittlere Pressdruck kann beim Verpressen in einem Bereich von 1 bis 50 kg/cm2, bevorzugt in einem Bereich von 5 bis 50 kg/cm2, besonders bevorzugt in einem Bereich von 10 bis 40 kg/cm2, liegen. Die mittlere Presstemperatur kann beim Verpressen in einem Bereich von 100° bis 300°C, bevorzugt in einem Bereich von 150° bis 250°C, besonders bevorzugt in einem Bereich von 180° bis 220°C, liegen. Dabei meint "mittlerer" Pressdruck und "mittlere" Presstemperatur den über die Länge der Presseinrichtung gemittelten Pressdruck bzw. die über die Länge der Presseinrichtung gemittelte Presstemperatur. Die Pressgeschwindigkeit (Pressfaktor) kann in einem Bereich von 1 bis 20 s/mm, bevorzugt in einem Bereich von 2,5 bis 15 s/mm, besonders bevorzugt in einem Bereich von 3,5 bis 10 s/mm, liegen (Anmerkung: weil die Pressgeschwindigkeit von der Plattendicke abhängt, wird sie auf diese bezogen und durch den sogenannten Pressfaktor in Sekunden je mm Plattendicke (s/mm) ausgedrückt).
  • Die vorliegende Erfindung betrifft auch die Verwendung von Aerogelen in (das heißt im Innern oder als Deckschicht) einer Holzwerkstoffplatte, insbesondere Span-, OSB- oder Faserplatte, insbesondere in einem wie zuvor definierten Holzverbundwerkstoff, zur Verbesserung der Brandbeständigkeit.
  • Schließlich betrifft die Erfindung auch die Verwendung von Aerogelen in (das heißt im Innern oder als Deckschicht) einer Holzwerkstoffplatte, insbesondere Span-, OSB- oder Faserplatte, vorzugsweise LDF-Platte, insbesondere in einem wie zuvor definierten Holzverbundwerkstoff, zur Verringerung des Wärmedurchgangs.
  • Es gibt nun eine Vielzahl von Möglichkeiten, den erfindungsgemäßen Holzverbundwerkstoff und das erfindungsgemäße Verfahren auszugestalten und weiterzubilden. Hierzu sei einerseits verwiesen auf die dem Patentanspruch 1 nachgeordneten Patentansprüche, andererseits auf die Beschreibung von Ausführungsbeispielen in Verbindung mit der Zeichnung. In der Zeichnung zeigt:
  • Fig. 1a)
    ein erstes Ausführungsbeispiel eines erfindungsgemäßen Herstellungsverfahrens,
    Fig. 1b)
    ein zweites Ausführungsbeispiel eines erfindungsgemäßen Herstellungsverfahrens,
    Fig. 2a)
    ein drittes Ausführungsbeispiel eines erfindungsgemäßen Herstellungsverfahrens und
    Fig. 2b)
    ein viertes Ausführungsbeispiel eines erfindungsgemäßen Herstellungsverfahrens.
  • Bei allen Verfahren, die in den Figuren 1a), 1b), 2a) und 2b) dargestellt sind, wird ein Holzverbundwerkstoff 1 (eine Holzwerkstoffplatte) hergestellt, die Holzmaterial 2 in Form von Holzspänen, -strands und/oder -fasern sowie Aerogele 4 aufweist.
  • Grundsätzlich unterscheiden sich die einzelnen Herstellungsverfahren unter anderem wie folgt voneinander.
  • Gemäß Fig. 1a) ist vorgesehen, dass die Aerogele 4 zunächst in einem ersten Schritt mit dem Holzmaterial 2 zu einem Gemisch 5 vermengt werden, anschließend in einem zweiten Schritt das Gemisch 5 auf einen Träger 6 gestreut wird und wiederum anschließend in einem dritten Schritt das auf dem Träger 6 befindliche Material 7 verpresst wird.
  • In Fig. 1b) werden auf den Träger 6 vor dem Verpressen mehrere Schichten 7.1, 7.2 und 7.3 aufgestreut, von denen die untere Schicht 7.1 und die obere Schicht 7.3 Aerogele 4 aufweist. Die mittlere Schicht 7.2 ist frei von Aerogelen.
  • Bei dem Herstellungsverfahren gemäß Fig. 2a) ist vorgesehen, dass das Holzmaterial 2 als plattenförmiger Formkörper 3 aus miteinander verpressten Holzspänen, -strands und/oder -fasern bereitgestellt wird und die Aerogele 4 als separate Lage 1.1, in die sie eingebunden sind, auf den Formkörper 3 aufgebracht werden, wobei der Formkörper 3 insbesondere frei von Aerogelen 4 ist. Dabei ist die Dicke d der separaten Lage 1.1 kleiner als die Dicke D des Holzmaterials 2.
  • Bei der Ausgestaltung in Fig. 2b) ist schließlich vorgesehen, dass das Holzmaterial 2 zunächst in einem ersten Schritt, insbesondere ohne Zugabe von Aerogelen 4, auf einen Träger 6 gestreut wird, und anschließend in einem zweiten Schritt auf das auf dem Träger 6 befindliche Material 7 die Aerogele 4 als separate Lage 1.1, in die sie eingebunden sind, aufgebracht werden. Auch hier ist die Dicke d der separaten Lage 1.1 kleiner als die Dicke D des Holzmaterials 2.
  • Bei den Ausführungsbeispielen in den Figuren 1a), 1b) und 2b) ist als Presseinrichtung 8 eine Doppelbandpresse vorgesehen. Alternativ kann auch eine Kalanderpresse eingesetzt werden. Bei dem Ausführungsbeispiel in Fig. 2a) ist der Formkörper 3 auf vergleichbare Weise hergestellt worden, was hier aber nicht dargestellt ist. Die dargestellte Rolle 9 dient in Fig. 2a) nicht als Teil einer Presseinrichtung, sondern lediglich zum Andrücken (Aufkaschieren) der separaten Lage 1.1.
  • Bei der zuvor genannten separaten Lage 1.1 handelt es sich um eine Matrix, beispielsweise in Form einer Kunststofffolie oder -matte, in welche Aerogele in Form von Granulat eingebettet sind.

Claims (15)

  1. Holzverbundwerkstoff (1), insbesondere plattenförmiger Holzverbundwerkstoff (1), enthaltend Holzmaterial, wobei unter Holzmaterial jegliche Form von Holz verstanden wird, wobei der Anteil an Aerogelen (4) im Holzverbundwerkstoff (1) weniger als 50 Vol.-% beträgt, dadurch gekennzeichnet, dass das Holzmaterial (2) in Form von miteinander verpressten Holzspänen, -strands und/oder -fasern vorgesehen ist und dass das Holzmaterial (2) des Holzverbundwerkstoffs (1) zu mehr als 50 Vol.-% aus Holzspänen, von denen mehr als 50% eine Länge von weniger als 50 mm haben, und/oder Holzstrands, von denen mehr als 50% eine Breite von mehr als 4,5 mm haben, und/oder Holzfasern besteht.
  2. Holzverbundwerkstoff (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Aerogele (4) in dem Holzmaterial (2), insbesondere gleichmäßig, verteilt sind, oder die Aerogele (4) in eine separate Lage (1.1) eingebunden sind, die auf das Holzmaterial (2) aufgebracht ist, wobei das Holzmaterial (2) insbesondere frei von Aerogelen (4) ist, wobei insbesondere die Dicke (d) der separaten die Aerogele (4) enthaltenden Lage (1.1) kleiner als die Dicke (D) des verpressten Holzmaterials (2) oder Formkörpers (3) ist.
  3. Holzverbundwerkstoff (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Anteil an Aerogelen (4) im Holzverbundwerkstoff (1) in einem Bereich zwischen 1 und 30 Vol.-%, bevorzugt in einem Bereich zwischen 1 und 20 Vol.-%, liegt.
  4. Holzverbundwerkstoff (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass mehr als 75%, bevorzugt mehr als 90%, der Holzspäne eine Länge von weniger als 50 mm, bevorzugt eine Länge in einem Bereich von 1 bis 20 mm, besonders bevorzugt eine Länge in einem Bereich von 1 bis 10 mm, haben.
  5. Holzverbundwerkstoff (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass mehr als 75%, bevorzugt mehr als 90%, der Holzstrands eine Breite von mehr als 4,5 mm, bevorzugt eine Breite in einem Bereich von 5 bis 60 mm, besonders bevorzugt eine Breite in einem Bereich von 10 bis 50 mm, haben.
  6. Holzverbundwerkstoff (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Holzmaterial (2) des Holzverbundwerkstoffs (1) zu mehr als 75 Vol.-%, bevorzugt zu mehr als 90 Vol.-%, aus Holzspänen und/oder Holzstrands, und/oder Holzfasern besteht.
  7. Holzverbundwerkstoff (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Aerogele (4) in Form von Granulat vorliegen, wobei die mittlere Korngröße der Aerogele (4) im Holzverbundwerkstoff (1) in einem Bereich von 0,3 bis 4 mm, bevorzugt in einem Bereich von 0,5 bis 2,5 mm, besonders bevorzugt in einem Bereich von 0,8 bis 1,8 mm, liegt und/oder die mittlere Rohdichte in einem Bereich von 0,001 bis 0,6 g/cm3, bevorzugt in einem Bereich von 0,01 bis 0,3 g/cm3, besonders bevorzugt in einem Bereich von 0,05 bis 0,1 g/cm3, liegt.
  8. Holzverbundwerkstoff (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Anteil des Holzmaterials (2) in Form von Holzspänen, -strands und/oder -fasern mindestens 50% beträgt und bevorzugt in einem Bereich von 50 bis 80 Vol.-%, besonders bevorzugt in einem Bereich von 50 bis 70 Vol.-%, liegt.
  9. Holzverbundwerkstoff (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Holzmaterial (2) des Holzverbundwerkstoffs (1) zu mehr als 50 Vol.-%, bevorzugt zu mehr als 75 Vol.-%, besonders bevorzugt zu mehr als 90 Vol.-%, aus Holzpartikeln besteht, die gewählt sind aus der Gruppe enthaltend Holzspäne, Holzstrands und Holzfasern.
  10. Verfahren zur Herstellung eines Holzverbundwerkstoffs (1) nach einem der vorangehenden Ansprüche unter Verwendung von Holzmaterial, wobei unter einem Holzmaterial jegliche Form von Holz verstanden wird, wobei die Aerogele (4) mit einem Holzmaterial in Form von Holzspänen, -strands und/oder -fasern verbunden werden und der Anteil an Aerogelen (4) so gewählt wird, dass er im Holzverbundwerkstoff (1) weniger als 50 Vol.-% beträgt.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Aerogele (4) zunächst in einem ersten Schritt mit dem Holzmaterial (2) zu einem Gemisch (5) vermengt werden, anschließend in einem zweiten Schritt das Gemisch (5) auf einen Träger (6) gestreut wird und wiederum anschließend in einem dritten Schritt das auf dem Träger (6) befindliche Material (7) verpresst wird, wobei insbesondere der Träger (6) vor dem Verpressen mit mehreren Schichten (7.1,7.2,7.3) mit Holzmaterial (2) bestreut wird, von denen mindestens eine Aerogele (4) enthält.
  12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Holzmaterial (2) als Formkörper (3), insbesondere plattenförmiger Formkörper (3), aus miteinander verpressten Holzspänen, -strands und/oder -fasern bereitgestellt wird und die Aerogele (4) als separate Lage (1.1), in die sie eingebunden sind, auf den Formkörper (3) aufgebracht werden, wobei der Formkörper (3) insbesondere frei von Aerogelen (4) ist.
  13. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Holzmaterial (2) zunächst in einem ersten Schritt, insbesondere ohne Zugabe von Aerogelen (4), auf einen Träger (6) gestreut wird, und anschließend in einem zweiten Schritt auf das auf dem Träger (6) befindliche Material (7) die Aerogele (4) als separate Lage (1.1), in die sie eingebunden sind, aufgebracht werden, wobei insbesondere der Träger (6) vor dem Verpressen mit einer oder mehreren Schichten mit Holzmaterial (2) bestreut wird, von denen mindestens eine Aerogele (4) enthält.
  14. Verwendung von Aerogelen (4) in einer Holzwerkstoffplatte nach einem der Ansprüche 1 bis 9, insbesondere Span- oder OSB-Platte, zur Verbesserung der Brandbeständigkeit.
  15. Verwendung von Aerogelen (4) in einer Holzwerkstoffplatte nach einem der Ansprüche 1 bis 9, insbesondere Faserplatte, vorzugsweise LDF-Platte, zur Verringerung des Wärmedurchgangs.
EP13701407.2A 2012-06-25 2013-01-17 Holzverbundwerkstoff mit aerogele und entsprechendes herstellungsverfahren und verwendung Active EP2864087B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL13701407T PL2864087T3 (pl) 2012-06-25 2013-01-17 Kompozyt drewna z aerożelami i odpowiedni sposób wytwarzania i zastosowanie
SI201330398A SI2864087T1 (sl) 2012-06-25 2013-01-17 Lesni kompozitni material z aerogeli in ustrezni proizvodni postopek ter uporaba

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012012408.2A DE102012012408B4 (de) 2012-06-25 2012-06-25 Verfahren zur Herstellung eines Holzverbundwerkstoffs
PCT/EP2013/050820 WO2014000894A1 (de) 2012-06-25 2013-01-17 Holzverbundwerkstoff mit aerogele und entsprechendes herstellungsverfahren und verwendung

Publications (2)

Publication Number Publication Date
EP2864087A1 EP2864087A1 (de) 2015-04-29
EP2864087B1 true EP2864087B1 (de) 2016-09-28

Family

ID=47605501

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13701407.2A Active EP2864087B1 (de) 2012-06-25 2013-01-17 Holzverbundwerkstoff mit aerogele und entsprechendes herstellungsverfahren und verwendung

Country Status (8)

Country Link
EP (1) EP2864087B1 (de)
DE (1) DE102012012408B4 (de)
ES (1) ES2606335T3 (de)
HU (1) HUE030917T2 (de)
PL (1) PL2864087T3 (de)
PT (1) PT2864087T (de)
SI (1) SI2864087T1 (de)
WO (1) WO2014000894A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2924058T3 (pl) 2014-03-28 2017-09-29 Huntsman International Llc Wzmocnione organiczne kompozyty naturalnego włókna

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3429671A1 (de) 1984-08-11 1986-02-20 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von aerogelen
US5830305A (en) * 1992-08-11 1998-11-03 E. Khashoggi Industries, Llc Methods of molding articles having an inorganically filled organic polymer matrix
DE19702240A1 (de) 1997-01-24 1998-07-30 Hoechst Ag Mehrschichtige Verbundmaterialien, die mindestens eine aerogelhaltige Schicht und mindestens eine weitere Schicht aufweisen, Verfahren zu ihrer Herstellung sowie ihre Verwendung
US20060194026A1 (en) * 2005-02-25 2006-08-31 Aspen Aerogels, Inc. Insulated roofing systems
GB0704853D0 (en) * 2007-03-14 2007-04-18 Proctor Group Ltd A Racking panel
EP2281961A1 (de) 2009-06-25 2011-02-09 Knauf Insulation Technology GmbH Aerogelhaltige Verbundwerkstoffe
DE202010001675U1 (de) * 2010-02-02 2010-05-27 Deutsche Amphibolin-Werke Von Robert Murjahn Gmbh & Co. Kg Bodendämmplattensystem
WO2012062796A1 (en) * 2010-11-09 2012-05-18 Rockwool International A/S Method for manufacturing an aerogel-containing composite and composite produced by said method

Also Published As

Publication number Publication date
SI2864087T1 (sl) 2017-01-31
ES2606335T3 (es) 2017-03-23
PT2864087T (pt) 2016-12-20
WO2014000894A1 (de) 2014-01-03
PL2864087T3 (pl) 2017-05-31
DE102012012408B4 (de) 2016-12-15
HUE030917T2 (en) 2017-06-28
DE102012012408A1 (de) 2014-01-02
EP2864087A1 (de) 2015-04-29

Similar Documents

Publication Publication Date Title
DE4310191C2 (de) Laminierte Holzfaserplatte
EP0963358B1 (de) Mehrschichtige verbundmaterialien, die mindestens eine aerogelhaltige schicht und mindestens eine weitere schicht aufweisen, verfahren zu ihrer herstellung sowie ihre verwendung
EP0954438B1 (de) Mehrschichtige verbundmaterialien, die mindestens eine aerogelhaltige schicht und mindestens eine schicht, die polyethylenterephthalat-fasern enthält, aufweisen, verfahren zu ihrer herstellung sowie ihre verwendung
EP1233041B1 (de) Dekorative Platte und/oder Formteil, deren Verwendung und Verfahren zu deren Herstellung
DE102007026638B4 (de) Verfahren zur Herstellung von feuerbeständigen Platten
EP2208594B1 (de) Verfahren zur Herstellung einer brandhemmenden Holzwerkstoffplatte
WO2010097209A1 (de) Holzwerkstoffplatte sowie ein verfahren zum herstellen einer holzwerkstoffplatte
EP4010189B1 (de) Werkstoffplatte, verfahren und anlage zur herstellung einer werkstoffplatte sowie verwendung einer werkstoffplatte
WO2020211988A1 (de) Plattenförmiger werkstoff und verfahren zu dessen herstellung
EP1674633B1 (de) Holzfaserdämmstoffplatte bzw. -matte
EP1582646B2 (de) Dämmstoffplatte aus einem Holzwerkstoff-Bindemittelfaser-Gemisch und Verfahren zu ihrer Herstellung
DE102004062649A1 (de) Verfahren zur Herstellung einer Holzfaserdämmstoffplatte bzw.-matte und nach diesem Verfahren hergestellte Holzfaserdämmstoffplatten bzw.-matten
WO2008145379A1 (de) Mehrschichtige werkstoffplatte, insbesondere aus hanf
EP1110687B1 (de) Verfahren zur Herstellung einer leichten Faserplatte und leichte Faserplatte mit geschlossener Oberfläche
EP2864087B1 (de) Holzverbundwerkstoff mit aerogele und entsprechendes herstellungsverfahren und verwendung
AT508528B1 (de) Körper aus einem rohmaterial auf basis von rohrkolben und verfahren zu seiner herstellung
EP2819819B1 (de) Verfahren zur herstellung von holz- und/oder verbundwerkstoffen
EP3725481A1 (de) Plattenförmiger werkstoff und verfahren zu dessen herstellung
EP3216574A1 (de) Verfahren zum herstellen einer osb
EP1572500B1 (de) Dämpfungsmaterial und verfahren zu dessen herstellung
EP3421200B1 (de) Holzwerkstoffplatte mit hohlkugeln
DE102011014396A1 (de) Zementspanplatte
EP1185587B1 (de) Holzfaser-halbteil sowie verfahren zu dessen herstellung
EP3938158A1 (de) Plattenförmiger werkstoff und verfahren zu dessen herstellung
WO2012107053A1 (de) Formkörper auf basis von rohrkolben-blattfasern mit hochglatter oberfläche

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRITZ EGGER GMBH & CO. OG

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160531

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 832348

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013004763

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER AND PARTNER AG PATENT- UND MARKENANW, CH

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2864087

Country of ref document: PT

Date of ref document: 20161220

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20161130

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170128

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 22870

Country of ref document: SK

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E030917

Country of ref document: HU

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013004763

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20221208

Year of fee payment: 11

Ref country code: CZ

Payment date: 20221209

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20221221

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230106

Year of fee payment: 11

Ref country code: LU

Payment date: 20230124

Year of fee payment: 11

Ref country code: IE

Payment date: 20230125

Year of fee payment: 11

Ref country code: FR

Payment date: 20230125

Year of fee payment: 11

Ref country code: ES

Payment date: 20230224

Year of fee payment: 11

Ref country code: CH

Payment date: 20230126

Year of fee payment: 11

Ref country code: AT

Payment date: 20230125

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230109

Year of fee payment: 11

Ref country code: SI

Payment date: 20221216

Year of fee payment: 11

Ref country code: PL

Payment date: 20230113

Year of fee payment: 11

Ref country code: IT

Payment date: 20230126

Year of fee payment: 11

Ref country code: HU

Payment date: 20221210

Year of fee payment: 11

Ref country code: GB

Payment date: 20230124

Year of fee payment: 11

Ref country code: DE

Payment date: 20230124

Year of fee payment: 11

Ref country code: BE

Payment date: 20230124

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230124

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013004763

Country of ref document: DE

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 22870

Country of ref document: SK

Effective date: 20240117

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20240201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 832348

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240117

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20240117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240717

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240117

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240118

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240117

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240118

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240117

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240717

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240118

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240117

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240801

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240117

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240131

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240117