EP2859158B1 - Thermal insulation panel - Google Patents
Thermal insulation panel Download PDFInfo
- Publication number
- EP2859158B1 EP2859158B1 EP13728722.3A EP13728722A EP2859158B1 EP 2859158 B1 EP2859158 B1 EP 2859158B1 EP 13728722 A EP13728722 A EP 13728722A EP 2859158 B1 EP2859158 B1 EP 2859158B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- films
- walls
- flexible
- fact
- thermal insulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009413 insulation Methods 0.000 title claims description 48
- 125000006850 spacer group Chemical group 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 239000012815 thermoplastic material Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 239000012777 electrically insulating material Substances 0.000 claims description 2
- 238000001429 visible spectrum Methods 0.000 claims 1
- 238000005192 partition Methods 0.000 description 11
- 239000011162 core material Substances 0.000 description 10
- 239000012528 membrane Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 239000012212 insulator Substances 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000010292 electrical insulation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002470 thermal conductor Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/7608—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising a prefabricated insulating layer, disposed between two other layers or panels
- E04B1/7612—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising a prefabricated insulating layer, disposed between two other layers or panels in combination with an air space
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
- E04B1/80—Heat insulating elements slab-shaped
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/30—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
- E04C2/34—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
- E04C2/3405—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by profiled spacer sheets
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/44—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
- E04B1/80—Heat insulating elements slab-shaped
- E04B1/803—Heat insulating elements slab-shaped with vacuum spaces included in the slab
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
- E04B1/80—Heat insulating elements slab-shaped
- E04B1/806—Heat insulating elements slab-shaped with air or gas pockets included in the slab
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/30—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
- E04C2/34—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
- E04C2/3405—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by profiled spacer sheets
- E04C2002/3444—Corrugated sheets
- E04C2002/3455—Corrugated sheets with trapezoidal corrugations
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/30—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
- E04C2/34—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
- E04C2/3405—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by profiled spacer sheets
- E04C2002/3444—Corrugated sheets
- E04C2002/3466—Corrugated sheets with sinusoidal corrugations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F2013/005—Thermal joints
- F28F2013/008—Variable conductance materials; Thermal switches
Definitions
- the present invention relates to the field of thermal insulation of buildings.
- the present invention relates to the field of thermal insulation vacuum air or gas.
- the envelope we can distinguish two families: on the one hand the family of metal envelopes where the seal is made in fact of steel or aluminum metal plates and, on the other hand the family consisting of all other envelopes, the most common case being that of an envelope consisting of an alternation of plastic and metallic (or metallized) polymer layers.
- nanostructured porosity For core materials, the distinction is essentially about the nature of nanostructured porosity or not. Functionally, a nanostructured material is less sensitive than the others to a pressure rise in the vacuum panel. Therefore, the materials of this family can maintain a high thermal performance even if leaks (in practice unavoidable) allow gas to enter the component when it is used.
- the vacuum is drawn to the manufacture of the component and it then relies on the core material and the sealing of the envelope to keep it at a level sufficient for the component to continue to provide lasting its insulation function.
- Durable means the lifetime relative to the building envelope that is to say of the order of 10 to 40 years.
- a "watch” a molecular sieve capsule that captures the gases in the component to maintain a vacuum pushed until 'its saturation prevents it from continuing to perform this function
- the second family is that of vacuum insulators whose vacuum is maintained permanently by a vacuum pump connected to the component.
- the sealing barrier that surrounds the core material is always metallic or metallized. It therefore causes a thermal bridge (conduction of heat) on the edges of the component. Thus, if one assembles side by side several components to achieve an insulating wall, the insulation level of the assembly, taking into account these thermal bridges, is much less than that of the current part.
- the second problem comes from the presence of the core material.
- the core material Even if a perfect vacuum were established in the component, there would remain a mode of transfer by conduction through the nanostructure solid matrix of the core material.
- This inevitable phenomenon with this kind of component inevitably limits the thermal conductivity that it can reach to a minimum value of the order of 5 mw / m. K.
- thermal insulation devices can be found in the documents US Patent 3968831 , US Patent 3167159 , DE-A-19647567 , US Patent 5433056 , DE-A-1409994 , US Patent 3920953 , SU-A-2671441 , US Patent 5014481 , US Patent 3463224 , DE-A-4300839 .
- the document WO-A-03/054456 tried to improve the situation by proposing a device of the type illustrated on the figure 2 comprising a panel defined by two partitions 20, 22 separated by spacers 24 and delimiting a chamber 30 placed at ambient pressure or in depression and which houses a deformable membrane 32.
- the membrane 32 is connected punctually to the partition 20 at a thermally insulating point 34. It is also pinched between the spacers 24 and the second partition 22.
- potentials of opposite polarities are applied to the membrane 32 and the second partition 22 while potentials of the same polarity are applied to the first partition 20 and the membrane 32, the latter is pressed against the second partition 22.
- the present invention now aims to propose a new thermal insulation device which has superior qualities to the state of the art in terms of cost, industrialization, efficiency and reliability, among others.
- the present invention aims to provide new means for achieving a thermal insulation device capable of evolving between a state of high thermal insulation and a state of least thermal insulation, or relative thermal conduction.
- a thermal insulation device in particular for buildings, characterized in that it comprises at least one panel comprising two walls separated by a peripheral main spacer to define a sealed chamber in gas, in depression, and at least two flexible films arranged in said chamber, fixed locally to secondary spacers, at intermediate points between the two walls and defining between them sealed secondary compartments, so that, by applying successive potentials of polarity chosen between the walls and the flexible films, the flexible films are moved between a first position of thermal insulation in which the films placed at the same electrical potential of polarity opposite to the electric potential of the walls, are separated from each other and in contact with the walls, the pressure in the secondary compartments defined between the films being less than the pressure prevailing in the chamber outside the compartments and a second position in which the films are separated from the walls and in mutual contact at least over a substantial part of their surface, said second position having thermal insulation properties lower than the first position.
- the document WO-A-03/054456 discloses the features of the preamble of claim
- a thermal insulation panel 100 comprising two main walls 110, 120, separated by a main peripheral spacer 102 to form a gas-tight chamber 104.
- the chamber 104 is placed in depression, c ' that is, at a pressure below atmospheric pressure.
- the internal pressure of the chamber 104 is of the order of a few Pascals, advantageously between 1 Pa and 1000 Pa, very advantageously of the order of 10 Pa.
- the chamber 104 houses at least two films 150, 160.
- the films 150, 160 are flexible. They extend parallel to the walls 110, 120.
- the flexible films 150, 160 are attached locally to secondary spacers 140, disposed between the walls 110, 120 at intermediate points between the two walls 110, 120.
- the films 150, 160 are preferably fixed on the spacers 140 halfway between the two walls 110, 120.
- the flexible films 150, 160 are capable of deformation, as will be explained later, in FIG. their portions extending between two spacers 140 adjacent.
- the films 150, 160 define between them gas-tight compartments 158 placed under a controlled vacuum level.
- the films 150, 160 being placed halfway from the walls 110, 120, they divide the chamber 104 into two sub-chambers 104a and 104b located respectively on either side of the compartments 158.
- communication means 103 for providing a fluid connection between the two sub-chambers 104a and 104b.
- These communication means 103 are moreover preferably adapted to ensure a fluid connection between a means 190 of pressure control, such as a compressor or equivalent means, and said chamber 104.
- the spacers 102 and 140 are made of a thermally insulating material so as not to constitute a thermal conduction bridge between the walls 110 and 120.
- the spacers 102, 140 are advantageously formed of thermoplastic material.
- the two films 150, 160 When applying potentials of opposite polarities between the films 150, 160, on the one hand, and respectively identical polarities between each of the films 150, 160, and the wall 110, 120, opposite, the two films 150, 160 are pressed against each other mid-thickness of the chamber 104 as shown in FIG. figure 4 . They are thus placed in mutual contact at least over a substantial part of their surface, at a distance from the walls, that is to say separated from the walls 110, 120. In this state, the films 150, 160, in mutual contact, allow some thermal transfer by conduction between them.
- the pressure in the compartments 158 between the films 150, 160 is less than the pressure that prevails in the sub-chambers 104a and 104b located on the outside of the films 150, 160, preferably less than 1Pa, or typically comprised between 10 -3 and 10 -4 Pascals.
- the walls 110, 120 constituting the panel 100 may be the subject of numerous variants.
- the walls 110, 120 may be rigid. Alternatively, they can be flexible. In this case, the panel 100 can be wound, which facilitates its transport and storage.
- the walls 110, 120 may be at least partially electrically conductive to allow the application of an electric field generating the electrostatic forces required for the state switching of the films 150, 160.
- the walls 110, 120 may be made of metal.
- They may also be made of a composite material, for example in the form of an electrically insulating layer associated with an electrically conductive layer (metal or material loaded with electrically conductive particles).
- the flexible films 150, 160 are at least partially electrically conductive to allow the application of the electric field required by the generation of the aforementioned electrostatic forces.
- the flexible films 150, 160 are formed of a sheet of flexible metal or based on thermoplastic material or equivalent, loaded with electrically conductive particles.
- the flexible films 150, 160 are each formed of a core 152, 162, electrically conductive coated on each of its faces with a coating of electrically insulating material 154, 156, 164, 166 (for example a material thermoplastic).
- the electrically insulating layers 154, 156 and 164, 166, illustrated on the figure 6 fulfill this function of electrical insulation. This function can be performed alternatively by similar means provided on the walls 110, 120, at least for the electrical insulation required between the walls 110, 120 and the flexible films 150, 160.
- cover elements 106 integrated in the walls 110, 120 of a panel 100 and adapted to overlap the adjacent panel.
- such covering elements 106 could be provided on elements that are attached at the junction zones between two of such adjacent panels 100.
- the device according to the present invention offers good thermal insulation due to the vacuum prevailing in the chamber 104 and the depression prevailing in the compartments 158 between the films 150 and 160, in the separated position thereof.
- means 190 for maintaining the vacuum within the chamber 104 for example based pumps sequentially or automatically operated or gas absorbing products as indicated above).
- the use of two thermally insulating films 150, 160 makes it possible to reinforce the thermal barrier effect, that is to say to reduce the thermal conductivity.
- the device according to the present invention allows a realization in the form of overall low thickness compatible with an inner insulation.
- the device according to the present invention has a maximum thickness of a few millimeters.
- the films 150, 160 are chosen from a material with low emissivity in the infrared or treated to be less emissive in the infrared.
- the films 150, 160 have an emission coefficient (defined as the ratio between the emission of said films and the emission of a black body) of less than 0.1 for wavelengths greater than 0.78 ⁇ m. .
- the control of the electric field applied between the films 150, 160, and between the films 150, 160 and the walls 110, 120 makes it possible either to keep the films in contact with one another or in very small gaps, as illustrated in FIG. figure 4 , making the system relatively thermal conductor, or to separate the films 150, 160 thus making the thermally insulating system as shown in FIG. figure 5 .
- the device according to the present invention thus makes it possible, for example, to recover, by the state of thermal conduction, solar contributions from walls exposed in winter or to cool walls in summer when the external freshness allows it, by placing it in the illustrated state. on the figure 4 .
- all the components of the device that is to say, walls 110, 120 and films 150, 160 may be optically transparent in the visible range (0.4-0.8 ⁇ m).
- the device according to the present invention can thus be applied to transparent walls, for example in front of a solar collector.
- Thermal insulation panels according to the present invention can also play a role of decoration.
- the device according to the present invention is applied to the lossy walls of a building, it is possible to modulate the insulation in order to optimize the recovery of external inputs (solar in winter, cool in summer). Contrary to current concepts of heating or air conditioning, where the indoor installation catches up losses or heat gains through the envelope, a system that manages this loss or gain of heat to maintain the conditions of comfort desired interior. Such control can of course be operated automatically from appropriate thermal probes.
- the present invention also contributes to completely control the thermal inertia of the walls of buildings in limits hitherto never reached.
- the present invention is not limited to the particular application previously mentioned of building insulation.
- the present invention which leads to excellent insulation
- the thickness of the device which is independent of the thickness of the device and allows for an extremely small thickness, makes it possible to apply the present invention in a large number of technical fields.
- the present invention may in particular apply to clothing or any other industrial problem requiring thermal insulation.
- the present invention is not limited to the presence of two films 150, 160 within the chamber 104.
- Figures 9 and 10 an alternative embodiment in which three adjacent films 150, 160 and 170 are thus provided at mid-distance between the walls 110, 120.
- the films 150, 160 and 170 are separated from each other by an air gap.
- the outer films 150, 170 are pressed against the walls 110, 120, in a position separated from the central film (s) (ux) 160.
- the device is then in a position of thermal insulation resulting from the separation between the films.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Acoustics & Sound (AREA)
- Electromagnetism (AREA)
- Building Environments (AREA)
- Thermal Insulation (AREA)
Description
La présente invention concerne le domaine de l'isolation thermique de bâtiments.The present invention relates to the field of thermal insulation of buildings.
Plus précisément, la présente invention concerne le domaine de l'isolation thermique sous vide d'air ou gaz.More specifically, the present invention relates to the field of thermal insulation vacuum air or gas.
Depuis plus de 20 ans, le concept d'isolant sous vide est étudié pour diverses applications, dont l'isolation des bâtiments. Mais les premières applications industrielles ont concerné essentiellement les problématiques du froid (réfrigérateurs, glacières, containers réfrigérés, etc ...). En effet, en termes d'isolation thermique, sur terre, seule la technique d'isolation par le vide permet d'obtenir des conductivités thermiques minimales conduisant ainsi à des épaisseurs d'isolant minimales pour une résistance thermique donnée.For more than 20 years, the concept of vacuum insulation has been studied for various applications, including building insulation. But the first industrial applications concerned essentially the problems of the cold (refrigerators, coolers, refrigerated containers, etc ...). In fact, in terms of thermal insulation, on earth, only the vacuum insulation technique makes it possible to obtain minimal thermal conductivities, thus leading to minimum insulation thicknesses for a given thermal resistance.
Pour des applications d'isolation des bâtiments, le thème des isolants sous vide n'est vraiment apparu dans les laboratoires de Recherche & Développement qu'à la fin des années 90, lorsque les politiques énergétiques et environnementales ont impulsé dans ce secteur une recherche accrue sur le thème de l'efficacité énergétique.For insulation applications of buildings, the topic of vacuum insulators really only appeared in Research & Development laboratories in the late 1990s, when energy and environmental policies spurred more research in this sector. on the theme of energy efficiency.
Le poids important des consommations d'énergie du parc de bâtiments existants dans les pays industrialisés impose effectivement le renforcement drastique de l'isolation thermique des parois opaques des bâtiments. Ainsi l'idée de disposer d'un isolant de conductivité thermique très faible (inférieure à 10mW/m.K), donc très mince, pour une résistance thermique donnée, s'est alors imposée comme une évidence afin de limiter l'impact des déperditions thermiques des parois opaques sur les volumes habitables disponibles.The significant weight of energy consumption of the existing building stock in the industrialized countries does indeed impose the drastic reinforcement of the thermal insulation of the opaque walls of the buildings. Thus the idea of having an insulation of very low thermal conductivity (less than 10mW / mK), therefore very thin, for a given thermal resistance, then became obvious in order to limit the impact of thermal losses. opaque walls on available living volumes.
Sont alors apparus des concepts de panneaux d'isolants constitués de matériaux de coeur thermiquement peu conducteurs de la chaleur, entourés d'une enveloppe barrière étanche et tirés au vide, que l'on pourrait qualifiés de Super isolant en regard de la performance des isolants traditionnels. On peut ainsi distinguer plusieurs familles de produits selon la nature de l'enveloppe, celle du matériau de coeur et la façon dont le vide est géré dans le temps.Then came concepts of insulating panels made of thermally insensitive core materials of heat, surrounded by a sealed barrier envelope and drawn to vacuum, which could be described as Super Insulation with regard to the performance of insulators. traditional. We can thus distinguish several families of products according to the nature of the envelope, that of the core material and how the vacuum is managed over time.
Pour l'enveloppe, on peut distinguer deux familles : d'une part la famille des enveloppes métalliques où l'étanchéité est constituée en fait de plaques métalliques d'acier ou d'aluminium et, d'autre part la famille constituée de toutes les autres enveloppes, le cas le plus fréquent étant celui d'une enveloppe constituée d'une alternance de couches polymères plastiques et métalliques (ou métallisées).For the envelope, we can distinguish two families: on the one hand the family of metal envelopes where the seal is made in fact of steel or aluminum metal plates and, on the other hand the family consisting of all other envelopes, the most common case being that of an envelope consisting of an alternation of plastic and metallic (or metallized) polymer layers.
Pour les matériaux de coeur, la distinction porte essentiellement sur la nature de la porosité nanostructurée ou non. Sur le plan fonctionnel, un matériau nanostructuré est moins sensible que les autres à une élévation de la pression dans le panneau sous vide. De ce fait, les matériaux de cette famille permettent de conserver une performance thermique élevée même si des fuites (en pratique inévitables) laissent pénétrer du gaz dans le composant lorsqu'il est en oeuvre.For core materials, the distinction is essentially about the nature of nanostructured porosity or not. Functionally, a nanostructured material is less sensitive than the others to a pressure rise in the vacuum panel. Therefore, the materials of this family can maintain a high thermal performance even if leaks (in practice unavoidable) allow gas to enter the component when it is used.
Concernant la gestion du vide, on distingue là encore deux familles. Pour la première, la plus courante, le vide est tiré à la fabrication du composant et on compte ensuite sur le matériau de coeur et l'étanchéité de l'enveloppe pour le conserver à un niveau suffisant pour que le composant continue d'assurer durablement sa fonction d'isolation. On entend par durable, la durée de vie relative à l'enveloppe du bâtiment c'est-à-dire de l'ordre de 10 à 40 ans. A l'intérieur de cette famille on peut aussi distinguer les produits pour lesquels le matériau de coeur reçoit l'aide d'un "guetter" (une capsule de tamis moléculaire qui capte les gaz dans le composant afin d'entretenir un vide poussé jusqu'à ce que sa saturation l'empêche de continuer à assurer cette fonction) et ceux qui n'en ont pas. La seconde famille est celle des isolants sous vide dont le vide est entretenu en permanence par une pompe à vide branchée sur le composant.Concerning the management of the vacuum, one distinguishes there again two families. For the first, the most common, the vacuum is drawn to the manufacture of the component and it then relies on the core material and the sealing of the envelope to keep it at a level sufficient for the component to continue to provide lasting its insulation function. Durable means the lifetime relative to the building envelope that is to say of the order of 10 to 40 years. Within this family can also be distinguished the products for which the core material receives the help of a "watch" (a molecular sieve capsule that captures the gases in the component to maintain a vacuum pushed until 'its saturation prevents it from continuing to perform this function) and those who do not have it. The second family is that of vacuum insulators whose vacuum is maintained permanently by a vacuum pump connected to the component.
Les problèmes posés par les produits connus de ce type, pour une utilisation en isolation du bâtiment, sont multiples.The problems posed by known products of this type, for use in building insulation, are multiple.
L'on évoquera ici trois problèmes de natures différentes.We will mention here three problems of different natures.
Le premier concerne le passage du composant isolant à la paroi isolée. Effectivement, en tirant au vide un matériau poreux et en l'enfermant dans une enveloppe étanche, il est tout à fait possible de construire un composant très isolant, dont la conductivité thermique peut durablement rester inférieure à 10 mW/m.K. Mais cette performance est celle de la partie courante ou corps du composant. Or la barrière d'étanchéité qui entoure le matériau de coeur est toujours métallique ou métallisée. Elle provoque donc un pont thermique conséquent (par conduction de la chaleur) sur les bords du composant. Ainsi, si l'on assemble côte à côte plusieurs composants pour réaliser une paroi isolante, le niveau d'isolation de l'assemblage, tenant compte de ces ponts thermiques, est bien moindre que celui de la partie courante. En clair, on peut par ce moyen fabriquer des supers isolants, mais il est plus difficile de faire avec ces supers isolants de la super isolation. Une solution pourrait être de fabriquer des composants de grande dimension, pour limiter l'impact des bords, mais alors la fabrication, et notamment les opérations de tirage du vide et de fermeture de l'enveloppe, deviennent t très longues, très complexes et très coûteuses.The first concerns the passage of the insulating component to the insulated wall. Effectively, by drawing a porous material to vacuum and enclosing it in a sealed envelope, it is quite possible to build a highly insulating component, the thermal conductivity of which can sustainably remain below 10 mW / m.K. But this performance is that of the current part or body of the component. However, the sealing barrier that surrounds the core material is always metallic or metallized. It therefore causes a thermal bridge (conduction of heat) on the edges of the component. Thus, if one assembles side by side several components to achieve an insulating wall, the insulation level of the assembly, taking into account these thermal bridges, is much less than that of the current part. Clearly, we can by this means make great insulators, but it is more difficult to do with these super insulating super insulation. One solution could be to manufacture large components, to limit the impact of the edges, but then the manufacturing, and in particular the operations of drawing the vacuum and closing the envelope, become very long, very complex and very difficult. costly.
Le second problème provient de la présence du matériau de coeur. Ainsi, même si un vide parfait était établi dans le composant, il resterait un mode de transfert par conduction au travers de la matrice solide nanostructure du matériau de coeur. Ce phénomène inévitable avec ce genre de composant borne inévitablement la conductivité thermique qu'il peut atteindre à une valeur minimale de l'ordre de 5 mw/m. K.The second problem comes from the presence of the core material. Thus, even if a perfect vacuum were established in the component, there would remain a mode of transfer by conduction through the nanostructure solid matrix of the core material. This inevitable phenomenon with this kind of component inevitably limits the thermal conductivity that it can reach to a minimum value of the order of 5 mw / m. K.
Le dernier problème est qu'un tel composant ne peut se comporter qu'en isolant thermique. Même dans le cas d'un vide entretenu, où il paraît possible de jouer sur le niveau de vide pour piloter la conductivité thermique du composant, on ne peut agir que sur une plage très restreinte de conductivité, en pratique comprise au mieux entre 5 mW/m.K lorsqu'il est sous vide et inférieure à 30 mW/m.K lorsqu'il est à pression atmosphérique. Cette plage n'est pas suffisante pour réguler l'enveloppe en continu de façon à ce qu'elle isole énormément quand on a besoin de conserver le chaud ou le froid à l'intérieur du bâtiment et qu'elle n'isole pratiquement plus lorsqu'au contraire on souhaiterait faire pénétrer le chaud ou le froid extérieur dans le bâtiment.The last problem is that such a component can behave only in thermal insulation. Even in the case of a vacuum maintained, where it seems possible to play on the vacuum level to control the thermal conductivity of the component, it can only act on a very narrow range of conductivity, in practice at best between 5 mW / mK when under vacuum and below 30 mW / mK when at atmospheric pressure. This beach is not enough to regulate the envelope continuously so that it isolates enormously when one needs to keep the hot or the cold inside the building and that it does not isolate practically anymore when on the contrary one would wish to make penetrate the hot or cold outside in the building.
On trouvera des exemples de dispositifs connus d'isolation thermique dans les documents
Une autre voie d'investigation pour la réalisation de dispositif d'isolation thermique contrôlée, c'est-à-dire conçue pour modifier sur commande, la conductivité thermique, a été proposée dans les documents
Comme schématisé sur la
En pratique un tel dispositif n'a connu aucun développement industriel conséquent, faute de résultat probant.In practice such a device has known no significant industrial development, lack of convincing results.
Le document
Face aux difficultés rencontrées lors d'essais sur le dispositif illustré sur la
De telles tentatives d'évolution n'ont cependant pas plus permis un réel développement industriel de ce dispositif.Such attempts at evolution, however, have not allowed a real industrial development of this device.
La désaffection des industriels pour ce produit, malgré la forte demande existante dans le domaine de l'isolation thermique pour le bâtiment, provient en grande partie de la complexité du produit, que l'on comprend au simple examen visuel de la
Dans ce contexte, la présente invention a maintenant pour objectif de proposer un nouveau dispositif d'isolation thermique qui présente des qualités supérieures à l'état de la technique en termes de coût, d'industrialisation , efficacité et fiabilité, notamment.In this context, the present invention now aims to propose a new thermal insulation device which has superior qualities to the state of the art in terms of cost, industrialization, efficiency and reliability, among others.
Plus précisément la présente invention a pour but de proposer de nouveaux moyens permettant de réaliser un dispositif d'isolation thermique susceptible d'évoluer entre un état de forte isolation thermique et un état de moindre isolation thermique, voire relative conduction thermique.More specifically, the present invention aims to provide new means for achieving a thermal insulation device capable of evolving between a state of high thermal insulation and a state of least thermal insulation, or relative thermal conduction.
Ce but est atteint dans le cadre de la présente invention grâce à un dispositif d'isolation thermique, notamment pour bâtiments, caractérisé par le fait qu'il comprend au moins un panneau comportant deux parois séparées par une entretoise principale périphérique pour définir une chambre étanche au gaz, en dépression, et au moins deux films souples disposés dans ladite chambre, fixés localement à des entretoises secondaires, en des points intermédiaires entre les deux parois et définissant entre eux des compartiments secondaires étanches, de sorte que, par application de potentiels successifs de polarité choisie entre les parois et les films souples, les films souples soient déplacés entre une première position d'isolation thermique dans laquelle les films placés à un même potentiel électrique de polarité opposée au potentiel électrique des parois, sont séparés entre eux et en contact avec les parois, la pression dans les compartiments secondaires définis entre les films étant inférieure à la pression régnant dans la chambre à l'extérieur des compartiments et une deuxième position dans laquelle les films sont séparés des parois et en contact mutuel au moins sur une partie substantielle de leur surface, ladite deuxième position présentant des propriétés d'isolation thermique inférieures à la première position. Le document
D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre, et en regard des dessins annexés, donnés à titre d'exemples non limitatifs et sur lesquels :
- la
figure 1 , précédemment décrite, représente schématiquement un dispositif d'isolation thermique conforme à l'enseignement du documentUS-A-3734172 - les
figures 2a et 2b représentent deux états d'un dispositif conforme à une première variante d'un dispositif conforme au documentWO-A-03/054456 - les
figures 3a et 3b représentent schématiquement deux états similaires d'un dispositif précédemment décrit, conforme à une seconde variante de réalisation enseignée par le documentWO-A-03/054456 - les
figures 4 et 5 annexées représentent, selon des vues schématiques en coupe transversale, deux états d'un dispositif basique d'isolation thermique conforme à la présente invention, - la
figure 6 représente une vue d'un dispositif amélioré conforme à la présente invention, - la
figure 7 représente l'assemblage de plusieurs panneaux élémentaires conforme à la présente invention, chant contre chant, - la
figure 8 représente la superposition de plusieurs panneaux d'un dispositif d'isolation thermique conforme à la présente invention et - les
figures 9 et 10 représentent deux états d'un dispositif d'isolation thermique conforme à une variante de réalisation de la présente invention.
- the
figure 1 , previously described, schematically represents a thermal insulation device according to the teaching of the documentUS Patent 3734172 - the
Figures 2a and 2b represent two states of a device according to a first variant of a device according to the documentWO-A-03/054456 - the
Figures 3a and 3b schematically represent two similar states of a device previously described, according to a second variant of embodiment taught by the documentWO-A-03/054456 - the
Figures 4 and 5 appended represent, in schematic cross-sectional views, two states of a basic thermal insulation device according to the present invention, - the
figure 6 represents a view of an improved device according to the present invention, - the
figure 7 represents the assembly of several elementary panels according to the present invention, singing against edge, - the
figure 8 represents the superposition of several panels of a thermal insulation device according to the present invention and - the
Figures 9 and 10 represent two states of a thermal insulation device according to an alternative embodiment of the present invention.
On aperçoit sur les
La chambre 104 loge au moins deux films 150, 160. Les films 150, 160, sont souples. Ils s'étendent parallèlement aux parois 110, 120. Les films souples 150, 160 sont fixés localement à des entretoises secondaires 140, disposées entre les parois 110, 120, en des points intermédiaires entre les deux parois 110, 120.The
Plus précisément, de préférence, les films 150, 160 sont fixés sur les entretoises 140 à mi-distance entre les deux parois 110, 120. Les films souples 150, 160 sont susceptibles de déformation, comme on l'exposera par la suite, dans leurs portions qui s'étendent entre deux entretoises 140 adjacentes.More specifically, the
Les films 150, 160 définissent entre eux des compartiments étanches au gaz 158 placés sous un niveau de vide contrôlé.The
Les films 150, 160 étant placés à mi-distance des parois 110, 120, ils divisent la chambre 104 en deux sous chambres 104a et 104b situées respectivement de part et d'autre des compartiments 158.The
De préférence il est prévu des moyens de communication 103 permettant d'assurer une liaison fluidique entre les deux sous chambres 104a et 104b. Ces moyens de communication 103 sont par ailleurs de préférence adaptés pour assurer une liaison fluidique entre un moyen 190 de contrôle de pression, tel qu'un compresseur ou un moyen équivalent, et ladite chambre 104.Preferably there are provided communication means 103 for providing a fluid connection between the two sub-chambers 104a and 104b. These communication means 103 are moreover preferably adapted to ensure a fluid connection between a
Bien entendu, lès entretoises 102 et 140 sont réalisées en un matériau thermiquement isolant pour ne pas constituer de pont thermique de conduction entre les parois 110 et 120. Ainsi, les entretoises 102, 140, sont formées avantageusement en matériau thermoplastique.Of course, the
Le fonctionnement du dispositif conforme à la présente invention schématisé sur les
On a schématisé sous la référence 195 sur la
Lors de l'application de potentiels de polarités opposées entre les films 150, 160, d'une part, et de polarités respectivement identiques entre chacun des films 150, 160, et la paroi 110, 120, en regard, les deux films 150, 160 sont plaqués l'un contre l'autre à mi-épaisseur de la chambre 104 comme illustré sur la
Dans le cadre de la présente invention, on entend par « partie substantielle », une partie largement majoritaire de la surface des films 150, 160, typiquement supérieure à au moins 90% de cette surface, le reliquat des films 150, 160 qui ne sont pas en contact mutuel étant dû à la présence d'un résidu de molécules de gaz à très faible pression restant présentes dans les compartiments 158.In the context of the present invention, the term "substantial part", a predominantly majority part of the surface of the
Au contraire, lorsque des potentiels de même polarité sont appliqués entre les films 150, 160, d'une part, et d'autre part, des potentiels de polarités opposées sont appliqués respectivement entre chacun des films 150, 160, et la paroi 110, 120 placée en regard, comme on le voit sur la
Dans cet état la pression dans les compartiments 158 entre les films 150, 160, est inférieure à la pression qui règne dans les sous chambres 104a et 104b situées sur l'extérieur des films 150, 160, de préférence inférieure à 1Pa, soit typiquement comprise entre 10-3 et 10-4 Pascals.In this state, the pressure in the
Les tensions appliquées sur le dispositif répondent à la relation V/e=3,4.105(p/εr)1/2, relation dans laquelle :
- V désigne le potentiel électrique,
- e désigne l'écartement initial entre les faces externes des films souples déformables 150, 160, et la surface en regard des
110, 120,plaques - p représente la pression interne dans la chambre 104, et
- εr représente la permittivité du milieu remplissant la chambre 104.
- V is the electrical potential,
- e denotes the initial spacing between the outer faces of the deformable
150, 160, and the surface facing theflexible films 110, 120,plates - p represents the internal pressure in
chamber 104, and - ε r represents the permittivity of the medium filling the
chamber 104.
Les parois 110, 120, composant le panneau 100 peuvent faire l'objet de nombreuses variantes de réalisation.The
Les parois 110, 120, peuvent être rigides. En variante, elles peuvent être souples. Dans ce cas, le panneau 100 peut être enroulé, ce qui facilite son transport et son stockage.The
Les parois 110, 120 peuvent être au moins partiellement électriquement conductrices pour permettre l'application d'un champ électrique générant les forces électrostatiques requises pour la commutation d'états des films 150, 160.The
Les parois 110, 120 peuvent être réalisées en métal.The
Elles peuvent également être réalisées en un matériau composite, par exemple sous forme d'une couche électriquement isolante associée à une couche électriquement conductrice (métal ou matériau chargé de particules électriquement conductrices).They may also be made of a composite material, for example in the form of an electrically insulating layer associated with an electrically conductive layer (metal or material loaded with electrically conductive particles).
De même, les films souples 150, 160 sont au moins partiellement électriquement conducteurs pour permettre l'application du champ électrique requis par la génération des forces électrostatiques précitées.Similarly, the
Typiquement, les films souples 150, 160 sont formés d'une feuille de métal souple ou à base de matériau thermoplastique ou équivalent, chargé de particules électriquement conductrices.Typically, the
Comme on le voit sur la
On notera que dans le cadre de la présente invention, il est nécessaire de prévoir une isolation électrique entre les films 150, 160, d'une part, et entre chacun des films 150, 160 et les parois 110, 120 d'autre part, pour éviter un court-circuit entre ces éléments lors d'application des tensions successives entre ces éléments.It will be noted that in the context of the present invention, it is necessary to provide electrical insulation between the
Les couches électriquement isolantes 154, 156 et 164, 166, illustrées sur la
On a représenté sur la
On a représenté également sur la
Bien entendu la présente invention n'est pas limitée aux modes de réalisation particuliers qui viennent d'être décrits mais s'étend à toute variante conforme à son esprit.Of course, the present invention is not limited to the particular embodiments which have just been described but extends to any variant within its spirit.
Le dispositif conforme à la présente invention offre une bonne isolation thermique en raison du vide régnant dans la chambre 104 et de la dépression régnant dans les compartiments 158 entre les films 150 et 160, en position séparée de ceux-ci.The device according to the present invention offers good thermal insulation due to the vacuum prevailing in the
Il est prévu de préférence des moyens 190 permettant d'entretenir le vide au sein de la chambre 104 (par exemple à base de pompes mises en service séquentiellement ou automatiquement ou encore de produits absorbeurs de gaz comme indiqué précédemment).It is preferably provided means 190 for maintaining the vacuum within the chamber 104 (for example based pumps sequentially or automatically operated or gas absorbing products as indicated above).
Par rapport à certains dispositifs connus de l'état de la technique, l'utilisation de deux films 150, 160, thermiquement isolants permet de renforcer l'effet de barrière thermique, c'est-à-dire de réduire la conductivité thermique.Compared to certain devices known in the state of the art, the use of two thermally insulating
Le dispositif conforme à la présente invention autorise une réalisation sous forme de faible épaisseur globale compatible avec une isolation intérieure. Typiquement, le dispositif conforme à la présente invention présente une épaisseur maximale de quelques millimètres.The device according to the present invention allows a realization in the form of overall low thickness compatible with an inner insulation. Typically, the device according to the present invention has a maximum thickness of a few millimeters.
L'homme de l'art comprendra que la présente invention permet de développer un système pilotable d'isolation sous vide de très faible épaisseur qui présente par conséquent une très grande performance thermique.It will be understood by those skilled in the art that the present invention makes it possible to develop a controllable vacuum insulation system of very small thickness which consequently has a very high thermal performance.
De préférence, les films 150, 160, sont choisis en un matériau peu émissif dans l'infrarouge ou encore traité pour être peu émissif dans l'infrarouge. Ainsi les films 150, 160 ont un coefficient d'émission (défini comme étant le rapport entre l'émission desdits films et l'émission d'un corps noir) inférieur à 0,1 pour les longueurs d'onde supérieures à 0,78µm.Preferably, the
Le pilotage du champ électrique appliqué entre les films 150, 160, et entre les films 150, 160 et les parois 110, 120, permet soit de maintenir les films en contact mutuel ou en très faible écartement, comme illustré sur la
Le dispositif conforme à la présente invention permet ainsi par exemple de récupérer par l'état de conduction thermique les apports solaires de parois exposées en hiver ou de refroidir des murs en été quand la fraîcheur extérieure le permet, en le plaçant dans l'état illustré sur la
Selon une variante, l'ensemble des composants du dispositif, c'est-à-dire, parois 110, 120 et films 150, 160 peuvent être optiquement transparents dans le domaine visible (0,4-0,8µm). Le dispositif conforme à la présente invention peut ainsi être appliqué sur des parois transparentes, par exemple devant un capteur solaire.According to a variant, all the components of the device, that is to say,
On notera en particulier que tous les dispositifs conformes à l'état de la technique utilisant des matériaux de coeur, n'autorisent pas une telle propriété de transparence optique.It will be noted in particular that all devices according to the state of the art using core materials, do not allow such a property of optical transparency.
Les panneaux d'isolation thermique conformes à la présente invention peuvent également jouer un rôle de décoration.Thermal insulation panels according to the present invention can also play a role of decoration.
Si l'on applique le dispositif conforme à la présente invention aux parois déperditives d'un bâtiment, on peut moduler l'isolation afin d'optimiser la récupération des apports externes (solaire en hiver, fraîcheur en été). On a alors contrairement aux concepts existant actuellement de chauffage ou de climatisation, où l'installation intérieure rattrape les pertes ou les gains de chaleur au travers de l'enveloppe, un système qui gère cette perte ou gain de chaleur pour conserver les conditions de confort intérieur souhaitées. Un tel pilotage peut bien entendu être opéré automatiquement à partir de sondes thermiques appropriées.If the device according to the present invention is applied to the lossy walls of a building, it is possible to modulate the insulation in order to optimize the recovery of external inputs (solar in winter, cool in summer). Contrary to current concepts of heating or air conditioning, where the indoor installation catches up losses or heat gains through the envelope, a system that manages this loss or gain of heat to maintain the conditions of comfort desired interior. Such control can of course be operated automatically from appropriate thermal probes.
La présente invention contribue également à maîtriser totalement l'inertie thermique des parois des bâtiments dans des limites jusque là jamais atteintes.The present invention also contributes to completely control the thermal inertia of the walls of buildings in limits hitherto never reached.
Bien entendu, la présente invention n'est pas limitée à l'application particulière précédemment évoquée d'isolation des bâtiments. La présente invention qui conduit à une excellente isolation électrique indépendante de l'épaisseur du dispositif et autorisant une épaisseur extrêmement petite permet d'appliquer la présente invention dans un grand nombre de domaines techniques.Of course, the present invention is not limited to the particular application previously mentioned of building insulation. The present invention which leads to excellent insulation The thickness of the device, which is independent of the thickness of the device and allows for an extremely small thickness, makes it possible to apply the present invention in a large number of technical fields.
La présente invention peut en particulier s'appliquer à des vêtements ou toute autre problématique industrielle demandant une isolation thermique.The present invention may in particular apply to clothing or any other industrial problem requiring thermal insulation.
Comme indiqué précédemment la présente invention n'est pas limitée à la présence de deux films 150, 160 au sein de la chambre 104. On a illustré sur les
Lorsque les potentiels appliqués entre chaque paire de films adjacents 150, 160 et 170 sont alternativement opposées et par ailleurs les potentiels appliqués sur les films les plus externes 150, 170 sont identiques aux parois placées respectivement en regard 110, 120, les films sont en contact mutuel sur une partie substantielle de leur surface comme illustré sur la
En revanche lorsque les potentiels appliqués sur les films 150, 160 et 170 sont identiques et opposés aux parois respectivement en regard 110, 120, les films 150, 160 et 170 sont séparés entre eux par une lame d'air. Les films externes 150, 170 sont plaqués contre les parois 110, 120, en position séparée du ou des film(s) central(ux) 160. Le dispositif est alors dans une position d'isolation thermique résultant de la séparation entre les films.On the other hand, when the potentials applied to the
Claims (10)
- A thermal insulation device, notably for buildings, comprising at least one panel (100) including two walls (110, 120) separated by a peripheral main spacer (102) for defining a gas-proof chamber (104), at negative pressure, and a flexible film (150) positioned in said chamber (104), locally attached to secondary spacers (140), so that by applying sucessive potentials of selected polarity between the walls (110, 120) and the flexible film (150), the flexible film (150) is moved between a first and a second thermal insulation position, said second position having lower thermal insulation properties than the first position, characterized in that the device includes at least one second flexible film (160) positioned in said chamber (104), said at least two flexible films (150, 160) are locally attached to said secondary spacers (140) in intermediate points between both walls (110, 120) and defining together sealed secondary compartments (158), so that by applying sucessive potentials of selected polarity between the walls (110, 120) and the flexible films (150, 160), the flexible films (150, 160) are moved between said first thermal insulation position wherein the films (150, 160) placed at a same electric potential with polarity opposite to the electric potential of the walls (110, 120), are separated from each other and in contact with the walls (110, 120), the pressure in the secondary compartments (158) defined between the films (150, 160) being less than the pressure prevailing in the chamber (104) outside the secondary compartments (158), and said second position wherein the films (150, 160) are separated from the walls (110, 120) and in mutual contact at least on a substantial portion of their surface.
- The device according to claim 1, characterized by the fact that in the second position, the pairs of adjacent films (150, 160) receive opposite potentials, preferably respectively identical with the walls (110, 120) facing the external films.
- The device according to one of claims 1 or 2, characterized by the fact that it comprises at least three flexible films (150, 160, 170) in the sealed chamber (104).
- The device according to one of claims 1 to 3, characterized by the fact that the walls (110, 120) are flexible.
- The device according to one of claims 1 to 4, characterized by the fact that the walls (110, 120) are selected from the following group: metal walls, walls in composite material, typically an electrically insulating layer and an electrically conductive layer, for example based on metal or loaded with electrically conductive particles, walls (110, 120), the internal face of which is coated with an electrically insulating material.
- The device according to one of claims 1 to 5, characterized by the fact that the flexible films (150, 160) are selected from the following group: metal films, flexible films made on the basis of thermoplastic material loaded with electrically conductive particles, flexible films coated with an electrically insulated coating (154, 156, 164, 166).
- The device according to one of claims 1 to 6, characterized by the fact that the internal pressure of the chamber (104) is comprised between 1 Pa and 1,000 Pa, very advantageously of the order of 10 Pa.
- The device according to one of claims 1 to 7, characterized by the fact that the pressure between both films (150, 160) is less than the pressure which prevails in the sub-chambers (104a and 104b) located on the outside of the films (150, 160), preferably less than 1 Pa, i.e. typically comprised between 10-3 and 10-4 Pascals.
- The device according to one of claims 1 to 8, characterized by the fact that the walls (110, 120) and/or the films (150, 160) are made in a not very emissive material in the infrared or treated in order to be not very emissive in the infrared and preferably having an emission coefficient of less than 0.1 in the infrared.
- The device according to one of claims 1 to 9, characterized by the fact that the walls (110, 120) and the flexible films (150, 160) are optically transparent in the visible spectrum.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1255497A FR2991698B1 (en) | 2012-06-12 | 2012-06-12 | THERMAL INSULATION PANEL |
PCT/EP2013/062054 WO2013186225A1 (en) | 2012-06-12 | 2013-06-11 | Thermal insulating panel |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2859158A1 EP2859158A1 (en) | 2015-04-15 |
EP2859158B1 true EP2859158B1 (en) | 2016-04-27 |
Family
ID=46826718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13728722.3A Active EP2859158B1 (en) | 2012-06-12 | 2013-06-11 | Thermal insulation panel |
Country Status (6)
Country | Link |
---|---|
US (1) | US9481996B2 (en) |
EP (1) | EP2859158B1 (en) |
JP (1) | JP6009663B2 (en) |
FR (1) | FR2991698B1 (en) |
RU (1) | RU2585772C1 (en) |
WO (1) | WO2013186225A1 (en) |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9221210B2 (en) | 2012-04-11 | 2015-12-29 | Whirlpool Corporation | Method to create vacuum insulated cabinets for refrigerators |
US9038403B2 (en) | 2012-04-02 | 2015-05-26 | Whirlpool Corporation | Vacuum insulated door structure and method for the creation thereof |
US9689604B2 (en) | 2014-02-24 | 2017-06-27 | Whirlpool Corporation | Multi-section core vacuum insulation panels with hybrid barrier film envelope |
US10052819B2 (en) | 2014-02-24 | 2018-08-21 | Whirlpool Corporation | Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture |
JP6372785B2 (en) * | 2014-09-30 | 2018-08-15 | パナソニックIpマネジメント株式会社 | Panel unit |
DE102015008123A1 (en) * | 2014-11-25 | 2016-05-25 | Liebherr-Hausgeräte Lienz Gmbh | Vakuumdämmkörper |
US9476633B2 (en) | 2015-03-02 | 2016-10-25 | Whirlpool Corporation | 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness |
US10161669B2 (en) | 2015-03-05 | 2018-12-25 | Whirlpool Corporation | Attachment arrangement for vacuum insulated door |
US9897370B2 (en) | 2015-03-11 | 2018-02-20 | Whirlpool Corporation | Self-contained pantry box system for insertion into an appliance |
US9441779B1 (en) | 2015-07-01 | 2016-09-13 | Whirlpool Corporation | Split hybrid insulation structure for an appliance |
US10222116B2 (en) | 2015-12-08 | 2019-03-05 | Whirlpool Corporation | Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system |
US11052579B2 (en) | 2015-12-08 | 2021-07-06 | Whirlpool Corporation | Method for preparing a densified insulation material for use in appliance insulated structure |
US10041724B2 (en) | 2015-12-08 | 2018-08-07 | Whirlpool Corporation | Methods for dispensing and compacting insulation materials into a vacuum sealed structure |
US10429125B2 (en) | 2015-12-08 | 2019-10-01 | Whirlpool Corporation | Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein |
US20170159996A1 (en) * | 2015-12-08 | 2017-06-08 | Whirlpool Corporation | Vacuum insulation structures with a filler insulator |
US10422573B2 (en) | 2015-12-08 | 2019-09-24 | Whirlpool Corporation | Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein |
US11994336B2 (en) | 2015-12-09 | 2024-05-28 | Whirlpool Corporation | Vacuum insulated structure with thermal bridge breaker with heat loop |
US10808987B2 (en) | 2015-12-09 | 2020-10-20 | Whirlpool Corporation | Vacuum insulation structures with multiple insulators |
US10422569B2 (en) | 2015-12-21 | 2019-09-24 | Whirlpool Corporation | Vacuum insulated door construction |
US9840042B2 (en) | 2015-12-22 | 2017-12-12 | Whirlpool Corporation | Adhesively secured vacuum insulated panels for refrigerators |
US10018406B2 (en) | 2015-12-28 | 2018-07-10 | Whirlpool Corporation | Multi-layer gas barrier materials for vacuum insulated structure |
US10610985B2 (en) | 2015-12-28 | 2020-04-07 | Whirlpool Corporation | Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure |
US10030905B2 (en) | 2015-12-29 | 2018-07-24 | Whirlpool Corporation | Method of fabricating a vacuum insulated appliance structure |
US10807298B2 (en) | 2015-12-29 | 2020-10-20 | Whirlpool Corporation | Molded gas barrier parts for vacuum insulated structure |
US11247369B2 (en) | 2015-12-30 | 2022-02-15 | Whirlpool Corporation | Method of fabricating 3D vacuum insulated refrigerator structure having core material |
US11009284B2 (en) | 2016-04-15 | 2021-05-18 | Whirlpool Corporation | Vacuum insulated refrigerator structure with three dimensional characteristics |
EP3443285B1 (en) | 2016-04-15 | 2021-03-10 | Whirlpool Corporation | Vacuum insulated refrigerator cabinet |
WO2018022007A1 (en) | 2016-07-26 | 2018-02-01 | Whirlpool Corporation | Vacuum insulated structure trim breaker |
EP3500804B1 (en) | 2016-08-18 | 2022-06-22 | Whirlpool Corporation | Refrigerator cabinet |
CN107542187A (en) * | 2016-09-27 | 2018-01-05 | 河南众联云科工程技术有限公司 | Mobile house modularization noise reduction wall |
US10598424B2 (en) | 2016-12-02 | 2020-03-24 | Whirlpool Corporation | Hinge support assembly |
US10352613B2 (en) | 2016-12-05 | 2019-07-16 | Whirlpool Corporation | Pigmented monolayer liner for appliances and methods of making the same |
EP3559571A4 (en) * | 2016-12-23 | 2020-08-26 | Whirlpool Corporation | Vacuum insulated structures having internal chamber structures |
US10697698B2 (en) | 2016-12-23 | 2020-06-30 | Whirlpool Corporation | Vacuum insulated panel for counteracting vacuum bow induced deformations |
JP6803565B2 (en) * | 2017-02-15 | 2020-12-23 | パナソニックIpマネジメント株式会社 | Thermal rectifier and thermal rectifier unit |
US20180230736A1 (en) * | 2017-02-16 | 2018-08-16 | Charles Richard Treadwell | Mechanical locking mechanism for hollow metal doors |
EP3604886A4 (en) * | 2017-03-31 | 2020-03-18 | Panasonic Intellectual Property Management Co., Ltd. | Thermal conductivity switching unit |
DE102017107684A1 (en) * | 2017-04-10 | 2018-10-11 | Ensinger Gmbh | Insulating profile, in particular for the production of window, door and facade elements, and method for its production |
CN109980079B (en) * | 2017-12-28 | 2021-02-26 | 清华大学 | Thermal triode and thermal circuit |
CN109974514B (en) * | 2017-12-28 | 2020-08-11 | 清华大学 | Thermal triode and thermal circuit |
US10907888B2 (en) | 2018-06-25 | 2021-02-02 | Whirlpool Corporation | Hybrid pigmented hot stitched color liner system |
KR101978605B1 (en) * | 2018-08-02 | 2019-05-14 | 공주대학교 산학협력단 | Vacuum insulation panel using folded plate structure |
ES2708400B2 (en) * | 2019-02-06 | 2019-10-29 | Kuhamisha Tech S L | Flexible continuous vacuum insulation panel |
US10907891B2 (en) | 2019-02-18 | 2021-02-02 | Whirlpool Corporation | Trim breaker for a structural cabinet that incorporates a structural glass contact surface |
CN109779177B (en) * | 2019-03-01 | 2020-11-13 | 江苏久诺建材科技股份有限公司 | Decorative heat-insulation board |
CA3075567A1 (en) * | 2019-03-14 | 2020-09-14 | James Earl Dock | Water vapor insulation system |
JPWO2021153389A1 (en) * | 2020-01-31 | 2021-08-05 | ||
US12070924B2 (en) | 2020-07-27 | 2024-08-27 | Whirlpool Corporation | Appliance liner having natural fibers |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2671441A (en) | 1948-09-10 | 1954-03-09 | Clyde W Harris | Variable heat insulating apparatus and solar heating system comprising same |
US3167159A (en) | 1959-07-30 | 1965-01-26 | Gen Electric | Insulating structures with variable thermal conductivity and method of evacuation |
DE1158015C2 (en) | 1961-08-18 | 1964-06-04 | Nikolaus Laing | Device for changing the permeability of a wall for electromagnetic radiation |
US3463224A (en) | 1966-10-24 | 1969-08-26 | Trw Inc | Thermal heat switch |
US3920953A (en) | 1969-01-08 | 1975-11-18 | Nikolaus Laing | Building plates with controllable heat insulation |
CA950627A (en) | 1970-05-29 | 1974-07-09 | Theodore Xenophou | System of using vacuum for controlling heat transfer in building structures, motor vehicles and the like |
US3734172A (en) | 1972-01-03 | 1973-05-22 | Trw Inc | Electrostatic control method and apparatus |
US5318108A (en) | 1988-04-15 | 1994-06-07 | Midwest Research Institute | Gas-controlled dynamic vacuum insulation with gas gate |
US5014481A (en) * | 1989-03-13 | 1991-05-14 | Moe Michael K | Panel configurable for selective insulation or heat transmission |
DE4300839A1 (en) | 1993-01-14 | 1994-08-04 | Michael Klier | Switchable heating bridge for energy efficiency and saving |
DE19647567C2 (en) | 1996-11-18 | 1999-07-01 | Zae Bayern | Vacuum thermal insulation panel |
AU2002366844A1 (en) * | 2001-12-11 | 2003-07-09 | Sager Ag | Switchable thermal insulation |
RU2324037C2 (en) * | 2005-12-15 | 2008-05-10 | Государственное образовательное учреждение высшего профессионального образования Московский государственный строительный университет | Vacuum concrete block and method of making same |
DE102006028956A1 (en) * | 2006-06-23 | 2008-01-24 | Airbus Deutschland Gmbh | Side fairing for an aircraft includes gastight film that surrounds the component with the hollow chambers in a gastight manner after application of a vacuum to evacuate the hollow chambers of the component |
DE102007035851A1 (en) * | 2007-01-13 | 2008-08-14 | Vacuum Walls Ag | Thermal and acoustic insulation panel has a regular pattern of evacuated chambers between its outer walls |
GB0810670D0 (en) * | 2008-06-11 | 2008-07-16 | Airbus Uk Ltd | Apparatus for providing variable thermal insulation for an aircraft |
-
2012
- 2012-06-12 FR FR1255497A patent/FR2991698B1/en active Active
-
2013
- 2013-06-11 WO PCT/EP2013/062054 patent/WO2013186225A1/en active Application Filing
- 2013-06-11 JP JP2015516593A patent/JP6009663B2/en not_active Expired - Fee Related
- 2013-06-11 RU RU2014151760/03A patent/RU2585772C1/en not_active IP Right Cessation
- 2013-06-11 US US14/407,437 patent/US9481996B2/en not_active Expired - Fee Related
- 2013-06-11 EP EP13728722.3A patent/EP2859158B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2013186225A1 (en) | 2013-12-19 |
US20150152635A1 (en) | 2015-06-04 |
FR2991698A1 (en) | 2013-12-13 |
RU2585772C1 (en) | 2016-06-10 |
EP2859158A1 (en) | 2015-04-15 |
FR2991698B1 (en) | 2014-07-04 |
US9481996B2 (en) | 2016-11-01 |
JP6009663B2 (en) | 2016-10-19 |
JP2015528863A (en) | 2015-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2859158B1 (en) | Thermal insulation panel | |
EP2859157B1 (en) | Thermal insulation device | |
EP3113653B1 (en) | Insulating glazed element | |
FR3040210B1 (en) | MODULAR ASSEMBLY FOR STORER OR BATTERY | |
EP3408869B1 (en) | Photovoltaic and thermal solar panel | |
WO2009004178A2 (en) | Photovoltaic module comprising a polymer film and process for manufacturing such a module. | |
EP0004242A1 (en) | Solar radiation concentrator | |
FR2852087A1 (en) | SOLAR COLLECTOR FOR WATER HEATERS | |
WO2011148115A1 (en) | Elastic multilayer structure having alveoli with holes | |
CA2012886C (en) | Heating window | |
EP1220346A1 (en) | Composite basic element and seal thereof for a fuel cell and method for fabricating of said assembly | |
FR2908261A1 (en) | Heating panel for electric heater in e.g. bath room, has front and rear plates spaced from each other to provide space between heating element and rear plate, and joint placed at periphery of panel to ensure sealing between plates | |
EP2366845B1 (en) | Active thermal insulation method and device for implementing said method | |
WO2011148114A1 (en) | Alveolar multilayer structure having a metal coating | |
EP1496320A1 (en) | Flat solar panel with small thickness | |
WO2011120981A1 (en) | Device for controlling the temperature of a tube having a radiating collector | |
FR3047550B1 (en) | SOLAR PANEL | |
FR3044739A1 (en) | INSULATING MECHANICAL PIECE | |
FR2481785A1 (en) | Covering for solar collector - has transparent thermo-plastics sleeve stretched over frame and tensioned | |
WO2017029460A1 (en) | Assembly and articulated panel with intermediate positioning portions, for thermal insulation | |
FR3026046B1 (en) | ROOF SCREEN | |
EP3673198B1 (en) | Assembly with enhanced insulation | |
WO2014177474A1 (en) | Heating and/or cooling device comprising a wall having a solar thermal collector and an element for storing thermal energy | |
FR3040212A1 (en) | THERMAL INSULATION ASSEMBLY AND INSULATED STRUCTURE THEREFOR | |
EP2720252B1 (en) | Curved gaseous particle detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150108 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602013007085 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: E04B0001740000 Ipc: E04B0001760000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E04B 1/74 20060101ALI20151103BHEP Ipc: F28F 13/00 20060101ALI20151103BHEP Ipc: E04B 1/76 20060101AFI20151103BHEP Ipc: E04B 1/80 20060101ALI20151103BHEP Ipc: E04C 2/34 20060101ALI20151103BHEP |
|
INTG | Intention to grant announced |
Effective date: 20151123 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 794991 Country of ref document: AT Kind code of ref document: T Effective date: 20160515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013007085 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 794991 Country of ref document: AT Kind code of ref document: T Effective date: 20160427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160728 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160829 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013007085 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
26N | No opposition filed |
Effective date: 20170130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160611 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130611 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160611 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160427 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20190515 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20200701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200701 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20231018 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240626 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240613 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240515 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240620 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240606 Year of fee payment: 12 |