[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2737007B1 - Procédé de cokéfaction retardée assisté par solvant - Google Patents

Procédé de cokéfaction retardée assisté par solvant Download PDF

Info

Publication number
EP2737007B1
EP2737007B1 EP12728915.5A EP12728915A EP2737007B1 EP 2737007 B1 EP2737007 B1 EP 2737007B1 EP 12728915 A EP12728915 A EP 12728915A EP 2737007 B1 EP2737007 B1 EP 2737007B1
Authority
EP
European Patent Office
Prior art keywords
coking
solvent
asphaltenes
delayed coking
fractionator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12728915.5A
Other languages
German (de)
English (en)
Other versions
EP2737007A1 (fr
Inventor
Omer Refa Koseoglu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Arabian Oil Co
Original Assignee
Saudi Arabian Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Co filed Critical Saudi Arabian Oil Co
Publication of EP2737007A1 publication Critical patent/EP2737007A1/fr
Application granted granted Critical
Publication of EP2737007B1 publication Critical patent/EP2737007B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/045Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing mineral oils, bitumen, tar or the like or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B55/00Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/005Coking (in order to produce liquid products mainly)

Definitions

  • the present invention relates to an improved process for the delayed coking of heavy residual hydrocarbons that reduces the coking induction period and thereby enhances the coking process.
  • a coking unit is an oil refinery processing unit that converts the low value residual oil, or residua, from the vacuum distillation column or the atmospheric distillation column into low molecular weight hydrocarbon gases, naphtha, light and heavy gas oils, and petroleum coke.
  • the process thermally cracks the long chain hydrocarbon molecules in the residual oil feed into shorter chain molecules.
  • Coking is the preferred option for processing vacuum residues containing high level of metals because metals end up in the coke by-product and are disposed of more easily and economically in this solid form.
  • the liquid coker products are almost free of metals.
  • the processing of heavy crude oils having high metals and sulfur content is increasing in many refineries, and as a result the coking operations are of increasing importance to refiners.
  • the increasing concern for minimizing air pollution is another incentive for treating vacuum residues in a coker, since the coker produces gases and liquids having sulfur in a form that can be relatively easily removed from the product stream.
  • the most commonly used coking unit is a delayed unit, or a "delayed coker".
  • a basic delayed coking process fresh feedstock is introduced into the lower part of a fractionator.
  • the fractionator bottoms including heavy recycle material and fresh feedstock are passed to a furnace and heated to a coking temperature.
  • the hot feed then goes to a coke drum maintained at coking conditions where the feed is cracked to form light products while heavy free radical molecules form heavier polynuclear aromatic compounds, which are referred to as "coke”.
  • coke With a short residence time in the furnace, coking of the feed is thereby "delayed” until it is discharged into a coking drum.
  • the volatile components are recovered as coker vapor and returned to the fractionator, and coke is deposited on the interior of the drum.
  • the feed is switched to another drum and the full drum is cooled and emptied by conventional methods, such as by hydraulic means or by mechanical means.
  • Typical coking unit feedstocks are vacuum residues derived from fossil fuels. Selected properties and characteristics of vacuum residue samples derived from crude oils from the various geographical regions indicated are shown in Table 1. As can be seen from Table 1, vacuum residues have low American Petroleum Institute (API) gravities in the range of from 1 to 20 degrees and a sulfur content that ranges from 0.2 to 7.7 W%. In addition, vacuum residues are rich in nitrogen and can contain metals such as nickel and vanadium in relatively high concentrations which make them difficult to process in other refinery unit operations.
  • API American Petroleum Institute
  • Vacuum residues also contain asphaltenes in the range 0.3 to 35 W%, depending upon the source of the crude oil.
  • Asphaltenes are defined as the particles precipitated by addition of a low-boiling paraffin solvent such as normal-pentane. It is commonly accepted that asphaltenes exist in solution in the petroleum. Asphaltenes are commonly modeled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.
  • Petroleum residua can be modeled as ordered systems of polar asphaltenes dispersed in a lower polarity solvent phase, and held together by resins of intermediate polarity.
  • asphaltenes are dispersed by resin molecules, or maltenes, while small molecules such as aromatics act as a solvent for the asphaltenes-resin dispersion and hydrocarbon saturates act as a non-solvent. If crude oil is separated into fractions and then mixed together with less resin content, asphaltenes will only be present as flocculates in solution. Addition of the maltenes or resins brings the asphaltenes back into solution until the equilibrium is disturbed by addition of hydrocarbon saturates, in which case asphaltenes will again start to flocculate.
  • Patent application EP 209225 A2 discloses a process in which delayed coking and solvent deasphalting are combined; in this process, an asphalt mix of asphalt and solvent from the solvent deasphalting step is sent as feedstock to the delayed coking process to form coke and intermediate hydrocarbon vapor and liquid products.
  • Patent application EP 250136 A2 discloses a process for reducing the amount of coke formed in the coke drums of a delayed coking process by reducing the partial pressure of the heavy oil in the coke drums.
  • drying unit and “coker” refer to the same apparatus, and are used interchangeably.
  • the present invention comprehends an improved process, according to claim 1 in a first embodiment and according to claim 13 in a second embodiment, for the delayed coking of heavy residual hydrocarbons that reduces the coking induction period and enhances the coking process.
  • step (d) referred to in the embodiment according to claim 1 occurs in a mixing zone upstream of the coking unit.
  • a rotating disk contactor apparatus can advantageously be employed. Feedstock and solvent can be introduced into the top of the unit and the flocculated portion can be sent to the coking unit from the bottom. This arrangement will prevent or minimize fouling of the mixing apparatus.
  • the liquids in the feed are subjected to further cracking to produce gaseous products. Since the coke induction period is eliminated by the addition of solvent in accordance with the present invention, the residence time in the coke drum will be shortened and the liquids produced will not be subjected to further cracking. Accordingly, the present improved process yields more liquid and less gaseous products than the same coking process conducted without the addition of a solvent.
  • paraffinic solvent employs as the solvent a portion of the light naphtha stream recovered from the coking product stream fractionator. That product stream includes olefins that are principally C 5 to C 8 compounds.
  • paraffinic solvent is used in describing and claiming the invention with the understanding that its source can be the light naphtha that is produced in the process which also includes olefin compounds.
  • Apparatus 10 includes a fractionator 20, a mixing zone 30, a furnace 40 and a coking drum 50.
  • Fractionator 20 includes an inlet 27 for receiving fresh heavy hydrocarbon feedstock, an inlet 21 in fluid communication with a coking drum outlet 52 for receiving delayed coking product stream.
  • Fractionator 20 also includes an outlet 22 for discharging a light naphtha fraction, an outlet 23 for discharging a heavy naphtha fraction, an outlet 24 for discharging a gas oil fraction, an outlet 25 for discharging a heavy gas oil fraction, and an outlet 26 for discharging a mixture of the bottoms fraction and preheated fresh heavy hydrocarbon feedstock.
  • Mixing zone 30 includes an inlet 31 in fluid communication with a conduit 33 for introducing a paraffinic solvent and fractionator outlet 26 for receiving the combined stream of preheated fresh hydrocarbon feedstock and the fractionator bottoms fraction.
  • Mixing zone 30 also includes an outlet 32 for discharging a combined stream containing solvent-flocculated asphaltenes and paraffinic solvent.
  • Furnace 40 includes an inlet 41 in fluid communication with mixing zone outlet 32 and an outlet 42 for discharging heated combined stream.
  • Coking drum 50 includes an inlet 51 in fluid communication with furnace outlet 42 and an outlet 52 in fluid communication with fractionator inlet 21 for receiving the delayed coking product stream.
  • a fresh heavy hydrocarbon feedstock containing asphaltenes is introduced into the lower portion of the fractionator 20 via inlet 27.
  • the preheated feedstock is combined with the fractionator bottoms stream and passed to mixing zone 30 via inlet 31.
  • a paraffinic solvent is introduced into mixing zone 30 via conduit 33 in a ratio of solvent-to-feedstream of from 0.1:1 to 10:1 by volume to form solvent-flocculated asphaltenes in the combined stream.
  • the combined stream containing solvent-flocculated asphaltenes and paraffinic solvent is discharged via outlet 32 and introduced into furnace 40 via inlet 41 where it is heated to a predetermined coking temperature in the range 480 °C to 530 °C.
  • the heated combined stream is discharged via outlet 42 and passed to coking drum 50 via inlet 51 to produce the delayed coking product stream having an increased portion of liquids and to deposit a reduced amount of coke on the interior of the drum.
  • the delayed coking product stream is discharged via outlet 52 and passed to fractionator 20 where it is fractionated to produce a paraffinic light naphtha solvent boiling in the range 36 °C to 75 °C via outlet 22, a heavy naphtha product boiling in the range 75 °C to 180 °C via outlet 23, a light gas oil boiling in the range 180 °C to 370 °C via outlet 24, a heavy coker gas oil boiling in the range 370 °C to 520 °C via outlet 25, and a bottoms fraction boiling in the range above 520 °C via outlet 26.
  • a portion of paraffinic light naphtha solvent is recycled back to conduit 33 to minimize the use of fresh paraffinic solvent.
  • Apparatus 100 includes a fractionator 120, a mixing zone 130, a furnace 140 and a coking drum 150.
  • Fractionator 120 includes an inlet 127 for receiving fresh heavy hydrocarbon feedstock, an inlet 121 in fluid communication with a coking drum outlet 152 for receiving delayed coking product stream.
  • Fractionator 120 also includes an outlet 122 for discharging a light naphtha fraction, an outlet 123 for discharging a heavy naphtha fraction, an outlet 124 for discharging a gas oil fraction, an outlet 125 for discharging a heavy gas oil fraction, and an outlet 126 for discharging a mixture of the bottoms fraction and preheated fresh heavy hydrocarbon feedstock.
  • Furnace 140 includes an inlet 141 in fluid communication with fractionator outlet 126 and an outlet 142 for discharging heated combined stream of bottoms fraction and fresh heavy hydrocarbon feedstock.
  • Mixing zone 130 includes an inlet 131 in fluid communication with a conduit 133 for receiving a paraffinic solvent and furnace outlet 142 for receiving heated combined stream.
  • Mixing zone 130 also includes an outlet 132 for discharging combined stream containing solvent-flocculated asphaltenes and paraffinic solvent.
  • Coking drum 150 includes an inlet 151 in fluid communication with mixing zone outlet 132 and an outlet 152 in fluid communication with fractionator inlet 121 for receiving delayed coking product stream.
  • a fresh heavy hydrocarbon feedstock containing asphaltenes is introduced into the lower portion of the fractionator 120 via inlet 127.
  • the preheated feedstock is combined with fractionator bottoms stream and passed to furnace 140 via inlet 141 where it is heated to a predetermined coking temperature in the range 480 °C to 530 °C.
  • the heated combined stream is conveyed to mixing zone 130 via inlet 131.
  • a paraffinic solvent is introduced into mixing zone 130 via conduit 133 in a ratio of solvent-to-feedstream of from 0.1:1 to 10:1 by volume to form solvent-flocculated asphaltenes in the combined stream.
  • the combined stream containing solvent-flocculated asphaltenes and paraffinic solvent is discharged via outlet 132 and passed to coking drum 150 via inlet 151 to produce the delayed coking product stream having an increased portion of liquids and to deposit a reduced amount of coke on the interior of the drum, relative to the prior art process.
  • the delayed coking product stream is discharged via outlet 152 and passed to fractionator 120 where it is fractionated to produce a light naphtha containing paraffinic solvent boiling in the range 36 °C to 75 °C via outlet 122, a heavy naphtha boiling in the range 75 °C to 180 °C via outlet 123, a light gas oil boiling in the range 180 °C to 370 °C via outlet 124, a heavy coker gas oil boiling in the range 370 °C to 520 °C via outlet 125, and a bottoms fraction boiling in the range above 520 °C via outlet 126.
  • a portion of light naphtha containing paraffinic solvent is recycled back to conduit 133 to minimize the use of fresh paraffinic solvent.
  • Apparatus 200 includes a fractionator 220, a furnace 240 and a coking drum 250.
  • Fractionator 220 includes an inlet 227 for receiving fresh heavy hydrocarbon feedstock, an inlet 221 in fluid communication with a coking drum outlet 252 for receiving delayed coking product stream.
  • Fractionator 220 also includes an outlet 222 for discharging light naphtha fraction, an outlet 223 for discharging a heavy naphtha fraction, an outlet 224 for discharging a gas oil fraction, an outlet 225 for discharging a heavy gas oil fraction, and an outlet 226 for discharging a mixture of the bottoms fraction and preheated fresh heavy hydrocarbon feedstock.
  • Furnace 240 includes an inlet 241 that is in fluid communication with a conduit 254 for receiving a paraffinic solvent and with fractionator outlet 226 and an outlet 242 for discharging heated combined stream of bottoms fraction and fresh heavy hydrocarbon feedstock.
  • Coking drum 250 includes an inlet 251 in fluid communication with a conduit 253 for receiving a paraffinic solvent and furnace outlet 242 for receiving heated combined stream.
  • Coking drum 250 also includes an outlet 252 for discharging delayed coking product stream.
  • a fresh heavy hydrocarbon feedstock containing asphaltenes is introduced into the lower portion of the fractionator 220 via inlet 227.
  • the preheated feedstock is combined with fractionator bottoms stream and passed to furnace 240 via inlet 241 where it is heated to a predetermined coking temperature in the range 480 °C to 530 °C.
  • the heated combined stream is conveyed to coking drum 250 via inlet 251.
  • a paraffinic solvent is introduced into coking drum 250 via conduit 253 in a ratio of solvent-to-feedstream of from 0.1:1 to 10:1 by volume to form solvent-flocculated asphaltenes in the combined stream.
  • Combined stream containing solvent-flocculated asphaltenes and paraffinic solvent is processed in coking drum 250 to produce the delayed coking product stream having increased portion of liquids and deposit a reduced amount of coke on the interior of the drum.
  • the delayed coking product stream is discharged via outlet 252 and passed to fractionator 220 where it is fractionated to produce a light naphtha containing paraffinic solvent boiling in the range 36 °C to 75 °C via outlet 222, a heavy naphtha boiling in the range 75 °C to 180 °C via outlet 223, a light gas oil boiling in the range 180 °C to 370 °C via outlet 224 a heavy coker gas oil boiling in the range 370 °C to 520 °C via outlet 225, and a bottoms fraction boiling in the range above 520 °C via outlet 226.
  • a portion of light naphtha containing paraffinic solvent is recycled back to conduit 253 to minimize the use of fresh paraffinic solvent.
  • the feedstocks for the improved delayed coking process described herein are heavy hydrocarbons derived from natural resources including crude oil, bitumen, tar sands and shale oils, or from refinery processes including atmospheric or vacuum residue, products from coking, visbreaker and fluid catalytic cracking operations.
  • the heavy hydrocarbon feedstock has a boiling point in the range of from 36 °C, this being the boiling point of pentane, up to 2000 °C.
  • Some heavy hydrocarbon feedstocks such as bitumens include little light hydrocarbons.
  • the feedstock can have an initial boiling point (IBP) of 180 °C, e.g., the IBP of gas oils, or 370 °C, e.g., the IBP of vacuum gas oil.
  • the paraffinic solvent has the general formula of C n H2 n+2 , where n is from 3 to 8.
  • a portion of the light naphtha stream from the fractionator can be used as the solvent that is mixed with the feedstream to the furnace or the coking drum.
  • octanes and olefin compounds including pentenes, hexenes, heptenes and octenes, can also be present in the mixture.
  • the presence of C 3 and C 4 compounds in the mixture will be dependent upon the prevailing pressure and temperature conditions in the coking unit and upstream.
  • the C 5 to C 8 alkanes have boiling points in the range from about 28 °C to about 114 °C, and the C 5 to C 8 olefins have initial boiling points in the range of from about 30 °C to about 121 °C.
  • the solvent is injected at a solvent battery limit temperature and a pressure of from 1 bar to 100 bars.
  • the coking unit is a typical delayed coking unit with two drums operating alternatively.
  • the operating conditions for the coking drum include a temperature of from 425 °C to 650 °C; in certain embodiments from 425 °C to 540 °C; in further embodiments from 450 °C to 510 °C; and in additional embodiments from 470 °C to 500 °C; and at a pressure of from 1 bar to 20 bars; in certain embodiments from 1 bar to 10 bars; and in further embodiments from 1 bar to 7 bars.
  • the coking cycle time can be from 8 hrs to 60 hrs; in certain embodiments from 24 hrs to 48 hrs; and in further embodiments from 8 hrs to 24 hrs.
  • the method of the invention represents an improvement over the prior art processes by reducing the coking induction period by mixing a predetermined amount of paraffinic solvent with the heavy hydrocarbon feedstocks in order to disturb the equilibrium of the asphaltenes in the maltenes solution and to flocculate all, or substantially all of the solid asphaltenes particles.
  • the yield and qualities of valuable liquid products are increased while undesirable cracking and the formation of coke are minimized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Coke Industry (AREA)

Claims (15)

  1. Procédé de cokéfaction retardée pour une utilisation dans une unité de cokéfaction retardée qui inclut au moins un ballon (50, 150), l'unité de cokéfaction produisant un courant de produit de cokéfaction retardée et un produit de coke qui est retenu dans le ballon, le courant de produit de cokéfaction étant introduit dans une colonne de fractionnement de courant de produit de cokéfaction (20, 120) pour produire au moins une fraction de queue de distillation, une fraction intermédiaire et une fraction de naphta léger, le procédé comprenant :
    a. l'analyse d'un échantillon de charge d'alimentation d'hydrocarbure lourd fraîche contenant des asphaltènes qui doit être soumise au procédé de cokéfaction retardée, pour déterminer le rapport solvant paraffinique sur asphaltènes nécessaire pour floculer sensiblement la totalité des asphaltènes ;
    b. l'introduction d'une charge d'alimentation d'hydrocarbure lourd fraîche contenant des asphaltènes à des fins de préchauffage dans la partie inférieure de la colonne de fractionnement de produit de cokéfaction ;
    c. le déchargement de la fraction de queue de distillation qui inclut la charge d'alimentation d'hydrocarbure fraîche préchauffée à partir de la colonne de fractionnement en tant que courant d'alimentation combiné d'unité de cokéfaction ;
    d. l'introduction d'un solvant paraffinique séparé ayant la formule CnH2n+2, où n va de 3 à 8 ou d'un solvant paraffinique et oléfinique combiné, ce dernier ayant la formule CnH2n, où n va de 3 à 8, dans une zone de mélange (30, 130) intermédiaire entre la colonne de fractionnement de produit de cokéfaction (20) et le four d'unité de cokéfaction (40) et le mélange du courant d'alimentation combiné d'unité de cokéfaction avec le solvant dans un rapport suffisant de solvant sur courant d'alimentation qui a été déterminé dans l'étape (a) pour floculer par solvant sensiblement la totalité des asphaltènes dans le courant d'alimentation combiné d'unité de cokéfaction ;
    e. l'introduction du courant d'alimentation combiné d'unité de cokéfaction contenant des asphaltènes floculés dans le four d'unité de cokéfaction à des fins de chauffage jusqu'à une température de cokéfaction prédéterminée ;
    f. le passage du courant d'alimentation combiné chauffé contenant les asphaltènes floculés par solvant et un solvant dans l'au moins un ballon pour produire un courant de produit de cokéfaction retardée ayant une portion accrue de liquides et déposant une quantité réduite de coke sur l'intérieur du ballon, par rapport à la quantité de coke déposée en l'absence de l'ajout du solvant à la même charge d'alimentation d'hydrocarbure lourd.
  2. Procédé selon la revendication 1 dans lequel le rapport solvant sur courant d'alimentation est de 0,1 : 1 à 10 : 1 en volume.
  3. Procédé de cokéfaction retardée selon la revendication 1, dans lequel le solvant paraffinique présente un point d'ébullition initial allant jusqu'à 80 °C.
  4. Procédé de cokéfaction retardée selon la revendication 1, dans lequel au moins une partie d'une fraction de naphta léger ayant un point d'ébullition inférieur à 80 °C et sensiblement exempte de composés aromatiques récupérée à partir de la colonne de fractionnement de produit de cokéfaction est introduite dans la zone de mélange de solvant.
  5. Procédé de cokéfaction retardée selon la revendication 4, dans lequel le courant de naphta léger retiré à partir de la colonne de fractionnement et introduit dans la zone de mélange de solvant inclut un mélange d'alcanes et d'alcènes.
  6. Procédé de cokéfaction retardée selon la revendication 4, dans lequel le gasoil léger est récupéré à partir de la colonne de fractionnement sous la forme d'un courant séparé avec le courant de naphta léger.
  7. Procédé de cokéfaction retardée selon la revendication 1, dans lequel l'étape (e) inclut le chauffage du courant d'alimentation d'unité de cokéfaction combiné de la fraction de queue de distillation déchargée et du solvant et des asphaltènes floculés par solvant à une température située dans la plage allant de 480 °C à 530 °C à une pression située dans la plage allant de 1 à 20 bars.
  8. Procédé de cokéfaction retardée selon la revendication 7, dans lequel la pression est située dans la plage allant de 1 à 10 bars.
  9. Procédé de cokéfaction retardée selon la revendication 1, dans lequel la charge d'alimentation d'hydrocarbure lourd est une source d'hydrocarbure non raffiné sélectionnée dans le groupe constitué d'un pétrole brut, d'un bitume, des sables bitumineux, des huiles de schiste, des liquides de liquéfaction du charbon, et des combinaisons de ceux-ci.
  10. Procédé de cokéfaction retardée selon la revendication 1, dans lequel la charge d'alimentation d'hydrocarbure lourd est obtenue à partir d'une source d'hydrocarbure raffiné sélectionnée dans le groupe constitué d'un résidu atmosphérique, d'un résidu sous vide, des produits d'unité de réduction de viscosité, et des combinaisons de ceux-ci.
  11. Procédé de cokéfaction retardée selon la revendication 1, dans lequel la charge d'alimentation d'hydrocarbure lourd est un mélange ayant un point d'ébullition situé entre 36 °C et 2000 °C.
  12. Procédé de cokéfaction retardée selon la revendication 1 dans lequel l'unité de cokéfaction inclut deux ballons et le procédé est mis en œuvre dans un mode d'alternance.
  13. Procédé de cokéfaction retardée pour une utilisation dans une unité de cokéfaction retardée qui inclut au moins un ballon (50, 150), l'unité de cokéfaction produisant un courant de produit de cokéfaction retardée et un produit de coke qui est retenu dans le ballon, le courant de produit de cokéfaction étant introduit dans une colonne de fractionnement de courant de produit de cokéfaction (20, 120) pour produire au moins une fraction de queue de distillation, une fraction intermédiaire et une fraction de naphta léger, le procédé comprenant :
    a. l'analyse d'un échantillon de charge d'alimentation d'hydrocarbure lourd fraîche contenant des asphaltènes qui doit être soumise au procédé de cokéfaction retardée, pour déterminer le rapport solvant paraffinique sur asphaltènes nécessaire pour floculer sensiblement la totalité des asphaltènes ;
    b. l'introduction d'une charge d'alimentation d'hydrocarbure lourd fraîche contenant des asphaltènes à des fins de préchauffage dans la partie inférieure de la colonne de fractionnement de produit de cokéfaction ;
    c. le déchargement de la fraction de queue de distillation qui inclut la charge d'alimentation d'hydrocarbure fraîche préchauffée à partir de la colonne de fractionnement en tant que courant d'alimentation combiné d'unité de cokéfaction ;
    d. l'introduction du courant d'alimentation combiné d'unité de cokéfaction dans le four d'unité de cokéfaction (140) à des fins de chauffage jusqu'à une température de cokéfaction prédéterminée ;
    e. l'introduction d'un solvant paraffinique séparé ayant la formule CnH2n+2, où n va de 3 à 8 ou d'un solvant paraffinique et oléfinique combiné, ce dernier ayant la formule CnH2n, où n va de 3 à 8, dans une zone de mélange (30, 130) intermédiaire entre le four d'unité de cokéfaction (140) et le ballon de cokéfaction (150), et le mélange du courant d'alimentation combiné d'unité de cokéfaction chauffé dans le four avec le solvant dans un rapport suffisant de solvant sur courant d'alimentation qui a été déterminé dans l'étape (a) pour floculer par solvant sensiblement la totalité des asphaltènes dans le courant d'alimentation combiné d'unité de cokéfaction chauffé dans le four ;
    f. le passage du courant d'alimentation combiné chauffé dans le four contenant les asphaltènes floculés par solvant et un solvant dans l'au moins un ballon pour produire un courant de produit de cokéfaction retardée ayant une portion accrue de liquides et déposant une quantité réduite de coke sur l'intérieur du ballon, par rapport à la quantité de coke déposée en l'absence de l'ajout du solvant à la même charge d'alimentation d'hydrocarbure lourd.
  14. Procédé selon la revendication 13 dans lequel le rapport solvant sur courant d'alimentation est de 0,1 : 1 à 10 : 1 en volume.
  15. Procédé de cokéfaction retardée selon la revendication 13, dans lequel la charge d'alimentation d'hydrocarbure lourd est un mélange ayant un point d'ébullition situé entre 36 °C et 2000 °C.
EP12728915.5A 2011-07-29 2012-06-11 Procédé de cokéfaction retardée assisté par solvant Active EP2737007B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161513369P 2011-07-29 2011-07-29
PCT/US2012/041897 WO2013019321A1 (fr) 2011-07-29 2012-06-11 Procédé de cokéfaction retardée assisté par solvant

Publications (2)

Publication Number Publication Date
EP2737007A1 EP2737007A1 (fr) 2014-06-04
EP2737007B1 true EP2737007B1 (fr) 2020-01-08

Family

ID=46321492

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12728915.5A Active EP2737007B1 (fr) 2011-07-29 2012-06-11 Procédé de cokéfaction retardée assisté par solvant

Country Status (6)

Country Link
US (1) US8894841B2 (fr)
EP (1) EP2737007B1 (fr)
JP (1) JP6100775B2 (fr)
KR (1) KR101844111B1 (fr)
CN (1) CN103814112B (fr)
WO (1) WO2013019321A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3328967B1 (fr) * 2015-07-27 2023-04-12 Saudi Arabian Oil Company Procédé intégré de désalphatage et de cokéfaction au solvant amélioré pour la production de coke vert de pétrole
US10233394B2 (en) 2016-04-26 2019-03-19 Saudi Arabian Oil Company Integrated multi-stage solvent deasphalting and delayed coking process to produce high quality coke
US10125318B2 (en) 2016-04-26 2018-11-13 Saudi Arabian Oil Company Process for producing high quality coke in delayed coker utilizing mixed solvent deasphalting
US11174441B2 (en) * 2018-10-22 2021-11-16 Saudi Arabian Oil Company Demetallization by delayed coking and gas phase oxidative desulfurization of demetallized residual oil
US11359148B2 (en) 2019-09-18 2022-06-14 Saudi Arabian Oil Company Methods and systems to produce needle coke from aromatic recovery complex bottoms
US12077714B2 (en) 2019-12-11 2024-09-03 Saudi Arabian Oil Company Needle coke production from HPNA recovered from hydrocracking unit
US11072745B1 (en) * 2020-04-20 2021-07-27 Saudi Arabian Oil Company Two-stage delayed coking process to produce anode grade coke
RU2744637C1 (ru) * 2020-07-08 2021-03-12 Публичное акционерное общество «Татнефть» имени В.Д. Шашина Способ замедленного коксования нефтяных остатков

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2380713A (en) 1942-08-06 1945-07-31 Texas Co Coking hydrocarbon oils
US3116231A (en) 1960-08-22 1963-12-31 Continental Oil Co Manufacture of petroleum coke
US3379638A (en) 1965-01-25 1968-04-23 Lummus Co Coal solvation with nonhydrogenated solvent in the absence of added hydrogen
DE1671304B2 (de) 1967-03-28 1976-05-13 Verzoegertes verkokungsverfahren zur gleichzeitigen herstellung zweier verschiedener guetegrade von petrolkoks
US3563884A (en) 1968-07-15 1971-02-16 Lummus Co Delayed coking of coal tar pitches
US4036736A (en) 1972-12-22 1977-07-19 Nippon Mining Co., Ltd. Process for producing synthetic coking coal and treating cracked oil
US4177133A (en) 1974-09-25 1979-12-04 Maruzen Petrochem Co Ltd Process for producing high-crystalline petroleum coke
US4066532A (en) 1975-06-30 1978-01-03 Petroleo Brasileiro S.A. Petrobras Process for producing premium coke and aromatic residues for the manufacture of carbon black
US4116815A (en) 1977-06-21 1978-09-26 Nittetsu Chemical Industrial Co., Ltd. Process for preparing needle coal pitch coke
US4216074A (en) 1978-08-30 1980-08-05 The Lummus Company Dual delayed coking of coal liquefaction product
US4455219A (en) 1982-03-01 1984-06-19 Conoco Inc. Method of reducing coke yield
US4518487A (en) 1983-08-01 1985-05-21 Conoco Inc. Process for improving product yields from delayed coking
US4534854A (en) * 1983-08-17 1985-08-13 Exxon Research And Engineering Co. Delayed coking with solvent separation of recycle oil
US4528088A (en) * 1983-11-30 1985-07-09 Exxon Research And Engineering Co. Coking with solvent separation of recycle oil using coker naphtha and solvent recovery
US4686027A (en) * 1985-07-02 1987-08-11 Foster Wheeler Usa Corporation Asphalt coking method
CA1279838C (fr) * 1986-06-09 1991-02-05 Michael J. Mcgrath Cokefaction temporisee
US5370787A (en) 1988-07-25 1994-12-06 Mobil Oil Corporation Thermal treatment of petroleum residua with alkylaromatic or paraffinic co-reactant
US4983272A (en) 1988-11-21 1991-01-08 Lummus Crest, Inc. Process for delayed coking of coking feedstocks
US5028311A (en) 1990-04-12 1991-07-02 Conoco Inc. Delayed coking process
US5143597A (en) 1991-01-10 1992-09-01 Mobil Oil Corporation Process of used lubricant oil recycling
US5643441A (en) * 1991-08-15 1997-07-01 Mobil Oil Corporation Naphtha upgrading process
US5248410A (en) 1991-11-29 1993-09-28 Texaco Inc. Delayed coking of used lubricating oil
CN1082080C (zh) 1996-09-19 2002-04-03 中国石油化工集团公司 一种多产柴油的延迟焦化工艺
CN1142259C (zh) 2000-09-25 2004-03-17 中国石油化工股份有限公司 浅度溶剂脱沥青与延迟焦化的组合方法
US7922896B2 (en) 2008-04-28 2011-04-12 Conocophillips Company Method for reducing fouling of coker furnaces
US8496805B2 (en) * 2009-07-10 2013-07-30 Exxonmobil Research And Engineering Company Delayed coking process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN103814112A (zh) 2014-05-21
KR101844111B1 (ko) 2018-05-14
JP2014523954A (ja) 2014-09-18
US8894841B2 (en) 2014-11-25
US20130026069A1 (en) 2013-01-31
WO2013019321A1 (fr) 2013-02-07
EP2737007A1 (fr) 2014-06-04
CN103814112B (zh) 2016-08-17
KR20140064825A (ko) 2014-05-28
JP6100775B2 (ja) 2017-03-22

Similar Documents

Publication Publication Date Title
EP2737007B1 (fr) Procédé de cokéfaction retardée assisté par solvant
US8110090B2 (en) Deasphalting of gas oil from slurry hydrocracking
CA2326259C (fr) Production de coke de grade anode
EP2714847B1 (fr) Procédé de cokéfaction retardée d'une huile brute totale
US9493710B2 (en) Process for stabilization of heavy hydrocarbons
US20100122934A1 (en) Integrated Solvent Deasphalting and Slurry Hydrocracking Process
EP0121376A2 (fr) Procédé pour la valorisation d'hydrocarbures lourds visqueux
EP3186339A1 (fr) Procédé intégré de production d'asphalte, de coke de pétrole cru, et de produits liquides et gazeux issus d'unités de cokéfaction
US11149213B2 (en) Method to produce light olefins from crude oil
US10125329B2 (en) Process for the preparation of a feedstock for a hydroprocessing unit
US3321395A (en) Hydroprocessing of metal-containing asphaltic hydrocarbons
CN111655824A (zh) 用于回收加氢裂化软沥青的方法和设备
US20190078029A1 (en) Reactor staging for slurry hydroconversion of polycyclic aromatic hydrocarbon feeds
US11149219B2 (en) Enhanced visbreaking process
SG192680A1 (en) Process for improving aromaticity of heavy aromatic hydrocarbons
US9725657B2 (en) Process for enhancing feed flexibility in feedstock for a steam cracker
US11001762B2 (en) Partial upgrading of bitumen with thermal treatment and solvent deasphalting
US20140360922A1 (en) Producing improved upgraded heavy oil
Lee et al. Resids

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160309

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190221

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20190627

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012067090

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1222708

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200108

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200531

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200508

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200409

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012067090

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1222708

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200108

26N No opposition filed

Effective date: 20201009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20201028

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200611

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200611

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210927

Year of fee payment: 10

Ref country code: IT

Payment date: 20210922

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210927

Year of fee payment: 10

Ref country code: DE

Payment date: 20210929

Year of fee payment: 10

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012067090

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220611

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220611

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240521

Year of fee payment: 13