EP2705121B1 - Verfahren und vorrichtung zur erzeugung von synthesegas aus kohlestoffhaltigen edukten durch vergasung im wirbelstromreaktor - Google Patents
Verfahren und vorrichtung zur erzeugung von synthesegas aus kohlestoffhaltigen edukten durch vergasung im wirbelstromreaktor Download PDFInfo
- Publication number
- EP2705121B1 EP2705121B1 EP12719675.6A EP12719675A EP2705121B1 EP 2705121 B1 EP2705121 B1 EP 2705121B1 EP 12719675 A EP12719675 A EP 12719675A EP 2705121 B1 EP2705121 B1 EP 2705121B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fluidized bed
- reactor
- housing section
- heating
- gasification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002309 gasification Methods 0.000 title claims description 77
- 238000000034 method Methods 0.000 title claims description 24
- 239000000376 reactant Substances 0.000 title claims description 9
- 229910052799 carbon Inorganic materials 0.000 title description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title description 2
- 238000010438 heat treatment Methods 0.000 claims description 72
- 239000007789 gas Substances 0.000 claims description 67
- 230000015572 biosynthetic process Effects 0.000 claims description 47
- 238000003786 synthesis reaction Methods 0.000 claims description 47
- 238000006243 chemical reaction Methods 0.000 claims description 37
- 238000007872 degassing Methods 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 18
- 239000001301 oxygen Substances 0.000 claims description 17
- 229910052760 oxygen Inorganic materials 0.000 claims description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 4
- 235000002918 Fraxinus excelsior Nutrition 0.000 claims 1
- 239000002956 ash Substances 0.000 claims 1
- 239000002028 Biomass Substances 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 16
- 238000000197 pyrolysis Methods 0.000 description 16
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 239000007858 starting material Substances 0.000 description 8
- 239000011269 tar Substances 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 238000010574 gas phase reaction Methods 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 150000002926 oxygen Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000007306 turnover Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/48—Apparatus; Plants
- C10J3/482—Gasifiers with stationary fluidised bed
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/463—Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/721—Multistage gasification, e.g. plural parallel or serial gasification stages
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/12—Heating the gasifier
- C10J2300/1246—Heating the gasifier by external or indirect heating
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/12—Heating the gasifier
- C10J2300/1261—Heating the gasifier by pulse burners
Definitions
- the invention relates to a method and an apparatus for producing synthesis gas from carbonaceous educts by gasification in a fluidized bed reactor.
- a method and such a device are known from DE 10 2004 032 830 A1
- Another method and apparatus for the gasification of biomass are known from the DE 102 270 74 A1
- Other methods and devices in the context of the invention are known from the DE 10 2007 006 980 A1 , of the DE 10 2008 032 166 A1 , of the DE 10 2006 022 265 A1 , of the DE 10 2009 039 845 A1 , of the DE 102 58 485 A1 , of the DE 10 2004 045 772 A1 , of the DE 10 2007 012 452 A1 , of the DE 10 2008 036 A1 , of the EP 1 865 046 A1 , the Article "Choren fuelR from the Carbo-V® Carburetor", Conference Report Biomass Gasification - International Conference Leipzig, October 2003, pages 234 to 2
- the starting material is fed in the lowest fluidized bed zone by means of a screw.
- the first fluidized bed zone has a temperature between 700 and 800 ° C.
- the 2nd fluidized bed zone, which adjoins above the first zone is heated by oxygen to more than 1100 ° C. This heating is done again before the syngas leaves the reactor at the top.
- At the bottom of the reactor is the ash discharge.
- a method for operating a fluidized bed reactor for gasifying solid carbonaceous material is described. This is done using gaseous reactants such. B. of oxygen-containing gases and steam.
- the DE 10 2008 032166 A1 relates to a process for producing synthesis gas from biomass.
- the method is used when the ash melts glassy and can not be used as a mineral fertilizer.
- the tar content in the synthesis gas is lowered by splitting the biomass into pyrolysis coke and pyrolysis gas in a fluidized bed reactor and feeding them both to another fluidized bed reactor. Tars are catalytically split at higher temperature on the largely tarry pyrolysis without the ash melting point is exceeded.
- the DE 10 2009 039837 A1 shows a fluidized bed gasification reactor for biomass with a separate hybrid heating for the upper and lower part of the reactor.
- the radiators can optionally be charged with oxygen and thus increase the reaction temperature or act by means of electricity as a radiator.
- Biomass coke is added to the bottom of the reactor.
- the generated synthesis gas leaves the reactor by means of a line.
- the gasification leads to undesired adhesions of ash and / or starting material, for example biomass, to the fluidized bed material and / or to components of the production device. This leads either to the fact that certain starting materials can not be used with the methods and apparatuses for synthesis gas generation according to the prior art, or that these methods and devices can only be operated with low and thus uneconomic efficiency.
- This object is achieved by a method having the features specified in claim 1 in a device having the features specified in claim 5.
- a method with two heating stages leads to the possibility of first carrying out a first pyrolysis gasification step at the first, lower gasification temperature.
- This first gasification temperature is chosen so that it is lower than an ash softening temperature of the starting materials or lower than a softening temperature of the starting materials in general.
- the pyrolysis gasification step results in a corresponding reduction in agglomeration of ash or educts in the first, deep-bed fluidized bed area.
- 50% to 80% of the reactants can be gasified.
- a corresponding vertical extent of that fluidized bed area can be predetermined, in which the pyrolysis step takes place due to the heating to the first gasification temperature.
- a homogeneous first gasification temperature is set as far as possible.
- the first gasification temperature can be in the range between 600 ° C and 770 ° C and can be particularly in the range between 700 ° C and 770 ° C lie.
- the remaining after the pyrolysis step remaining lighter and educt particles are carried by the fluidized bed up into the second reactor housing section and then gasified in the second reactor housing section at the higher second gasification temperature with higher turnover speed.
- homogeneous gas phase reactions can continue to proceed at the second gasification temperature, which further convert pyrolysis gases generated in the first, deep-bed fluidized bed region to the synthesis gas to be generated.
- a reduction of an undesirable tar content in the synthesis gas produced can take place.
- the second gasification temperature can be in the range between 770 ° C and 1000 ° C or in the range between 770 ° C and 900 ° C and is preferably in the range between 770 ° C and 810 ° C.
- the fluidized bed may be stationary during syngas production and may form bubbles.
- a circulating fluidized bed can also be present in the fluidized-bed reactor.
- the first fluidized bed region and the second reactor housing section are present in one and the same reactor housing.
- starting materials for syngas production biomass or coal can be used.
- the heating to the first gasification temperature and the heating to the second gasification temperature is in each case an active heating, that is to say a heating independent of any heat of reaction which arises in the production process.
- the heating can be done by external energy supply.
- the heating of the first fluidized bed region and / or the second fluidized bed region can be effected by supplying an oxygen-containing gas, by supplying a synthesis gas and / or by supplying steam.
- the fluidized bed itself is in two temperature zones, Thus, divided into two fluidized bed regions, wherein the first, deep fluidized bed region is heated to the first gasification temperature and the second, higher fluidized bed region to the higher second gasification temperature. Both the pyrolysis step and the reaction of the remaining, lighter particles and the homogeneous gas phase reactions for the implementation of the pyrolysis gases initially generated can then take place within the fluidized bed.
- the heating of a reactor housing section which contains a fluidized bed area, is in the sense of the present description equivalent to a heating of this fluidized bed area itself. It is also possible to heat more than two superimposed fluidized bed regions of the same fluidized bed to different temperatures.
- the method of claim 2 utilizes different principles for providing heat energy for heating the two adjacent fluidized bed regions. Since a comparatively low gasification temperature of the fluidized bed reactor has to be achieved in the first, low-lying fluidized bed region, a burner can be used for the allothermal energy input, whereby a surface temperature of the burner can be kept low and well below a softening point of the educts. About the autothermal energy input then the second, higher gasification temperature in the second fluidized bed area is reached.
- the entries in the first and in the second fluidized bed need not be exclusively allothermic or autothermic, but the allothermal energy input on the one hand and the autothermal energy input on the other hand can represent the main energy inputs that are supported by other energy inputs. It may in the first, deep-fluidized bed area and / or in the second, higher-lying fluidized bed area one each Combination of an all-thermal and an autothermal energy input take place.
- a third temperature zone is provided for the post-reaction, wherein the post-reaction temperature is higher than the second gasification temperature.
- an undesirable tar content in the synthesis gas produced is further reduced by after-reaction.
- the post-reaction temperature may range between 830 ° C and 1000 ° C, may range between 830 ° C and 900 ° C and may range between 830 ° C and 850 ° C.
- the further, heated to the post-reaction temperature reactor housing section can be directly adjacent to the fluidized bed.
- the further, heated to the post-reaction temperature reactor housing portion may be spaced from the fluidized bed.
- heating to the post-reaction temperature is an active or autothermal heating. It applies, what has already been stated above with respect to the heating to the first and the second gasification temperature.
- the post-reaction can take place in a degassing section of the reactor.
- Another object of the invention is to provide an apparatus for carrying out the synthesis gas production process.
- the advantages of the synthesis gas producing apparatus of the present invention are the same as those already explained above with reference to the synthesis gas producing method of the present invention.
- the first, deep-bed fluidized bed housing section, on the one hand, and the second, higher-lying reactor housing section, on the other hand, which can be heated to the two gasification temperatures via the two heaters may be sections of one and the same reactor housing. This is not mandatory.
- a cross-sectional deviation within the reactor housing according to claim 8 can be used to optimize the reaction conditions in the various reactor housing sections.
- a degassing housing section may have a larger cross section than a fluidized bed housing section. This leads to a large potential reaction volume in the after-reaction.
- a degassing housing section can also taper to a tubular housing section with a small tube diameter compared to the other reactor housing. This can be used for the desired acceleration of a synthesis gas / solid mixture.
- a heat exchanger according to claim 9 can be heated by a burner. Another heating of the heat exchanger is possible.
- fuel gas a natural gas / air mixture and / or a synthesis gas / air mixture can be used. Another fuel gas can be used.
- the heat exchanger can deliver the heat generated via a heat transfer surface, for example via a burner jacket surface, in the fluidized bed housing section.
- the heat transfer surface for example the burner jacket surface, can be designed with a large surface area.
- a heater according to claim 10 can be controlled and / or regulated by adding in particular an oxygen-containing gas in their heating power with a low reaction time.
- the feed unit may be the only heat source of the respective heating device.
- the heater may also represent a combination of a heat exchanger with such a supply unit for a particular oxygen-containing gas.
- a fluidized bed circuit according to claim 12 can be used to increase a reactor efficiency.
- the fluidized bed material including not yet gasified carbon residues and ash in a separator, in particular a cyclone, deposited and nachverbrannt with air. This can be used to reheat the fluidized bed material before it is recycled to the fluidized bed within the cycle.
- a flow reactor according to claim 13 represents a variant for the reaction of residual, lighter particles after the pyrolysis step and / or for reducing the tar content via an after-reaction.
- a device 1 is used to generate synthesis gas from carbonaceous educts, for example from biomass or coal, by gasification.
- the device 1 has a fluidized bed reactor 2.
- a reactor housing 3 of the fluidized bed reactor 2 is functionally divided into a plurality of housing sections 4 to 6. In the embodiment according to Fig. 1 These housing sections 4 to 6 parts of the same reactor housing. 3
- the first, deep-bed fluidized bed housing section 4 serves to receive a first, deep-bed fluidized bed region 7 of a fluidized bed 8 of the fluidized-bed reactor 2.
- Sand can be used as the fluidized bed material.
- An upper phase boundary 9 of the fluidized bed 8 is in the Fig. 1 indicated by a curved line. This phase boundary is approximately at the level of an upper boundary of the second reactor housing section 5, which lies above the fluidized bed housing section 4 and directly adjacent thereto.
- the second reactor housing section 5 is designed in the form of a second fluidized bed housing section and serves to receive a second fluidized bed region 10 of the fluidized bed 8.
- the fluidized-bed reactor 3 has the degassing housing section 6. It adjoins the reactor housing section 5 directly upwards. A cross section of the degassing housing section 6 increases at the transition to the reactor housing section 5 via an expansion cone 11. In the region of the degassing housing section 6, the reactor housing 3 thus has a housing cross-section, the housing cross section of the fluidized bed housing section 4 and from Housing cross-section of the reactor housing section 5 differs and in the case of the embodiment according to Fig. 1 is larger.
- the device 1 has a first heating device 12 for heating the fluidized bed region 7 in the fluidized bed housing section 4 to a first gasification temperature.
- the first heater 12 has a heating unit in the form of a burner 13 as a heat exchanger and a further heating unit in the form of an oxygen-containing gas supply unit 14.
- Water vapor and / or air and / or oxygen is fed to the fluidized bed region 7 via the feed unit 14.
- the oxygen-containing gas is supplied in the region of a bottom 14 a of the reactor housing 3 in the fluidized bed region 7 via a plurality of nozzles 14 b, which in the Fig. 1 are shown schematically. These nozzles 14b may be arranged annularly around the burner 13.
- the nozzles 14b discharge the oxygen-containing gas upward.
- design of the feed unit 14, alternatively or additionally, nozzles corresponding to the nozzles 14b may be provided which flow out the oxygen-containing gas downwards.
- the burner 13 is operated via a combustible air / gas mixture, which has a in the Fig. 1 schematically shown by two arrows feed line 15 is supplied to the burner 13.
- the gas of the air / gas mixture may be natural gas, synthesis gas or a mixture of both.
- the burner 13 is designed tubular, wherein a tube longitudinal axis 15a of the burner 13 coincides with a longitudinal axis of the likewise tubular reactor housing 3. The burner 13 thus "stands" centrally in the fluidized bed region 7.
- An upper-side termination of the burner 13 extends to near a range boundary between the fluidized bed regions 7 and 10 or between the housing sections 4 and 5.
- the heating device 12 has a heating capacity that makes it possible for the fluidized bed region 7 along an entire height extent of the burner 13, ie within the first, deep-bed fluidized bed housing section 4, to a first gasification temperature in the range between 600 ° C and 770 ° C. , in particular in the range between 700 ° C and 770 ° C to bring.
- This first gasification temperature is lower than an ash softening temperature or as a biomass softening temperature.
- the heating power of the first heating device 12 can be distributed between the burner 13 and the feed device 14 in a controlled or predetermined manner.
- the device 1 has a schematically illustrated control / regulating device 16. This communicates with control valves 17 on the one hand, the feed unit 14 and on the other hand, the supply line 15 in a manner not shown in signal connection.
- the control / regulating device 16 in the Fig. 1 sensors not shown, for example, with temperature or gas concentration sensors, which are housed in the reactor 2, are in signal communication.
- the apparatus 1 has a second heater 18 for heating the reactor housing section 5 to a second gasification temperature higher than the first gasification temperature.
- the second heater 18 is, as with the supply unit 14 of the first heater 12, designed as an oxygen-containing gas supply device. Components of the second heater 18, which correspond to those in the feed unit 14, bear the same reference numerals and will not be explained again in detail. Also the second Heating device 18 can be controlled or regulated via the control / regulating device 16.
- the second gasification temperature is in the range between 770 ° C and 1000 ° C and in particular in the range between 770 ° C and 900 ° C or in the range between 770 ° C and 810 ° C.
- the second heating device 18 is arranged in the reactor housing section 5 near the region boundary to the fluidized-bed housing section 4.
- a further heating device in the form of a post-reaction heater 19 is arranged in the degassing housing section 6 of the reactor housing 3.
- the post-reaction heating device 19 is arranged above the phase boundary 9.
- a structural design with the post-reaction heater 19 corresponds to that of the second heater 18.
- the post-reaction heater 19 is used for heating above the phase boundary 9 present media within the reactor housing 3 to a post-reaction temperature, which is higher than the second gasification temperature.
- the post-reaction temperature may be in the range of 830 ° C, but may be higher and in the range between 830 ° C and 1000 ° C and be for example 850 ° C, 900 ° C or 1000 ° C.
- the post-reaction heating device 19 is arranged at the level of the expansion cone 11 of the reactor housing 3.
- the feed unit 14 or the heating devices 18, 19 may have annular nozzle line sections, which are guided around the central longitudinal axis 15a of the reactor housing 3.
- the device 1 has a feed device 20 for feeding the educts which are to be gasified into the first fluidized bed region 7
- Feeder 20 is designed as a screw conveyor.
- a feed end 21 of the screw conveyor passes through a housing wall of the reactor housing 3 in the region of a lower third of the housing section 4 above the nozzles 14b of the feed unit 14 of the first heating device 12.
- the device 1 has above the degassing housing section 6 a discharge device for the synthesis gas generated in the form of a schematically indicated outlet 22.
- the device 1 further has a removal device 23 for removing a portion of the fluidized bed at the bottom.
- the removal device has a removal valve 24, which is arranged in a withdrawal line 25, which opens out from the bottom 14a of the reactor housing 3 downwards.
- the extraction line 25 leads the fluidized bed portions taken to a in the Fig. 1 schematically indicated removal container 26th
- the device 1 further has a refilling device 27 for refilling fluidized bed material, in particular for equalizing the removal by the removal device 23.
- the refill 27 has a refill 28 which is connected via a refill 29 with an upper-side housing cover 30 of the reactor housing 3 and over this opens into the degassing housing section 6 from above.
- a refill valve 31 is arranged in the refill line 29, a refill valve 31 is arranged.
- the removal valve 24 on the one hand and the refill valve 31 on the other hand can each be designed in the form of a lock with two sequentially arranged valve units.
- the removal valve 24 and the refill valve 31 are again in a manner not shown with the control / regulating device 16 in signal connection.
- the device 1 operates to generate synthesis gas from carbonaceous educts by gasification in the fluidized bed reactor 2 as follows:
- the first, deep-bed fluidized bed region 7 is heated by the first heater to the first gasification temperature by external energy supply.
- the reactor housing section 5 is heated by the second heater 18 to the second gasification temperature by external energy supply.
- the feedstock 20 to be gasified educts are introduced into the fluidized bed region 7. Since the first gasification temperature is lower than an ash softening or biomass softening temperature, agglomeration of ash or biomass in the fluidized bed region 7 is reduced or even completely prevented in the first gasification step in the housing section 4 of the reactor housing. In the first fluidized bed region 7 pyrolysis takes place, wherein about 50% to 80% of the biomass are gasified.
- this first gasification temperature is adjusted as homogeneously as possible.
- An actual gasification temperature deviates from a predetermined nominal gasification temperature by a maximum of 30 ° C to 50 ° C. For example, if a target temperature of 720 ° C for the first gasification temperature is given, is present in the entire housing section 4, an actual temperature in the range between 670 ° C and 770 ° C, preferably in the range between 690 ° C and 750 ° C and more preferably with even smaller deviation from the target temperature.
- lighter biomass particles are supported via the fluidized bed 8 from the housing section 4 upwards into the housing section 5 and thereby delimited locally by the first, lower fluidized bed region 4. These lighter particles are now due to the higher second gasification temperature gasified in the fluidized bed region 10 with sufficient turnover speed. In the fluidized bed region 10, moreover, homogeneous gas phase reactions proceed, which lead to a further conversion of the pyrolysis gases generated in the fluidized bed region 7.
- Residual ash and / or biomass agglomeration or sticking to the bed material of the fluidized bed 8 sinks downwards in the fluidized bed 8 and can be removed in a controlled manner via the removal device 23 by controlling the removal valve 24. A corresponding loss of bed material can be compensated for controlled by the refill device 27.
- FIG. 2 a further embodiment of a device 32 for the production of synthesis gas from carbon dioxide-containing educts by gasification will be described.
- Components and functions corresponding to those described above with reference to FIGS Fig. 1 have the same reference numbers and will not be discussed again in detail.
- a second burner 33 is provided for heating the reactor housing section 5 to the second gasification temperature.
- the burner 33 can be operated with an air / natural gas mixture.
- the second burner 33 is not standing, but installed horizontally and passes, comparable to the feeder 20, a jacket wall of the reactor housing 3.
- An end portion of the burner 33 extends beyond the longitudinal axis 15a out into the fluidized bed region 10 and thus provides for a good heat exchange with the fluidized bed in the region of the fluidized bed region 10.
- the structure of the burner 33 corresponds to that of the burner thirteenth
- FIG. 3 a further embodiment of a device 34 for the production of synthesis gas from carbon dioxide-containing educts by gasification will be described.
- Components and functions corresponding to those described above with reference to FIGS Fig. 1 and 2 have the same reference numbers and will not be discussed again in detail.
- the device 34 instead of the running as a feed unit Nachreticians-heating direction 19, a third, third burner 35.
- This is like the burner 33 installed transversely to the longitudinal axis 15a of the reactor housing 3 and passes through the jacket wall of the reactor housing 3 at the level of the expansion cone 11.
- the burner 35 is an open burner.
- the burner 35 can be operated with an oxygen / natural gas mixture.
- An end region of the burner 35 projects into the degassing housing section 6 approximately to the longitudinal axis 15a of the reactor housing 3 inside. Except for the fact that now the burner 35 is used for heating the degassing housing section 6 to the post-reaction temperature, the operation of the device 34 in the synthesis gas production by gasification corresponds to that described above with reference to FIGS Fig. 1 and 2 has already been explained.
- FIG. 4 a further embodiment of a device 36 for the production of synthesis gas from carbon dioxide-containing educts by gasification will be described.
- Components and functions corresponding to those described above with reference to FIGS Fig. 1 to 3 have the same reference numbers and will not be discussed again in detail.
- the device 36 after Fig. 4 operates with a circulating fluidized bed 8.
- the device 36 has a fluidized bed circuit 37.
- the fluidized bed housing section 4, the reactor housing section 5 and the degassing housing section 6 are components of the fluidized bed circuit 37, as well as the outlet 22 for the synthesis gas.
- the latter is in fluid communication with a separator 38 which may be configured as a cyclone separator.
- the synthesis gas separated from the fluidized bed material in the separator 38 leaves the separator 38 via an outlet 39.
- the fluidized bed material deposited in the separator 38 is passed back into the reactor housing 3 via a bottom outlet 40 of the separator 38 and a return line 41.
- the return line 41 opens into the fluidized bed housing section 4 of the reactor housing 3 just above the feed unit 14 of the first heater 12 a.
- the gasification reaction in the device 36 proceeds analogously to what has been described above in connection with the synthesis gas production process in the device 1 Fig. 1 was explained.
- the fluidized bed reactor 2 is operated in the device 36 so that at least a portion of the fluidized bed material is discharged through the degassing housing section 6 upwards and via the outlet 22 from the reactor housing 3.
- the fluidized bed material discharged in this way is fed back to the reactor housing 3 via the separator 38 and the return line 41, so that a circulating fluidized bed is formed in the device 36.
- FIG. 5 a further embodiment of a device 42 for the production of synthesis gas from carbon dioxide-containing educts by gasification will be described.
- Components and functions corresponding to those described above with reference to FIGS Fig. 1 to 4 have the same reference numbers and will not be discussed again in detail.
- the device 42 there is a single fluidized-bed housing section 43, which extends from the bottom 14 a of the reactor housing 3 to the phase boundary 9 in the reactor housing 3.
- the first heater 12 is similarly constructed and arranged in the apparatus 42 as in the apparatus 1 and heats the fluidized bed 8 to the first gasification temperature.
- a further heating device may be arranged which heats a fluidized bed region which is higher than the fluidized bed region that is heated by the heating device 12.
- a second reactor housing section is formed at the device 42 by an outlet section 44, which in addition to the function of the synthesis gas outlet corresponding to the outlet 22 in the embodiments of the Fig. 1 to 4 also has the function of the second reactor housing section to be heated to the second gasification temperature.
- For this heating to the second gasification temperature serves a second heater 45 of the device 42 in the form of an oxygen-containing gas supply unit.
- Air and / or oxygen is supplied via the feed unit 45.
- the outlet section 44 connects the reactor housing 3 with a likewise tubular degassing section 46.
- the latter has the function of the degassing housing section 6 in the embodiments according to FIGS Fig. 1 to 4 .
- a feed unit 47 is arranged, which is the function of the post-reaction heater of the embodiments according to the Fig. 1 to 4 Has.
- the outlet section 44 and the degassing section 46 have a tube cross section that is significantly smaller than the cross section of the reactor housing 3.
- the outlet section 44 on the one hand and the degassing section 46 on the other hand therefore have a smaller cross section than the fluidized bed housing section 43.
- the mixture of synthesis gas and remaining, lightweight biomass particles leaving the reactor housing 42 is brought to the second gasification temperature by the second heating device 45, whereby the initially unfavorable particles are then gasified and start the further homogeneous reaction gas phase reactions.
- the synthesis gas with the entrained solids passes through the degassing section 46 and is heated with the third heater 47 to the post-reaction temperature. As a result, the post-reaction takes place for tar degradation in the synthesis gas.
- the degassing section 46 may in turn be followed by a separator.
- a further embodiment of a device 48 for the production of synthesis gas from carbon dioxide-containing educts by gasification is described.
- Components and functions corresponding to those described above with reference to FIGS Fig. 1 to 5 have the same reference numbers and will not be discussed again in detail.
- the device 48 is constructed like the device 1 according to Fig. 1 ,
- a burner 49 at the transition is arranged between the outlet portion 44 and the degassing section 46.
- the burner 49 ensures heating of the remaining, not yet pyrolytically reacted, light biomass particles to the second gasification temperature and optionally subsequently in the further course in the degassing section 46 also to the post-reaction temperature.
- the burner 49 thus constitutes the post-reaction heating device of the device 48.
- the synthesis gas production process otherwise corresponds to that described above with reference to FIGS Fig. 1 to 5 and in particular with reference to Fig. 5 has already been explained.
- the entrained flow reactor 50 is followed by a discharge device 51, which in the Fig. 5 and 6 is indicated schematically and in which the synthesis gas is separated from the entrained solid components via a separator.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Processing Of Solid Wastes (AREA)
Description
- Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Erzeugung von Synthesegas aus kohlenstoffhaltigen Edukten durch Vergasung in einem Wirbelschichtreaktor.
Ein derartiges Verfahren und eine derartige Vorrichtung sind bekannt ausDE 10 2004 032 830 A1 . Ein weiteres Verfahren und eine Vorrichtung zur Vergasung von Biomasse sind bekannt aus derDE 102 270 74 A1 . Weitere Verfahren und Vorrichtungen im Umfeld der Erfindung sind bekannt aus derDE 10 2007 006 980 A1 , derDE 10 2008 032 166 A1 , derDE 10 2006 022 265 A1 , derDE 10 2009 039 845 A1 , derDE 102 58 485 A1 , derDE 10 2004 045 772 A1 , derDE 10 2007 012 452 A1 , derDE 10 2008 036 A1 , derEP 1 865 046 A1 , dem Fachartikel „Choren fuelR aus dem Carbo-V®- Vergaser", Tagungsbericht Biomasse-Vergasung - Internationale Tagung Leipzig, Oktober 2003, Seiten 234 bis 238 und dem Fachartikel Der Blaue Turm - Wasserstoff aus Biomasse", Tagungsbericht Biomasse-Vergasung - Internationale Tagung Leipzig, Oktober 2003, Seiten 240 bis 249.
DieDE 30 33 115 A1 zeigt einen Wirbelbettreaktor und ein dazu gehörendes Verfahren zur Vergasung von kohlenstoffhaltigem Material, wobei der Reaktor über verschiedene Wirbelbettbereiche verfügt. Das Ausgangsmaterial wird in der untersten Wirbelbettzone mittels einer Schnecke zugeführt. Die erste Wirbelbettzone hat eine Temperatur zwischen 700 und 800 °C. Die 2. Wirbelbettzone, die sich oberhalb der ersten Zone anschließt wird durch Sauerstoffzufuhr auf über 1100 °C geheizt. Diese Aufheizung geschieht nochmal bevor das Synthesegas den Reaktor am oberen Ende verlässt. Am unteren Ende des Reaktors befindet sich der Ascheaustrag.
In derDE 29 49 533 A1 wird ein Verfahren zum Betreiben eines Wirbelbettreaktors zum Vergasen von festem, kohlenstoffhaltigem Material beschrieben. Dies geschieht unter Verwendung von gasförmigen Reaktionsmitteln wie z. B. von sauerstoffhaltigen Gasen und Dampf. - Die
DE 10 2008 032166 A1 betrifft ein Verfahren zur Erzeugung von Synthesegas aus Biomasse. Das Verfahren wird angewendet, wenn die Asche glasartig aufschmilzt und nicht als Mineraldünger verwendbar ist. Der Teergehalt im Synthesegas wird dadurch abgesenkt, dass die Biomasse in einem Wirbelschichtreaktor in Pyrolysekoks und Pyrolysegas gespalten und beide einem weiteren Wirbelschichtreaktor zugeführt werden. Es werden Teere bei höherer Temperatur an dem weitgehend teerfreien Pyrolysekoks katalytisch gespalten , ohne dass der Ascheschmelzpunkt überschritten wird. - Die
DE 10 2009 039837 A1 zeigt einen Wirbelschichtvergasungsreaktor für Biomasse mit einer separaten Hybridheizung für den oberen und unteren Teil des Reaktors. Die Heizkörper können wahlweise mit Sauerstoff beschickt werden und so die Reaktionstemperatur erhöhen oder auch mittels Strom als Heizkörper wirken. Biomassenkoks wird dem unteren Teil des Reaktors zugegeben. Das erzeugte Synthesegas verlässt den Reaktor mittels einer Leitung. - Abhängig vom zu vergasenden Edukt kommt es bei der Vergasung zu unerwünschten Verklebungen von Asche und/oder von Eduktmaterial, beispielsweise von Biomasse, mit dem Wirbelschichtmaterial und/oder mit Komponenten der Erzeugungsvorrichtung. Dies führt entweder dazu, dass bestimmte Edukte mit den Verfahren und Vorrichtungen zur Synthesegaserzeugung nach dem Stand der Technik nicht zum Einsatz kommen können, oder dass diese Verfahren und Vorrichtungen nur mit geringem und damit unwirtschaftlichem Wirkungsgrad betrieben werden können.
- Es ist daher eine Aufgabe der vorliegenden Erfindung, ein Verfahren zur Erzeugung von Synthesegas aus kohlenstoffhaltigen Edukten durch Vergasung in einem Wirbelschichtreaktor derart weiterzubilden, dass auch bei Einsatz von erweichungskritischen Edukten eine unerwünschte Verklebung bei ordentlichem Vergasungs-Wirkungsgrad verringert oder nach Möglichkeit ganz vermieden ist.
Diese Aufgabe ist erfindungsgemäß gelöst durch ein Verfahren mit den im Anspruch 1 angegebenen Merkmalen in einer Vorrichtung mit den in Anspruch 5 angegebenen Merkmalen. Erfindungsgemäß wurde erkannt, dass ein Verfahren mit zwei Erwärmungsstufen zur Möglichkeit führt, zunächst einen ersten Pyrolyse-Vergasungsschritt bei der ersten, niedrigeren Vergasungstemperatur durchzuführen. Diese erste Vergasungstemperatur wird so gewählt, dass sie niedriger ist als eine Ascheerweichungstemperatur der Edukte bzw. niedriger ist als eine Erweichungstemperatur der Edukte generell. Bei dem Pyrolyse-Vergasungs schritt ergibt sich entsprechend eine Verringerung einer Agglomeration von Asche bzw. Edukten im ersten, tief gelegenen Wirbelschicht-Bereich. Durch den Pyrolyseschritt können 50 % bis 80 % der Edukte vergast werden. Durch die Vorgabe einer Höhenerstreckung einer Heizwirkung bei der Erwärmung des ersten, tief gelegenen Wirbelschicht-Bereichs kann eine entsprechende Höhenerstreckung desjenigen Wirbelschicht-Bereiches vorgegeben werden, in dem aufgrund der Erwärmung auf die erste Vergasungstemperatur der Pyrolyseschritt erfolgt. In diesem ersten, tief gelegenen und auf die erste Vergasungstemperatur erwärmten Wirbelschicht-Bereich wird nach Möglichkeit eine homogene erste Vergasungstemperatur eingestellt. Die erste Vergasungstemperatur kann im Bereich zwischen 600 °C und 770 °C liegen und kann insbesondere im Bereich zwischen 700 °C und 770 °C liegen. Die nach dem Pyrolyseschritt noch verbleibenden restlichen und leichteren Edukte-Partikel werden durch die Wirbelschicht nach oben in den zweiten Reaktor-Gehäuseabschnitt getragen und dann im zweiten Reaktor-Gehäuseabschnitt bei der höheren zweiten Vergasungstemperatur mit höherer Umsatzgeschwindigkeit vergast. In dem zweiten Reaktor-Gehäuseabschnitt können bei der zweiten Vergasungstemperatur weiterhin homogene Gasphasenreaktionen ablaufen, die im ersten, tief gelegenen Wirbelschicht-Bereich erzeugte Pyrolysegase weiter zu dem zu erzeugenden Synthesegas umsetzen. Zudem kann schon im zweiten Reaktor-Gehäuseabschnitt bei der höheren zweiten Vergasungstemperatur eine Reduktion eines unerwünschten Teergehalts im erzeugten Synthesegas erfolgen. Die zweite Vergasungstemperatur kann im Bereich zwischen 770 °C und 1000 °C oder im Bereich zwischen 770 °C und 900 °C liegen und liegt bevorzugt im Bereich zwischen 770 °C und 810 °C. Die Wirbelschicht kann bei der Synthesegaserzeugung stationär sein und kann Blasen bilden. Alternativ zu einer stationären Wirbelschicht kann im Wirbelschichtreaktor auch eine zirkulierende Wirbelschicht vorliegen. Der erste Wirbelschicht-Bereich und der zweite Reaktor-Gehäuseabschnitt liegen in ein und demselben Reaktorgehäuse vor. Als Edukte zur Synthesegas-Erzeugung kann Biomasse oder auch Kohle zum Einsatz kommen. Bei der Erwärmung auf die erste Vergasungstemperatur und bei der Erwärmung auf die zweite Vergasungstemperatur handelt es sich jeweils um eine aktive Erwärmung, also um eine Erwärmung unabhängig von einer beim Erzeugungsverfahren etwa entstehenden Reaktionswärme. Das Erwärmen kann durch externe Energiezufuhr geschehen. Alternativ oder zusätzlich kann das Erwärmen des ersten Wirbelschicht-Bereichs und/oder des zweiten Wirbelschicht-Bereichs durch Zufuhr eines sauerstoffhaltigen Gases, durch Zufuhr eines Synthesegases und/oder durch Zufuhr von Dampf erfolgen.Die Wirbelschicht selbst ist in zwei Temperaturzonen, also in zwei Wirbelschicht-Bereiche unterteilt, wobei der erste, tief gelegene Wirbelschicht-Bereich auf die erste Vergasungstemperatur und der zweite, höher liegende Wirbelschicht-Bereich auf die höhere zweite Vergasungstemperatur erwärmt wird. Sowohl der Pyrolyseschritt als auch die Umsetzung der restlichen, leichteren Partikel und die homogenen Gasphasenreaktionen zur Umsetzung der zunächst erzeugten Pyrolysegase können dann innerhalb der Wirbelschicht ablaufen. Das Erwärmen eines Reaktor-Gehäuseabschnitts, der einen Wirbelschicht-Bereich enthält, wird im Sinne der vorliegenden Beschreibung einer Erwärmung dieses Wirbelschicht-Bereichs selbst gleichgestellt. Auch eine Erwärmung von mehr als zwei übereinander angeordneten Wirbelschicht-Bereichen ein und derselben Wirbelschicht auf verschiedene Temperaturen ist möglich. - Das Verfahren nach Anspruch 2 nutzt unterschiedliche Prinzipien zur Bereitstellung von Wärmeenergie zum Erwärmen der beiden aneinander angrenzenden Wirbelschicht-Bereiche. Da in dem ersten, tief gelegenen Wirbelschicht-Bereich eine vergleichsweise niedrige Vergasungstemperatur des Wirbelschichtreaktors erreicht werden muss, kann zum allothermen Energieeintrag beispielsweise ein Brenner zum Einsatz kommen, wobei eine Oberflächentemperatur des Brenners niedrig und deutlich unterhalb eines Erweichungspunktes der Edukte gehalten werden kann. Über den autothermen Energieeintrag wird dann die zweite, höhere Vergasungstemperatur im zweiten Wirbelschicht-Bereich erreicht. Die Einträge in der ersten und in der zweiten Wirbelschicht müssen nicht ausschließlich allotherm bzw. autotherm geschehen, sondern der allotherme Energieeintrag einerseits und der autotherme Energieeintrag andererseits können hauptsächliche Energieeinträge darstellen, die durch andere Energieeinträge noch unterstützt werden. Es kann im ersten, tief gelegenen Wirbelschicht-Bereich und/oder im zweiten, höher gelegenen Wirbelschicht-Bereich jeweils eine Kombination aus einem allothermen und einem autothermen Energieeintrag stattfinden.
- Bei einem Verfahren nach Anspruch 3 wird oberhalb der zweiten Temperaturzone, die auf die zweite Vergasungstemperatur erwärmt ist, eine dritte Temperaturzone zur Nachreaktion vorgesehen, wobei die Nachreaktionstemperatur höher ist als die zweite Vergasungstemperatur. In diesem weiteren Reaktor-Gehäuseabschnitt wird ein unerwünschter Teergehalt im erzeugten Synthesegas durch Nachreaktion nochmals reduziert. Die Nachreaktionstemperatur kann im Bereich zwischen 830 °C und 1000 °C, kann im Bereich zwischen 830 °C und 900 °C und kann im Bereich zwischen 830 °C und 850 °C liegen. Beim erfindungsgemäßen Synthesegas-Erzeugungsverfahren können auch mehr als drei Temperaturzonen bzw. mehr als drei Temperaturstufen zum Einsatz kommen. Der weitere, auf die Nachreaktionstemperatur erwärmte Reaktor-Gehäuseabschnitt kann direkt an die Wirbelschicht angrenzen. Alternativ kann der weitere, auf die Nachreaktionstemperatur erwärmte Reaktor-Gehäuseabschnitt von der Wirbelschicht beabstandet sein. Beim Erwärmen auf die Nachreaktionstemperatur handelt es sich um eine aktive bzw. autotherme Erwärmung. Es gilt, was vorstehend in Bezug auf die Erwärmung auf die erste bzw. auf die zweite Vergasungstemperatur schon ausgeführt wurde. Die Nachreaktion kann in einem Entgasungsabschnitt des Reaktors erfolgen.
- Bei einem Verfahren nach Anspruch 4 können restliche Asche/Edukte-Agglomerate, die sich ggf. am Boden des Wirbelschichtreaktors anreichern, vom Boden des Wirbelschichtreaktors her entnommen werden, sodass diese Agglomerate einen Wärmeeintrag in die Wirbelschicht nicht unerwünscht erschweren. Die Entnahme der Agglomerate kann periodisch erfolgen. Diese Entnahme kann kontinuierlich oder diskontinuierlich erfolgen. Diese Entnahme kann insbesondere geregelt, also beispielsweise abhängig von einer gemessenen Wirbelschichttemperatur oder einem gemessenen Wirbelschicht-Temperaturprofil erfolgen. Das Nachfüllen des Wirbelschicht-Bettmaterials dient dazu, dass im Wirbelschichtreaktor innerhalb vorgegebener Grenzen eine konstante Menge Wirbelschichtmaterial enthalten ist, sodass im Wirbelschichtreaktor konstante Verhältnisse herrschen. Durch das kontrollierte Entnehmen und Nachfüllen können Eduktmaterialien verwertet und Wirbelschichtmaterialien verwendet werden, die allgemein, also unabhängig von einer Erweichung der Materialien, Sinkstoffe beinhalten, die zum unerwünschten bodenseitigen Anreichern neigen.
- Eine weitere Aufgabe der Erfindung ist es, eine Vorrichtung zur Durchführung des Synthesegas-Erzeugungsverfahrens bereitzustellen.
- Diese Aufgabe ist erfindungsgemäß gelöst durch eine Synthesegas-Erzeugungsvorrichtung mit den im Anspruch 5 angegebenen Merkmalen.
- Die Vorteile der erfindungsgemäßen Synthesegas-Erzeugungsvorrichtung entsprechen denjenigen, die vorstehend unter Bezugnahme auf das erfindungsgemäße Synthesegas-Erzeugungsverfahren bereits erläutert wurden. Der erste, tief gelegene Wirbelschicht-Gehäuseabschnitt einerseits und der zweite, höher gelegene Reaktor-Gehäuseabschnitt andererseits, die auf die beiden Vergasungstemperaturen über die beiden Heizeinrichtungen erwärmt werden können, können Abschnitte ein und desselben Reaktorgehäuses sein. Dies ist aber nicht zwingend.
- Die Vorteile der Vorrichtung nach den Ansprüchen 6 und 7 entsprechen denen, die vorstehend im Zusammenhang mit dem Verfahren nach Ansprüchen 2 und 3 erläutert wurden.
- Eine Querschnittsabweichung innerhalb des Reaktorgehäuses nach Anspruch 8 kann zur Optimierung der Reaktionsbedingungen in den verschiedenen Reaktorgehäuseabschnitten genutzt werden. Ein Entgasungs-Gehäuseabschnitt kann beispielsweise einen größeren Querschnitt aufweisen als ein Wirbelschicht-Gehäuseabschnitt. Dies führt zu einem großen möglichen Reaktionsvolumen bei der Nachreaktion. Alternativ kann ein Entgasungs-Gehäuseabschnitt auch sich zu einem rohrförmigen Gehäuseabschnitt mit im Vergleich zum sonstigen Reaktorgehäuse geringen Rohrdurchmesser verjüngen. Dies kann zur erwünschten Beschleunigung eines Synthesegas/Feststoffgemisches genutzt werden.
- Ein Wärmetauscher nach Anspruch 9 kann durch einen Brenner geheizt werden. Auch eine anderweitige Beheizung des Wärmetauschers ist möglich. Als Brenngas kann ein Erdgas/Luftgemisch und/oder ein Synthesegas/Luftgemisch zum Einsatz kommen. Auch ein anderes Brenngas kann zum Einsatz kommen. Der Wärmetauscher kann die erzeugte Wärme über eine Wärmeübertragungsfläche, beispielsweise über eine Brenner-Mantelfläche, im Wirbelschicht-Gehäuseabschnitt abgeben. Die Wärmeübertragungsfläche, beispielsweise die Brenner-Mantelfläche, kann mit großer Oberfläche gestaltet sein.
- Eine Heizeinrichtung nach Anspruch 10 lässt sich durch Zugabe insbesondere eines sauerstoffhaltigen Gases in ihrer Heizleistung mit geringer Reaktionszeit steuern und/oder regeln. Die Zuführeinheit kann die einzige Wärmequelle der jeweiligen Heizeinrichtung sein. Die Heizeinrichtung kann auch eine Kombination eines Wärmetauschers mit einer derartigen Zuführeinheit für ein insbesondere sauerstoffhaltiges Gas darstellen.
- Die Vorteile einer Vorrichtung nach Anspruch 11 entsprechen denen, die vorstehend unter Bezugnahme auf den Anspruch 4 bereits erläutert wurden.
- Ein Wirbelschicht-Kreislauf nach Anspruch 12 kann zur Erhöhung eines Reaktor-Wirkungsgrades eingesetzt werden. In den Wirbelschicht-Kreislauf kann das Wirbelschichtmaterial einschließlich von noch nicht vergasten Kohlenstoffresten sowie Asche in einem Abscheider, insbesondere einem Zyklon, abgeschieden und mit Luft nachverbrannt werden. Dies kann dazu genutzt werden, das Wirbelschichtmaterial wieder zu erhitzen, bevor dieses innerhalb des Kreislaufs der Wirbelschicht wieder zugeführt wird.
- Ein Flugstromreaktor nach Anspruch 13 stellt eine Variante zur Umsetzung restlicher, leichterer Partikel nach dem Pyrolyseschritt und/oder zur Reduzierung des Teergehaltes über eine Nachreaktion dar.
- Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnung näher erläutert. In dieser zeigen:
- Fig. 1
- in einer schematischen Längsschnitt-Darstellung eine Vorrichtung zur Erzeugung von Synthesegas aus kohlenstoffhaltigen Edukten durch Vergasung; und
- Fig. 2 bis 6
- weitere Ausführungen einer derartigen Vorrichtung.
- Eine Vorrichtung 1 dient zur Erzeugung von Synthesegas aus kohlenstoffhaltigen Edukten, beispielsweise aus Biomasse oder aus Kohle, durch Vergasung. Die Vorrichtung 1 hat einen Wirbelschichtreaktor 2. Ein Reaktorgehäuse 3 des Wirbelschichtreaktors 2 ist funktionell unterteilt in mehrere Gehäuseabschnitte 4 bis 6. Bei der Ausführung nach
Fig. 1 sind diese Gehäuseabschnitte 4 bis 6 Teile ein und desselben Reaktorgehäuses 3. - Der erste, tief gelegene Wirbelschicht-Gehäuseabschnitt 4 dient zur Aufnahme eines ersten, tief gelegenen Wirbelschicht-Bereichs 7 einer Wirbelschicht 8 des Wirbelschichtreaktors 2. Als Wirbelschichtmaterial kann Sand eingesetzt werden. Eine obere Phasengrenze 9 der Wirbelschicht 8 ist in der
Fig. 1 durch eine geschwungene Linie angedeutet. Diese Phasengrenze liegt in etwa auf Höhe einer oberen Grenze des zweiten Reaktor-Gehäuseabschnitts 5, der oberhalb des Wirbelschicht-Gehäuseabschnitts 4 liegt und direkt an diesen angrenzt. Der zweite Reaktor-Gehäuseabschnitt 5 ist in Form eines zweiten Wirbelschicht-Gehäuseabschnitts ausgebildet und dient zur Aufnahme eines zweiten Wirbelschicht-Bereichs 10 der Wirbelschicht 8. - Oberhalb des zweiten Reaktor-Gehäuseabschnitts 5 hat der Wirbelschichtreaktor 3 den Entgasungs-Gehäuseabschnitt 6. Dieser grenzt nach oben direkt an den Reaktor-Gehäuseabschnitt 5 an. Ein Querschnitt des Entgasungs-Gehäuseabschnitts 6 vergrößert sich am Übergang zum Reaktor-Gehäuseabschnitt 5 über einen Erweiterungskonus 11. Im Bereich des Entgasungs-Gehäuseabschnitts 6 hat das Reaktorgehäuse 3 also einen Gehäuse-Querschnitt, der vom Gehäuse-Querschnitt des Wirbelbett-Gehäuseabschnitts 4 und vom Gehäuse-Querschnitt des Reaktor-Gehäuseabschnitts 5 abweicht und im Falle der Ausführung nach
Fig. 1 größer ist. - Die Vorrichtung 1 hat eine erste Heizeinrichtung 12 zum Erwärmen des Wirbelschicht-Bereichs 7 im Wirbelschicht-Gehäuseabschnitt 4 auf eine erste Vergasungstemperatur. Die erste Heizeinrichtung 12 hat eine als Wärmetauscher ausgeführte Heizeinheit in Form eines Brenners 13 und eine weitere Heizeinheit in Form einer Zuführeinheit 14 für sauerstoffhaltiges Gas. Im Ausführungsbeispiel nach
Fig. 1 wird über die Zuführeinheit 14 Wasserdampf und/oder Luft und/oder Sauerstoff dem Wirbelschicht-Bereich 7 zugeführt. Das sauerstoffhaltige Gas wird im Bereich eines Bodens 14a des Reaktorgehäuses 3 im Wirbelschicht-Bereich 7 über eine Mehrzahl von Düsen 14b zugeführt, die in derFig. 1 schematisch dargestellt sind. Diese Düsen 14b können ringförmig um den Brenner 13 angeordnet sein. Die Düsen 14b strömen das sauerstoffhaltige Gas nach oben hin aus. Bei einer alternativen, nicht dargestellten Gestaltung der Zuführeinheit 14 können alternativ oder zusätzlich Düsen entsprechend den Düsen 14b vorgesehen sein, die das sauerstoffhaltige Gas nach unten hin aussströmen. - Der Brenner 13 wird über ein brennfähiges Luft-/Gasgemisch betrieben, das über eine in der
Fig. 1 schematisch durch zwei Pfeile dargestellte Zuführleitung 15 dem Brenner 13 zugeführt wird. Bei dem Gas des Luft/Gasgemisches kann es sich um Erdgas, um Synthesegas oder um eine Mischung aus beiden handeln. Der Brenner 13 ist rohrförmig ausgeführt, wobei eine Rohr-Längsachse 15a des Brenners 13 mit einer Längsachse des ebenfalls rohrförmigen Reaktorgehäuses 3 zusammenfällt. Der Brenner 13 "steht" also zentral im Wirbelschicht-Bereich 7. Ein oberseitiger Abschluss des Brenners 13 reicht bis nahe einer Bereichsgrenze zwischen den Wirbelschicht-Bereichen 7 und 10 bzw. zwischen den Gehäuseabschnitten 4 und 5. - Die Heizeinrichtung 12 hat eine Heizleistung, die es ermöglicht, den Wirbelschicht-Bereich 7 längs einer gesamten Höhenerstreckung des Brenners 13, also innerhalb des ersten, tief gelegenen Wirbelschicht-Gehäuseabschnitts 4, auf eine erste Vergasungstemperatur im Bereich zwischen 600 °C und 770 °C, insbesondere im Bereich zwischen 700 °C und 770 °C, zu bringen. Diese erste Vergasungstemperatur ist niedriger als eine Ascheerweichungstemperatur bzw. als eine Biomasse-Erweichungstemperatur.
- Die Heizleistung der ersten Heizeinrichtung 12 kann zwischen dem Brenner 13 und der Zuführeinrichtung 14 gesteuert oder geregelt vorgegeben verteilt werden. Hierzu hat die Vorrichtung 1 eine schematisch dargestellte Steuer-/Regeleinrichtung 16. Diese steht mit Steuerventilen 17 einerseits der Zuführeinheit 14 und andererseits der Zuführleitung 15 in nicht dargestellter Weise in Signalverbindung. Zudem kann die Steuer-/Regeleinrichtung 16 mit in der
Fig. 1 nicht dargestellten Messfühlern, beispielsweise mit Temperatur- oder Gas-Konzentrations-Sensoren, die im Reaktor 2 untergebracht sind, in Signalverbindung stehen. - Die Vorrichtung 1 hat eine zweite Heizeinrichtung 18 zum Erwärmen des Reaktor-Gehäuseabschnitts 5 auf eine zweite Vergasungstemperatur, die höher ist als die erste Vergasungstemperatur.
- Die zweite Heizeinrichtung 18 ist, vergleichbar zur Zuführeinheit 14 der ersten Heizeinrichtung 12, als Zuführeinrichtung für ein sauerstoffhaltiges Gas ausgeführt. Komponenten der zweiten Heizeinrichtung 18, die denjenigen in der Zuführeinheit 14 entsprechen, tragen die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen erläutert. Auch die zweite Heizeinrichtung 18 kann über die Steuer-/Regeleinrichtung 16 gesteuert bzw. geregelt werden. Die zweite Vergasungstemperatur liegt im Bereich zwischen 770 °C und 1000 °C und insbesondere im Bereich zwischen 770 °C und 900 °C oder im Bereich zwischen 770 °C und 810 °C.
- Die zweite Heizeinrichtung 18 ist im Reaktor-Gehäuseabschnitt 5 nahe der Bereichsgrenze zum Wirbelschicht-Gehäuseabschnitt 4 angeordnet.
- Im Entgasungs-Gehäuseabschnitt 6 des Reaktorgehäuses 3 ist eine weitere Heizeinrichtung in Form einer Nachreaktions-Heizeinrichtung 19 angeordnet. Die Nachreaktions-Heizeinrichtung 19 ist oberhalb der Phasengrenze 9 angeordnet. Eine strukturelle Ausführung mit der Nachreaktions-Heizeinrichtung 19 entspricht derjenigen der zweiten Heizeinrichtung 18. Die Nachreaktions-Heizeinrichtung 19 dient zum Erwärmen von oberhalb der Phasengrenze 9 vorliegenden Medien innerhalb des Reaktorgehäuses 3 auf eine Nachreaktionstemperatur, die höher ist als die zweite Vergasungstemperatur. Die Nachreaktionstemperatur kann im Bereich von 830 °C liegen, kann aber auch höher sein und im Bereich zwischen 830 °C und 1000 °C liegen und beispielsweise 850 °C, 900 °C oder 1000 °C betragen.
- Die Nachreaktions-Heizeinrichtung 19 ist auf Höhe des Erweiterungskonus 11 des Reaktorgehäuses 3 angeordnet.
- Die Zuführeinheit 14 bzw. die Heizeinrichtungen 18, 19 können ringförmige Düsen-Leitungsabschnitte aufweisen, die um die zentrale Längsachse 15a des Reaktorgehäuses 3 herumgeführt sind.
- Die Vorrichtung 1 hat eine Zuführeinrichtung 20 zum Zuführen der Edukte, die vergast werden sollen, in den ersten Wirbelschicht-Bereich 7. Die Zuführeinrichtung 20 ist als Förderschnecke ausgeführt. Ein Zuführende 21 der Förderschnecke durchtritt eine Gehäusewand des Reaktorgehäuses 3 im Bereich eines unteren Drittels des Gehäuseabschnitts 4 oberhalb der Düsen 14b der Zuführeinheit 14 der ersten Heizeinrichtung 12.
- Die Vorrichtung 1 hat oberhalb des Entgasungs-Gehäuseabschnitts 6 eine Abführeinrichtung für das erzeugte Synthesegas in Form eines schematisch angedeuteten Auslasses 22.
- Die Vorrichtung 1 hat weiterhin eine Entnahmeeinrichtung 23 zum bodenseitigen Entnehmen eines Teils des Wirbelschicht-Betts. Die Entnahmeeinrichtung hat ein Entnahmeventil 24, das in einer Entnahmeleitung 25 angeordnet ist, welche vom Boden 14a des Reaktorgehäuses 3 nach unten ausmündet. Die Entnahmeleitung 25 führt die entnommenen Wirbelschicht-Anteile hin zu einem in der
Fig. 1 schematisch angedeuteten Entnahmebehälter 26. - Die Vorrichtung 1 hat weiterhin eine Nachfülleinrichtung 27 zum Nachfüllen von Wirbelschicht-Bettmaterial, insbesondere zum Ausgleichen der Entnahme durch die Entnahmeeinrichtung 23. Die Nachfülleinrichtung 27 hat einen Nachfüllbehälter 28, der über eine Nachfüllleitung 29 mit einem oberseitigen Gehäusedeckel 30 des Reaktorgehäuses 3 verbunden ist und über diesen in den Entgasungs-Gehäuseabschnitt 6 von oben her einmündet. In der Nachfüllleitung 29 ist ein Nachfüllventil 31 angeordnet. Das Entnahmeventil 24 einerseits und das Nachfüllventil 31 andererseits kann jeweils in Form einer Schleuse mit zwei sequentiell angeordneten Ventileinheiten ausgeführt sein. Das Entnahmeventil 24 und das Nachfüllventil 31 stehen wiederum in nicht dargestellter Weise mit der Steuer-/Regeleinrichtung 16 in Signalverbindung.
- Die Vorrichtung 1 arbeitet zur Erzeugung von Synthesegas aus kohlenstoffhaltigen Edukten durch Vergasung im Wirbelschichtreaktor 2 folgendermaßen: Der erste, tief gelegene Wirbelschicht-Bereich 7 wird mit der ersten Heizeinrichtung auf die erste Vergasungstemperatur durch externe Energiezufuhr erwärmt. Der Reaktor-Gehäuseabschnitt 5 wird mit der zweiten Heizeinrichtung 18 auf die zweite Vergasungstemperatur durch externe Energiezufuhr erwärmt. Mit der Zuführeinrichtung 20 werden die zu vergasenden Edukte in den Wirbelschicht-Bereich 7 eingeführt. Da die erste Vergasungstemperatur geringer ist als eine Ascheerweichungs- bzw. Biomassenerweichungstemperatur, ist beim ersten Vergasungsschritt im Gehäuseabschnitt 4 des Reaktorgehäuses eine Agglomeration von Asche bzw. Biomasse im Wirbelschicht-Bereich 7 verringert oder gar ganz verhindert. In dem ersten Wirbelschicht-Bereich 7 findet eine Pyrolyse statt, wobei etwa 50 % bis 80 % der Biomasse vergast werden. Im gesamten Gehäuseabschnitt 4 wird diese erste Vergasungstemperatur möglichst homogen eingestellt. Eine Ist-Vergasungstemperatur weicht dabei von einer vorgegebenen Soll-Vergasungstemperatur um maximal 30 °C bis 50 °C ab. Wenn beispielsweise eine Soll-Temperatur von 720 °C für die erste Vergasungstemperatur vorgegeben wird, liegt im gesamten Gehäuseabschnitt 4 eine Ist-Temperatur im Bereich zwischen 670 °C und 770 °C vor, bevorzugt im Bereich zwischen 690 °C und 750 °C und weiter bevorzugt mit noch kleinerer Abweichung zur Soll-Temperatur.
- Bei der Pyrolyse im Gehäuseabschnitt 4 noch nicht vollständig umgesetzte, leichtere Biomassen-Partikel werden über die Wirbelschicht 8 vom Gehäuseabschnitt 4 nach oben in den Gehäuseabschnitt 5 getragen und hierdurch vom ersten, unteren Wirbelschicht-Bereich 4 örtlich abgegrenzt. Diese leichteren Partikel werden nun aufgrund der höheren zweiten Vergasungstemperatur im Wirbelschicht-Bereich 10 mit ausreichender Umsatzgeschwindigkeit vergast. Im Wirbelschicht-Bereich 10 verlaufen zudem homogene Gasphasenreaktionen ab, die zu einer weiteren Umsetzung der im Wirbelschicht-Bereich 7 erzeugten Pyrolysegase führen.
- Aufgrund der höheren zweiten Vergasungstemperatur wird ein Teergehalt im erzeugten Synthesegas reduziert. Durch die Nachreaktion im Entgasungs-Gehäuseabschnitt 6 aufgrund der höheren Nachreaktionstemperatur kann der Teergehalt im erzeugten Synthesegas vor dem Auslass 22 weiter reduziert werden.
- Restliche Asche- und/oder Biomassen-Agglomerationen bzw. Verklebungen mit dem Bettmaterial der Wirbelschicht 8 sinken in der Wirbelschicht 8 nach unten und können über die Entnahmeeinrichtung 23 durch Ansteuerung des Entnahmeventils 24 gesteuert abgeführt werden. Ein entsprechender Verlust an Bettmaterial kann über die Nachfülleinrichtung 27 gesteuert ausgeglichen werden.
- Anhand der
Fig. 2 wird nachfolgend eine weitere Ausführung einer Vorrichtung 32 zur Erzeugung von Synthesegas aus kohlestoffhaltigen Edukten durch Vergasung beschrieben. Komponenten und Funktionen, die denjenigen entsprechen, die vorstehend unter Bezugnahme auf dieFig. 1 erläutert wurden, tragen die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert. - Bei der Vorrichtung 32 ist anstelle der zweiten Heizeinrichtung 18 ein zweiter Brenner 33 zum Erwärmen des Reaktor-Gehäuseabschnitts 5 auf die zweite Vergasungstemperatur vorgesehen. Der Brenner 33 kann mit einem Luft/Erdgas-Gemisch betrieben werden. Anders als der erste Brenner 13 ist der zweite Brenner 33 nicht stehend, sondern liegend eingebaut und durchtritt, vergleichbar zur Zuführeinrichtung 20, eine Mantelwand des Reaktorgehäuses 3. Ein Endbereich des Brenners 33 ragt bis über die Längsachse 15a hinaus in den Wirbelschicht-Bereich 10 hinein und sorgt somit für einen guten Wärmeaustausch mit dem Wirbelbett im Bereich des Wirbelschicht-Bereichs 10. Abgesehen von der Anordnung entspricht der Aufbau des Brenners 33 dem des Brenners 13.
- Abgesehen davon, dass zum Erwärmen des Reaktor-Gehäuseabschnitts 5 auf die Vergasungstemperatur nun der Brenner 33 eingesetzt wird, entspricht das Erzeugungsverfahren für das Synthesegas, also die Arbeitsweise der Vorrichtung 32, demjenigen, welches im Zusammenhang mit der Vorrichtung 1 nach
Fig. 1 beschrieben wurde. - Anhand der
Fig. 3 wird nachfolgend eine weitere Ausführung einer Vorrichtung 34 zur Erzeugung von Synthesegas aus kohlestoffhaltigen Edukten durch Vergasung beschrieben. Komponenten und Funktionen, die denjenigen entsprechen, die vorstehend unter Bezugnahme auf dieFig. 1 und2 erläutert wurden, tragen die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert. - Im Unterschied zur Vorrichtung 32 hat die Vorrichtung 34 anstelle der als Zuführeinheit ausgeführten Nachreaktions-Heizrichtung 19 einen weiteren, dritten Brenner 35. Dieser ist wie der Brenner 33 quer zur Längsachse 15a des Reaktorgehäuses 3 eingebaut und durchtritt die Mantelwand des Reaktorgehäuses 3 auf Höhe des Erweiterungskonus 11. Beim Brenner 35 handelt es sich um einen offenen Brenner. Der Brenner 35 kann mit einem Sauerstoff/Erdgas-Gemisch betrieben werden. Ein Endbereich des Brenners 35 ragt in den Entgasungs-Gehäuseabschnitt 6 bis etwa zur Längsachse 15a des Reaktorgehäuses 3 hinein. Bis auf die Tatsache, dass zum Erwärmen des Entgasungs-Gehäuseabschnitts 6 auf die Nachreaktionstemperatur nunmehr der Brenner 35 zum Einsatz kommt, entspricht die Arbeitsweise der Vorrichtung 34 bei der Synthesegas-Erzeugung durch Vergasung derjenigen, die vorstehend unter Bezugnahme auf die
Fig. 1 und2 bereits erläutert wurde. - In Abwandlung zur Ausführung nach
Fig. 3 ist eine weitere, nicht dargestellte Ausführung der Synthesegas-Erzeugungsvorrichtung möglich, bei der anstelle des zweiten Brenners 33 wiederum eine Zuführeinheit in Form der zweiten Heizeinrichtung 18 nachFig. 1 zum Einsatz kommt. Anstelle der Ausführungen nach denFig. 1 bis 3 ist auch eine Ausgestaltung möglich, bei der als erste Heizeinrichtung 12 ausschließlich ein Brenner oder ausschließlich eine Zuführeinheit für ein sauerstoffhaltiges Gas zur Erwärmung des ersten, tief gelegenen Wirbelschicht-Bereichs 7 zum Einsatz kommt. - Anhand der
Fig. 4 wird nachfolgend eine weitere Ausführung einer Vorrichtung 36 zur Erzeugung von Synthesegas aus kohlestoffhaltigen Edukten durch Vergasung beschrieben. Komponenten und Funktionen, die denjenigen entsprechen, die vorstehend unter Bezugnahme auf dieFig. 1 bis 3 erläutert wurden, tragen die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert. - Die Vorrichtung 36 nach
Fig. 4 arbeitet mit einer zirkulierenden Wirbelschicht 8. Hierzu hat die Vorrichtung 36 einen Wirbelschicht-Kreislauf 37. Der Wirbelbett-Gehäuseabschnitt 4, der Reaktor-Gehäuseabschnitt 5 und der Entgasungs-Gehäuseabschnitt 6 sind Bestandteile des Wirbelschicht-Kreislaufs 37, ebenso wie der Auslass 22 für das Synthesegas. Letzterer steht mit einem Abscheider 38 in Fluidverbindung, der als ZyklonAbscheider ausgeführt sein kann. Das im Abscheider 38 von dem Wirbelschichtmaterial getrennte Synthesegas verlässt den Abscheider 38 über einen Auslass 39. Das im Abscheider 38 abgeschiedene Wirbelschichtmaterial wird über einen Bodenauslass 40 des Abscheiders 38 und eine Rückführleitung 41 zurück in das Reaktorgehäuse 3 geführt. Hierzu mündet die Rückführleitung 41 in den Wirbelschicht-Gehäuseabschnitt 4 des Reaktorgehäuses 3 knapp oberhalb der Zuführeinheit 14 der ersten Heizeinrichtung 12 ein. - Grundsätzlich läuft die Vergasungsreaktion in der Vorrichtung 36 analog zu dem ab, was vorstehend im Zusammenhang mit dem Synthesegas-Erzeugungsverfahren bei der Vorrichtung 1 nach
Fig. 1 erläutert wurde. Der Wirbelschichtreaktor 2 wird bei der Vorrichtung 36 so betrieben, dass zumindest ein Teil des Wirbelschichtenmaterials durch den Entgasungs-Gehäuseabschnitt 6 nach oben und über den Auslass 22 aus dem Reaktorgehäuse 3 ausgetragen wird. Das so ausgetragene Wirbelschichtmaterial wird über den Abscheider 38 und die Rückführleitung 41 dem Reaktorgehäuse 3 wieder zugeführt, sodass sich eine zirkulierende Wirbelschicht in der Vorrichtung 36 ausbildet. - Anhand der
Fig. 5 wird nachfolgend eine weitere Ausführung einer Vorrichtung 42 zur Erzeugung von Synthesegas aus kohlestoffhaltigen Edukten durch Vergasung beschrieben. Komponenten und Funktionen, die denjenigen entsprechen, die vorstehend unter Bezugnahme auf dieFig. 1 bis 4 erläutert wurden, tragen die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert. - Bei der Vorrichtung 42 liegt ein einziger Wirbelschicht-Gehäuseabschnitt 43 vor, der vom Boden 14a des Reaktorgehäuses 3 bis zur Phasengrenze 9 im Reaktorgehäuse 3 reicht.
- Die erste Heizeinrichtung 12 ist bei der Vorrichtung 42 ähnlich aufgebaut und angeordnet wie bei der Vorrichtung 1 und erwärmt die Wirbelschicht 8 auf die erste Vergasungstemperatur. Oberhalb der ersten Heizeinrichtung 12 kann, wie vorstehend in Zusammenhang mit den Heizeinrichtungen 18 und 33 bereits erläutert, eine weitere Heizeinrichtung angeordnet sein, die einen Wirbelschicht-Bereich erwärmt, der höher liegt als derjenige Wirbelschicht-Bereich, der durch die Heizeinrichtung 12 erwärmt wird.
- Ein zweiter Reaktor-Gehäuseabschnitt ist bei der Vorrichtung 42 durch einen Auslassabschnitt 44 gebildet, der neben der Funktion des Synthesegas-Auslasses entsprechend dem Auslass 22 bei den Ausführungen nach den
Fig. 1 bis 4 auch die Funktion des auf die zweite Vergasungstemperatur zu erwärmenden, zweiten Reaktor-Gehäuseabschnitts hat. Für diese Erwärmung auf die zweite Vergasungstemperatur dient eine zweite Heizeinrichtung 45 der Vorrichtung 42 in Form einer Zuführeinheit für ein sauerstoffhaltiges Gas. Bei der Ausführung nachFig. 5 wird Luft und/oder Sauerstoff über die Zuführeinheit 45 zugeführt. - Der Auslassabschnitt 44 verbindet das Reaktorgehäuse 3 mit einem ebenfalls rohrförmigen Entgasungsabschnitt 46. Letzterer hat die Funktion des Entgasungs-Gehäuseabschnitts 6 bei den Ausführungen nach den
Fig. 1 bis 4 . Im Entgasungsabschnitt 46 ist wiederum eine Zuführeinheit 47 angeordnet, die die Funktion der Nachreaktions-Heizeinrichtung der Ausführungen nach denFig. 1 bis 4 hat. - Der Auslassabschnitt 44 und der Entgasungsabschnitt 46 haben einen Rohrquerschnitt, der deutlich geringer ist als der Querschnitt des Reaktorgehäuses 3. Der Auslassabschnitt 44 einerseits und der Entgasungsabschnitt 46 andererseits haben also einen kleineren Querschnitt als der Wirbelschicht-Gehäuseabschnitt 43.
- Beim Synthesegas-Erzeugungsverfahren mit der Vorrichtung 42 nach
Fig. 5 wird nach dem ersten Pyrolyseschritt im Wirbelschicht-Gehäuseabschnitt 43 das das Reaktorgehäuse 42 durch den Auslassabschnitt 44 verlassende Gemisch aus Synthesegas und restlichen, leichten Biomasse-Partikeln mit der zweiten Heizeinrichtung 45 auf die zweite Vergasungstemperatur gebracht, wodurch die zunächst noch unvergasten Partikel dann vergast werden und die weiteren homogenen Umsetzungs-Gasphasenreaktionen anlaufen. Nachfolgend durchtritt das Synthesegas mit den mitgeführten Feststoffen den Entgasungsabschnitt 46 und wird mit der dritten Heizeinrichtung 47 auf die Nachreaktionstemperatur erwärmt. Hierdurch findet dann die Nachreaktion zum Teerabbau im Synthesegas statt. Dem Entgasungsabschnitt 46 kann dann wiederum ein Abscheider nachgeordnet sein. - Anhand der
Fig. 6 wird nachfolgend eine weitere Ausführung einer Vorrichtung 48 zur Erzeugung von Synthesegas aus kohlestoffhaltigen Edukten durch Vergasung beschrieben. Komponenten und Funktionen, die denjenigen entsprechen, die vorstehend unter Bezugnahme auf dieFig. 1 bis 5 erläutert wurden, tragen die gleichen Bezugsziffern und werden nicht nochmals im Einzelnen diskutiert. - Im Bereich der Wirbelschicht 8 ist die Vorrichtung 48 aufgebaut wie die Vorrichtung 1 nach
Fig. 1 . Im Unterschied zur Vorrichtung 42 nach derFig. 5 hat die Vorrichtung 48 nachFig. 6 einen Brenner 49, der am Übergang zwischen dem Auslassabschnitt 44 und dem Entgasungsabschnitt 46 angeordnet ist. Der Brenner 49 sorgt für eine Erwärmung der noch nicht pyrolytisch umgesetzten restlichen, leichten Biomasse-Partikel auf die zweite Vergasungstemperatur und ggf. nachfolgend im weiteren Verlauf im Entgasungsabschnitt 46 auch auf die Nachreaktionstemperatur. Der Brenner 49 stellt also die Nachreaktions-Heizeinrichtung der Vorrichtung 48 dar. Das Synthesegas-Erzeugungsverfahren entspricht ansonsten dem, das vorstehend unter Bezugnahme auf dieFig. 1 bis 5 und insbesondere unter Bezugnahme auf dieFig. 5 bereits erläutert wurde. - Der Auslassabschnitt 44 und der Entgasungsabschnitt 46 bilden zusammen mit den dort angeordneten Heizeinheiten einen Flugstromreaktorteil 50 der Vorrichtung 42 bzw. 48.
- Dem Flugstromreaktor 50 ist eine Abführeinrichtung 51 nachgeordnet, die in den
Fig. 5 und6 schematisch angedeutet ist und in der das Synthesegas von den mitgeführten Feststoffanteilen über einen Abscheider getrennt wird.
Claims (13)
- Verfahren zur Erzeugung von Synthesegas mit einer Vorrichtung nach einem der Ansprüche 5 bis 13 aus kohlenstoffhaltigen Edukten durch Vergasung in einen Wirbelschichtreaktor (2) mit folgenden Schritten:- Erwärmen eines ersten, tief gelegenen Wirbelschicht-Bereichs (7) einer Wirbelschicht (8) des Wirbelschichtreaktors (2) auf eine erste Vergasungstemperatur, wobei die erste Vergasungstemperatur niedriger ist als eine Erweichungstemperatur der Edukte oder ihrer Asche,- Erwärmen eines zweiten Reaktor-Gehäuseabschnitts (5; 44), der höher liegt als der erste Wirbelschicht-Bereich (7) und einen zweiten Wirbelschicht-Bereich (10) der Wirbelschicht (8) des Wirbelschicht-Reaktors (2) enthält, wobei der zweite Wirbelschicht-Bereich (10) höher liegt als der erste Wirbelschicht-Bereich (7) und an diesen angrenzt, auf eine zweite Vergasungstemperatur, wobei die zweite Vergasungstemperatur höher ist als die erste Vergasungstemperatur,- Zuführen der Edukte in den ersten Wirbelschicht-Bereich (7),- Abführen des erzeugten Synthesegases.
- Verfahren nach Anspruch 1, gekennzeichnet durch ein allothermes Erwärmen des ersten, tief gelegenen Wirbelschicht-Bereichs (7) und durch ein autothermes Erwärmen des zweiten, höher liegenden Wirbelschicht-Bereichs (10).
- Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch ein Erwärmen eines weiteren Reaktor-Gehäuseabschnitts (6; 46) oberhalb der Wirbelschicht (8) auf eine Nachreaktionstemperatur, wobei die Nachreaktionstemperatur höher ist als die zweite Vergasungstemperatur.
- Verfahren nach einem der Ansprüche 1 bis 3, gekennzeichnet durch ein Entnehmen eines Teils des Wirbelschicht-Betts und ein Nachfüllen von Bettmaterial zum Ausgleichen der Entnahme.
- Vorrichtung (1; 32; 34, 36; 42; 48) zur Erzeugung von Synthesegas aus kohlenstoffhaltigen Edukten durch Vergasung- mit einem Wirbelschichtreaktor (2), wobei ein Gehäuse (3) des Wirbelschichtreaktors (2) unterteilt ist in- einen ersten, tief gelegenen Wirbelschicht-Gehäuseabschnitt (4; 43) zur Aufnahme eines ersten, tief gelegenen Wirbelschicht-Bereichs (7) einer Wirbelschicht (8) des Wirbelschichtreaktors (2),- einen zweiten Reaktor-Gehäuseabschnitt (7; 44) in Form eines zweiten Wirbelschicht-Gehäuseabschnitts, der höher liegt als der erste Wirbelschicht-Gehäuseabschnitt (4; 43) und an diesen angrenzt, zur Aufnahme eines zweiten Wirbelschicht-Bereichs (10) der Wirbelschicht (8),- mit einer ersten Heizeinrichtung (12) zum Erwärmen des ersten Wirbelschicht-Bereichs (7) auf eine erste Vergasungstemperatur,- mit einer zweiten Heizeinrichtung (18; 33; 45) zum Erwärmen des zweiten Reaktor-Gehäuseabschnitts (5; 44) auf eine zweite Vergasungstemperatur, die höher ist als die erste Vergasungstemperatur,- mit einer Zuführeinrichtung (20) zum Zuführen der Edukte in den ersten Wirbelschicht-Bereich (7),- mit einer Abführeinrichtung (22; 39; 44, 51) für das erzeugte Synthesegas,- wobei die erste Heizeinrichtung (12) eine als Wärmetauscher ausgeführte Heizeinheit in Form eines Brenners (13) und eine weitere Heizeinheit in Form einer Zuführeinheit (14) für sauerstoffhaltiges Gas hat.
- Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die erste Heizeinrichtung (12) zum allothermen Energieeintrag ausgeführt ist, wobei die zweite Heizeinrichtung (18; 33) zum autothermen Energieeintrag ausgeführt ist.
- Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass das Gehäuse des Wirbelschichtreaktors (2) einen Entgasungs-Gehäuseabschnitt (6; 46) oberhalb des zweiten Reaktor-Gehäuseabschnitts (5; 44) aufweist, wobei eine Nachreaktions-Heizeinrichtung (19; 35; 47; 49) zum Erwärmen des Entgasungs-Gehäuseabschnitts (6; 46) auf eine Nachreaktionstemperatur vorhanden ist.
- Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Reaktor (2) im Bereich des Entgasungs-Gehäuseabschnitts (6; 46) einen Gehäuse-Querschnitt aufweist, der vom Gehäuse-Querschnitt des Wirbelschicht-Gehäuseabschnitts (4) abweicht.
- Vorrichtung nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass zumindest eine der Heizeinrichtungen (12; 33; 35; 49) einen Wärmetauscher aufweist.
- Vorrichtung nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass zumindest eine der Heizeinrichtungen (12; 18; 19; 45; 47) mindestens eine Zuführeinheit (14) für Wasserdampf, Luft oder Sauerstoff aufweist.
- Vorrichtung nach einem der Ansprüche 5 bis 10, gekennzeichnet durch eine Entnahmeeinrichtung (23) zum bodenseitigen Entnehmen eines Teils des Wirbelschicht-Betts aus dem Reaktorgehäuse (2) und eine Nachfülleinrichtung (27) zum Nachfüllen von Bettmaterial zum Ausgleichen der Entnahme.
- Vorrichtung nach einem der Ansprüche 5 bis 11, gekennzeichnet durch einen Wirbelschicht-Kreislauf (37), wobei der Wirbelschicht- Gehäuseabschnitt (4) und der Entgasungs-Gehäuseabschnitt (6) Teil des Wirbelschicht-Kreislaufs (37) sind und wobei im weiteren Wirbelschicht- Kreislauf (37) ein Abscheider (38) zum Abscheiden des erzeugten Synthesegases von Feststoffanteilen angeordnet ist.
- Vorrichtung nach einem der Ansprüche 5 bis 12, gekennzeichnet durch einen dem ersten, tief gelegenen Wirbelschicht-Gehäuseabschnitt (4; 43) nachgeordneten Flugstromreaktor (50).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011075438A DE102011075438A1 (de) | 2011-05-06 | 2011-05-06 | Verfahren und Vorrichtung zur Erzeugung von Synthesegas aus kohlestoffhaltigen Edukten durch Vergasung |
PCT/EP2012/058081 WO2012152638A1 (de) | 2011-05-06 | 2012-05-03 | Verfahren und vorrichtung zur erzeugung von synthesegas aus kohlestoffhaltigen edukten durch vergasung im wirbelstromreaktor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2705121A1 EP2705121A1 (de) | 2014-03-12 |
EP2705121B1 true EP2705121B1 (de) | 2018-05-02 |
Family
ID=46046177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12719675.6A Active EP2705121B1 (de) | 2011-05-06 | 2012-05-03 | Verfahren und vorrichtung zur erzeugung von synthesegas aus kohlestoffhaltigen edukten durch vergasung im wirbelstromreaktor |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2705121B1 (de) |
DE (1) | DE102011075438A1 (de) |
WO (1) | WO2012152638A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021134191A1 (de) | 2021-12-22 | 2023-06-22 | BHYO GmbH | Verfahren und Anlageverbund zur Erzeugung von Synthesegas |
WO2023170020A1 (de) | 2022-03-08 | 2023-09-14 | BHYO GmbH | Verfahren zur herstellung von wasserstoff aus biomasse |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107312575B (zh) * | 2017-08-01 | 2023-07-18 | 中国科学院工程热物理研究所 | 分级配风的循环流化床气化装置以及气化方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3033115A1 (de) * | 1980-09-03 | 1982-04-22 | Rheinische Braunkohlenwerke AG, 5000 Köln | Verfahren zum betreiben eines wirbelbettreaktors zum vergasen von kohlenstoffhaltigem material |
DE2949533A1 (de) * | 1979-12-08 | 1981-06-11 | Rheinische Braunkohlenwerke AG, 5000 Köln | Verfahren zum betreiben eines wirbelbettreaktors zum vergasen von kohlenstoffhaltigem material |
DE3635215A1 (de) * | 1986-10-16 | 1988-04-28 | Bergwerksverband Gmbh | Verfahren zur allothermen kohlevergasung und wirbelbett-gasgenerator zur durchfuehrung des verfahrens |
TW245651B (en) * | 1994-02-24 | 1995-04-21 | Babcock & Wilcox Co | Black liquor gasifier |
DE10227074A1 (de) | 2002-06-17 | 2004-01-15 | Clausthaler Umwelttechnikinstitut Gmbh, (Cutec-Institut) | Verfahren zur Vergasung von Biomasse und Anlage hierzu |
DE10258485A1 (de) | 2002-12-10 | 2004-07-08 | Innovativer Anlagenbau E&H Gmbh | Verfahren und Vorrichtung zur Gewinnung von Wärmeenergie und/oder motortauglichem Gas durch Vergasung von Feststoffen |
DE102004032830A1 (de) * | 2004-07-06 | 2006-02-23 | Rolf Schmitt | Verfahren zur Erzeugung von wasserstoffreichen Synthesegas aus biogenen Stoffen und sonstigen kohlenstoffhaltigen Verbindungen mittels Wasserdampfvergasung (Dampfreformierung) in einem indirekt beheizten Wirbelschichtreaktor bei gleichzeitiger partieller Oxidation der Einsatzstoffe durch geregelte Einbringung von Sauerstoff in den Wirbelschichtreaktor (Hybridverfahren) |
DE102004045772A1 (de) | 2004-09-15 | 2006-03-16 | Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg | Verfahren und Vorrichtung zur Erzeugung eines Produktgases durch thermochemische Vergasung eines kohlenstoffhaltigen Einsatzstoffes |
DE102006022265A1 (de) | 2006-04-26 | 2007-10-31 | Spot Spirit Of Technology Ag | Verfahren und Vorrichtung zur optimierten Wirbelschichtvergasung |
DE202006009174U1 (de) | 2006-06-08 | 2007-10-11 | Rudolf Hörmann GmbH & Co. KG | Vorrichtung zur Erzeugung von Brenngas aus einem festen Brennstoff |
DE102007006980B4 (de) * | 2007-02-07 | 2009-03-19 | Technische Universität Bergakademie Freiberg | Verfahren zur Vergasung fester Brennstoffe in der Wirbelschicht unter erhöhtem Druck |
DE102007012452B4 (de) | 2007-03-15 | 2014-01-16 | SynCraft Enegineering GmbH | Vergaser |
DE102008032166A1 (de) * | 2008-07-08 | 2010-01-14 | Karl-Heinz Tetzlaff | Verfahren und Vorrichtung zur Herstellung von teerfreiem Synthesgas aus Biomasse |
DE102008036734A1 (de) | 2008-08-07 | 2010-02-18 | Spot Spirit Of Technology Ag | Verfahren und Vorrichtung zur Herstellung von Energie, DME (Dimethylether und Bio-Silica unter Einsatz von CO2-neutralen biogenen reaktiven und reaktionsträgen Einsatzstoffen |
AT507068B1 (de) | 2008-09-02 | 2010-02-15 | Rudolf Berger | Anlage zur erzeugung von holzgas |
DE102009039837A1 (de) * | 2009-09-03 | 2011-03-10 | Karl-Heinz Tetzlaff | Elektrische Heizung für einen Wirbelschichtreaktor zur Herstellung von Synthesegas |
-
2011
- 2011-05-06 DE DE102011075438A patent/DE102011075438A1/de not_active Withdrawn
-
2012
- 2012-05-03 WO PCT/EP2012/058081 patent/WO2012152638A1/de active Application Filing
- 2012-05-03 EP EP12719675.6A patent/EP2705121B1/de active Active
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021134191A1 (de) | 2021-12-22 | 2023-06-22 | BHYO GmbH | Verfahren und Anlageverbund zur Erzeugung von Synthesegas |
WO2023117637A1 (de) | 2021-12-22 | 2023-06-29 | BHYO GmbH | Verfahren und anlagenverbund zur erzeugung von synthesegas |
WO2023170020A1 (de) | 2022-03-08 | 2023-09-14 | BHYO GmbH | Verfahren zur herstellung von wasserstoff aus biomasse |
DE102022105359A1 (de) | 2022-03-08 | 2023-09-14 | BHYO GmbH | Verfahren zur Herstellung von Wasserstoff aus Biomasse |
Also Published As
Publication number | Publication date |
---|---|
WO2012152638A1 (de) | 2012-11-15 |
EP2705121A1 (de) | 2014-03-12 |
DE102011075438A1 (de) | 2012-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2473581A2 (de) | Verfahren und vorrichtung zur nutzung von sauerstoff bei der dampfreformierung von biomasse | |
WO2011067130A1 (de) | Anlage zum erzeugen eines produktgases aus organischen einsatzstoffen | |
DE102010028816A1 (de) | Wirbelschichtreaktor und Verfahren zur Erzeugung von Produktgas aus kohlenstoffhaltigen Einsatzstoffen | |
EP2451904A2 (de) | Reaktor zur erzeugung eines produktgases durch allotherme vergasung von kohlenstoffhaltigen einsatzstoffen | |
DE102008043131B4 (de) | Verfahren und Vorrichtung zum thermochemischen Vergasen fester Brennstoffe | |
EP1218471B1 (de) | Verfahren und vorrichtung zum gewinnen heizwertreicher brenngase | |
DE102016121046B4 (de) | Duplex-TEK-Mehrstufen-Vergaser | |
EP2705121B1 (de) | Verfahren und vorrichtung zur erzeugung von synthesegas aus kohlestoffhaltigen edukten durch vergasung im wirbelstromreaktor | |
EP2146143A2 (de) | Verfahren und Vorrichtung zur Erzeugung eines stickstoffarmen bzw. nahezu stickstofffreien Gases | |
DE112007003339T5 (de) | Verfahren und Vorrichtung zur Vergasung von Vergasungsbrennstoff | |
WO2018024404A1 (de) | Anlage und verfahren zur umwandlung kohlenstoffhaltiger brennstoffe in synthesegas | |
EP3792216B1 (de) | Wärmeintegration bei der synthesegaserzeugung durch partialoxidation | |
WO2018095781A1 (de) | Verfahren und anlage zur kohlenstoff-reduzierung im bodenprodukt eines wirbelschichtvergasers | |
EP3046997B1 (de) | 3-zonen-vergaser und verfahren zum betreiben eines solchen vergasers zur thermischen umwandlung von abprodukten und abfällen | |
WO2011026631A2 (de) | Synthesegasreaktor mit beheizter kokswolke | |
EP3214155B1 (de) | Verfahren zur produktion von synthesegas zum betreiben eines verbrennungsmotors | |
DE102008037318B4 (de) | Verfahren, Vorrichtung und Anlage zur Flugstromvergasung fester Brennstoffe unter Druck | |
AT509681B1 (de) | Verfahren und vorrichtung zur erzeugung eines gases | |
EP1338847B1 (de) | Gleichstrom-Schacht-Reaktor | |
DE102007006980A1 (de) | Verfahren zur Vergasung fester Brennstoffe in der Wirbelschicht unter erhöhtem Druck | |
DE202009010833U1 (de) | Anordnung zur Aufbereitung und thermischen Behandlung von Abprodukten und Abfällen | |
DE102006058673A1 (de) | Vorrichtung und Verfahren zur Schwachgaserzeugung aus organischen Energieträgern | |
DE202016106184U1 (de) | Duplex-TEK-Mehrstufen-Vergaser | |
DE102021005175A1 (de) | Methanol synthesesystem welches wasserstoff zusammen mit calciumcarbonat caco3 zu methanol umwandelt und zugehöriges verfahren zur methanol synthese | |
DE102014007366A1 (de) | Wirbelschichtvergaser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131111 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LINDE AKTIENGESELLSCHAFT Owner name: BABCOCK NOELL GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20161215 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180110 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 995245 Country of ref document: AT Kind code of ref document: T Effective date: 20180515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012012633 Country of ref document: DE Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: LINDE AKTIENGESELLSCHAFT Owner name: BABCOCK NOELL GMBH |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: BABCOCK NOELL GMBH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180502 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: BILFINGER NOELL GMBH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180802 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180802 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SCHMITT, ROLF |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180803 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20181213 AND 20181219 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012012633 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502012012633 Country of ref document: DE Representative=s name: DR. BUSCH & KOLLEGEN, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502012012633 Country of ref document: DE Owner name: BGREEN GMBH, DE Free format text: FORMER OWNERS: BABCOCK NOELL GMBH, 97080 WUERZBURG, DE; LINDE AKTIENGESELLSCHAFT, 80331 MUENCHEN, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502012012633 Country of ref document: DE Owner name: BHYO GMBH, DE Free format text: FORMER OWNERS: BABCOCK NOELL GMBH, 97080 WUERZBURG, DE; LINDE AKTIENGESELLSCHAFT, 80331 MUENCHEN, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180503 |
|
26N | No opposition filed |
Effective date: 20190205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180503 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20190429 AND 20190502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 995245 Country of ref document: AT Kind code of ref document: T Owner name: BGREEN GMBH, DE Effective date: 20190423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502012012633 Country of ref document: DE Representative=s name: DR. BUSCH & KOLLEGEN, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502012012633 Country of ref document: DE Owner name: BHYO GMBH, DE Free format text: FORMER OWNER: BGREEN GMBH, 67069 LUDWIGSHAFEN, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120503 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180902 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240513 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240531 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240510 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240411 Year of fee payment: 13 Ref country code: FR Payment date: 20240513 Year of fee payment: 13 |