EP2799762B1 - Lichtmodul für einen Kraftfahrzeugscheinwerfer - Google Patents
Lichtmodul für einen Kraftfahrzeugscheinwerfer Download PDFInfo
- Publication number
- EP2799762B1 EP2799762B1 EP14164995.4A EP14164995A EP2799762B1 EP 2799762 B1 EP2799762 B1 EP 2799762B1 EP 14164995 A EP14164995 A EP 14164995A EP 2799762 B1 EP2799762 B1 EP 2799762B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- light
- image
- optics
- secondary optics
- focal point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009826 distribution Methods 0.000 claims description 87
- 230000003287 optical effect Effects 0.000 claims description 26
- 230000001154 acute effect Effects 0.000 claims description 9
- 230000008901 benefit Effects 0.000 description 7
- 230000003760 hair shine Effects 0.000 description 7
- 230000005855 radiation Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000004075 alteration Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 238000004382 potting Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
- F21S41/147—Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
- F21S41/151—Light emitting diodes [LED] arranged in one or more lines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
- F21S41/155—Surface emitters, e.g. organic light emitting diodes [OLED]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/24—Light guides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/285—Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/30—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
- F21S41/32—Optical layout thereof
- F21S41/321—Optical layout thereof the reflector being a surface of revolution or a planar surface, e.g. truncated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/30—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
- F21S41/32—Optical layout thereof
- F21S41/33—Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
- F21S41/334—Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature the reflector consisting of patch like sectors
- F21S41/336—Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature the reflector consisting of patch like sectors with discontinuity at the junction between adjacent areas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/30—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
- F21S41/32—Optical layout thereof
- F21S41/36—Combinations of two or more separate reflectors
- F21S41/365—Combinations of two or more separate reflectors successively reflecting the light
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S45/00—Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
- F21S45/10—Protection of lighting devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S45/00—Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
- F21S45/40—Cooling of lighting devices
- F21S45/47—Passive cooling, e.g. using fins, thermal conductive elements or openings
Definitions
- the present invention relates to a light module of a motor vehicle headlight according to the preamble of claim 1.
- a light module of a motor vehicle headlight is an assembly which, alone or in conjunction with other light modules of the same headlight or at least one other headlight, generates a rule-compliant light distribution in front of the motor vehicle when used as intended in a motor vehicle.
- the light module assumed to be known has several light sources, primary optics and secondary optics, the primary optics being set up to collect light emanating from the light sources and to convert it into an intermediate light distribution which shapes the shape has a closed luminous surface.
- the secondary optics have a focal length on the object side, and the primary optics and the secondary optics are arranged in such a way that the intermediate light distribution lies at a distance from this focal length in the light path in front of the secondary optics.
- the secondary optics is a lens or a reflector and has a focal plane on the object side, which is characterized by the fact that contours lying in it are sharply imaged in an area in front of the light module that lies behind the secondary optics in the direction of propagation of the light.
- a light module similar to the subject matter of claim 1 is from EP 2 789 900 known, which forms a state of the art according to Art. 54 (3) EPC. Claim 1 differs from this document in that the light module is set up to generate a low beam light distribution with a light-dark boundary. Other similar light modules are out EP 2 500 628 A2 and WO 2013/031210 A1 known. Recently, semiconductor light sources such as light emitting diodes (LED) have been increasingly used as light sources in motor vehicle headlights. At the beginning of this development, mainly (signal) lights for premium vehicles were operated with light-emitting diodes, in the future the dipped and main beams of mid-range cars will also be optionally generated by LEDs.
- LED light emitting diodes
- Today, high-performance LED low beam modules are mostly designed as projection headlights.
- Two-stage optics first generate a real intermediate image of the light exit surface of the light-emitting diodes used as light sources.
- So-called arrays of several light-emitting diodes are used in order to generate sufficiently large luminous fluxes.
- the light exit surface of a single LED that is used in such an array is, for example, square and has an edge length of approximately one millimeter.
- the individual LEDs are arranged within the array in such a way that their light exit surfaces adjoin one another directly and virtually without any gaps, so that the overall light exit surface of the array appears to be coherent.
- the disadvantage of these light modules is in particular the high price for the projection lens and the expensive LED arrays.
- Reflection systems are much simpler in structure, in which a reflector in simple reflection (1-stage optics) generates a low beam distribution.
- the light distribution is formed as a superposition of many elementary images of the light source.
- the image of the light source is understood as the image of the light source through an infinitesimally small reflector zone.
- the light source itself should also have a uniform luminance.
- the light source needs a sharp border, with the image of which the sharp light-dark border of the low beam distribution is generated.
- the simple, inexpensive reflective optics require an expensive LED array as a light source.
- the gaps between the LED chips lead and thus in particular between the light exit surfaces too dark stripes in the light distribution. If you try to blur the resulting stripes of the light distribution using scattering optics on the reflector surface to form a homogeneous light distribution, the maximum illuminance is reduced at least in the ratio of the chip width to the sum of the chip width and chip spacing. This means that the average luminance of such a blurred light source compared to an array in which the LED chips are arranged directly next to one another is lower at least in the aforementioned ratio.
- the cut-off line is not created by imaging a screen, as is the case with projection systems, but is made up of differently oriented light source images, with conventional reflection systems the light center is significantly lower than the cut-off line than with projection systems. This affects the range, since the range decreases as the brightness of the light area just below the light-dark boundary decreases. It is also disadvantageous that reflective systems do not have such high illuminance gradients at the light-dark boundary can be achieved, as they are common in projection systems.
- the object of the invention is to provide a light module that is as compact as possible, which can be operated with inexpensive SMD LEDs and which does not require an expensive, voluminous projection lens.
- the performance of the light module with regard to the illuminance at the edge of a cut-off line of a low beam light distribution and with regard to the steepness of the gradient of the brightness curve across the cut-off line should approach the performance of projection modules.
- the present invention differs from the light module assumed to be known in that the primary optics is a one-piece base body made up of converging lens subareas, and that the chip of a light-emitting diode is located between a converging lens subarea that collects light from this light-emitting diode and its focal point on the object side, with the light exit surfaces of the light sources passing through distances lying between them are separated from one another and that the primary optics are set up to distribute light emanating from the light sources in such a way that the distances are not recognizable in the intermediate light distribution.
- the several light sources mentioned at the beginning are preferably implemented as an LED array.
- the secondary optics preferably have several facets, so that several light source-side focal points or a focal line result. It is therefore particularly preferred that the secondary optics have several object-side focal points.
- the reflector can be replaced by a faceted lens with appropriate focal positions.
- the secondary optics are implemented as a faceted lens. Due to the more favorable ratio of focal length to aperture (f-number) with lenses compared to reflectors, there is less color aberration in the lens secondary optics.
- the intermediate light distribution represents in a certain way a substitute light source which has the required property of a streak-free appearance and which can be used together with an inexpensive reflection system to generate a rule-compliant light distribution.
- a preferred embodiment is characterized in that the primary optics for each light source has its own optically effective partial area, each of which has a light exit surface and these light exit surfaces adjoin one another without a gap, and at least two adjacent light exit surfaces adjoin one another in such a way that at least one side edge of one first of two adjacent light exit surfaces in a line in alignment with a side edge of the second of the two adjacent Light exit surfaces so that the two aligned edges form a common, straight edge.
- the primary optics are preferably a one-piece optics array, with each LED being assigned an optically effective partial area as a collecting primary optics and with all primary optics largely directly adjacent to one another with their light exit surfaces. At least two of these optics form a common straight edge with their light exit surfaces.
- each sub-area is a converging lens.
- the optics array is preferably constructed from planoconvex lenses and preferably consists of organic or inorganic glass or of silicone rubber (LSR).
- Organic glasses are, for example, polymethyl methacrylate (PMMA), cycloolefin copolymer (COC), cycloolefin polymer (COP), polycarbonate (PC), polysulfone PSU or polymethacrylmethylimide (PMMI).
- the lens array preferably has a straight edge at least in sections on one side.
- the collecting lens array is delimited at least in sections at one edge by a flat side surface, on which part of the incident light is reflected. Alternatively, this edge can also be formed by a diaphragm which is brought into the beam path directly in front of the light exit surface of the lens array.
- a multilayer coating can be applied to the plastic body.
- several low and high refractive index layers are alternately combined.
- a further metal layer can be provided as a radiation barrier under the reflective metal or multilayer layer.
- This metal layer is deposited, for example, as a thick copper or nickel layer on the plastic body of the reflector array and thus forms protection against the thermal stress caused by the radiation from the LED. This thick metal layer is also able to dissipate heat towards the edge of the reflector.
- a heat shield can be provided between the reflector array and the LED, which shades the radiation from the LED onto the rear of the reflector body and thus prevents thermal overloading of the reflector material.
- the reflector array preferably has at least one straight edge as the edge of a row of light exit surfaces of adjacent reflector subregions.
- each sub-area is a light guide.
- the light exit surface of the individual light guides is convexly curved. This creates a bundling effect when the light emerges.
- the light guide array preferably consists of one of the materials that was mentioned above as lens material.
- the light guide array has at least one straight edge, which is composed of edges, adjoining one another in alignment, of individual light exit surfaces of adjacent light guide subregions.
- Another preferred embodiment is characterized in that the light module has a screen which is arranged in the beam path of the light directly behind the light exit surface in such a way that it shades part of the intermediate light distribution.
- the diaphragm facilitates the generation of a sharp light-dark boundary of the intermediate light distribution, which also has a favorable effect on the sharpness of the rule-compliant light distribution that is ultimately to be generated in advance of the light module.
- the panel is attached to the as an insert part or two-component injection-molded part Primary optics are molded on, which has the advantage of low tolerances between the aperture and the primary optics.
- the secondary optics have at least one concave mirror reflector.
- a concave mirror reflector has the advantages of lower costs and lower weight, in particular in comparison to transparent solid bodies such as lenses or secondary optics operating with total internal reflection.
- all reflectors are preferably arranged in the beam path in such a way that the beam path at the respective reflectors is always folded at as acute an angle ( ⁇ 90 °) as possible. Due to the acute folding angle of the beam path, the elementary images of the substitute light source hardly change their orientation, so that low-beam light distributions with good homogeneity (no longitudinal stripes in the light distribution), high light focus (just below the low-beam light-light-dark boundary) and sharp light-dark Can create border.
- an optical surface of the secondary optics is divided into a larger sub-area and a smaller sub-area, the larger sub-area being defined by the fact that it has a first object-side focal point and that the two sub-areas have a common image-side focal point at infinity.
- these secondary optics produce an image of the substitute light source in infinity and thus a light distribution in front of the light module, the shape of which is depends on the shape of the intermediate light distribution and thus on the shape of the substitute light source and which, in particular, has a sharp light-dark boundary if such a boundary is also present in the intermediate light distribution.
- the concave mirror reflector has a reflecting surface, the larger part of which has a parabolic shape, an object-side focal point of the parabolic shape lying on the light exit surface of the primary optics.
- the object-side focal point of the reflector is preferably on the edge of the substitute light source. To generate a low beam distribution, this is the lower edge of the substitute light source. As described, this edge can also be shaded by a screen to prevent stray light from entering the dark field of the light distribution.
- the secondary optics has several reflector facets, their focal points are preferably also on the edge of the substitute light source. However, depending on the position of the facet, they are preferably positioned at different ends of the light source edge.
- the secondary optics consists of two mirrors that are arranged one behind the other in the beam path in such a way that they fold the beam path of the secondary optics twice at an acute angle and that the secondary optics have an object-side focal point that lies on the light exit surface of the primary optics and the latter Pixel lies at infinity.
- the double folding also opens up the possibility of shortening the installation space of the light module and provides a further degree of freedom for the arrangement of the elements of the light module.
- particularly compact light modules can thereby be implemented.
- the light source radiates forward in the direction of travel and the heat is removed from the light source via a heat sink to the rear: Such a light source can easily be changed from the rear of the headlight.
- the heat sink on the back of the light module can also be ventilated more easily, which improves the cooling performance.
- the compact design has the additional advantage that the center of gravity of the light module is in the vicinity of the light exit surface, which facilitates the mechanical pivoting of the light module for headlight range control and / or a cornering light function.
- the folding of the beam path is also beneficial because the refractive power in the proposed optical system is divided into primary and secondary optics, so that secondary optics with a low refractive power, i.e. with a long focal length (the focal lengths are 2-3 times larger than with single-stage Systems). This is advantageous because the very long focal lengths in relation to the opening result in an optical system that is insensitive to tolerances. In addition, all chip images have approximately the same size and orientation.
- the first mirror in the direction of propagation of the light in the beam path has a hyperboloid and the second mirror has a paraboloid as a reflection surface, the object-side focal point of the hyperboloid forming the object-side focal point of the secondary optics and the image-side focal point of the hyperboloid coinciding with the focal point of the paraboloid and marks the position of a virtual intermediate image of the intermediate light distribution.
- the secondary optics have several object-side focal points and one or more common image-side focal points or focal lines at infinity.
- the first mirror of the two-stage secondary optics has a hyperboloid or is a plane mirror as a special case of the hyperboloid, and that the second mirror has a faceted paraboloid, the object-side focus of the hyperboloid forming the object-side focus of the secondary optics and the image-side
- the focal point of the hyperboloid marks the position of a virtual intermediate image of the intermediate light distribution and the downstream parabolic facets are set up to focus on the edge of the virtual image of the intermediate light distribution.
- the first mirror of the two-stage secondary optics has a faceted hyperboloid or, as a special case thereof, a faceted plane mirror and that the second mirror has a paraboloid, the object-side focus of the hyperboloid being the object-side Forms the focal point of the secondary optics and the image-side focal point of the hyperboloid marks the position of a virtual intermediate image of the intermediate light distribution and the parabolic facets downstream in the beam path focus on the edge of the virtual image of the intermediate light distribution.
- Another preferred embodiment is characterized in that the two mirrors have several object-side focal points which lie on the edge of the intermediate light distribution and whose image point or their image lines lie at infinity on the light-dark boundary of the light distribution, the two mirror surfaces so are shaped so that all optical paths between the object-side focal point and its respective image points or image lines are of the same length.
- the two mirrors of the two-stage secondary optics are not based on conic sections and do not provide a sharp, undistorted intermediate image of the substitute light source.
- the optical system has several object-side focal points which lie on the edge of the light exit surface of the primary optics and whose image points or image lines lie at infinity on the light-dark boundary of the light distribution.
- An optical system made up of deflection optics 64 and secondary optics 12 does not necessarily have to deliver a sharp virtual intermediate image 66, since aberrations (blurring, distortion, aperture errors) of the intermediate image can be compensated for again by the downstream secondary optics 12.
- the Fig. 1 a spatial arrangement of a light source assembly 10 and a secondary optics 12 as an embodiment of a light module 14 according to the invention.
- a spatial arrangement of a light source assembly 10 and a secondary optics 12 as an embodiment of a light module 14 according to the invention.
- the representation of the Fig. 1 is therefore concentrated on the optical elements of the light module. This also applies to the other figures.
- the light source assembly 10 and the secondary optics 12 are arranged in such a way that they generate a rule-compliant light distribution 16 on a screen 17 in front of the light module.
- the light distribution 16 has a light-dark boundary 18 running horizontally in sections.
- the part 18.1 of the horizontal cut-off line closer to the road runs approximately at the level of the horizon in front of the vehicle or very slightly (usually 0, 57 °) below.
- the point at which the cut-off line bends upwards is roughly the extension of the vehicle's longitudinal axis.
- a sagittal plane 20 and a meridional plane 22 can be assigned to the optical system of the light module 14.
- the sagittal plane 20 lies parallel to the roadway at the level of the horizon H.
- the light source assembly 10 comprises a heat sink 24 and a circuit board 26 with SMD LEDs 28 arranged thereon and the associated primary optics.
- the SMD LEDs with the associated primary optics 30 are shown enlarged as detail Z.
- the SMD LEDs 28 are arranged in such a way that their light exit surfaces do not adjoin one another without a gap.
- the light emitted by these SMD LEDs 28 is bundled by the primary optics 30 in such a way that a cohesive, closed intermediate light distribution is established on the seamlessly lined up light exit surfaces of the primary optics 30.
- This intermediate light distribution which serves as a substitute light source, is then reproduced by the secondary optics 12 as a low beam distribution 16 on a screen 17 located at a distance in front of the light module 14.
- the lower edge 32 of the primary optics 30 is imaged as the light-dark boundary of the low beam distribution.
- the reflector surface of the secondary optics 12 consists of several reflector facets 12.1, 12.2. 12.3, which are implemented as paraboloids of revolution, for example, at least in areas of their reflection surface. These areas each take up the greater part of the reflection surface of a facet.
- the different paraboloids for different facets have different focal points 34, 36, all of which are located on the lower edge 32 of the light exit surface of the primary optics 30.
- the focal points 34, 36 preferably lie at the corners of the primary optics 30.
- the meridional plane 22 divides the space of the optical system into two half-spaces. If the light source shines from below into the secondary mirror, the mirror facets and their focal points are in the same half-space.
- the axes of the paraboloids of revolution on which the reflector facets are based point in the direction of the low-beam light-dark boundary 18.
- the light source edge is mapped as the light-dark boundary of the rule-compliant light distribution.
- the main emission directions of the individual LEDs are preferably parallel to one another and in this respect match.
- the light beam 38 under consideration runs in the main emission direction of the light sources 28 through the lower edge of the light exit surface of the primary optics 30 and propagates in the direction of the reflector surface of the secondary optics 12.
- the subject of Figure 2 differs from the subject of Figure 1 in that the light source 10 radiates into the secondary reflector 12 from above.
- the meridional plane 22 divides the space of the optical system into two half spaces. If the light source shines into the reflector from above, the focal points of the parabolic facets are always on the other side of the meridional plane like the reflector facet itself, which is in comparison to Figure 1 is illustrated by the focal points 34, 36 swapped from right to left in detail Y. Due to the different arrangement of the light source, the sides of the focal points 34, 36 of the respective reflector facets are thus interchanged. Overall shows Figure 2 also an LED low beam module 14 with an asymmetrical cut-off line 18.
- the task of the primary optics 30 is within here
- the invention presented in particular consists in generating a sharply delimited, streak-free and in this respect suitable as a substitute light source intermediate light distribution in a plane that is sharply imaged by the secondary optics 12 in the rule-compliant light distribution 18.
- the primary optics 30 must in particular generate a closed, coherent luminous surface from the light exit surfaces of the SMD LEDs 28 that are not spaced apart.
- the SMD LEDs 28 are arranged in one or more parallel rows.
- an optics array 30 of collecting lenses, reflectors or conical light guides is brought into the beam path so that the light exit surface is illuminated as evenly and homogeneously as possible and the emitted beam has no gaps.
- Figure 3 shows an example of a primary optics array 30 of reflectors.
- the reflector subregions 40 are implemented here as recesses adjoining one another without spacing from a one-piece base body 42.
- Figure 3b FIG. 11 shows a perspective view of the assembly comprising the printed circuit board 26 and the reflector subregions 40 which cover the associated LEDs.
- Figure 3a shows a section through this assembly, which runs in the direction of the row arrangement.
- Figure 3d FIG. 11 shows a section through this assembly, which runs transversely to the array and
- FIG Figure 3c shows a plan view and a position of said sections.
- the reflector subareas have rectangular, in particular square cross-sections.
- the light exit surfaces of the individual reflectors 40 are lined up without gaps and thus without any gaps and delimit the resulting luminous surface with sharp, straight edges 44.
- Each SMD LED 28 is assigned a reflector 40.
- the center points of the reflectors 40 and the center points of the light exit surfaces of the light sources 28 are spaced equally.
- the row arrangement of the reflectors 40 therefore has the same pitch as the row arrangement of the LEDs 28.
- a heat shield 46 is arranged between the reflector partial areas and the LED, which protects the rear side of the reflector partial areas 40 of the optical array 30 from radiation.
- the heat shield 46 is interrupted over the light exit surfaces of the SMD LEDs 28 in order to allow light to exit.
- Figures 3a, 3b and 3d clearly show an array of reflectors 40 widening conically towards the light exit with square or rectangular cross-sections, such a cross-section being arranged perpendicular to the optical axis and thus perpendicular to the main emission direction of the LEDs 28.
- the reflector subregions 40 preferably have the illustrated geometry of truncated pyramids. Like in the Figure 3 is shown, the reflector subregions 40 and the light sources 28 uniquely assigned to them are arranged in one or more rows.
- the reflector subregions 40 are identical to one another and their light exit surfaces adjoin one another without a gap so that their light exit surfaces are delimited by at least one straight line 44.
- Figure 3b shows in particular also a lower edge 44 of the light exit surface of the reflector row arrangement, which is to be depicted as a light-dark boundary.
- Fig. 4 shows in particular the focal plane 48 of the secondary optics 12, which lies in a plane with the intermediate light distribution, which results as the light exit surface of the reflectors 40.
- Fig. 4 shows one of the Fig. 3 comparable item.
- the primary optics array 50 constructed according to the invention from converging lenses.
- the converging lens subareas 50 are implemented here as subareas of a one-piece, transparent base body 52 that adjoin one another without any spacing.
- the one-piece base body 52 preferably consists of one of the above-mentioned materials.
- FIG. 8 shows a perspective view of the assembly consisting of the printed circuit board 26 and the converging lens subregions 50 and the associated LEDs 28.
- Figure 4a shows a section through this assembly, which runs in the direction of the row arrangement.
- Figure 4d shows a section through this assembly, which runs transversely to the array and
- FIG Figure: 4c shows a plan view and a position of said sections.
- a converging lens sub-area 50 is clearly assigned to each light source 28. Comparisons Figure 4c .
- the lens array is delimited at least on one edge at least in sections by a flat side surface 54 on which part of the beam path is reflected. This is in the Figure 4d clearly.
- this edge 54 can also be formed by a diaphragm 56 which is brought into the beam path immediately in front of the light exit surface of the lens array. This is in the Figures 4e and 4f shown.
- Figure 4e shows a primary optics array composed of converging lenses 50 additional screen 56. This covers an edge of the primary optics in order to delimit the light exit surface as sharply as possible. This diaphragm creates a particularly sharp delimitation of the light exit surface in that it shades all light that is scattered past the light exit surface. In this case, the secondary optics focus as directly as possible on the diaphragm edge. If a low beam light distribution with at least partially horizontal light-dark border is to be generated, the diaphragm edge runs along the lower edge of the light exit surface of the primary optics, with the help of which the light-dark transition of the light distribution is then formed by the secondary optics.
- the intermediate light distribution is in the lens arrays in the area of the lens body.
- the focus of the secondary optics is in Fig. 4f at the edge of the diaphragm 54.
- the embodiment with the lens array is preferred.
- the diaphragm can also be used in conjunction with the other configurations of primary optics presented in this application.
- the converging lens subregions 50 as well as the light sources 28 uniquely assigned to them are arranged in one or more rows.
- the converging lens subareas 50 are identical to one another and their light exit surfaces adjoin one another without a gap, so that their light exit surfaces are delimited by at least one straight line 44.
- Figure 4g shows an arrangement of a pair of one of several semiconductor light sources 28 in the form of an LED chip and a condensing lens subarea 50 of the base body 52 that collects light from this chip.
- a division of the base body 52 is denoted by T.
- the pitch T corresponds to the width of the individual converging lens subareas 50 and the distance between the centers of adjacent LED chips 28.
- An edge length of the LED chip 28 is designated by B LED .
- a virtual LED chip is denoted by 28 '.
- the edge length of the virtual LED chip 28 ' is denoted by B' LED .
- An object-side focal point of the converging lens subarea 50 is denoted by F and a main point of the converging lens subarea 50 is denoted by H.
- the principal point H of a lens is defined as the intersection of a principal plane of the lens with the optical axis.
- the secondary optics 4 of the light module 1 according to the invention is preferably focused on a main point H of one of the converging lens subareas 50, preferably on the main point H of the converging lens subarea 50 located in the vicinity of an optical axis of the light module.
- the reference symbol f denotes the focal length of the converging lens subarea 50 and S F a back focal length of the converging lens subarea 50.
- a distance between the LED chip 28 and the light entry surface of the converging lens subarea 50 is S 1
- a distance between the virtual chip image 28 'and the The light entry surface of the converging lens subarea 50 is denoted by S 2 .
- the collecting lens subareas 50 of the base body 52 do not serve to generate real intermediate images of the light sources 28, but merely form an illuminated area on the light exit side 25 of the collecting lens subareas 50.
- the light sources 28 are thus arranged between the light entry areas of the collecting lens subareas 50 and the object-side focal points F of the collecting lens subareas 50 that the edges of the light sources 28 lie on geometric connections from the focal points F to the lens edges.
- the emission surfaces of the light sources 28 are arranged perpendicular to the optical axes of the converging lens subareas 50.
- the optical axes of the individual converging lens subareas 50 of the base body 52 all run in one plane, they are preferably parallel to one another.
- the axis of the secondary optics is on the side that faces the main body 52 facing, parallel to the axis of at least one of the converging lens subareas 50.
- the LEDs are in particular arranged between their respective converging lens subarea and its paraxial focal point so that a gapless intermediate light distribution is created, which is composed of the virtual images of the light exit surfaces of the individual chips. It should be noted that the light here first emerges from the LED in air and only then strikes the associated converging lens subarea. This differs from the prior art, in which LEDs with transparent potting compounds are used, the potting possibly developing a lens effect.
- Fig. 5 shows an example of a further embodiment of the primary optics array.
- the primary optics array consists of light guides 60 with cross-sections widening conically towards the light exit, which are oriented perpendicular to the main direction of propagation of the light in the light guides and thus perpendicular to the respective optical axis and which are rectangular, in particular square.
- the light exit surfaces 62 of the individual light guides 60 are lined up without gaps and delimit the luminous surface with sharp, straight edges 44, which are lower edges 44 here.
- One light guide 60 is assigned to each LED 28 in one unambiguous manner.
- the light entry surface is preferably flat and is parallel in front of the LED chip.
- the light guides 60 are arranged in one or more rows, so that the light exit surfaces are again delimited by at least one straight line 44.
- the light exit surface is preferably curved in a convex manner.
- the light guide array is preferably one of the above mentioned materials.
- the light guide array is preferably manufactured as a one-piece base body which has the light guides as light-guiding partial areas.
- the primary optics array as an array of reflector subareas 40, converging lens subareas 50 and light guide subareas 60, the sum of the light exit areas of the respective subareas forms the closed, coherent intermediate light distribution and substitute light source.
- the substitute light source will have luminance levels similar to that of the chips in the individual LEDs.
- Such a substitute light source thus also has luminance levels evenly distributed over its entire light exit area and radiation angles similar to individual LEDs.
- the replacement light source can thus be treated like an LED array in the following.
- the light distribution formed in this way now serves as a substitute light source for a downstream secondary optics, which is a converging lens or preferably a reflector with at least partially parabolic reflection surface and which forms a low beam distribution with the aid of this substitute light source.
- a downstream secondary optics which is a converging lens or preferably a reflector with at least partially parabolic reflection surface and which forms a low beam distribution with the aid of this substitute light source.
- the alternative light source should be oriented as similarly as possible to the light-dark boundary of the low beam distribution (namely at least in sections horizontally) in order to achieve a good sharpness of the light-dark boundary (high illuminance gradient). For this reason, all reflectors in the beam path are arranged in such a way that the beam path at the respective reflectors is always in is folded as acute as possible ( ⁇ 90 °) and the orientation of the images of the substitute light source parallel to the cut-off line is largely retained.
- the secondary optics are preferably a faceted parabolic reflector.
- the reflector is arranged in the beam path in such a way that the substitute light source shines into the reflector from the front, so that the beam path is deflected at an acute angle.
- the at least one focal point of the reflector lies on the edge of the substitute light source. To generate a low beam distribution, this is the lower edge of the substitute light source. As described, this edge can also be shaded by a screen to prevent stray light from entering the dark field of the light distribution.
- the secondary optics has several reflector facets, their focal points are again on the edge of the substitute light source, but are preferably positioned at different ends of the light source edge depending on the position of the facet: If the light source shines into the reflector from below, the respective parabolic facets always have their focal point in the same half-space delimited by the meridional plane. If the light source shines into the reflector from above, the focal points of the parabolic facets are always on the other side of the meridional plane like the reflector facet itself.
- the secondary optics do not focus on the chip level of the LEDs but on the lower edge of the light exit surface of the primary optics.
- the light exit surface can be delimited particularly sharply if a screen is arranged along the edge of the light exit surface which shades all light that is scattered past the light exit surface.
- the secondary optics focus as directly as possible on the diaphragm edge. If a low-beam light distribution with at least partially horizontal light-dark border is to be generated, the diaphragm edge runs along the lower edge of the light exit surface of the primary optics, with the help of which the light-dark transition of the light distribution is then formed by the secondary optics.
- the reflector surface of the secondary optics preferably consists of several reflector facets, each of which has surfaces implemented as paraboloids of revolution.
- the different paraboloids have different focal points, all of which are located on the lower edge of the light exit surface of the primary optics, preferably at its edges (corners), the focal points being in the same hemisphere as the associated facet surfaces.
- the axes of the paraboloids of revolution, on which the reflector facets are based, point in the direction of the low-beam light-dark boundary. In this way, the edge of the light source is mapped as a cut-off line for the light distribution.
- the reflector facets are designed as toric surfaces instead of paraboloids of revolution:
- the curvature of the paraboloid of revolution is increased or decreased in sections parallel to the light-dark boundary (or to sections of the light-dark boundary) through the focal point of the paraboloid that instead of the focal point there is a focal line which runs parallel to the low beam / light / dark border or to sections of the low beam / light / dark border.
- the scattering can also be achieved by scattering cylinder optics, which are applied to the facet surfaces and whose cylinder axis is perpendicular to the main ray and the low-beam light-dark boundary.
- Figure 6 shows configurations of light modules 14 according to the invention which have a deflecting mirror which additionally folds the beam path. This measure serves to shorten the installation space of the light module and to create a further degree of freedom in order to be able to arrange the elements of the light module as freely as possible.
- the light source 10 radiates forwards in the direction of travel (light emission direction) and the heat is removed from the light source via a heat sink 24 to the rear:
- a light source can easily be changed from the rear of the headlight.
- a compact light module is obtained, the focus of which is in the vicinity of the light exit surface, which facilitates the mechanical pivoting of the light module 14.
- the folding of the beam path is also favorable because the refractive power in the proposed optical system is divided into primary and secondary optics, so that secondary optics with low refractive power, i.e. with a long focal length (the focal lengths are 2-3 times larger than with single-stage systems).
- the deflection mirror 64 is designed as a hyperboloid, the hyperboloid expressly also intended to include the special case of the plane mirror.
- the described properties of the secondary optics 12 relate in this case to the optical system 64, 12 made up of deflecting mirror 64 and secondary optics 12, which now focuses with one or more focal points on the lower edge of the substitute light source.
- the deflection mirror 64 generates at least one virtual intermediate image 66 of the substitute light source 68.
- the substitute light source 68 lies in the object-side Petzval surface of the hyperbolic deflecting mirror, while the focal point or points of the secondary optics 12 lie in the image-side Petzval surface of the hyperboloid, i.e. the secondary optics 12 focus on its virtual image 66 instead of on the real substitute light source 68.
- Fig.6a shows such a low beam module 14 with a beam path additionally folded by a deflecting mirror 64.
- the deflecting mirror 64 generates a virtual image 66 of the substitute light source 68.
- the focal points of the Secondary optics 12 lie as it is in connection with the Figure 1 was explained, preferably on the corners of the primary optics. In the case of the Figure 6a however, the secondary optics does not focus on the real primary optics, but rather on the corners of the virtual image of the primary optics serving as a substitute light source 66.
- Fig.6b likewise shows a low beam module 14 with a beam path additionally folded by a deflecting mirror 64.
- the deflecting mirror 64 generates a virtual image 66 of the substitute light source 68.
- the focal points of the secondary optics 12 now lie on the lower edge 44 of the virtual image 66 of the substitute light source 68.
- the deflecting mirror 64 shortens the overall length and thus enables a particularly compact design of the light module 14.
- at least one of the two mirrors has one or more facets.
- the deflecting mirror 64 is a plane mirror. This is in the Fig. 6 shown.
- Figure 7a shows a second embodiment with a deflection mirror 64, which is concave and therefore has a collecting effect.
- the shape is preferably a hyperbola shape. Due to the collecting characteristic, the virtual intermediate image 66 is here an enlarged image of the substitute light source 68.
- the first hyperbolic focal point 70 lies on the lower edge of the real primary optics of the real substitute light source 68.
- the second hyperbolic focal point 72 lies on the lower edge of the virtual intermediate image 66 of the substitute light source.
- Fig.7b shows a third embodiment with a deflection mirror 64, which is convex and therefore has a dispersing effect.
- the shape is preferably a hyperbola shape. Because of the diffusing characteristic, the virtual intermediate image 66 is a reduced image of the substitute light source 68.
- the first hyperbolic focal point 70 lies on the lower edge of the real primary optics of the real substitute light source 68.
- the second hyperbolic focal point 72 lies on the lower edge of the virtual intermediate image 66 of the substitute light source 68.
- the Figure 7 shows embodiments with a hyperboloid as a deflecting mirror 64, which has an object-side focal point 70 and an image-side focal point 72 and with a preferably faceted secondary optics, which has the deflecting mirror and the further mirror 12, and which has several object-side focal points and an image-side focal point at infinity .
- the Focal points of this secondary optics 12 lie on the lower edge of the virtual image 66 of the substitute light source 68. In contrast to the plane mirror, this image is enlarged or reduced depending on whether the deflecting mirror 64 is a concave or a convex hyperboloid.
- the light module has a plurality of flat deflecting mirror facets and secondary optics with a single focal point on the object side.
- the faceted deflecting mirror divides the beam path of the secondary optics and thus creates an optical system with several focal points, similar to a faceted parabolic reflector.
- the faceted deflecting mirror generates several virtual images of the substitute light source that are shifted relative to one another.
- the focal points of the two-part secondary optics focus on the edge of the substitute light source as described above.
- the light module has a faceted hyperboloid as a deflecting mirror with one object-side and several image-side focal points.
- the secondary optics should have an object-side and an image-side focus (the latter at infinity).
- the faceted hyperboloid generates virtual images of the light source that are shifted, enlarged (concave hyperbolic mirror) or reduced (convex hyperbolic mirror), depending on whether the hyperbolic mirror is concave (and thus enlarging) or convex (and thus reducing).
- Figure 8 Figure 11 shows front views of embodiments of the Light module as presented to an observer who is in the direction of emission of the light module in front of the light module and who looks into the light module.
- the reflector serving as secondary optics has a parabolic shape with three facets at least in a region of its reflector surface which is greater than half of its total reflective surface.
- Figure 8a shows in particular an embodiment in which the facet 12.1 on the reflector edge on the right in the viewing direction generates the asymmetrical rise 18.2 of the light-dark boundary in the light distribution 16.
- the facet 12.1 is arranged in particular in such a way that the light source images are tilted in the direction of the rise.
- the facet 12.1 generates light source images with an orientation which, in the sum of the light source images, generate the desired increase in the cut-off line. That in the Figure 8a
- the example shown is suitable for right-hand traffic.
- the light source shines like the object of the Figure 8a from below into the reflector, the facet 12.1 is not on the same side of the meridional plane as the rise 18.2.
- the facet edge runs in sections perpendicular to the rise.
- Figure 8b shows in particular an embodiment in which the facet 12.3 on the left reflector edge generates the asymmetrical increase in the light-dark boundary in the light distribution.
- the light source shines like the object of the Figure 8b from above into the reflector, the facet 12.3 lies on the same side of the meridional plane as the rise 18.2 itself.
- the facet edge runs in sections perpendicular to the rise.
- Figure 9b shows a low beam distribution of an embodiment of a light module according to the invention, as it appears on a screen in front of the vehicle.
- the horizontal line H is level with the horizon.
- the vertical line V crosses the horizon in the extension of the main radiation direction of the light module.
- Figure 9a illustrates how the Figure 9b Light distribution shown as an overlay of light source images 74 results.
- Each light source image is generated from a small part of the reflective surface of the secondary optics.
- the representation of the Figure 9a is purely schematic in this respect.
- the light source images are predominantly oriented horizontally or parallel to the cut-off line.
- the facet that generates the rise is designed precisely in such a way that it delivers light source images whose edge lies parallel to the desired course of the rise.
- the primary optics enlarge the light exit surface by a factor that corresponds roughly to the quotient of the division of the optics array and the side length of an individual chip. This follows from the equally bright substitute light source.
- the focal length of the secondary optics preferably corresponds to 50 times to 200 times the side length of an individual chip, in particular 80 times to 100 times the stated side length.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Description
- Die vorliegende Erfindung betrifft ein Lichtmodul eines Kraftfahrzeugscheinwerfers nach dem Oberbegriff des Anspruchs 1.
- Ein solches Lichtmodul wird hier als bekannt vorausgesetzt. Ein Lichtmodul eines Kraftfahrzeugscheinwerfers ist eine Baugruppe, die allein oder im Zusammenwirken mit anderen Lichtmodulen desselben Scheinwerfers oder auch wenigstens eines anderen Scheinwerfers bei einer bestimmungsgemäßen Verwendung in einem Kraftfahrzeug eine regelkonforme Lichtverteilung im Vorfeld des Kraftfahrzeugs erzeugt.
- Das als bekannt vorausgesetzte Lichtmodul weist mehrere Lichtquellen, eine Primäroptik und eine Sekundäroptik auf, wobei die Primäroptik dazu eingerichtet ist, von den Lichtquellen ausgehendes Licht zu sammeln und in eine Zwischenlichtverteilung zu überführen, welche die Form einer geschlossen leuchtenden Fläche aufweist. Die Sekundäroptik weist eine objektseitige Brennweite auf, und die Primäroptik und die Sekundäroptik sind so angeordnet, dass die Zwischenlichtverteilung im Abstand dieser Brennweite im Lichtweg vor der Sekundäroptik liegt.
- Zwischenlichtverteilungen von Lichtmodulen, die eine Lichtverteilung mit einer Hell-Dunkel-Grenze erzeugen sollen, sind an mindestens einer Seite durch eine scharfe Kante begrenzt.
- Die Sekundäroptik ist eine Linse oder ein Reflektor und besitzt eine objektseitige Schärfenebene, die sich dadurch auszeichnet, dass in ihr liegende Konturen scharf in ein in Propagationsrichtung des Lichtes hinter der Sekundäroptik liegendes Vorfeld des Lichtmoduls abgebildet werden.
- Ein dem Gegenstand des Anspruchs 1 ähnliches Lichtmodul ist aus der
EP 2 789 900 bekannt, die einen Stand der Technik nach Art. 54 (3) EPÜ bildet. Von dieser Schrift unterscheidet sich der Anspruch 1 dadurch, dass das Lichtmodul dazu eingerichtet ist, eine Abblendlicht-Lichtverteilung mit einer Hell-Dunkel-Grenze zu erzeugen. Weitere ähnliche Lichtmodule sind ausEP 2 500 628 A2 undWO 2013/031210 A1 bekannt. In letzter Zeit werden zunehmend Halbleiterlichtquellen wie Leuchtdioden (LED) als Lichtquellen in Kraftfahrzeugscheinwerfern verwendet. Wurden zu Beginn dieser Entwicklung vor allem (Signal)-Leuchten für Premiumfahrzeuge mit Leuchtdioden betrieben, so sollen künftig auch das Abblendlicht und Fernlicht von Mittelklassewagen optional von LEDs erzeugt werden. - Als Folge dieser Entwicklung entsteht ein Markt für kostengünstige Abblendlicht- und Fernlicht-Lichtmodule, die LEDs als Lichtquellen nutzen.
- Leistungsfähige LED-Abblendlichtmodule werden heute meist als Projektionsscheinwerfer ausgeführt. Dabei erzeugt eine zweistufige Optik zunächst ein reelles Zwischenbild der Lichtaustrittsfläche der als Lichtquellen benutzten Leuchtdioden. Dabei werden sogenannte Arrays aus mehreren Leuchtdioden verwendet, um ausreichend große Lichtströme zu erzeugen. Die Lichtaustrittsfläche einer einzelnen LED, die in einem solchen Array verwendet wird, ist zum Beispiel quadratisch und weist eine Kantenlänge von ca. einem Millimeter auf. Die einzelnen LEDs sind innerhalb des Arrays so angeordnet, dass ihre Lichtaustrittsflächen unmittelbar und quasi abstandslos aneinander angrenzen, so dass sich eine zusammenhängend erscheinende Gesamtlichtaustrittsfläche des Arrays ergibt. Nachteilig ist bei diesen Lichtmodulen insbesondere der hohe Preis für die Projektionslinse und die teuren LED-Arrays.
- Im Aufbau wesentlich einfacher sind Reflexionssysteme, bei denen ein Reflektor in einfacher Reflexion (1-stufige Optik) eine Abblendlichtverteilung erzeugt. Die Lichtverteilung wird als Überlagerung vieler Elementarbilder der Lichtquelle gebildet. Als Lichtquellenbild wird dabei die Abbildung der Lichtquelle durch eine infinitesimal kleine Reflektorzone verstanden. Um die Lichtquellenbilder zu einer homogenen Lichtverteilung zu überlagern, sollte die Lichtquelle selbst ebenfalls eine gleichmäßige Leuchtdichte aufweisen. Darüber hinaus benötigt die Lichtquelle eine scharfe Berandung, mit deren Abbildung die scharfe Hell-Dunkel-Grenze der Abblendlichtverteilung erzeugt wird. Als Folge benötigt die einfache, kostengünstige Reflexionsoptik ein teures LED-Array als Lichtquelle.
- Verwendet man anstelle eines LED-Arrays, das eine quasi geschlossene Licht emittierende Fläche aufweist, mehrere einzelne, mit einem Abstand voneinander angeordnete LEDs (zum Beispiel: SMD-LEDs, SMD: surface mounted design), so führen die Lücken zwischen den LED-Chips und damit insbesondere zwischen den Lichtaustrittsflächen zu dunklen Streifen in der Lichtverteilung. Versucht man, die entstehenden Streifen der Lichtverteilung durch Streuoptiken auf der Reflektorfläche zu einer homogenen Lichtverteilung zu verwischen, reduziert sich die maximale Beleuchtungsstärke mindestens im Verhältnis Chipbreite zur Summe aus Chipbreite und Chipabstand. Das bedeutet, dass die mittlere Leuchtdichte einer solchen verwischten Lichtquelle gegenüber einem Array, bei dem die LED-Chips direkt nebeneinander angeordnet sind, mindestens in dem genannten Verhältnis geringer ist.
- Durch Toleranzen der Einzelchips auch in Verbindung mit dem farbkonvertierenden Phosphor liegen die Seiten der LED Chips nie wirklich auf einer Linie, was bei der Abbildung des Arrays zu unsauberen Hell-Dunkel-Grenzen führt.
- Da bei Reflexionssystemen die Hell-Dunkel-Grenze nicht wie bei Projektionssystemen durch Abbildung einer Blende erzeugt wird, sondern aus unterschiedlich orientierten Lichtquellenbildern zusammengesetzt wird, liegt bei herkömmlichen Reflexionssystemen der Lichtschwerpunkt deutlich tiefer unter der Hell-Dunkel-Grenze als bei Projektionssystemen. Dies beeinträchtigt die Reichweite, da die Reichweite mit abnehmender Helligkeit des knapp unter der Hell-Dunkel-Grenze liegenden hellen Bereichs abnimmt. Nachteilig ist auch, dass mit Reflexionssystemen keine so hohen Beleuchtungsstärkegradienten an der Hell-Dunkel-grenze erzielt werden, wie sie bei Projektionssystemen üblich sind.
- Vor diesem Hintergrund besteht die Aufgabe der Erfindung in der Angabe eines möglichst kompakten Lichtmoduls, das mit kostengünstigen SMD-LEDs betrieben werden kann und das keine teure, voluminöse Projektionslinse benötigt. Außerdem soll die Leistungsfähigkeit des Lichtmoduls in Bezug auf die Beleuchtungsstärke am Rand einer Hell-Dunkel-Grenze einer Abblendlicht-Lichtverteilung und in Bezug auf die Steilheit des Gradienten des Helligkeitsverlaufs quer zur Hell-Dunkel-Grenze an die Leistungsfähigkeit von Projektionsmodulen heranreichen.
- Diese Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst. Von dem als bekannt vorausgesetzten Lichtmodul unterscheidet sich die vorliegende Erfindung dadurch, dass die Primäroptik ein einteiliger, aus Sammellinsenteilbereichen aufgebauter Grundkörper ist, und dass der Chip einer Leuchtdiode zwischen einem Licht dieser Leuchtdiode sammelnden Sammellinsenteilbereich und dessen objektseitigen Brennpunkt liegt, wobei die Lichtaustrittsflächen der Lichtquellen durch zwischen ihnen liegende Abstände voneinander getrennt sind und dass die Primäroptik dazu eingerichtet ist, von den Lichtquellen ausgehendes Licht so zu verteilen, dass die Abstände in der Zwischenlichtverteilung nicht erkennbar sind.
- Die eingangs genannten mehreren Lichtquellen sind bevorzugt als ein LED-array verwirklicht. Die Sekundäroptik weist bevorzugt mehrere Facetten auf, so dass sich mehrere Lichtquellen-seitige Brennpunkte oder eine Brennlinie ergeben. Bevorzugt ist also insbesondere, dass die Sekundäroptik mehrere objektseitige Brennpunkte aufweist.
- Im Lichtweg hinter der Zwischenlichtverteilung ist in einer Ausgestaltung noch ein facettierter Reflektor als Sekundäroptik angeordnet. Der Reflektor ist bevorzugt dazu eingerichtet, aus der Zwischenlichtverteilung eine vollständige Abblendlichtverteilung zu erzeugen, die einen asymmetrischen Anstieg aufweist.
- Der Reflektor kann durch eine facettierte Linse mit entsprechenden Brennpunktlagen ersetzt werden. Bei einer alternativen Ausgestaltung ist die Sekundäroptik als facettierte Linse verwirklicht. Durch das bei Linsen im Vergleich zu Reflektoren günstigere Verhältnis von Brennweite zu Öffnung (Blendenzahl) ergibt sich bei der Linsen-Sekundäroptik eine geringere Farbaberration.
- Auf diese Weise stellt die Zwischenlichtverteilung in gewisser Weise eine Ersatzlichtquelle dar, welche die geforderte Eigenschaft eines streifenlosen Erscheinungsbildes aufweist und die zusammen mit einem preiswerten Reflexionssystem zur Erzeugung einer regelkonformen Lichtverteilung verwendbar ist.
- Eine bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass die Primäroptik für jede Lichtquelle einen eigenen optisch wirksamen Teilbereich aufweist, von denen jeder eine Lichtaustrittsfläche aufweist und wobei diese Lichtaustrittsflächen abstandslos aneinander angrenzen, und wobei mindestens zwei benachbarte Lichtaustrittsflächen so aneinander angrenzen, dass wenigstens eine Seitenkante einer ersten von zwei aneinander angrenzenden Lichtaustrittsflächen in einer Linie fluchtend mit einer Seitenkante der zweiten der zwei aneinander angrenzenden Lichtaustrittsflächen liegt, so dass die beiden fluchtenden Kanten eine gemeinsame, gerade Kante bilden.
- Die Primäroptik ist bevorzugt ein einstückiges Optikarray, wobei jeder LED ein optisch wirksamer Teilbereich als sammelnde Primäroptik zugeordnet ist und wobei alle Primäroptiken mit ihren Lichtaustrittsflächen weitgehend unmittelbar aneinandergrenzen. Mindestens zwei dieser Optiken bilden mit ihren Lichtaustrittsflächen eine gemeinsame gerade Kante.
- Bevorzugt ist auch, dass jeder Teilbereich eine Sammellinse ist. In diesem Fall ist das Optikarray vorzugsweise aus Plankonvexlinsen aufgebaut und besteht bevorzugt aus organischem oder anorganischem Glas oder aus Silikonkautschuk (LSR). Organische Gläser sind beispielsweise Polymethylmethacrylat (PMMA), Cycloolefines Copolymer (COC), Cycloolefines Polymer (COP), Polycarbonat (PC), Polysulfon PSU oder Polymethacrylmethylimid (PMMI). Das Linsenarray weist bevorzugt mindestens abschnittsweise auf einer Seite einen geraden Rand auf. Dazu ist das Sammellinsenarray an einer Kante wenigstens abschnittsweise durch eine ebene Seitenfläche begrenzt, an der ein Teil des auftreffenden Lichtes reflektiert wird. Alternativ kann diese Kante auch durch eine Blende gebildet werden, die unmittelbar vor der Lichtaustrittsfläche des Linsenarrays in den Strahlengang gebracht wird.
- Anstelle der Metallisierung kann eine Multilagenbeschichtung auf den Kunststoffkörper aufgebracht werden. Bei der Multilagenbeschichtung werden abwechselnd mehrere niedrig- und hochbrechende Schichten kombiniert. Unter der spiegelnden Metall- oder Multilagenschicht kann eine weitere Metallschicht als Strahlungsbarriere vorgesehen sein. Diese Metallschicht wird beispielsweise als dicke Kupfer- oder Nickelschicht auf dem Kunststoffkörper des Reflektorarrays abgeschieden und bildet so einen Schutz gegen die thermische Belastung durch die Strahlung der LED. Auch ist diese dicke Metallschicht in der Lage, Wärme zum Reflektorrand hin abzuleiten.
- Zwischen dem Reflektorarray und den LED kann ein Wärmeschutzblech vorgesehen sein, das Strahlung von der LED auf die Rückseite des Reflektorkörpers abschattet und so eine thermische Überlastung des Reflektormaterials verhindert. Das Reflektorarray weist bevorzugt mindestens einen geraden Rand als Rand einer Reihe von Lichtaustrittsflächen benachbarter Reflektor-Teilbereiche auf.
- Als weitere Alternative ist auch bevorzugt, dass jeder Teilbereich ein Lichtleiter ist.
- In diesem Fall ist die Primäroptik bevorzugt als Lichtleiterarray ausgebildet, das aus konisch sich zum Lichtaustritt hin erweiternden Lichtleitern besteht, die in Ebenen, auf denen die Hauptabstrahlrichtung der LED senkrecht steht, vorzugsweise quadratische oder rechteckige Querschnitte aufweisen. Die Lichteintrittsfläche der einzelnen Lichtleiter-Teilbereiche ist jeweils bevorzugt eben und parallel zur Chipfläche der zugeordneten LED angeordnet. Dadurch wird ein größerer Teil des von der LED ausgehenden Lichtstroms in den Lichtleiter-Teilbereich eingekoppelt als bei einer konvexen Wölbung. Außerdem erfolgt durch die Brechung bereits eine gewisse Bündelung. Eine weitere Bündelung findet durch Reflexionen an den Seitenwänden des Lichtleiters statt, was durch die sich zum Lichtaustritt hin erweiternde Form bedingt ist. Die an den Seitenwänden stattfindenden Reflexionen unterscheiden Lichtleiter auch von Linsen, die ebenfalls transparente Festkörper sind. Bei Linsen finden Richtungsänderungen des Lichtes nur durch Brechung, nicht aber durch Reflexion an Seitenwänden statt.
- Bevorzugt ist auch, dass die Lichtaustrittsfläche der einzelnen Lichtleiter konvex gewölbt ist. Dadurch wird beim Lichtaustritt eine bündelnde Wirkung erzielt. Das Lichtleiterarray besteht bevorzugt aus einem der Materialien, das weiter oben als Linsenmaterial genannt wurde. Das Lichtleiterarray weist mindestens einen geraden Rand auf, der sich aus fluchtend aneinander anschließenden Rändern einzelner Lichtaustrittsflächen benachbarter Lichtleiter-Teilbereiche zusammensetzt.
- Eine weitere bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass das Lichtmodul eine Blende aufweist, die im Strahlengang des Lichtes unmittelbar hinter der Lichtaustrittsfläche so angeordnet ist, dass sie einen Teil der Zwischenlichtverteilung abschattet.
- Die Blende erleichtert die Erzeugung einer scharfen Hell-Dunkel-Grenze der Zwischenlichtverteilung, was sich auch günstig auf die Schärfe der letztlich im Vorfeld des Lichtmoduls zu erzeugenden regelkonformen Lichtverteilung auswirkt. Die Blende ist in einer bevorzugten Ausgestaltung als Einlegeteil oder Zweikomponenten Spritzgussteil an die Primäroptik mit angeformt, was zu dem Vorteil geringer Toleranzen zwischen Blende und Primäroptik führt.
- Bevorzugt ist auch, dass die Sekundäroptik wenigstens einen Hohlspiegelreflektor aufweist. Ein Hohlspiegelreflektor weist insbesondere im Vergleich zu transparenten Festkörpern wie Linsen oder mit interner Totalreflexion arbeitenden Sekundäroptiken die Vorteile geringerer Kosten und eines geringeren Gewichtes auf.
- Um eine gute Schärfe der Hell-Dunkel-Grenze und damit einen hohen Beleuchtungsstärkegradienten zu erzielen, werden alle Reflektoren bevorzugt im Strahlengang so angeordnet, dass der Strahlengang an den jeweiligen Reflektoren immer in möglichst spitzem Winkel (<90°) gefaltet wird. Durch den spitzen Faltungswinkel des Strahlenganges ändern die Elementarbilder der Ersatzlichtquelle ihre Orientierung kaum, so dass man Abblendlichtverteilungen mit guter Homogenität (keine Längsstreifen in der Lichtverteilung), hohem Lichtschwerpunkt (dicht unter der Abblendlicht-Hell-Dunkel-Grenze) und scharfer Hell-Dunkel-Grenze erzeugen kann.
- Ferner ist bevorzugt, dass eine optische Fläche der Sekundäroptik in einen größeren Teilbereich und einen kleineren Teilbereich aufgeteilt ist, wobei der größere Teilbereich dadurch definiert ist, dass er einen ersten objektseitigen Brennpunkt besitzt und dass die beiden Teilbereiche einen gemeinsamen bildseitigen Brennpunkt im Unendlichen besitzen.
- Dadurch erzeugt diese Sekundäroptik eine Abbildung der Ersatzlichtquelle im Unendlichen und damit eine Lichtverteilung im Vorfeld des Lichtmoduls, deren Form von der Form der Zwischenlichtverteilung und damit von der Form der Ersatzlichtquelle abhängt und die insbesondere eine scharfe Hell-Dunkel-Grenze aufweist, wenn eine solche auch bei der Zwischenlichtverteilung vorhanden ist.
- Bevorzugt ist auch, dass der Hohlspiegelreflektor eine reflektierende Fläche aufweist, deren größerer Teil eine parabolische Form aufweist, wobei ein objektseitiger Brennpunkt der parabolischen Form auf der Lichtaustrittsfläche der Primäroptik liegt.
- Der objektseitige Brennpunkt des Reflektors liegt dabei bevorzugt auf dem Rand der Ersatzlichtquelle. Zur Erzeugung einer Abblendlichtverteilung ist dies der untere Rand der Ersatzlichtquelle. Wie beschrieben, kann dieser Rand zusätzlich durch eine Blende abgeschattet werden, um zu verhindern, dass Streulicht ins Dunkelfeld der Lichtverteilung gelangt.
- Besitzt die Sekundäroptik mehrere Reflektorfacetten, so liegen deren Brennpunkte bevorzugt ebenfalls auf der Kante der Ersatzlichtquelle. Sie werden aber je nach Lage der Facette vorzugsweise an verschiedenen Enden der Lichtquellenkante positioniert.
- Ferner ist bevorzugt, dass die Sekundäroptik aus zwei Spiegeln besteht, die im Strahlengang so hintereinander angeordnet sind, dass sie den Strahlengang der Sekundäroptik zweimal in einem spitzen Winkel falten und dass die Sekundäroptik einen objektseitigen Brennpunkt aufweist, der auf der Lichtaustrittsfläche der Primäroptik liegt und dessen Bildpunkt im Unendlichen liegt.
- Durch die Faltung in einem spitzen Winkel werden die bereits genannten Vorteile einer guten Schärfe der Hell-Dunkel-Grenze erzielt, weil der spitze Winkel dazu führt, dass die Orientierung der Bilder der Ersatzlichtquelle parallel zur Hell-Dunkel-Grenze weitgehend erhalten bleibt.
- Die zweimalige Faltung eröffnet auch die Möglichkeit, den Bauraum des Lichtmoduls zu verkürzen und liefert einen weiteren Freiheitsgrad für die Anordnung der Elemente des Lichtmoduls. Dadurch können insbesondere besonders kompakte Lichtmodule verwirklicht werden. Außerdem bietet es konstruktive Vorteile, wenn die Lichtquelle in Fahrtrichtung nach vorne abstrahlt und die Entwärmung der Lichtquelle über einen Kühlkörper nach hinten erfolgt: Eine derartige Lichtquelle kann auf einfache Weise von der Rückseite des Scheinwerfers her gewechselt werden. Auch lässt sich der Kühlkörper auf der Rückseite des Lichtmoduls leichter belüften, was die Kühlleistung verbessert. Durch die kompakte Bauweise ergibt sich der zusätzliche Vorteil, dass der Schwerpunkt des Lichtmoduls in der Nähe der Lichtaustrittsfläche liegt, was das mechanische Schwenken des Lichtmoduls für eine Leuchtweitenregelung und/oder eine Kurvenlichtfunktion erleichtert.
- Das Falten des Strahlenganges ist auch deshalb günstig, weil sich die Brechkraft bei dem vorgeschlagenen optischen System auf Primär- und Sekundäroptik aufteilt, so dass man Sekundäroptiken mit geringer Brechkraft, d.h. mit langer Brennweite erhält (die Brennweiten sind 2-3 mal größer als bei einstufigen Systemen). Dies ist deshalb von Vorteil, weil man durch die in Bezug auf die Öffnung sehr langen Brennweiten eine sehr toleranzunempfindliche Optik erhält. Alle Chipbilder haben darüber hinaus annähernd gleiche Größe und Orientierung.
- Bevorzugt ist auch, dass der in Propagationsrichtung des Lichtes im Strahlengang erste Spiegel ein Hyperboloid und der zweite Spiegel ein Paraboloid als Reflexionsfläche aufweist, wobei der objektseitige Brennpunkt des Hyperboloids den objektseitigen Brennpunkt der Sekundäroptik bildet und der bildseitige Brennpunkt des Hyperboloids mit dem Brennpunkt des Paraboloids zusammenfällt und die Lage eines virtuellen Zwischenbildes der Zwischenlichtverteilung markiert.
- Bevorzugt ist auch, dass die Sekundäroptik mehrere objektseitige Brennpunkte und einen oder mehrere gemeinsame bildseitige Brennpunkte oder Brennlinien im Unendlichen aufweist.
- Ferner ist bevorzugt, dass der erste Spiegel der zweistufigen Sekundäroptik ein Hyperboloid aufweist oder ein ebener Spiegel als Spezialfall des Hyperboloids ist, und dass der zweite Spiegel ein facettiertes Paraboloid aufweist, wobei der objektseitige Brennpunkt des Hyperboloids den objektseitigen Brennpunkt der Sekundäroptik bildet und wobei der bildseitige Brennpunkt des Hyperboloids die Lage eines virtuellen Zwischenbildes der Zwischenlichtverteilung markiert und wobei die nachgeordneten Parabelfacetten dazu eingerichtet sind, auf den Rand des virtuellen Bildes der Zwischenlichtverteilung zu fokussieren.
- Bevorzugt ist auch, dass der erste Spiegel der zweistufigen Sekundäroptik ein facettiertes Hyperboloid oder als dessen Spezialfall einen facettierten Planspiegel aufweist und dass der zweite Spiegel ein Paraboloid aufweist, wobei der objektseitige Brennpunkt des Hyperboloids den objektseitigen Brennpunkt der Sekundäroptik bildet und wobei der bildseitige Brennpunkt des Hyperboloids die Lage eines virtuellen Zwischenbildes der Zwischenlichtverteilung markiert und wobei die im Strahlengang nachgeordneten Parabelfacetten auf den Rand des virtuellen Bildes der Zwischenlichtverteilung fokussieren.
- Eine weitere bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass die beiden Spiegel mehrere objektseitige Brennpunkte aufweisen, die auf dem Rand der Zwischenlichtverteilung liegen und deren Bildpunkt bzw. deren Bildlinien auf der Hell-Dunkel-Grenze der Lichtverteilung im Unendlichen liegen, wobei die beiden Spiegelflächen so geformt sind, dass alle optischen Wege zwischen dem objektseitigen Brennpunkt und seinen jeweiligen Bildpunkten bzw. Bildlinien gleich lang sind.
- Bei dieser Ausgestaltung basieren die beiden Spiegel der zweistufigen Sekundäroptik nicht auf Kegelschnitten und liefern kein scharfes, unverzerrtes Zwischenbild der Ersatzlichtquelle. Das optische System weist aber mehrere objektseitige Brennpunkte auf, die auf dem Rand der Lichtaustrittsfläche der Primäroptik liegen und deren Bildpunkte bzw. Bildlinien auf der Hell-Dunkel-Grenze der Lichtverteilung im Unendlichen liegen.
- Ein optisches System aus Umlenkoptik 64 und Sekundäroptik 12 muss nicht zwingend ein scharfes virtuelles Zwischenbild 66 liefern, da Aberrationen (Unschärfe, Verzeichnung, Öffnungsfehler) des Zwischenbildes durch die nachgeschaltete Sekundäroptik 12 wieder ausgeglichen werden können.
- Weitere Vorteile ergeben sich aus der Beschreibung und den beigefügten Figuren.
- Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
- Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen, jeweils in schematischer Form:
- Fig. 1
- ein Ausführungsbeispiel eines erfindungsgemäßen Lichtmoduls mit einer unterhalb der Sekundäroptik liegenden Ersatzlichtquelle;
- Fig. 2
- ein Ausführungsbeispiel eines erfindungsgemäßen Lichtmoduls mit einer oberhalb der Sekundäroptik liegenden Ersatzlichtquelle;
- Fig. 3
- verschiedene Ansichten einer Baugruppe aus Platine, LEDs und einer Primäroptik mit als Reflektoren verwirklichten Teilbereichen eines nicht erfindungsgemäßen Lichtmoduls;
- Fig. 4
- verschiedene Ansichten einer Baugruppe aus Platine, LEDs und einer Primäroptik mit als Sammellinsen verwirklichten Teilbereichen;
- Fig. 5
- verschiedene Ansichten einer Baugruppe aus Platine, LEDs und einer Primäroptik mit als Lichtleitern verwirklichten Teilbereichen eines nicht erfindungsgemäßen Lichtmoduls;
- Fig. 6
- eine perspektivische Darstellung eines Ausführungsbeispiels eines erfindungsgemäßen Lichtmoduls, das einen an einem zusätzlichen Umlenkspiegel gefalteten Strahlengang aufweist;
- Fig. 7
- den Gegenstand der
Fig. 6 mit verschiedenen Ausgestaltungen des Umlenkspiegels, jeweils in einer Seitenansicht; - Fig. 8
- Vorderansichten von zwei Ausgestaltungen erfindungsgemäßer Lichtmodule mit Anordnungen der Ersatzlichtquelle gemäß den Alternativen der
Fig. 1 und derFig. 2 ; - Fig. 9
- eine von einem Ausführungsbeispiel eines erfindungsgemäßen Lichtmoduls im Vorfeld des Lichtmoduls erzeugte Abblendlichtverteilung und eine schematische Darstellung von Lichtquellenbildern, aus denen sich die Abblendlichtverteilung zusammensetzt.
- Gleiche Bezugszeichen verweisen in den Figuren auf gleiche oder zumindest ihrer Funktion nach vergleichbare Elemente.
- Im Einzelnen zeigt die
Fig. 1 eine räumliche Anordnung aus einer Lichtquellenbaugruppe 10 und einer Sekundäroptik 12 als Ausführungsbeispiel eines erfindungsgemäßen Lichtmoduls 14. Dabei sind Haltestrukturen, die diese Anordnung im Raum definieren und fixieren, aus Gründen der Übersichtlichkeit und weil sie weder für das Verständnis der Erfindung noch für die Ausführbarkeit der Erfindung von Bedeutung sind, nicht dargestellt. Die Darstellung derFig. 1 ist insofern auf die optischen Elemente des Lichtmoduls konzentriert. Dies gilt auch für die weiteren Figuren. - Die Lichtquellenbaugruppe 10 und die Sekundäroptik 12 sind dabei so angeordnet, dass sie eine regelkonforme Lichtverteilung 16 auf einem im Vorfeld des Lichtmoduls stehenden Schirm 17 erzeugen. Die Lichtverteilung 16 weist im dargestellten Fall eine abschnittsweise horizontal verlaufende Hell-Dunkel-Grenze 18 auf.
- Bei einer bestimmungsgemäßen Verwendung des Lichtmoduls 14 in einem Kraftfahrzeugscheinwerfer eines Kraftfahrzeugs, das auf einem ebenen Untergrund steht, verläuft der fahrbahnnähere Teil 18.1 der horizontalen Hell-Dunkel-Grenze etwa auf der Höhe des Horizonts vor dem Fahrzeug oder ganz leicht (in der Regel 0,57°) darunter. Der Punkt, in dem die Hell-Dunkel-Grenze nach oben abknickt, liegt etwa in der Verlängerung der Fahrzeuglängsachse. Eine durch diesen Punkt verlaufende Vertikale V schneidet den Horizont H in einem Punkt des Schirms, der auch als HV = (0,0) bezeichnet wird. Für Einzelheiten einer solchen Lichtverteilung wird auf die Erläuterungen zu
Figur 9 verwiesen. - Dem optischen System des Lichtmoduls 14 lässt sich eine Sagittalebene 20 und eine Meridionalebene 22 zuordnen. Die Sagittalebene 20 liegt parallel zur Fahrbahn in der Höhe des Horizonts H. Die Meridionalebene 22 wird von der Richtung der Vertikalen V und einer optischen Achse des Lichtmoduls 14 definiert, die durch den HV = (0,0) Punkt geht.
- Die Lichtquellenbaugruppe 10 umfasst einen Kühlkörper 24 und eine Leiterplatte 26 mit darauf angeordneten SMD-LEDs 28 und der zugehörigen Primäroptik. Die SMD-LEDs mit der zugehörigen Primäroptik 30 sind als Detail Z vergrößert dargestellt.
- Die SMD-LEDs 28 sind bauartbedingt so angeordnet, dass ihre Lichtaustrittsflächen nicht abstandslos aneinander angrenzen. Das von diesen SMD-LEDs 28 emittierte Licht wird durch die Primäroptik 30 so gebündelt, dass sich an den nahtlos aneinandergereihten Lichtaustrittsflächen der Primäroptik 30 eine zusammenhängend geschlossene Zwischenlichtverteilung einstellt. Diese als Ersatzlichtquelle dienende Zwischenlichtverteilung wird anschließend von der Sekundäroptik 12 als Abblendlichtverteilung 16 auf einem entfernt vor dem Lichtmodul 14 stehenden Schirm 17 wiedergegeben. Dabei wird die Unterkante 32 der Primäroptik 30 als Hell-Dunkel-Grenze der Abblendlichtverteilung abgebildet.
- Die Reflektorfläche der Sekundäroptik 12 besteht aus mehreren Reflektorfacetten 12.1, 12.2. 12.3, die zum Beispiel zumindest in Bereichen ihrer Reflexionsfläche als Rotationsparaboloide verwirklicht sind. Dabei nehmen diese Bereiche jeweils den größeren Teil der Reflexionsfläche einer Facette ein. Die für verschiedene Facetten verschiedenen Paraboloide weisen unterschiedliche Brennpunkte 34, 36 auf, die alle auf der Unterkante 32 der Lichtaustrittsfläche der Primäroptik 30 liegen. Die Brennpunkte 34, 36 liegen dabei vorzugsweise an den Ecken der Primäroptik 30. Die Meridionalebene 22 teilt den Raum des optischen Systems in zwei Halbräume. Strahlt die Lichtquelle von unten in den Sekundärspiegel, so liegen die Spiegelfacetten und ihre Brennpunkte im gleichen Halbraum. Die Achsen der Rotationsparaboloide, auf denen die Reflektorfacetten basieren, weisen in Richtung der Abblendlicht-Hell-Dunkel-Grenze 18. In diesem Ausführungsbeispiel wird die Lichtquellenkante als Hell-Dunkel-Grenze der regelkonformen Lichtverteilung abgebildet.
- Als repräsentativer Lichtstrahl des in der
Fig. 1 dargestellten Lichtmoduls 14 wird im Folgenden ein Hauptstrahl 38 aus dem Strahlengang des Lichtmoduls betrachtet, der in der Meridionalebene 22 verläuft. - Die Hauptabstrahlrichtungen der einzelnen LEDs sind bevorzugt parallel zueinander und stimmen insofern überein. Der betrachtete Lichtstrahl 38 verläuft in Hauptabstrahlrichtung der Lichtquellen 28 durch die untere Berandung der Lichtaustrittsfläche der Primäroptik 30 und propagiert in Richtung der Reflektorfläche der Sekundäroptik 12. An der Reflektorfläche wird der Hauptstrahl 38 in spitzem Winkel (< 90°) reflektiert und an einen Punkt an der Hell-Dunkel-Grenze 18 der Lichtverteilung 16 im Bereich H = 0° gelenkt, dessen vertikale Komponente üblicherweise bei V = -0,57° liegt.
- Der Gegenstand der
Figur 2 unterscheidet sich von dem Gegenstand derFigur 1 dadurch, dass die Lichtquelle 10 von oben in den Sekundärreflektor 12 einstrahlt. Die Meridionalebene 22 teilt den Raum des optischen Systems in zwei Halbräume. Strahlt die Lichtquelle von oben in den Reflektor, liegen die Brennpunkte der Parabelfacetten immer auf der anderen Seite der Meridionalebene wie die Reflektorfacette selbst, was im Vergleich zurFigur 1 durch die im Detail Y von rechts nach links vertauschten Brennpunkte 34, 36 verdeutlicht wird. Durch die andere Anordnung der Lichtquelle vertauschen sich also die Seiten der Fokuspunkte 34, 36 der jeweiligen Reflektorfacetten. Insgesamt zeigtFigur 2 ebenfalls ein LED-Abblendlichtmodul 14 mit asymmetrischer Hell-Dunkel-Grenze 18. - Die Aufgabe der Primäroptik 30 besteht innerhalb der hier vorgestellten Erfindung insbesondere darin, eine scharf begrenzte, streifenfreie und insofern als Ersatzlichtquelle geeignete Zwischenlichtverteilung in einer Ebene zu erzeugen, die von der Sekundäroptik 12 in der regelkonformen Lichtverteilung 18 scharf abgebildet wird. Dazu muss die Primäroptik 30 insbesondere aus den nicht abstandlos benachbarten Lichtaustrittsflächen der SMD-LEDs 28 eine geschlossen zusammenhängend leuchtende Fläche erzeugen.
- Zu diesem Zweck werden die SMD-LEDs 28 in einer oder mehreren parallelen Reihen angeordnet. Vor das LED-Array wird nun ein Optikarray 30 aus sammelnden Linsen, Reflektoren oder konischen Lichtleitern in den Strahlengang gebracht, so dass die Lichtaustrittsfläche möglichst gleichmäßig und homogen ausgeleuchtet wird und das abgestrahlte Strahlenbündel keine Lücken aufweist.
-
Figur 3 : (nicht Teil der Erfindung) zeigt beispielhaft ein Primäroptikarray 30 aus Reflektoren. Die Reflektorteilbereiche 40 sind hier als abstandslos aneinander angrenzende Ausnehmungen aus einem einstückigen Grundkörper 42 verwirklicht.Figur 3b zeigt eine perspektivische Ansicht der Baugruppe aus der Leiterplatte 26 und den Reflektor-Teilbereichen 40, welche die zugeordneten LEDs verdecken.Figur 3a zeigt einen Schnitt durch diese Baugruppe, der in Richtung der Reihenanordnung verläuft.Figur 3d zeigt eine Schnitt durch diese Baugruppe, der quer zu der Reihenanordnung verläuft undFigur 3c zeigt eine Draufsicht und eine Lage der genannten Schnitte. - Die Reflektor-Teilbereiche haben dabei rechteckige, insbesondere quadratische Querschnitte. Die Lichtaustrittsflächen der einzelnen Reflektoren 40 reihen sich lückenlos und damit abstandslos aneinander an und begrenzen die resultierende leuchtende Fläche mit scharfen, geraden Kanten 44. Jeder SMD-LED 28 ist je ein Reflektor 40 zugeordnet. Die Mittelpunkte der Reflektoren 40 und die Mittelpunkte der Lichtaustrittsflächen der Lichtquellen 28 haben gleiche Abstände. Die Reihenanordnung der Reflektoren 40 besitzt daher die gleiche Teilung wie die Reihenanordnung der LEDs 28.
- In einer Ausgestaltung ist zwischen den Reflektor-Teilbereichen und den LED ein Wärmeschutzblech 46 angeordnet, das die Rückseite der Reflektor-Teilbereiche 40 des Optikarrays 30 vor Strahlung schützt. Natürlich ist das Wärmeschutzblech 46 über den Lichtaustrittsflächen der SMD-LEDs 28 unterbrochen, um einen Lichtaustritt zu erlauben.
- Insbesondere die
Figuren 3a, 3b und 3d zeigen deutlich ein Array aus sich konisch zum Lichtaustritt hin erweiternden Reflektoren 40 mit quadratischen oder rechteckigen Querschnitten, wobei ein solcher Querschnitt senkrecht zur optischen Achse und damit senkrecht zur Hauptabstrahlrichtung der LEDs 28 angeordnet ist. Die Reflektor-Teilbereiche 40 weisen bevorzugt die dargestellte Geometrie von Pyramidenstümpfen auf. Wie in derFigur 3 dargestellt ist, sind die Reflektor-Teilbereiche 40 und die ihnen jeweils ein-eindeutig zugeordneten Lichtquellen 28 in einer oder mehreren Reihen angeordnet. Außerdem sind die Reflektor-Teilbereiche 40 untereinander gleich und ihre Lichtaustrittsflächen grenzen abstandslos aneinander an, so dass ihre Lichtaustrittsflächen durch mindestens eine Gerade 44 begrenzt werden.Fig. 3b zeigt insbesondere auch eine als Hell-Dunkel-Grenze abzubildende Unterkante 44 der Lichtaustrittsfläche der Reflektorreihenanordnung.Fig. 4 zeigt insbesondere die Fokusebene 48 der Sekundäroptik 12, die in einer Ebene mit der Zwischenlichtverteilung liegt, die sich als Lichtaustrittsfläche der Reflektoren 40 ergibt. -
Fig. 4 zeigt einen derFig. 3 vergleichbaren Gegenstand. Im Unterschied zum Gegenstand derFigur 3 ist in derFig.4 das Primäroptikarray 50 erfindungsgemäß aus Sammellinsen aufgebaut. Die Sammellinsenteilbereiche 50 sind hier als abstandslos aneinander angrenzende Teilbereiche eines einstückigen transparenten Grundkörpers 52 verwirklicht. Der einstückige Grundkörper 52 besteht bevorzugt aus einem der oben genannten Materialien. -
Figur : 4b zeigt eine perspektivische Ansicht der Baugruppe aus der Leiterplatte 26 und den Sammellinsen-Teilbereichen 50 sowie den zugeordneten LEDs 28.Figur 4a zeigt einen Schnitt durch diese Baugruppe, der in Richtung der Reihenanordnung verläuft.Figur 4d zeigt eine Schnitt durch diese Baugruppe, der quer zu der Reihenanordnung verläuft undFigur : 4c zeigt eine Draufsicht und eine Lage der genannten Schnitte. - Jeder Lichtquelle 28 ist eindeutig ein Sammellinsenteilbereich 50 zugeordnet. Vergleiche
Fig. 4c . Das Linsenarray ist mindestens an einer Kante wenigstens abschnittsweise durch eine ebene Seitenfläche 54begrenzt, an der ein Teil des Strahlenganges reflektiert wird. Dies ist in derFig. 4d deutlich erkennbar. - Alternativ kann diese Kante 54 auch durch eine Blende 56 gebildet werden, die unmittelbar vor der Lichtaustrittsfläche des Linsenarrays in den Strahlengang gebracht wird. Dies ist in der
Fig. 4e und 4f dargestellt. -
Figur 4e zeigt ein Primäroptikarray aus Sammellinsen 50 mit zusätzlicher Blende 56. Diese deckt eine Kante der Primäroptik ab, um die Lichtaustrittsfläche möglichst scharf zu begrenzen. Diese Blende bewirkt eine besonders scharfe Begrenzung der Lichtaustrittsfläche dadurch, dass sie alles Licht abschattet, das an der Lichtaustrittsfläche vorbeigestreut wird. Die Sekundäroptik fokussiert in diesem Fall möglichst direkt auf die Blendenkante. Soll eine Abblendlichtverteilung mit zumindest abschnittsweise horizontal verlaufender Hell-Dunkel-Grenze erzeugt werden, so verläuft die Blendenkante entlang des unteren Randes der Lichtaustrittsfläche der Primäroptik, mit deren Hilfe dann durch die Sekundäroptik der Hell-Dunkel-Übergang der Lichtverteilung gebildet wird. - Die Zwischenlichtverteilung liegt bei den Linsenarrays im Bereich der Linsenkörper. Der Fokus der Sekundäroptik liegt in
Fig. 4f an der Kante der Blende 54. Die Ausführung mit dem Linsenarray ist bevorzugt. - Die Blende kann auch in Verbindung mit den übrigen Ausgestaltungen von Primäroptiken, die in dieser Anmeldung vorgestellt werden, verwendet werden.
- Wie in der
Figur 4 dargestellt ist, sind die SammellinsenTeilbereiche 50 wie auch die ihnen jeweils ein-eindeutig zugeordneten Lichtquellen 28 in einer oder mehreren Reihen angeordnet. Außerdem sind die Sammellinsen -Teilbereiche 50 untereinander gleich und ihre Lichtaustrittsflächen grenzen abstandslos aneinander an, so dass ihre Lichtaustrittsflächen durch mindestens eine Gerade 44 begrenzt werden. -
Figur 4g zeigt eine Anordnung eines Paars aus einer von mehreren Halbleiterlichtquellen 28 in Form eines LED-Chips und eines Licht dieses Chips sammelnden Sammellinsenteilbereichs 50 des Grundkörpers 52. Eine Teilung des Grundkörpers 52 ist mit T bezeichnet. Die Teilung T entspricht der Breite der einzelnen Sammellinsenteilbereiche 50 sowie dem Abstand der Mittelpunkte benachbarter LED-Chips 28. Mit BLED ist eine Kantenlänge des LED-Chips 28 bezeichnet. Ein virtueller LED-Chip ist mit 28' bezeichnet. Die Kantenlänge des virtuellen LED-Chips 28' ist mit B'LED bezeichnet. Ein objektseitiger Brennpunkt des Sammellinsenteilbereichs 50 ist mit F und ein Hauptpunkt des Sammellinsenteilbereichs 50 ist mit H bezeichnet. Der Hauptpunkt H einer Linse ist als Schnittpunkt einer Hauptebene der Linse mit der optischen Achse definiert. Die Sekundäroptik 4 des erfindungsgemäßen Lichtmoduls 1 ist vorzugsweise auf einen Hauptpunkt H eines der Sammellinsenteilbereiche 50, vorzugsweise auf den Hauptpunkt H des in der Nähe einer optischen Achse des Lichtmoduls befindlichen Sammellinsenteilbereichs 50, fokussiert. Das Bezugszeichen f bezeichnet die Brennweite des Sammellinsenteilbereichs 50 und SF eine Schnittweite des Sammellinsenteilbereichs 50. Ein Abstand zwischen dem LED-Chip 28 und der Lichteintrittsfläche des Sammellinsenteilbereichs 50 ist mit S1, und ein Abstand zwischen dem virtuellen Chip-Bild 28' und der Lichteintrittsfläche des Sammellinsenteilbereichs 50 ist mit S2 bezeichnet. - Der LED-Chip 28 liegt zwischen dem Sammellinsenteilbereich 50 und dessen objektseitigem Brennpunkt F. Der LED-Chip 28 wird durch den Sammellinsenteilbereich 50 so vergrößert, dass das (aufrechte) virtuelle Bild 28' des Chips (in Lichtaustrittsrichtung vor dem objektseitigen Linsenbrennpunkt F) etwa gleich groß ist wie der Sammellinsenteilbereich 50, d.h. B'LED ≈ T. Für die angegebenen Größen gelten näherungsweise folgende Zusammenhänge:
- 0,1 mm ≤ S1 ≤ 2 mm
- 1 x BLED ≤ T ≤ 4 x BLED
- Die Sammellinsenteilbereiche 50 des Grundkörpers 52 dienen nicht zur Erzeugung reeller Zwischenbilder der Lichtquellen 28, sondern bilden lediglich eine ausgeleuchtete Fläche auf der Lichtaustrittsseite 25 der Sammellinsenteilbereiche 50. Die Lichtquellen 28 sind derart zwischen den Lichteintrittsflächen der Sammellinsenteilbereiche 50 und den objektseitigen Brennpunkten F der Sammellinsenteilbereiche 50 angeordnet, dass die Ränder der Lichtquellen 28 auf geometrischen Verbindungen von den Brennpunkten F zu den Linsenrändern liegen. Die Abstrahlflächen der Lichtquellen 28 sind senkrecht zu den optischen Achsen der Sammellinsenteilbereiche 50 angeordnet. Dadurch ergibt sich eine sehr gleichmäßige Ausleuchtung der Sammellinsenteilbereiche 50, und auf den Lichtaustrittsflächen der Sammellinsenteilbereiche 50 ergibt sich eine besonders homogene Lichtverteilung, die sog. Zwischenlichtverteilung. Diese Zwischenlichtverteilungen werden durch die Sekundäroptik zur Erzeugung der resultierenden Gesamtlichtverteilung des Lichtmoduls auf der Fahrbahn vor dem Fahrzeug abgebildet. Die optischen Achsen der einzelnen Sammellinsenteilbereiche 50 des Grundkörpers 52 verlaufen alle in einer Ebene, bevorzugt sind sie parallel zueinander. Die Achse der Sekundäroptik ist auf der Seite, die dem Grundkörper 52 zugewandt ist, parallel zu der Achse mindestens einer der Sammellinsenteilbereiche 50. Die LEDs sind ist insbesondere zwischen ihrem jeweiligen Sammellinsenteilbereich und dessen paraxialem Brennpunkt so angeordnet, dass eine lückenlose Zwischenlichtverteilung entsteht, die sich aus den virtuellen Bildern der Lichtaustrittsflächen der einzelnen Chips zusammensetzt. Es wird darauf hingewiesen, dass das Licht hier aus der LED zunächst in Luft austritt und erst dann auf den zugehörigen Sammellinsenteilbereich einfällt. Dies ist ein Unterschied zu Stand der Technik, bei dem LEDs mit transparenten Vergussmassen verwendet werden, wobei der Verguß möglicherweise eine Linsenwirkung entfaltet.
-
Fig. 5 (nicht Teil der Erfindung) zeigt beispielhaft eine weitere Ausgestaltung des Primäroptikarrays. Im Fall derFig. 5 besteht das Primäroptikarray aus Lichtleitern 60 mit konisch sich zum Lichtaustritt hin erweiternden Querschnitten, die senkrecht zur Hauptausbreitungsrichtung des Lichtes in den Lichtleitern und damit senkrecht zur jeweiligen optischen Achse orientiert sind und die rechteckig, insbesondere quadratisch sind. Die Lichtaustrittsflächen 62 der einzelnen Lichtleiter 60 reihen sich lückenlos aneinander und begrenzen die leuchtende Fläche mit scharfen, geraden Kanten 44 die hier Unterkanten 44 sind. Jeder LED 28 ist je ein Lichtleiter 60 ein-eindeutig zugeordnet. - Die Lichteintrittsfläche ist vorzugsweise eben und steht parallel vor dem LED-Chip. Die Lichtleiter 60 werden wie die zugeordneten Lichtquellen in einer oder mehreren Reihen angeordnet, so dass die Lichtaustrittsflächen wiederum durch mindestens eine Gerade 44 begrenzt werden. Die Lichtaustrittsfläche ist vorzugsweise konvex gewölbt. Das Lichtleiterarray wird bevorzugt aus einem der oben genannten Materialien gefertigt. Das Lichtleiterarray wird bevorzugt als einstückiger Grundkörper gefertigt, der die Lichtleiter als Licht leitende Teilbereiche aufweist.
- Für alle drei Ausgestaltungen des Primäroptikarray als Array von Reflektor-Teilbereichen 40, Sammellinsen-Teilbereichen 50 und Lichtleiter-Teilbereichen 60 gilt, dass die Summe der Lichtaustrittsflächen der jeweiligen Teilbereiche die geschlossen zusammenhängende Zwischenlichtverteilung und Ersatzlichtquelle bildet.
- Vernachlässigt man Verluste durch Absorbtion und Fresnel-Reflexion, dann weist die Ersatzlichtquelle ähnliche Leuchtdichten auf wie die Chips der einzelnen LEDs. Damit weist auch eine solche Ersatzlichtquelle über ihre ganze Lichtaustrittsfläche gleichmäßig verteilte Leuchtdichten und ähnliche Abstrahlwinkel wie einzelne LEDs auf. Damit lässt sich die Ersatzlichtquelle im Folgenden wie ein LED-Array behandeln.
- Die so gebildete Lichtverteilung dient nun als Ersatzlichtquelle für eine nachgeschaltete Sekundäroptik, die eine Sammellinse oder bevorzugt ein Reflektor mit zumindest bereichsweise parabolischer Reflexionsfläche ist und die mithilfe dieser Ersatzlichtquelle eine Abblendlichtverteilung formt.
- Die Ersatzlichtquelle sollte möglichst ähnlich orientiert sein wie die Hell-Dunkel Grenze der Abblendlichtverteilung (nämlich zumindest abschnittsweise horizontal), um eine gute Schärfe der Hell-Dunkel-Grenze zu erzielen (hoher Beleuchtungsstärkegradient). Aus diesem Grund werden auch alle Reflektoren im Strahlengang so angeordnet, dass der Strahlengang an den jeweiligen Reflektoren immer in möglichst spitzem Winkel (<90°) gefaltet wird und die Orientierung der Bilder der Ersatzlichtquelle parallel zur Hell-Dunkel-Grenze weitgehend erhalten bleibt.
- Vorzugsweise ist die Sekundäroptik ein facettierter Parabolreflektor. Der Reflektor ist so im Strahlengang angeordnet, dass die Ersatzlichtquelle von vorne in den Reflektor hineinstrahlt, so dass der Strahlengang in spitzem Winkel umgelenkt wird. Der mindestens eine Brennpunkt des Reflektors liegt dabei auf dem Rand der Ersatzlichtquelle. Zur Erzeugung einer Abblendlichtverteilung ist dies der untere Rand der Ersatzlichtquelle. Wie beschrieben, kann dieser Rand zusätzlich durch eine Blende abgeschattet werden, um zu verhindern, dass Streulicht ins Dunkelfeld der Lichtverteilung gelangt.
- Besitzt die Sekundäroptik mehrere Reflektorfacetten, so liegen deren Brennpunkte wiederum auf der Kante der Ersatzlichtquelle, werden aber je nach Lage der Facette vorzugsweise an verschiedenen Enden der Lichtquellenkante positioniert:
Strahlt die Lichtquelle von unten in den Reflektor, so haben die jeweiligen Parabelfacetten ihren Brennpunkt immer im selben von der Meridionalebene begrenzten Halbraum. Strahlt die Lichtquelle von oben in den Reflektor, liegen die Brennpunkte der Parabelfacetten immer auf der anderen Seite der Meridionalebene wie die Reflektorfacette selbst. - Dadurch wird gewährleistet, dass die Bilder der Ersatzlichtquelle immer mit der am nächsten liegenden Ecke an die Abblendlicht-Hell-Dunkel-Grenze anschließen und kein Teil der Lichtquellenbilder in das Dunkelfeld der Lichtverteilung hineinragt.
- Die Sekundäroptik fokussiert nicht auf die Chipebene der LEDs sondern auf die Unterkante der Lichtaustrittsfläche der Primäroptik. Die Lichtaustrittsfläche kann besonders scharf begrenzt werden, wenn entlang des Randes der Lichtaustrittsfläche, eine Blende angeordnet wird, die alles Licht abschattet, das an der Lichtaustrittsfläche vorbeigestreut wird.
- Die Sekundäroptik fokussiert in diesem Fall möglichst direkt auf die Blendenkante. Soll eine Abblendlichtverteilung mit zumindest abschnittsweise horizontal verlaufender Hell-Dunkel-Grenze erzeugt werden, so verläuft die Blendenkante entlang des unteren Randes der Lichtaustrittsfläche der Primäroptik, mit deren Hilfe dann durch die Sekundäroptik der Hell-Dunkel-Übergang der Lichtverteilung gebildet wird.
- Die Reflektorfläche der Sekundäroptik besteht bevorzugt aus mehreren Reflektorfacetten, die jeweils als Rotationsparaboloide verwirklichte Flächen aufweisen. Die verschiedenen Paraboloide weisen unterschiedliche Brennpunkte auf, die alle auf der Unterkante der Lichtaustrittsfläche der Primäroptik liegen und zwar vorzugsweise an deren Rändern (Ecken), wobei die Brennpunkte in der gleichen Hemisphäre liegen wie die dazugehörenden Facettenflächen.
- Die Achsen der Rotationsparaboloide, auf denen die Reflektorfacetten basieren, weisen in Richtung der Abblendlicht-Hell-Dunkel-Grenze. Damit wird die Lichtquellenkante als Hell-Dunkel-Grenze der Lichtverteilung abgebildet.
- In einer Ausgestaltung werden die Reflektorfacetten statt als Rotationsparaboloide als torische Flächen ausgeführt: Hierzu wird die Krümmung des Rotationsparaboloids in Schnitten parallel zur Hell-Dunkel-Grenze (bzw. zu Abschnitten der Hell-Dunkel-Grenze) durch den Brennpunkt des Paraboloids so erhöht oder verringert, dass sich anstelle des Brennpunktes eine Brennlinie ergibt, die parallel zur Abblendlicht-Hell-Dunkel-Grenze bzw. zu Abschnitten der Abblendlicht-Hell-Dunkel-Grenze verläuft. Die Streuung kann auch durch streuende Zylinderoptiken erreicht werden, die auf die Facettenflächen aufgebracht werden und deren Zylinderachse senkrecht auf Hauptstrahl und Abblendlicht-Hell-Dunkel-Grenze stehen.
- Soll eine asymmetrische Abblendlicht-Hell-Dunkel-Grenze mit Anstieg erzeugt werden, so wird dieser Anstieg über eine Reflektorfacette erzeugt, die möglichst nahe am Rand der Reflektorfläche liegt. Einzelheiten dazu werden weiter unten unter Bezug auf die
Fig. 8 erläutert. -
Figur 6 zeigt Ausgestaltungen erfindungsgemäßer Lichtmodule 14, die einen Umlenkspiegel aufweisen, der den Strahlengang zusätzlich faltet. Diese Maßnahme dient dazu, den Bauraum des Lichtmoduls zu verkürzen und einen weiteren Freiheitsgrad zu schaffen, um die Elemente des Lichtmoduls möglichst frei anordnen zu können. - So bietet es konstruktive Vorteile, wenn die Lichtquelle 10 in Fahrtrichtung (Lichtabstrahlrichtung) nach vorne abstrahlt und die Entwärmung der Lichtquelle über einen Kühlkörper 24 nach hinten erfolgt: Eine derartige Lichtquelle kann auf einfache Weise von der Rückseite des Scheinwerfers gewechselt werden. Auch lässt sich der Kühlkörper auf der Rückseite des Lichtmoduls leichter belüften, was die Kühlleistung verbessert. Darüber erhält man ein kompaktes Lichtmodul, dessen Schwerpunkt in der Nähe der Lichtaustrittsfläche liegt, was das mechanische Schwenken des Lichtmoduls 14 erleichtert.
- Das Falten des Strahlenganges ist auch deshalb günstig, weil sich die Brechkraft bei dem vorgeschlagenen optischen System auf Primär- und Sekundäroptik aufteilt, so dass man Sekundäroptiken mit geringer Brechkraft, d.h. mit langer Brennweite erhält (die Brennweiten sind 2-3 mal größer als bei einstufigen Systemen).
- Der Umlenkspiegel 64 wird als Hyperboloid ausgeführt, wobei das Hyperboloid ausdrücklich auch den Spezial-Fall des ebenen Spiegels beinhalten soll. Die beschriebenen Eigenschaften der Sekundäroptik 12 beziehen sich in diesem Fall auf das optische System 64, 12 aus Umlenkspiegel 64 und Sekundäroptik 12, das nun mit einem oder mehreren Brennpunkten auf die untere Kante der Ersatzlichtquelle fokussiert. Der Umlenkspiegel 64 erzeugt dabei mindestens ein virtuelles Zwischenbild 66 der Ersatzlichtquelle 68.
- Die Ersatzlichtquelle 68 liegt dabei in der objektseitigen Petzvalfläche des hyperbolischen Umlenkspiegels, während der oder die Brennpunkte der Sekundäroptik 12 in der bildseitigen Petzvalfläche des Hyperboloids liegen, d.h. die Sekundäroptik 12 fokussiert statt auf die reelle Ersatzlichtquelle 68 auf deren virtuelles Bild 66.
-
Fig.6a zeigt ein solches Abblendlichtmodul 14 mit einem durch einen Umlenkspiegel 64 zusätzlich gefalteten Strahlengang. Der Umlenkspiegel 64 erzeugt ein virtuelles Bild 66 der Ersatzlichtquelle 68. Die Fokuspunkte der Sekundäroptik 12 liegen so, wie es in Verbindung mit derFigur 1 erläutert wurde, bevorzugt auf den Ecken der Primäroptik. Im Fall derFig. 6a fokussiert die Sekundäroptik aber nicht auf die reale Primäroptik, sondern auf die Ecken des virtuellen Bildes der als Ersatzlichtquelle 66 dienenden Primäroptik. -
Fig.6b zeigt ebenfalls ein Abblendlichtmodul 14 mit einem durch einen Umlenkspiegel 64 zusätzlich gefalteten Strahlengang. Der Umlenkspiegel 64 erzeugt ein virtuelles Bild 66 der Ersatzlichtquelle 68. Die Brennpunkte der Sekundäroptik 12 liegen nun auf der Unterkante 44 des virtuellen Bildes 66 der Ersatzlichtquelle 68. Der Umlenkspiegel 64 verkürzt die Baulänge und ermöglicht so eine besonders kompakte Bauweise des Lichtmoduls 14. - Das optische System aus Umlenkoptik 64 und Sekundäroptik 12 ist bevorzugt so ausgestaltet, dass die Bedingung
- Ein optisches System aus Umlenkoptik 64 und Sekundäroptik 12, das die Bedingung
- In Bezug auf den Umlenkspiegel 64 werden fünf Ausgestaltungen unterschieden. In einer ersten Ausgestaltung ist der Umlenkspiegel 64 ein ebener Spiegel. Dies ist in der
Fig. 6 dargestellt. -
Figur 7a zeigt eine zweite Ausgestaltung mit einem Umlenkspiegel 64, der konkav ist und daher eine sammelnde Wirkung besitzt. Die Form ist bevorzugt eine Hyperbel-Form. Aufgrund der sammelnden Charakteristik ist das virtuelle Zwischenbild 66 hier ein vergrößertes Bild der Ersatzlichtquelle 68. Der erste Hyperbelbrennpunkt 70 liegt auf der Unterkante der realen Primäroptik der realen Ersatzlichtquelle 68. Der zweite Hyperbelbrennpunkt 72 liegt auf der Unterkante des virtuellen Zwischenbildes 66 der Ersatzlichtquelle. -
Fig.7b zeigt eine dritte Ausgestaltung mit einem Umlenkspiegel 64, der konvex ist und daher eine zerstreuende Wirkung besitzt. Die Form ist bevorzugt eine Hyperbel-Form. Aufgrund der zerstreuenden Charakteristik ist das virtuelle Zwischenbild 66 hier ein verkleinertes Bild der Ersatzlichtquelle 68. Der erste Hyperbelbrennpunkt 70 liegt auf der Unterkante der realen Primäroptik der realen Ersatzlichtquelle 68. Der zweite Hyperbelbrennpunkt 72 liegt auf der Unterkante des virtuellen Zwischenbildes 66 der Ersatzlichtquelle 68. - Die
Figur 7 zeigt insofern Ausgestaltungen mit einem Hyperboloid als Umlenkspiegel 64, der einen objektseitigen Brennpunkt 70 und einen bildseitigen Brennpunkt 72 aufweist und mit einer vorzugsweise facettierten Sekundäroptik, welche den Umlenkspiegel und den weiteren Spiegel 12 aufweist, und die mehrere objektseitige Brennpunkte und einen bildseitigen Brennpunkt im Unendlichen aufweist. Die Brennpunkte dieser Sekundäroptik 12 liegen auf der Unterkante des virtuellen Bildes 66 der Ersatzlichtquelle 68. Dieses Bild ist im Unterschied zum ebenen Spiegel vergrößert oder verkleinert, je nachdem, ob der Umlenkspiegel 64 ein konkaves oder ein konvexes Hyperboloid ist. - In einer nicht dargestellten vierten Ausgestaltung besitzt das Lichtmodul mehrere ebene Umlenkspiegelfacetten und eine Sekundäroptik mit einem einzelnen objektseitigen Brennpunkt. Der facettierte Umlenkspiegel teilt den Strahlengang der Sekundäroptik auf und erzeugt so ein optisches System mit mehreren Brennpunkten, ähnlich wie es bei einem facettierten Parabelreflektor der Fall ist. Der facettierte Umlenkspiegel erzeugt mehrere gegeneinander verschobene virtuelle Bilder der Ersatzlichtquelle. Die Brennpunkte der zweiteiligen Sekundäroptik fokussieren wie oben beschrieben auf den Rand der Ersatzlichtquelle.
- In einer ebenfalls nicht dargestellten fünften Ausgestaltung weist das Lichtmodul als Umlenkspiegel ein facettiertes Hyperboloid mit einem objektseitigen und mehreren bildseitigen Brennpunkten auf. Die Sekundäroptik soll in diesem Fall einen objektseitigen und einen bildseitigen Brennpunkt (letzteren im Unendlichen) aufweisen. Das facettierte Hyperboloid erzeugt gegeneinander verschobene, vergrößerte (konkaver Hyperbolspiegel) oder verkleinerte (konvexer Hyperbolspiegel) virtuelle Bilder der Lichtquelle, je nachdem, ob der Hyperbolspiegel konkav (und damit vergrößernd) oder konvex (und damit verkleinernd) geformt ist.
-
Figur 8 zeigt Vorderansichten von Ausgestaltungen des Lichtmoduls, wie sie sich einem Betrachter bieten, der sich in der Abstrahlrichtung des Lichtmoduls vor dem Lichtmodul befindet und der in das Lichtmodul hineinblickt. Sowohl im Fall derFigur 8a als auch im Fall derFig. 8b besitzt der als Sekundäroptik dienende Reflektor zumindest in einem Bereich seiner Reflektorfläche, der größer als die Hälfte seiner gesamten reflektierenden Fläche ist, eine parabolische Form mit drei Facetten. -
Figur 8a zeigt insbesondere eine Ausgestaltung, bei der die Facette 12.1 am in Blickrichtung rechten Reflektorrand den asymmetrischen Anstieg 18.2 der Hell-Dunkel-Grenze in der Lichtverteilung 16 erzeugt. Die Facette 12.1 ist insbesondere so angeordnet, dass die Lichtquellenbilder in Richtung des Anstiegs gekippt sind. Dadurch erzeugt die Facette 12.1 Lichtquellenbilder mit einer Orientierung, die in der Summe der Lichtquellenbilder den gewünschten Anstieg der Hell-Dunkel-Grenze erzeugen. Das in derFig. 8a dargestellte Beispiel eignet sich für Rechtsverkehr. Strahlt die Lichtquelle so wie beim Gegenstand derFig. 8a von unten in den Reflektor, so liegt die Facette 12.1 nicht auf derselben Seite der Meridionalebene wie der Anstieg 18.2. Die Facettenkante verläuft abschnittsweise senkrecht zum Anstieg. -
Figur 8b zeigt insbesondere eine Ausgestaltung, bei der die Facette 12.3 am linken Reflektorrand den asymmetrischen Anstieg der Hell-Dunkel-Grenze in der Lichtverteilung erzeugt. Strahlt die Lichtquelle so wie beim Gegenstand derFig. 8b von oben in den Reflektor, so liegt die Facette 12.3 auf derselben Seite der Meridionalebene wie der Anstieg 18.2 selbst. Die Facettenkante verläuft abschnittsweise senkrecht zum Anstieg. -
Figur 9b zeigt eine Abblendlichtverteilung einer Ausgestaltung eines erfindungsgemäßen Lichtmoduls, wie sie sich auf einem vor dem Fahrzeug stehenden Schirm einstellt. Die horizontale Linie H liegt auf der Höhe des Horizonts. Die vertikale Linie V kreuzt den Horizont in der Verlängerung der Hauptabstrahlrichtung des Lichtmoduls. Die Abweichungen vom Punkt HV = (0, 0) sind jeweils in Winkelgraden angegeben. Geschlossene Kurven sind jeweils Linien konstanter Helligkeit, wobei die Helligkeit von Linie zu Linie von außen nach innen zunimmt. Der rechts vom HV = (0, 0) Punkt erfolgende Anstieg zeigt, dass es sich um ein Lichtmodul für Rechtsverkehr handelt. -
Figur 9a veranschaulicht, wie sich die in derFig. 9b gezeigte Lichtverteilung als Überlagerung von Lichtquellenbildern 74 ergibt. Jedes Lichtquellenbild wird von einem kleinen Teil der reflektierenden Fläche der Sekundäroptik erzeugt. Die Darstellung derFig. 9a ist insofern rein schematisch. Die Lichtquellenbilder sind überwiegend horizontal bzw. parallel zur Hell-Dunkel-Grenze orientiert. Die Facette, welche den Anstieg erzeugt, ist dagegen gerade so ausgestaltet, dass sie Lichtquellenbilder liefert, deren Rand parallel zu dem gewünschten Verlauf des Anstiegs liegt. - Die Primäroptik vergrößert die Lichtaustrittsfläche um einen Faktor, der etwa dem Quotienten aus der Teilung des Optikarrays und der Seitenlänge eines einzelnen Chips entspricht. Das folgt aus der gleichmäßig hellen Ersatzlichtquelle. Die Brennweite der Sekundäroptik entspricht bevorzugt dem 50 - fachen bis 200 - fachen der Seitenlänge eines einzelnen Chips, insbesondere dem 80 - fachen bis 100- fachen der genannten Seitenlänge.
Claims (13)
- Lichtmodul (14) eines Kraftfahrzeugscheinwerfers, mit mehreren Leuchtdioden als Lichtquellen (28), einer Primäroptik (30) und einer Sekundäroptik (12), wobei die Primäroptik dazu eingerichtet ist, von den Lichtquellen ausgehendes Licht zu sammeln und in eine Zwischenlichtverteilung (68) zu überführen, welche die Form einer geschlossen leuchtenden Fläche aufweist, und wobei die Sekundäroptik eine objektseitige Brennweite aufweist, wobei die Primäroptik und die Sekundäroptik so angeordnet sind, dass die Zwischenlichtverteilung im Abstand dieser Brennweite im Lichtweg vor der Sekundäroptik liegt, wobei das Lichtmodul dazu eingerichtet ist eine Abblendlicht-Lichtverteilung mit einer Hell-Dunkel-Grenze zu erzeugen, dadurch gekennzeichnet, dass die Primäroptik ein einteiliger, aus Sammellinsenteilbereichen (50) aufgebauter Grundkörper ist, und dass der Chip einer Leuchtdiode zwischen einem Licht dieser Leuchtdiode sammelnden Sammellinsenteilbereich (50) und dessen objektseitigen Brennpunkt (F) liegt, wobei Lichtaustrittsflächen der Lichtquellen (28) durch zwischen ihnen liegende Abstände voneinander getrennt sind und dass die Primäroptik dazu eingerichtet ist, von den Lichtquellen ausgehendes Licht so zu verteilen, dass die Abstände in der Zwischenlichtverteilung (68) nicht erkennbar sind, so dass eine geschlossen zusammenhängende leuchtende Fläche in der Zwischenlichtverteilung (68) entsteht.
- Lichtmodul (14) nach Anspruch 1, dadurch gekennzeichnet, dass die Primäroptik (30) für jede Lichtquelle einen eigenen optisch wirksamen Teilbereich aufweist, von denen jeder eine Lichtaustrittsfläche aufweist und wobei diese Lichtaustrittsflächen abstandslos aneinander angrenzen, und wobei mindestens zwei benachbarte Lichtaustrittsflächen so aneinander angrenzen, dass wenigstens eine Seitenkante einer ersten von zwei aneinander angrenzenden Lichtaustrittsflächen in einer Linie fluchtend mit einer Seitenkante der zweiten der zwei aneinander angrenzenden Lichtaustrittsflächen liegt, so dass die beiden fluchtenden Kanten eine gemeinsame, gerade Kante (44) bilden.
- Lichtmodul (14) nach Anspruch 2, dadurch gekennzeichnet, dass jeder Teilbereich eine Sammellinse (50) ist.
- Lichtmodul (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, das Lichtmodul eine Blende (56) aufweist, die im Strahlengang des Lichtes unmittelbar hinter der Lichtaustrittsfläche so angeordnet ist, dass sie einen Teil der Zwischenlichtverteilung abschattet.
- Lichtmodul (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sekundäroptik wenigstens einen Hohlspiegelreflektor (12) aufweist.
- Lichtmodul (14) nach Anspruch 5, dadurch gekennzeichnet, dass eine optische Fläche der Sekundäroptik in einen größeren Teilbereich und einen kleineren Teilbereich aufgeteilt ist, wobei der größere Teilbereich dadurch definiert ist, dass er einen ersten objektseitigen Brennpunkt besitzt und dass die beiden Teilbereiche einen gemeinsamen bildseitigen Brennpunkt im Unendlichen besitzen.
- Lichtmodul (14) nach Anspruch 5, dadurch gekennzeichnet, dass der Hohlspiegelreflektor eine reflektierende Fläche aufweist, deren größerer Teil eine parabolische Form aufweist, wobei ein objektseitiger Brennpunkt der parabolischen Form auf der Lichtaustrittsfläche der Primäroptik liegt.
- Lichtmodul (14) nach Anspruch 5, dadurch gekennzeichnet, dass die Sekundäroptik aus zwei Spiegeln besteht, die im Strahlengang so hintereinander angeordnet sind, dass sie den Strahlengang der Sekundäroptik zweimal in einem spitzen Winkel falten und dass die Sekundäroptik einen objektseitigen Brennpunkt aufweist, der auf der Lichtaustrittsfläche der Primäroptik liegt und dessen Bildpunkt im Unendlichen liegt.
- Lichtmodul (14) nach Anspruch 8, dadurch gekennzeichnet, dass der in Propagationsrichtung des Lichtes im Strahlengang erste Spiegel (64) ein Hyperboloid und der zweite Spiegel ein Paraboloid (12) ist, wobei der objektseitige Brennpunkt des Hyperboloids den objektseitigen Brennpunkt der Sekundäroptik bildet und der bildseitige Brennpunkt des Hyperboloids mit dem Brennpunkt des Paraboloids zusammenfällt und die Lage eines virtuellen Zwischenbildes der Zwischenlichtverteilung markiert.
- Lichtmodul (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sekundäroptik mehrere objektseitige Brennpunkte und einen oder mehrere gemeinsame bildseitige Brennpunkte oder Brennlinien im Unendlichen aufweist.
- Lichtmodul (14) nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der erste Spiegel (64) der zweistufigen Sekundäroptik ein Hyperboloid oder ein ebener Spiegel als Spezialfall des Hyperboloids ist, und dass der zweite Spiegel (12) ein facettiertes Paraboloid ist, wobei der objektseitige Brennpunkt des Hyperboloids den objektseitigen Brennpunkt der Sekundäroptik bildet und wobei der bildseitige Brennpunkt des Hyperboloids die Lage eines virtuellen Zwischenbildes der Zwischenlichtverteilung markiert und wobei die nachgeordneten Parabelfacetten dazu eingerichtet sind, auf den Rand des virtuellen Bildes der Zwischenlichtverteilung zu fokussieren.
- Lichtmodul (14) nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der erste Spiegel (64) der zweistufigen Sekundäroptik ein facettiertes Hyperboloid oder als dessen Spezialfall ein facettierter Planspiegel ist und dass der zweite Spiegel (12) ein Paraboloid ist, wobei der objektseitige Brennpunkt des Hyperboloids den objektseitigen Brennpunkt der Sekundäroptik bildet und wobei der bildseitige Brennpunkt des Hyperboloids die Lage eines virtuellen Zwischenbildes der Zwischenlichtverteilung markiert und wobei die im Strahlengang nachgeordneten Parabelfacetten auf den Rand des virtuellen Bildes der Zwischenlichtverteilung fokussieren.
- Lichtmodul (14) nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die beiden Spiegel (64, 12) mehrere objektseitige Brennpunkte aufweisen, die auf dem Rand der Zwischenlichtverteilung liegen und deren Bildpunkt bzw. Bildlinien auf der Hell-Dunkel-Grenze der Lichtverteilung im Unendlichen liegen, wobei die beiden Spiegelflächen so geformt sind, dass alle optischen Wege zwischen dem objektseitigen Brennpunkt und seinen jeweiligen Bildpunkten bzw. Bildlinien gleich lang sind.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013207845.5A DE102013207845A1 (de) | 2013-04-29 | 2013-04-29 | Lichtmodul für einen Kraftfahrzeugscheinwerfer |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2799762A2 EP2799762A2 (de) | 2014-11-05 |
EP2799762A3 EP2799762A3 (de) | 2016-09-14 |
EP2799762B1 true EP2799762B1 (de) | 2020-12-02 |
Family
ID=50513056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14164995.4A Active EP2799762B1 (de) | 2013-04-29 | 2014-04-16 | Lichtmodul für einen Kraftfahrzeugscheinwerfer |
Country Status (4)
Country | Link |
---|---|
US (1) | US9546766B2 (de) |
EP (1) | EP2799762B1 (de) |
CN (1) | CN104121533A (de) |
DE (1) | DE102013207845A1 (de) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101529166B1 (ko) * | 2013-08-06 | 2015-06-16 | 현대모비스 주식회사 | 차량용 램프 |
DE102014225075A1 (de) | 2014-12-05 | 2016-06-09 | Osram Gmbh | Beleuchtungseinrichtung |
DE102014226646A1 (de) | 2014-12-19 | 2016-06-23 | Osram Gmbh | Beleuchtungseinrichtung |
KR101795229B1 (ko) * | 2016-03-31 | 2017-11-08 | 현대자동차주식회사 | 차량용 램프 장치 |
CN106197657B (zh) * | 2016-06-29 | 2017-12-12 | 北京经纬恒润科技有限公司 | 车载环境光照度的探测方法、装置和系统 |
AT518905B1 (de) * | 2016-07-29 | 2018-04-15 | Zkw Group Gmbh | Projektionseinrichtung für einen Kraftfahrzeugscheinwerfer und Verfahren zu seiner Herstellung |
TWI642568B (zh) * | 2016-09-07 | 2018-12-01 | 世正光電股份有限公司 | 照明結構及其配光方法 |
FR3056691B1 (fr) * | 2016-09-29 | 2019-06-28 | Valeo Vision | Module optique pour projecteur de vehicule automobile dote d'une fonction d'eclairage adaptatif, comportant un systeme optique de renvoi du faisceau lumineux projete |
DE102016125676A1 (de) * | 2016-12-23 | 2018-06-28 | Automotive Lighting Reutlingen Gmbh | LED-Modul und Beleuchtungseinrichtung für ein Kraftfahrzeug mit mehreren solcher LED-Module |
US10240737B2 (en) * | 2017-03-06 | 2019-03-26 | Ford Global Technologies, Llc | Vehicle light assembly |
DE102017117560A1 (de) * | 2017-08-02 | 2019-02-07 | Automotive Lighting Reutlingen Gmbh | Lichtmodul und Verfahren zum Betreiben des Lichtmoduls |
FR3099543B1 (fr) * | 2019-07-31 | 2024-10-18 | Valeo Vision | Dispositif lumineux indicateur de changement de direction a surface generatrice de caustique controlee formant un motif sur une surface cible |
DE102018102156A1 (de) | 2018-01-31 | 2019-08-01 | Automotive Lighting Reutlingen Gmbh | Lichterzeugungsanordnung und Kraftfahrzeugleuchte |
EP3540295B1 (de) * | 2018-03-14 | 2023-09-20 | T.Y.C. Brother Industrial Co., Ltd. | Fahrzeug-scheinwerfer-anordnung |
JP7127492B2 (ja) * | 2018-11-05 | 2022-08-30 | トヨタ自動車株式会社 | 車両用前照灯装置 |
CN115289436A (zh) * | 2018-12-13 | 2022-11-04 | 深圳市中光工业技术研究院 | 光源装置 |
FR3093788B1 (fr) * | 2019-03-14 | 2022-05-27 | Valeo Vision | Dispositif lumineux imageant une surface eclairee virtuelle d’un collecteur |
EP3757451B1 (de) * | 2019-06-24 | 2023-08-09 | ZKW Group GmbH | Beleuchtungsvorrichtung für ein kraftfahrzeug |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050030759A1 (en) * | 2003-08-04 | 2005-02-10 | Guide Corporation | Bifocal hyperbolic catadioptric collection system for an automotive lamp |
US8104939B2 (en) * | 2005-08-31 | 2012-01-31 | Osram Sylvania Inc. | LED headlamp system |
AT504668B1 (de) * | 2007-01-11 | 2008-07-15 | Zizala Lichtsysteme Gmbh | Totalreflexionsoptik-system für einen scheinwerfer oder eine lichteinheit eines kraftfahrzeuges |
DE102008013603B4 (de) * | 2008-03-11 | 2017-06-22 | Automotive Lighting Reutlingen Gmbh | Lichtmodul für eine Beleuchtungseinrichtung |
JP4582190B2 (ja) * | 2008-05-14 | 2010-11-17 | 市光工業株式会社 | 車両用灯具 |
FR2932245B1 (fr) * | 2008-06-06 | 2010-09-10 | Valeo Vision Sas | Module d'eclairage pour projecteur de vehicule automobile |
DE102009035544B4 (de) * | 2009-07-31 | 2019-10-24 | Volkswagen Ag | Scheinwerfer in einem Kraftfahrzeug mit mehreren Halbleiterlichtquellen |
DE102009053581B3 (de) * | 2009-10-05 | 2011-03-03 | Automotive Lighting Reutlingen Gmbh | Lichtmodul für eine Beleuchtungseinrichtung eines Kraftfahrzeugs |
EP2553319B1 (de) * | 2010-03-31 | 2017-03-01 | Koninklijke Philips N.V. | Beleuchtunsseinheit |
JP5666882B2 (ja) * | 2010-11-18 | 2015-02-12 | 株式会社小糸製作所 | ハイビーム用灯具ユニット |
EP2500628B1 (de) * | 2011-03-14 | 2020-05-06 | Stanley Electric Co., Ltd. | KFZ-Scheinwerfer |
CN202274394U (zh) * | 2011-05-11 | 2012-06-13 | 鹤壁市恒通电气有限公司 | 直照式透镜前雾灯 |
EP3056385B1 (de) * | 2011-09-01 | 2018-06-06 | Koito Manufacturing Co., Ltd. | Automobilscheinwerfervorrichtung |
DE102011054229B4 (de) * | 2011-10-06 | 2022-07-28 | HELLA GmbH & Co. KGaA | Beleuchtungsvorrichtung für Fahrzeuge |
CN202660430U (zh) * | 2012-04-12 | 2013-01-09 | 安徽华东光电技术研究所 | 一种新型飞机氙气放电灯 |
DE102013206488A1 (de) * | 2013-04-11 | 2014-10-30 | Automotive Lighting Reutlingen Gmbh | Lichtmodul für eine Kraftfahrzeugbeleuchtungseinrichtung |
-
2013
- 2013-04-29 DE DE102013207845.5A patent/DE102013207845A1/de not_active Ceased
-
2014
- 2014-04-16 EP EP14164995.4A patent/EP2799762B1/de active Active
- 2014-04-28 CN CN201410175762.5A patent/CN104121533A/zh active Pending
- 2014-04-29 US US14/264,761 patent/US9546766B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2799762A2 (de) | 2014-11-05 |
US20140321140A1 (en) | 2014-10-30 |
DE102013207845A1 (de) | 2014-10-30 |
CN104121533A (zh) | 2014-10-29 |
EP2799762A3 (de) | 2016-09-14 |
US9546766B2 (en) | 2017-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2799762B1 (de) | Lichtmodul für einen Kraftfahrzeugscheinwerfer | |
EP2910847B1 (de) | Lichtmodul eines Kraftfahrzeugscheinwerfers und Scheinwerfer mit einem solchen Lichtmodul | |
EP2587125B1 (de) | Scheinwerferprojektionsmodul für ein Kraftfahrzeug | |
EP2799761B1 (de) | Lichtmodul für einen kraftfahrzeugscheinwerfer | |
EP2789900B1 (de) | Lichtmodul für eine kraftfahrzeugbeleuchtungseinrichtung | |
EP2616738B1 (de) | Kraftfahrzeugscheinwerfer mit einem mehrfunktions-projektionsmodul | |
DE102012202290B4 (de) | Lichtmodul für ein blendungsfreies Kraftfahrzeug-Fernlicht | |
EP2505910B1 (de) | Kraftfahrzeugscheinwerfer mit einer halbleiterlichtquelle | |
DE102014200368B4 (de) | Teilfernlicht-Projektionslichtmodul für einen Kraftfahrzeugscheinwerfer | |
EP1818599B1 (de) | Abblendlichtscheinwerfer, der einen kontraststark ausgebildeten Cut-off erzeugt | |
EP2789901B1 (de) | Lichtmodul einer Kraftfahrzeugbeleuchtungseinrichtung | |
EP1818600B1 (de) | Abblendlichtscheinwerfer mit Hot-Spot-Erzeugung | |
DE102011013211A1 (de) | Kraftfahrzeugscheinwerfer mit einem Mehrfunktions-Projektionsmodul | |
EP2730836B1 (de) | Lichtmodul für einen Scheinwerfer eines Kraftfahrzeugs | |
EP3301350B1 (de) | Lichtmodul für einen kraftfahrzeugscheinwerfer | |
EP3524873B1 (de) | Effizientes, mikroprojektoren aufweisendes projektionslichtmodul für einen kraftfahrzeugscheinwerfer | |
DE102012202508A1 (de) | Lichtleitervorrichtung für eine Kraftfahrzeugleuchte | |
DE102013215359B3 (de) | Mechanikfreies Kurvenlichtmodul | |
EP3765781B1 (de) | Lichtmodul für kraftfahrzeugscheinwerfer | |
DE102021107851B4 (de) | Fahrzeugleuchte und fahrzeug | |
DE102020117785A1 (de) | Kraftfahrzeugscheinwerfer mit einem Leuchtmittel mit viereckiger Lichtaustrittsfläche | |
DE102016208138A1 (de) | Beleuchtungsvorrichtung zur Emission von Beleuchtungslicht |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140416 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F21S 8/10 20060101AFI20160808BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
R17P | Request for examination filed (corrected) |
Effective date: 20170314 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502014015059 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F21S0008100000 Ipc: F21S0041147000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F21S 41/36 20180101ALI20191129BHEP Ipc: F21S 41/33 20180101ALI20191129BHEP Ipc: F21S 41/32 20180101ALI20191129BHEP Ipc: F21S 41/147 20180101AFI20191129BHEP Ipc: F21S 41/24 20180101ALI20191129BHEP Ipc: F21S 41/155 20180101ALI20191129BHEP Ipc: F21S 41/20 20180101ALI20191129BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200121 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200626 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1341320 Country of ref document: AT Kind code of ref document: T Effective date: 20201215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014015059 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210302 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210405 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014015059 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210402 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
26N | No opposition filed |
Effective date: 20210903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210416 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210402 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1341320 Country of ref document: AT Kind code of ref document: T Effective date: 20210416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210416 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230321 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140416 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240320 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |