EP2798209B1 - Plasma thruster and method for generating propulsive plasma thrust - Google Patents
Plasma thruster and method for generating propulsive plasma thrust Download PDFInfo
- Publication number
- EP2798209B1 EP2798209B1 EP12819095.6A EP12819095A EP2798209B1 EP 2798209 B1 EP2798209 B1 EP 2798209B1 EP 12819095 A EP12819095 A EP 12819095A EP 2798209 B1 EP2798209 B1 EP 2798209B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic field
- plasma
- electromagnetic wave
- propellant gas
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 10
- 230000001141 propulsive effect Effects 0.000 title description 8
- 238000002347 injection Methods 0.000 claims description 114
- 239000007924 injection Substances 0.000 claims description 114
- 230000005291 magnetic effect Effects 0.000 claims description 112
- 239000003380 propellant Substances 0.000 claims description 86
- 230000005684 electric field Effects 0.000 claims description 14
- 230000002093 peripheral effect Effects 0.000 claims description 13
- 230000005292 diamagnetic effect Effects 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 10
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 4
- 230000010287 polarization Effects 0.000 claims description 4
- 239000000696 magnetic material Substances 0.000 claims description 2
- 230000033228 biological regulation Effects 0.000 claims 1
- 230000001678 irradiating effect Effects 0.000 claims 1
- 230000001902 propagating effect Effects 0.000 claims 1
- 210000002381 plasma Anatomy 0.000 description 114
- 239000007789 gas Substances 0.000 description 63
- 230000037452 priming Effects 0.000 description 17
- 150000002500 ions Chemical class 0.000 description 14
- 230000001133 acceleration Effects 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 6
- 239000003574 free electron Substances 0.000 description 5
- 230000000977 initiatory effect Effects 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 230000005355 Hall effect Effects 0.000 description 3
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 108010083687 Ion Pumps Proteins 0.000 description 1
- 101100297539 Schizosaccharomyces pombe (strain 972 / ATCC 24843) php4 gene Proteins 0.000 description 1
- -1 Xenon ion Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010893 electron trap Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/08—Arrangements for injecting particles into orbits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J27/00—Ion beam tubes
- H01J27/02—Ion sources; Ion guns
- H01J27/16—Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
- H01J27/18—Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03H—PRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03H1/00—Using plasma to produce a reactive propulsive thrust
- F03H1/0081—Electromagnetic plasma thrusters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/54—Plasma accelerators
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H13/00—Magnetic resonance accelerators; Cyclotrons
- H05H13/005—Cyclotrons
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/02—Circuits or systems for supplying or feeding radio-frequency energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03H—PRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03H1/00—Using plasma to produce a reactive propulsive thrust
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
- H05H1/461—Microwave discharges
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/02—Circuits or systems for supplying or feeding radio-frequency energy
- H05H2007/027—Microwave systems
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/08—Arrangements for injecting particles into orbits
- H05H2007/081—Sources
- H05H2007/082—Ion sources, e.g. ECR, duoplasmatron, PIG, laser sources
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/08—Arrangements for injecting particles into orbits
- H05H2007/087—Arrangements for injecting particles into orbits by magnetic means
Definitions
- the invention relates to a plasma thruster and a method for generating a propulsive thrust using said plasma thruster.
- these thrusters provide thrusts of a few newtons or less by using liquid propellants such as hydrazine (N 2 H 2 ) or hydrogen peroxide (hydrogen peroxide).
- liquid propellants such as hydrazine (N 2 H 2 ) or hydrogen peroxide (hydrogen peroxide).
- N 2 H 2 hydrazine
- hydrogen peroxide hydrogen peroxide
- Plasma thrusters can be classified in different ways depending on whether one considers their plasma initiation mode or the mode of acceleration of the plasma towards the exit of the nozzle. It should be noted that these two criteria are relatively independent of one another and just as important as the other.
- the priming mode conditions the completeness of the ionization of the propellant gas and the reliability of this priming, thus that of the propellant, and can determine the size of the plasma discharge chamber, the bulk, the weight and the efficiency. thruster energy.
- the acceleration mode of the plasma it determines the thrust, the specific impulse, the energy efficiency and can determine the size, weight, and life of the thruster.
- arc-jet propellant
- This category of thruster is to provide, all things being equal, higher thrusts than those of other types of plasma thrusters, but it has the following major drawbacks: these thrusters have a low specific impulse compared to that of other plasma thrusters; consume a lot of electrical power; have a limited lifetime by the bombardment of electrodes and internal walls of the discharge chamber by ions and electrons that reach temperatures of the order of a few thousand to a few tens of thousands of degrees; need to evacuate excess heat in space which leads to poor energy efficiency. In addition, the priming of the plasma when the partial pressure of propellant gas is low, unreliability.
- a second category of plasma thruster is that of plasma thrusters initiating their plasma by the single resonance of an electromagnetic wave (EM), often microwave, in a discharge chamber containing a propellant gas to be ionized.
- EM electromagnetic wave
- the major disadvantage of propellers in this category is the relatively low energy efficiency since only a small fraction of the EM energy is absorbed by the plasma.
- the ionization of the propellant gas is rarely complete, especially when the flow of propellant gas is high, and the plasma ignition is unreliable when the partial pressure of propellant gas is low.
- a third category of plasma thruster is that of the plasma thrusters with "gyromagnetic resonance" of the magnetized free electrons of the plasma or ECR ("Electron Cyclotron Resonance" according to the Anglo-Saxon name).
- ECR Electro Cyclotron Resonance
- the length of the discharge chamber is substantially equal to an integer number of half-length of the electromagnetic wave in the vacuum, which raises the problem of the miniaturization of the discharge chamber and therefore thruster.
- the resonance frequency of the EM wave while having the conditions of the ECR, it is necessary to increase correspondingly the intensity of the magnetic field, which supposes quickly the use of powerful magnetic coils or the congestion and the weight of these coils goes against the goal of miniaturization of the thruster.
- This problem of miniaturization is also complicated by the multiplicity of sources to emit in the discharge chamber: source of propellant gas, EM wave source and magnetic field source.
- the patent EP 0 505 327 describes such a propellant.
- ECR plasma sources such as for example the production of integrated circuits.
- the patent application US 2005 0 287 discloses an ECR resonance ion source, provided with magnetic coils, for ion implantation in microelectronics.
- the use of magnetic coils leads to a weight and a large bulk for a relatively low energy efficiency due to losses by Joule effect, which is poorly suited for use as a space thruster.
- the ionization of the propellant gas is rarely complete, especially when the flow of propellant gas is high, and the plasma ignition is unreliable when the partial pressure of propellant gas is low.
- these thrusters often deplore the existence of upstream plasma spurious jets known as the ion pump effect.
- plasma thrusters can also be classified according to the second criterion which is the mode of acceleration of the plasma in the nozzle.
- a first family is that of so-called “electrostatic" plasma thrusters, which is characterized by the electrostatic nature of the force accelerating the plasma towards the outlet of the nozzle.
- This family can in turn be divided into three categories: accelerator thrusters, Hall effect thrusters, and field effect thrusters.
- the category of accelerator gate thrusters is characterized in that ions from a discharge chamber are accelerated by an electrically biased grid system. It should be noted that the ejected plasma is not electrically neutral.
- the accelerator gate thrusters have the following drawbacks which limit their effectiveness and their lifetime: the positive ion beams crossing the accelerating grid erode it, which limits the life of these thrusters; the ejected ions recombine with the ejected electrons and generate obscuration deposits of matter on the solar panels of the satellites on which they are mounted; the discharge chamber must be of large volume; the energy efficiency is relatively low due to plasma leakage at the walls of the discharge chamber and the acceleration grid; and the thrust is limited by the limitation of the density of the ions inside the grids due to the secondary electrons.
- accelerator gate thrusters are given in patent applications JP 01 310179 and US 2004/161579 A1 in the patent US 7,400,096 B1 and in the article MORRISON NA et al.
- High rate deposition of ta-C H using an electron cyclotron wave resonance source plasma, "published in THIN SOLID FILMS, ELSEVIER-SEQUOIA SA LAUSANNE, CH, vol. 337, No.
- Hall effect thrusters is characterized by a cylindrical anode and a negatively charged plasma. Hall effect thrusters use the drift of charged particles in crossed magnetic and electric fields. Their disadvantages are on the one hand the presence of a continuous electric field which involves polarized electrodes and on the other hand the limitation in plasma density which is related to the formation of sheaths around these electrodes which oppose the penetration of the continuous electric field within the plasma, unlike the microwave field which easily penetrates inside the ionized medium, hence the interest of high frequency discharges (HF).
- HF high frequency discharges
- the category of field effect thrusters is characterized by the ionization of a metallic liquid, its acceleration then its electrical neutralization.
- a second family is that of so-called "electromagnetic" plasma thrusters.
- This family can be divided into six categories: pulsed induction boosters, magnetoplasmadynamic boosters, electrodeless boosters, electrothermal boosters, helical double layer boosters and mugradB boosters.
- the category of pulsed induction boosters is characterized by acceleration during discontinuous time intervals.
- the category of magnetoplasmadynamic thrusters is characterized by electrodes that ionize the propellant gas and create a current that in turn creates a magnetic field that accelerates the plasma via the Lorentz force.
- the category of thrusters without electrodes is characterized by the absence of electrodes which removes a weak point for the lifetime of the plasma thrusters.
- the propulsive gas is ionized in a first chamber by an EM wave and then transferred to a second chamber where the plasma is accelerated by inhomogeneous and oscillating electric and magnetic fields generating a so-called ponderomotive force.
- the patent US 7,461,502 describes such a propellant.
- a disadvantage of this class of thrusters is their use of magnetic coils to generate the oscillating magnetic field, because their size, their weight and energy loss Joule effect, relatively high, are poorly suited to space applications.
- the category of electrothermal thrusters is characterized by heating the plasma at temperatures of the order of one million degrees and then the partial conversion of this temperature into axial speed. These thrusters require high power magnetic coils to generate very intense magnetic fields in order to be able to confine a plasma whose electrons have very high speeds because of their temperature. In addition to the size and weight of these coils, their joule heat dissipation significantly degrades the energy efficiency of these thrusters.
- the patent US 6,293,090 describes such a thruster, more specifically it is a radio frequency (RF) booster in low hybrid resonance (energy absorption by coupling a very low frequency RF wave via a combined oscillation of the ions and electrons of the plasma) of the VASIMR type (Variable Specific Impulse Magnetoplasma Rocket), where the plasma is not heated by resonance of its electrons as is generally the case for thrusters of this category but by excitation of its ions by an EM wave of strong power.
- RF radio frequency
- the category of helical double-layer thrusters is characterized by the injection of the propellant gas into a tubular chamber around which is wound an antenna emitting an electromagnetic wave of sufficiently high power to ionize the gas and then generate, in the plasma thus created, a helicon wave which further increases the temperature of the plasma.
- the category of "mugradB” thrusters, also called “space charge field” is characterized by the diamagnetic nature of its force. Chapter 5.1 of J.-M. Rax's book “Physics of Plasmas, Course and Application” rigorously exposes the theory of the motion of an electron animated by an electromagnetic HF field in a static or slowly variable magnetic field.
- XP008133752 describes a propellant with a diamagnetic force, the plasma of which is initiated and maintained by electronic waves generated by an EM wave, of a frequency lower than the gyromagnetic frequency, emitted by two helically-wound antennas, and by a magnetic field, generated by magnetic coils, of an intensity greater than the resonance intensity ECR.
- the propellant gas is injected into an area where the magnetic field has decreased below the resonance intensity RCC. It raises the problem of the incomplete ionization of the propellant gas of this propellant. To limit this incompleteness of this ionization, the gas chamber is segmented.
- the thruster comprises an interior cavity, a gas injection nozzle, an electromagnetic wave generator at the ECR frequency, and a magnetic field generator having a local maximum near the outlet end of the injection nozzle.
- None of the state-of-the-art plasma thrusters combines the advantages of reliable priming (systematic and instantaneous ignition) and complete ionization under all power operating conditions of the electromagnetic wave and propellant gas flow, especially for very low flow and partial pressure of propellant gas; absence of parasitic plasma jet upstream; a discharge chamber of reduced size with respect to the half wavelength of the EM wave used for plasma maintenance; capable of operating with magnetic field intensities permitting the use of permanent magnets thus avoiding the bulk, weight and Joule losses of magnetic coils; allowing a controlled variation of the thrust and the specific impulse; can achieve an energy efficiency close to 1; accelerating a neutral plasma, thus not requiring a neutralizer; and whose service life is not limited by the wear of parts by the plasma or by the deposition of propellant gas on the solar panels.
- the object of the present invention is to provide a propellant that can have an energy efficiency close to 1, such as ECR-initiated thrusters, and be smaller than the state-of-the-art ECR-ignition thrusters.
- ECR-initiated thrusters such as ECR-initiated thrusters
- this propellant has all the advantages mentioned above, in particular by virtue of the implementation of a new type of plasma priming resulting from the conjunction of particular geometrical configurations. magnetic field lines, propellant gas injection and EM wave emission.
- the principle of the invention is to reduce the size of a plasma thruster ECR on the one hand by reducing the length of its discharge chamber and on the other hand by injecting the propellant gas by means of the antenna emitting the EM wave, the reduction of the length of the discharge chamber being obtained by the use of an electron resonance plasma zone, confined by a magnetic field, as a cavity resonant of the EM wave, since the refractive index of the ECR resonance plasma is 5 to 10 times greater than that of the discharge chamber that the state of the art of plasma thrusters uses as a resonant cavity of the wave EM.
- the subject of the invention is a plasma thruster according to claim 1 and a method for generating a propulsive thrust by means of a plasma thruster according to claim 9.
- said local minimum intensity of the magnetic field functions as an electron trap that will allow the initiation of plasma by hollow cathode micro-discharge even at very low pressure.
- the injection of the propellant gas and the electromagnetic wave (EM) by the same means makes it possible, on the one hand, to have a more compact discharge chamber and, on the other hand, to guarantee that the EM wave radiates a zone where the gas density is maximum, which maximizes the ionization rate of the neutral gas leaving the injection nozzle, which was one of the problems of the "mu.gradB" thruster described by STALLARD BW ET AL.
- the conjunction of the EM wave antenna and the ECR surface positions allows the irradiation to be concentrated in the volume delimited by the ECR surface where the EM wave resonates, which maximizes the absorption of EM energy by the plasma and thus maximizes the energy efficiency of the propellant.
- the plasma thruster comprises one or more of the features of the dependent claims.
- the "mu.gradB" plasma thruster comprises an open cavity of dimensions much smaller than the incident wavelength, a significant loss of power related to the diffraction of the EM wave in the orifice and radiation outside the engine could, in the absence of a sleeve, occur in the ignition phase of the engine.
- a fraction of the power reflected by the circulator is in turn circularly polarized and absorbed by the ECR resonance plasma, the unabsorbed EM wave fraction at this stage being again subjected to same circulation cycle until all EM energy is absorbed by the ECR resonance plasma.
- the combination of such a sleeve coupled with such a circulator provides an energy efficiency close to unity in all operating configurations of the thruster. Note that a sleeve can be made of fine wire mesh and therefore be lightweight.
- the priming of the plasma is not performed by ECR as is commonly the case in the state of the art of the diamagnetic force thrusters, but by hollow cathode micro-discharge.
- This index of refraction of the EM wave resonance medium makes it possible to reduce the length of the discharge chamber, since the priming of the plasma and its maintenance no longer require that the length of the discharge chamber be equal to a whole number of half a wave EM wave in the vacuum, and secondly to use a magnetic field of lower intensity, achievable with a simple permanent magnet, since a lower frequency of the EM wave can be used.
- Plasma priming by hollow cathode micro-discharge provides a systematic and almost instantaneous initiation whatever the operating conditions, in particular of gas flow and EM power, and therefore greatly increases the reliability of the thruster.
- the propellant according to the invention therefore belongs to a new class of plasma thruster.
- the plasma thruster 2 comprises a support body 4 supporting a discharge chamber 6 opening on an outlet opening 48.
- the support body 4 is a non-magnetic hollow body open at each of its ends 9, 11. It has a cylindrical inner cavity 14 of axis of revolution AA, hereinafter called predefined axis AA.
- This cavity 14 comprises a central injection channel 10 coaxial with the predefined axis A-A.
- This central injection channel 10 is for example constituted by a magnetic metal conduit. It has an outer diameter less than the diameter of the cavity 14 so that it forms with the support body 4, a peripheral injection channel 12 arranged between the inner wall of the support body 4 and the outer wall of the channel. central injection 10.
- the central injection channel 10 has an internal diameter of between 0.5 and 2 mm, and preferably between 1 mm and 1.5 mm.
- the peripheral injection channel 12 has an outside diameter of between 3 and 20 mm, and preferably between 6 mm and 12 mm, the inside diameter of the peripheral injection channel 12 being the outside diameter of the central injection channel 10 .
- the central injection channel 10 has an inner section of between 0.7 square millimeters and 3 square millimeters.
- the central injection channel 10 and the peripheral injection channel 12 have a square section.
- the central injection channel 10 is fixed to the support body 4 by means of an insulating block 16 and a clamping ring 20.
- a portion of the central injection channel 10 is fitted into a hole through the insulating block 16.
- the insulating block 16 is arranged and fixed in the cavity 14 between a shoulder 18 of the support body 4 and a bearing face 21 of the clamping ring 20.
- the clamping ring 20 is screwed on the outside rim of the end 9 of the support body 4.
- a first O-ring 22 is interposed between the insulating block 16 and the shoulder 18.
- a second O-ring 24 is interposed between the insulating block 16 and the bearing face 21 of the clamping ring 20.
- the central injection channel 10 and the peripheral injection channel 12 form two propellant gas injection means in the chamber 6, within the meaning of the invention.
- one end of the central injection channel 10 is connected, by a pipe 28, to a source of propellant gas 30.
- An opening 31 is arranged in the support body 4. This opening 31 opens into the channel of peripheral injection 12. This opening 31 is connected by a pipe 44 to the source of propellant gas 30 for supplying the peripheral injection channel 12 with propellant gas, during the operation of the plasma thruster in a second "arc-jet" operating mode, as described herein. -after.
- This source 30 is provided with a device 32 for controlling the gas flow rate.
- the flow rate of the propellant gas is between 0.1 gram per hour and 40 gram per hour.
- the flow rate of the propellant gas is between 1 gram per hour and 400 gram per hour, and preferably between 10 gram per hour and 400 gram per hour.
- the other end of the central injection channel 10 comprises a tip 36, for example, formed by a beveling of the annular stop of the channel.
- the tip 36 extends outside the support body 4, in the discharge chamber 6. It contributes to the ionization of the propellant gas by an effect called "peak effect".
- the peak effect makes it possible to concentrate the magnetic field in a volume of the discharge chamber, called the priming volume. It is not a Corona ionization discharge, which concentrates the lines of the electric field, but a hollow cathode micro-discharge between the two mentioned maxima of magnetic field strength in the immediate vicinity of an output an injection nozzle.
- the presence of a local maximum of the intensity of the magnetic field in the priming volume and therefore inside the injection tube is possible for two reasons.
- the present diamagnetic force propellant constitutes an open cavity for the magnetic field, or more precisely a coaxial system open at one end.
- the complex magnetic circuit of the thruster comprises parts whose role is precisely to channel a large part of the magnetic field in this volume via including the injection channel 10 of magnetic material and especially via its tip 36.
- the priming volume is between 0.5 mm 3 and 5 mm 3 . It is disposed 12 mm to 15 mm downstream of the tip 36 of the central injection channel 10.
- the central injection channel 10 is further adapted to emit electromagnetic waves, in particular microwaves.
- the central injection channel 10 is made of an electrically conductive material and is electrically connected to an electromagnetic wave generator 38 via a connector 40 fixed, for example by screwing, to the support body 4
- the connector 40 is, for example, a connector of the SMA (registered trademark) type.
- the electromagnetic wave generator 38 is able to irradiate the propulsive gas present in the discharge chamber 6 with at least one electromagnetic wave whose electric field rotates in the same direction and at the same frequency as the magnetized electrons of the propellant gas. in order to obtain a total absorption of the electromagnetic energy by the electrons ECR. More precisely, the electric field has a right circular polarization and a frequency equal to the gyromagnetic resonance frequency of the electrons of the propellant gas magnetized by the magnetic field generator.
- the electromagnetic wave generator 38 is provided with a device 42 for electromagnetic power modulation. It is capable of generating electromagnetic waves with a power of between 0.5 and 300 Watts, and preferably between 0.5 and 30 Watts in a first so-called “classical” operating mode, and electromagnetic waves with a power of between 50 and and 500 Watts, and preferably between 200 and 500 Watts in the second mode of operation called "arc jet".
- the power of the electromagnetic waves is large enough to obtain the ECR and eject the electrons before they have time to radiate, but not too high so as to avoid any radiation of these electrons before ejection, which makes it possible to avoid radiant heating and maintain efficiency optimal energy.
- the electromagnetic power that the propellant can absorb without degrading the energy efficiency is related to the size of the Larmor Rb radius of the electrons in the plasma. This must remain substantially less than the radius of the cavity so that the electrons do not strike at any time the inner wall of the thruster (plasma called "magnetic levitation").
- the discharge chamber 6 comprises a generator of the magnetic field 46 fixed, for example by screwing, to the end 11 of the support body 4.
- This generator 46 comprises a source 50 of magnetic field having two poles, a washer 52 secured to an end surface constituting a pole of said source 50, a clamping nut 54 in contact with the washer 52, and a washer 58 integral with an end surface constituting the other pole of said source 50.
- the discharge chamber 6 further comprises an outlet opening 48 of the plasma.
- the magnetic field source 50 is constituted, for example, by a permanent magnet of toroidal shape coaxial with the predefined axis A-A. To simplify the description, it is hereinafter referred to as magnet 50.
- the magnetic field emitted by the magnet 50 has an intensity of between 0.05 Tesla and 1 Tesla, and preferably between 0.085 Tesla and 0.2 Tesla.
- the washer 52 and the clamping nut 54 form a first magnetic element and the washer 58 forms a second magnetic element within the meaning of the invention.
- the washers 52, 58 are each secured to an annular face of the magnet 50.
- the washer 52 is further fixed, for example by screwing, on the outer periphery of the end 11 of the support body.
- the clamping nut 54 has a protrusion 62 substantially frustoconical axis of revolution, the predefined axis A-A.
- the protrusion 62 extends towards the central injection channel 10.
- the washer 52, the clamping nut 54 and the washer 58 consist of paramagnetic steel, and preferably of ferromagnetic steel.
- the end surface of the protuberance 62 closest to the central injection channel 10 forms a first pole.
- the end surface of the washer 58 closest to the central injection channel 10 forms a second magnetic pole 66 disposed downstream of the injection nozzle 65 of the channel central injection, considering the direction F1, and a second distance D2 of the predefined axis AA; said second distance D2 being longer than the first distance D1.
- the field lines 68 of the field emitted by the magnetic field generator 46 have a nozzle shape. They cut the injection nozzle 65 of the central injection channel 10 and form an angle between 10 ° and 70 ° with the predefined axis A-A. In other words, the magnetic field emitted by the magnetic field generator 46 diverges. At the predefined axis A-A, the magnetic field gradient is parallel to the predefined axis A-A. In addition, this magnetic field gradient is negative from upstream to downstream by considering the direction of ejection of the propellant gas.
- the magnetic field also has a first local maximum intensity of the magnetic field at the injection nozzle 65 of the central injection channel.
- This intensity is sufficient to completely ionize, by ECR resonance, the propellant gas leaving said injection nozzle 65.
- This intensity is for example between 0.087 Tesla (ECR for a microwave frequency of 2.45 GHz), and about 0 , 5 Tesla (upper limit achievable with permanent magnets).
- ECR electromagnetic resonance
- the particular shape of the field lines 68 causes the ECR surface to be very close to said first local intensity maximum and for this ECR surface to envelop the output end 165 of the injection nozzle 65.
- the ECR surface is located at a distance of millimeter downstream of the output end 165.
- ECR surface is a region of the space where the free electron gyration rate in the local magnetic field is substantially equal to the frequency of the exciting electromagnetic wave.
- the magnetic field generator 46 is further able to accelerate towards the outlet opening 48, by a diamagnetic force, the plasma initiated at the injection nozzle 65, said plasma ejected from said thruster being electrically neutral.
- ECR plasma sources lie in the possibility of acting only on the free electrons of the plasma and not on the ions, which requires only relatively small magnetic fields, approximately 0, 1 Teslas (1000 Gauss) in our example. Electrical neutrality of the plasma is provided very efficiently by the ambipolar electric field, or space charge field, which appears immediately within the plasma and against any imbalance between the populations of positive ions and electrons. It is therefore not necessary to use a neutralizer.
- the ambipolar electric field is not disturbed and the electrons subjected to the only diamagnetic force will then carry with them in their movement the non-magnetized positive ions (hence the so-called "diamagnetic" character of the plasma).
- the electrons connected to the ions by the space charge will be able to escape the residual magnetic field due to the inertia of these previously accelerated ions within the propellant.
- the acceleration of the plasma in the magnetic nozzle does not require additional power expenditure in the case where, as in this example, the magnetic nozzle is generated by simple permanent magnets. This saving of electrical power is an important asset for a spatial application.
- the central injection channel 10 opens at the beginning of the diverging portion of the magnetic field, upstream of the resonance zone ECR.
- the central injection channel 10 serves both as a microwave emission antenna 39 inside the discharge chamber 6 and as an injection nozzle 65 for the injection of the gas to be ionized.
- Injection nozzle 65 includes an outlet end 165.
- the magnet 50, the washer 52, the clamping nut 54 and the washer 58 form the discharge chamber 6.
- This has a diameter of between 6 mm and 60 mm, and preferably between 12 mm and 30 mm. .
- the discharge chamber 6 thus has an inner section of between 0.7 square centimeters and 30 square centimeters.
- the length, defined along the predefined axis AA, of the internal cavity 14 of the discharge chamber 6 is 5 to 10 times smaller than the half-wavelength in the vacuum of the electromagnetic wave emitted by the generator. electromagnetic wave 38.
- the discharge chamber has a very small dimension.
- the plasma thruster 2 further comprises a fastening flange 70 and a lock nut 72 screwed onto the outer periphery of the support body 4.
- An O-ring 74 is furthermore disposed between the fastening flange 70 and the lock nut. 72.
- the plasma thruster according to the invention can be used by means of permanent magnets that do not consume energy.
- the discharge chamber forms a high frequency resonant cavity having dimensions of the order of one centimeter with a relatively low frequency of the order of 2.3 to 2.8 GHz.
- This is possible because the optical index of the plasma at the ECR is very high, which makes it possible to have a relatively short wavelength even with a relatively low frequency.
- the ECR frequency is proportional to the magnetic field, a cavity of this size is therefore possible even with a magnetic field of the order of 0.08 to 0.1 T, easily achievable by annular permanent magnets of small dimensions.
- the emission step 100 is implemented before the injection step 104 when the user wishes to save the propellant gas, and the injection step 104 is implemented before the transmission step 100 when the user wants to save electricity.
- the axial injection of the propellant gas is completed in this operating mode by an injection of gas around the central injection duct.
- This is generally used during a temporary operation with high thrust of the thruster here called second mode of operation called "arc-jet".
- arc-jet second mode of operation
- the rise in pressure of the discharge chamber 6 makes it possible to ignite a plasma arc-type - very dense and very hot under the effect of the injection of microwaves of high power (greater than a hundred watts).
- microwaves of high power greater than a hundred watts.
- This makes it possible to operate the plasma thruster with much larger surges - of the order of several hundred milli-newtons, but with a much greater heat dissipation and a lower energy efficiency.
- each mode of propulsion independently or in combination, a combination making it possible, for example, to make fine adjustments to the total thrust, even for large amplitudes of this thrust.
- the plasma thruster 120 further comprises, on the one hand, a circulator 80 connected to the electromagnetic wave generator 38 and to the connector 40 screwed onto the support body 4 and, on the other hand, an electrically conductive cylindrical sleeve 85 placed downstream of the plane of exit of the plasma thruster 120.
- the circulator 80 is a device, generally made of ferrite, which is placed in a microwave circuit to protect the electromagnetic generator 38 or a possible amplifier against a return of EM waves, for example reflected by the plasma (which is for the generator). EM wave, the charge to be irradiated). The EM wave flow through the circulator 80 towards the plasma is not absorbed by the circulator. The flux reflected towards the EM wave generator rotates in the circulator 80 and returns towards the plasma so that the electromagnetic generator 38 is protected and there is no loss of EM wave flux by reflection. upstream.
- the sleeve 85 has a diameter greater than the diameter of the permanent magnet 50 and a flange 86 fixed against the washer 58 of the magnetic field generator 46.
- the sleeve 85 is, for example, a circular waveguide section of diameter equal to 1/2 wavelength and length equal to 1/4 or 3/4 wavelength of EM wave in vacuum.
- the sleeve 85 blocks the propagation of the EM wave which would otherwise radiate in the free space by diffraction from the propeller outlet. Instead of being emitted into the free space, the microwave EM wave flux is thus reflected towards the plasma inside the propellant and its non-absorbed part by the plasma is directed towards the circulator 80.
- the circulator 80 returns then in turn this flow retrograde to the plasma thruster 120, and so on ... until complete absorption of EM wave flux by the plasma.
- the figure 5 represents the variation of the magnetic field generated by the generator 46 with respect to the distance to the output plane DD of the plasma thruster along the predefined axis AA.
- the zero of the abscissa axis defines in this figure the output plane DD.
- the exit plane is the plane parallel to the median plane of the fastening flange 70 located at the outlet opening 48.
- the magnetic field has a first local maximum, A, and a second local maximum, C, located inside the injection nozzle 65, and a local minimum located between the first local maximum A and the second local maximum C.
- the first local maximum A is located at the outlet end 165 of the injection nozzle 165.
- the first local maximum A is sufficient to ionize, by cyclotron resonance, electrons of the propellant gas under the effect of said electromagnetic wave, the propellant gas leaving said injection nozzle 65.
- the magnetic field generator 50 is able to accelerate towards the outlet opening 48 by the diamagnetic force, the free electrons of the plasma initiated at the injection nozzle (65), the positive ions, not magnetized, following these electrons. free because of the ambipolar electric field, or charge field of space, which appears almost immediately within the plasma and opposes any imbalance between the populations of positive ions and electrons, this electric field, which does not is disturbed by no field applied electrically, ensuring very effectively the electrical neutrality of the plasma ejected said thruster.
- the tip 36 of the injection means 10 makes it possible, by concentrating the magnetic field lines, to obtain from the magnetic field generator 50, on the one hand, the first local maximum of the intensity A, and on the other hand a hollow cathode micro-discharge between the first local maximum A and the local minimum B of the intensity of the magnetic field. This micro-discharge is sufficient to ionize at least a portion of the propellant gas present in said injection nozzle 65 regardless of its flow rate.
- the magnetic field generator 50 comprises for example permanent magnets.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Plasma Technology (AREA)
Description
L'invention concerne un propulseur plasmique et un procédé pour la génération d'une poussée propulsive au moyen dudit propulseur plasmique.The invention relates to a plasma thruster and a method for generating a propulsive thrust using said plasma thruster.
Les satellites artificiels utilisent généralement des moteurs d'appoint ou propulseurs pour effectuer des manoeuvres de correction de trajectoire ou d'attitude. De la même manière, les sondes spatiales destinées à l'exploration du système solaire disposent de propulseurs leur permettant de se positionner très précisément autour d'une planète, voire de se poser sur un astéroïde pour en prélever des échantillons de matière.Artificial satellites typically use booster motors or thrusters to perform trajectory or attitude correction maneuvers. In the same way, space probes intended for the exploration of the solar system have thrusters allowing them to position themselves very precisely around a planet, or even to land on an asteroid to collect samples of matter.
En règle générale, ces propulseurs, dits chimiques ou à ergols, fournissent des poussées de quelques newtons au plus en utilisant des propergols liquides comme l'hydrazine (N2H2) où le peroxyde d'hydrogène (eau oxygénée). Lors de la décomposition de ces propergols, l'énergie chimique est convertie en chaleur puis en poussée au cours de la détente des gaz chauds dans une tuyère. Les inconvénients principaux de ces propulseurs chimiques sont que leur impulsion spécifique est limitée, que les ergols nécessaires à leur fonctionnement représentent la moitié de la masse totale du satellite et que leur consommation importante d'ergol limite la durée de vie de ce dernier.In general, these thrusters, known as chemical or propellant propellants, provide thrusts of a few newtons or less by using liquid propellants such as hydrazine (N 2 H 2 ) or hydrogen peroxide (hydrogen peroxide). During the decomposition of these propellants, the chemical energy is converted into heat and then thrust during the relaxation of hot gases in a nozzle. The main drawbacks of these chemical thrusters are that their specific impulse is limited, that the propellants necessary for their operation represent half of the total mass of the satellite and that their high consumption of ergol limits the lifetime of the latter.
Pour permettre des missions spatiales plus lointaines et de plus longue durée, ces dernières années ont vu l'émergence de propulseurs plasmiques qui présentent l'avantage, par rapport aux propulseurs chimiques, d'offrir des impulsions spécifiques supérieures, d'augmenter significativement la masse de la charge utile par rapport à la masse du système propulsif ainsi que la durée de vie du satellite. Leurs principaux inconvénients, comme nous allons le voir, sont le manque de fiabilité de l'amorçage, notamment lorsque la pression de gaz propulsif est faible, leur durée de vie limitée par le bombardement ionique de certains éléments, et leurs contraintes de miniaturisation pour leur emploi par exemple sur des satellites miniatures. Il est à noter que si leur rendement énergétique, bien que meilleur que celui des propulseurs chimiques, était amélioré, des missions encore plus lointaines ou longues pourraient être envisagées.To allow for longer and more distant space missions, recent years have seen the emergence of plasma thrusters that have the advantage, compared to chemical thrusters, of offering higher specific impulses, of significantly increasing the mass the payload relative to the mass of the propulsion system and the life of the satellite. Their main drawbacks, as we will see, are the unreliability of the priming, especially when the propellant pressure is low, their lifetime limited by the ionic bombardment of certain elements, and their miniaturization constraints for their use for example on miniature satellites. It should be noted that while their fuel efficiency, although better than that of chemical thrusters, was improved, even longer or longer missions could be considered.
Les propulseurs plasmiques peuvent être classés de différentes manières selon que l'on considère leur mode d'amorçage du plasma ou le mode d'accélération du plasma vers la sortie de la tuyère. Il est à noter que ces deux critères sont relativement indépendants l'un de l'autre et tout aussi important l'un que l'autre. En effet, le mode d'amorçage conditionne la complétude de l'ionisation du gaz propulsif et la fiabilité de cet amorçage donc celle du propulseur et peut conditionner la taille de la chambre de décharge du plasma, l'encombrement, le poids et le rendement énergétique du propulseur. Quant au mode d'accélération du plasma, il conditionne la poussée, l'impulsion spécifique, le rendement énergétique et peut conditionner l'encombrement, le poids, et la durée de vie du propulseur.Plasma thrusters can be classified in different ways depending on whether one considers their plasma initiation mode or the mode of acceleration of the plasma towards the exit of the nozzle. It should be noted that these two criteria are relatively independent of one another and just as important as the other. In fact, the priming mode conditions the completeness of the ionization of the propellant gas and the reliability of this priming, thus that of the propellant, and can determine the size of the plasma discharge chamber, the bulk, the weight and the efficiency. thruster energy. As for the acceleration mode of the plasma, it determines the thrust, the specific impulse, the energy efficiency and can determine the size, weight, and life of the thruster.
Si l'on considère comme critère de classification leur mode d'amorçage du plasma, une première catégorie de propulseur plasmique est le propulseur dit « arc-jet », comme décrit par la demande de brevet
Selon ce même critère, une deuxième catégorie de propulseur plasmique est celle des propulseurs plasmiques amorçant leur plasma par la seule résonance d'une onde électromagnétique (EM), souvent microonde, dans une chambre de décharge contenant un gaz propulsif à ioniser. L'inconvénient majeur des propulseurs de cette catégorie est le rendement énergétique relativement faible puisque seule une petite fraction de l'énergie EM est absorbée par le plasma. Par ailleurs, l'ionisation du gaz propulsif est rarement complète, notamment lorsque le débit de gaz propulsif est important, et l'amorçage du plasma manque de fiabilité lorsque la pression partielle de gaz propulsif est faible.According to this same criterion, a second category of plasma thruster is that of plasma thrusters initiating their plasma by the single resonance of an electromagnetic wave (EM), often microwave, in a discharge chamber containing a propellant gas to be ionized. The major disadvantage of propellers in this category is the relatively low energy efficiency since only a small fraction of the EM energy is absorbed by the plasma. Furthermore, the ionization of the propellant gas is rarely complete, especially when the flow of propellant gas is high, and the plasma ignition is unreliable when the partial pressure of propellant gas is low.
Selon ce même critère, une troisième catégorie de propulseur plasmique est celle des propulseurs plasmiques à « résonance gyromagnétique » des électrons libres magnétisés du plasma ou ECR (« Electron Cyclotron Résonance» suivant la dénomination anglo-saxonne). L'application d'un champ magnétique au plasma conduisant ses électrons libres à tourner dans un même sens et à une même fréquence déterminés, le plasma peut théoriquement y être amorcé puis entretenu avec un rendement énergétique égal à 1 par l'absorption totale d'une onde électromagnétique dont le champ électrique tourne à la même vitesse et dans le même sens que ces électrons magnétisés. Pour maximiser en pratique ce rendement énergétique, la longueur de la chambre de décharge est sensiblement égale à un nombre entier de demi-longueur de l'onde électromagnétique dans le vide, ce qui pose le problème de la miniaturisation de la chambre de décharge et donc du propulseur. En effet, pour pouvoir augmenter la fréquence de résonance de l'onde EM tout en ayant les conditions de l'ECR, il faut augmenter corrélativement l'intensité du champ magnétique, ce qui suppose rapidement l'emploi de bobines magnétiques puissantes or l'encombrement et le poids de ces bobines va à l'encontre de l'objectif de miniaturisation du propulseur. Ce problème de miniaturisation est par ailleurs compliqué par la multiplicité des sources devant émettre dans la chambre de décharge : source de gaz propulsif, source d'onde EM et source de champ magnétique. Le brevet
Quelle que soit la façon dont est amorcé leur plasma, les propulseurs plasmiques peuvent également être classés selon le second critère qu'est le mode d'accélération du plasma dans la tuyère.Whatever the way in which their plasma is primed, plasma thrusters can also be classified according to the second criterion which is the mode of acceleration of the plasma in the nozzle.
Selon ce second critère, une première famille est celle des propulseurs plasmiques dits « électrostatiques », qui se caractérise par la nature électrostatique de la force accélérant le plasma vers la sortie de la tuyère. Cette famille peut à son tour être divisée en trois catégories : les propulseurs à grille accélératrice, les propulseurs à effet Hall et les propulseurs à effet de champ.According to this second criterion, a first family is that of so-called "electrostatic" plasma thrusters, which is characterized by the electrostatic nature of the force accelerating the plasma towards the outlet of the nozzle. This family can in turn be divided into three categories: accelerator thrusters, Hall effect thrusters, and field effect thrusters.
La catégorie des propulseurs à grille accélératrice est caractérisée par le fait que les ions issus d'une chambre à décharge sont accélérés par un système de grilles polarisées électriquement. Il est à noter que le plasma éjecté n'est pas électriquement neutre. Les propulseurs à grille accélératrice présentent les inconvénients suivants qui en limitent l'efficacité et la durée de vie : les faisceaux d'ions positifs traversant la grille accélératrice l'érodent ce qui limite la durée de vie de ces propulseurs ; les ions éjectés se recombinent avec les électrons éjectés et génèrent des dépôts de matière occultants sur les panneaux solaires des satellites sur lesquels ils sont montés; la chambre de décharge doit être de grand volume; le rendement énergétique est relativement faible en raison de fuites du plasma au niveau des parois de la chambre de décharge et de la grille d'accélération ; et la poussée est limitée par la limitation de la densité des ions à l'intérieur des grilles du fait des électrons secondaires. Des exemples de propulseurs à grille accélératrice sont donnés dans les demandes de brevet
La catégorie des propulseurs à effet Hall est caractérisée par une anode cylindrique et un plasma chargé négativement. Les propulseurs à effet Hall utilisent la dérive des particules chargées dans des champs magnétiques et électriques croisés. Leurs inconvénients sont d'une part la présence d'un champ électrique continu qui implique des électrodes polarisées et d'autre part la limitation en densité de plasma qui est liée à la formation de gaines autour de ces électrodes qui s'opposent à la pénétration du champ électrique continu au sein du plasma, contrairement au champ hyperfréquence qui pénètre facilement à l'intérieur du milieu ionisé, d'où l'intérêt des décharges hyper fréquence (HF). Le document
La catégorie des propulseurs à effet de champ est caractérisée par l'ionisation d'un liquide métallique, son accélération puis sa neutralisation électrique.The category of field effect thrusters is characterized by the ionization of a metallic liquid, its acceleration then its electrical neutralization.
Selon ce second critère, une deuxième famille est celle des propulseurs plasmiques dits « électromagnétiques ». Cette famille peut être divisée en six catégories: les propulseurs à induction pulsée, les propulseurs magnétoplasmadynamiques, les propulseurs sans électrode, les propulseurs électrothermiques, les propulseurs à double couche hélicon et les propulseurs mugradB.According to this second criterion, a second family is that of so-called "electromagnetic" plasma thrusters. This family can be divided into six categories: pulsed induction boosters, magnetoplasmadynamic boosters, electrodeless boosters, electrothermal boosters, helical double layer boosters and mugradB boosters.
La catégorie des propulseurs à induction pulsée est caractérisée par une accélération durant des intervalles de temps discontinus.The category of pulsed induction boosters is characterized by acceleration during discontinuous time intervals.
La catégorie des propulseurs magnétoplasmadynamiques est caractérisée par des électrodes qui ionisent le gaz propulsif et y créent un courant qui a son tour crée un champ magnétique qui accélère le plasma via la force de Lorentz.The category of magnetoplasmadynamic thrusters is characterized by electrodes that ionize the propellant gas and create a current that in turn creates a magnetic field that accelerates the plasma via the Lorentz force.
La catégorie des propulseurs sans électrode est caractérisée par l'absence d'électrode ce qui supprime un point faible pour la durée de vie des propulseurs plasmiques. Le gaz propulsif y est ionisé dans une première chambre par une onde EM puis transféré dans une seconde chambre où le plasma est accéléré par des champs électrique et magnétique inhomogènes et oscillants générant une force dite pondéromotive. Le brevet
La catégorie des propulseurs électrothermiques est caractérisée par le chauffage du plasma à des températures de l'ordre du million de degrés puis la conversion partielle de cette température en vitesse axiale. Ces propulseurs nécessitent des bobines magnétiques de forte puissance pour générer des champs magnétiques très intenses afin de pouvoir confiner un plasma dont les électrons ont des vitesses très élevées du fait de leur température. Outre l'encombrement et le poids de ces bobines, leur dissipation thermique par effet joule dégrade notablement le rendement énergétique de ces propulseurs. Le brevet
La catégorie des propulseurs à double couche hélicon est caractérisée par l'injection du gaz propulsif dans une chambre tubulaire autour de laquelle est enroulée une antenne émettant une onde électromagnétique de puissance suffisamment élevée pour ioniser le gaz puis générer, dans le plasma ainsi créé, une onde hélicon qui augmente encore la température du plasma.
La catégorie des propulseurs « mugradB », dits encore « à champ de charge d'espace » est caractérisée par la nature diamagnétique de sa force. Le chapitre 5.1 du livre « Physique des plasmas, cours et application » de J.-M. Rax expose rigoureusement la théorie du mouvement d'un électron animé par un champ électromagnétique HF dans un champ magnétique statique ou lentement variable. Il y est écrit en particulier page 152 la présence d'une convergence ou d'une divergence des lignes de champ induit et donc d'une force le long de la direction de ce champ, force qui est proportionnelle au moment magnétique mu et au gradient de ce champ magnétique. Cette force est appelée «mugradB» ou force diamagnétique. Le propulseur objet de la présente demande de brevet s'appuie effectivement sur les principes physiques tout à fait « classiques » exposés au cours de ce chapitre, les hypothèses d'adiabaticité évoquées page 153 pour l'invariance du moment magnétique mu étant largement satisfaites dans le cas de l'invention. Ce livre ne divulgue cependant pas comment concevoir un propulseur plasmique à entretien du plasma par ECR dont la taille puisse être réduite par rapport à la demi longueur d'onde de l'onde électromagnétique et dont la fiabilité de l'amorçage est améliorée même dans des conditions de très basse pression partielle de gaz propulsif. L'article de
The category of "mugradB" thrusters, also called "space charge field" is characterized by the diamagnetic nature of its force. Chapter 5.1 of J.-M. Rax's book "Physics of Plasmas, Course and Application" rigorously exposes the theory of the motion of an electron animated by an electromagnetic HF field in a static or slowly variable magnetic field. It is written in particular on page 152 the presence of a convergence or a divergence of the induced field lines and therefore of a force along the direction of this field, a force which is proportional to the magnetic moment mu and to the gradient of this magnetic field. This force is called "mugradB" or diamagnetic force. The thruster object of the present patent application is actually based on the quite "classical" physical principles described in this chapter, the adiabaticity hypotheses mentioned on page 153 for the invariance of the mu magnetic moment being largely satisfied in the case of the invention. However, this book does not disclose how to design an ECR plasma-maintenance plasma thruster that is smaller in size than the half-wavelength of the electromagnetic wave and whose priming reliability is improved even in conditions of very low partial pressure of propellant gas. The article of
La page Internet http://www.reiszengrs.com/space.php4, "Resonance Electron-Cyclotron Throttleable Rocket", XP055038206, décrit un propulseur ECR et un procédé correspondant pour la génération d'une poussée propulsive. Le propulseur comprend une cavité intérieure, une buse d'injection de gaz, un générateur d'onde électromagnétique à la fréquence ECR, et un générateur de champ magnétique ayant un maximum local près de l'extrémité de sortie de la buse d'injection.The web page http://www.reiszengrs.com/space.php4, "Resonance Electron-Cyclotron Throttle Rocket", XP055038206, describes an ECR thruster and a corresponding method for generating a propulsive thrust. The thruster comprises an interior cavity, a gas injection nozzle, an electromagnetic wave generator at the ECR frequency, and a magnetic field generator having a local maximum near the outlet end of the injection nozzle.
Aucun des propulseurs plasmiques de l'état de l'art ne réunit à la fois les avantages d'un amorçage fiable (allumage systématique et instantané) et d'une ionisation complète dans toutes les conditions de fonctionnement de puissance de l'onde électromagnétique et de flux de gaz propulsif, notamment pour de très faibles débit et pression partielle de gaz propulsif; d'absence de jet parasite de plasma vers l'amont; d'une chambre de décharge de taille réduite par rapport à la demi longueur d'onde de l'onde EM utilisée pour l'entretien du plasma ; pouvant fonctionner avec des intensités de champ magnétique autorisant l'utilisation d'aimants permanents évitant ainsi l'encombrement, le poids et les pertes par effet Joule des bobines magnétiques; permettant une variation maîtrisée de la poussée et de l'impulsion spécifique ; pouvant atteindre un rendement énergétique proche de 1; accélérant un plasma neutre, donc ne nécessitant pas de neutraliseur ; et dont la durée de vie n'est pas limitée par l'usure de pièces par le plasma ni par le dépôt de gaz propulsif sur les panneaux solaires.None of the state-of-the-art plasma thrusters combines the advantages of reliable priming (systematic and instantaneous ignition) and complete ionization under all power operating conditions of the electromagnetic wave and propellant gas flow, especially for very low flow and partial pressure of propellant gas; absence of parasitic plasma jet upstream; a discharge chamber of reduced size with respect to the half wavelength of the EM wave used for plasma maintenance; capable of operating with magnetic field intensities permitting the use of permanent magnets thus avoiding the bulk, weight and Joule losses of magnetic coils; allowing a controlled variation of the thrust and the specific impulse; can achieve an energy efficiency close to 1; accelerating a neutral plasma, thus not requiring a neutralizer; and whose service life is not limited by the wear of parts by the plasma or by the deposition of propellant gas on the solar panels.
La présente invention a pour but de réaliser un propulseur pouvant avoir un rendement énergétique proche de 1, comme les propulseurs à amorçage ECR, et être de taille inférieure aux propulseurs à amorçage ECR de l'état de l'art. Comme nous le verrons dans la description qui suit, les inventeurs constateront que ce propulseur réunit tous les avantages cités ci-dessus, notamment grâce à la mise en oeuvre d'un nouveau type d'amorçage du plasma résultant de la conjonction des configurations géométriques particulières des lignes de champ magnétique, de l'injection de gaz propulsif et de l'émission d'onde EM.The object of the present invention is to provide a propellant that can have an energy efficiency close to 1, such as ECR-initiated thrusters, and be smaller than the state-of-the-art ECR-ignition thrusters. As will be seen in the following description, the inventors will find that this propellant has all the advantages mentioned above, in particular by virtue of the implementation of a new type of plasma priming resulting from the conjunction of particular geometrical configurations. magnetic field lines, propellant gas injection and EM wave emission.
Le principe de l'invention, est de réduire la taille d'un propulseur plasmique ECR d'une part en réduisant la longueur de sa chambre de décharge et d'autre part en injectant la gaz propulsif au moyen de l'antenne émettant l'onde EM, la réduction de la longueur de la chambre de décharge étant obtenue par l'utilisation d'une zone de plasma en résonance électronique, confiné par un champ magnétique, comme cavité résonante de l'onde EM, puisque l'indice de réfraction du plasma en résonance ECR est 5 à 10 fois supérieur à celui de la chambre de décharge que l'état de l'art des propulseurs plasmiques utilise comme cavité résonante de l'onde EM.The principle of the invention is to reduce the size of a plasma thruster ECR on the one hand by reducing the length of its discharge chamber and on the other hand by injecting the propellant gas by means of the antenna emitting the EM wave, the reduction of the length of the discharge chamber being obtained by the use of an electron resonance plasma zone, confined by a magnetic field, as a cavity resonant of the EM wave, since the refractive index of the ECR resonance plasma is 5 to 10 times greater than that of the discharge chamber that the state of the art of plasma thrusters uses as a resonant cavity of the wave EM.
Plus précisément, l'invention a pour objet un propulseur plasmique selon la revendication 1 et un procédé pour la génération d'une poussée propulsive au moyen d'un propulseur plasmique selon la revendication 9.More specifically, the subject of the invention is a plasma thruster according to claim 1 and a method for generating a propulsive thrust by means of a plasma thruster according to claim 9.
Notons que ledit minimum local d'intensité du champ magnétique fonctionne comme un piège à électrons qui va permettre l'amorçage du plasma par micro-décharge à cathode creuse même à très basse pression.Note that said local minimum intensity of the magnetic field functions as an electron trap that will allow the initiation of plasma by hollow cathode micro-discharge even at very low pressure.
Notons également l'importance de la forme des lignes de champ magnétique qui conduisent à une position de la surface ECRjuste en sortie (à une distance de l'ordre du millimètre) de la buse d'injection du gaz propulsif ionisé par la micro-décharge à cathode creuse. Cette position contribue à ce que tout le gaz neutre sortant de la buse d'injection soit ionsié en traversant la surface ECR.Note also the importance of the shape of the magnetic field lines that lead to a position of the surface ECRjust output (at a distance of about one millimeter) from the injection nozzle of the propellant gas ionized by the micro-discharge with hollow cathode. This position contributes to the fact that all the neutral gas leaving the injection nozzle is ionized while crossing the ECR surface.
Notons également que l'injection du gaz propulsif et de l'onde électromagnétique (EM) par le même moyen permet d'une part d'avoir une chambre de décharge plus compacte et d'autre part de garantir que l'onde EM irradie une zone où la densité de gaz est maximale, ce qui maximise le taux de ionisation du gaz neutre sortant de la buse d'injection, ce qui était l'un des problèmes du propulseur « mu.gradB » décrit par STALLARD B W ET AL.Note also that the injection of the propellant gas and the electromagnetic wave (EM) by the same means makes it possible, on the one hand, to have a more compact discharge chamber and, on the other hand, to guarantee that the EM wave radiates a zone where the gas density is maximum, which maximizes the ionization rate of the neutral gas leaving the injection nozzle, which was one of the problems of the "mu.gradB" thruster described by STALLARD BW ET AL.
Notons enfin que la conjonction des positions de l'antenne d'émission d'onde EM et de la surface ECR permet de concentrer l'irradiation dans le volume délimité par la surface ECR où l'onde EM rentre en résonance, ce qui maximise l'absorption de l'énergie EM par le plasma et donc maximise le rendement énergétique du propulseur.Note finally that the conjunction of the EM wave antenna and the ECR surface positions allows the irradiation to be concentrated in the volume delimited by the ECR surface where the EM wave resonates, which maximizes the absorption of EM energy by the plasma and thus maximizes the energy efficiency of the propellant.
Suivant des modes particuliers de réalisation, le propulseur plasmique comporte une ou plusieurs des caractéristiques des revendications dépendantes.According to particular embodiments, the plasma thruster comprises one or more of the features of the dependent claims.
L'intérêt du manchon est expliqué ci-après. Le propulseur plasmique "mu.gradB" comportant une cavité ouverte de dimensions très inférieures à la longueur d'onde incidente, une perte de puissance importante liée à la diffraction de l'onde EM dans l'orifice et rayonnement à l'extérieur du moteur pourrait, en absence de manchon, survenir dans la phase d'allumage du moteur.The interest of the sleeve is explained below. The "mu.gradB" plasma thruster comprises an open cavity of dimensions much smaller than the incident wavelength, a significant loss of power related to the diffraction of the EM wave in the orifice and radiation outside the engine could, in the absence of a sleeve, occur in the ignition phase of the engine.
De plus, en absence de manchon, seule la fraction de l'onde EM correspondant à la polarisation circulaire droite serait utilisée pour la résonance ECR avec le plasma à l'intérieur du moteur, le reste de l'onde EM retournant vers le générateur EM ou rayonnant à l'extérieur par diffraction dans l'orifice de sortie. La présence d'un manchon caractérisé comme ci-dessus permet que la totalité de la puissance EM arrivant sur le manchon soit réfléchie vers l'intérieur du moteur, la partie qui remonte vers le générateur pouvant alors être à nouveau renvoyée vers la cavité du propulseur au moyen dudit circulateur disposé à la sortie dudit générateur EM. Lors de son entrée dans la cavité, une fraction de la puissance réfléchie par le circulateur est a son tour polarisée de manière circulaire droite et absorbée par le plasma en résonance ECR, la fraction d'onde EM non absorbée à cette étape subissant de nouveau le même cycle de circulation jusqu'à ce que toute l'énergie EM soit absorbée par le plasma en résonance ECR. L'association d'un tel manchon couplé avec à un tel circulateur permet d'obtenir un rendement énergétique proche de l'unité dans toutes les configurations de fonctionnement du propulseur. Notons qu'un manchon peut être réalisé en grillage métallique fin et être donc léger.Moreover, in the absence of a sleeve, only the fraction of the EM wave corresponding to the right circular polarization would be used for the ECR resonance with the plasma inside the engine, the rest of the EM wave returning to the EM generator or radiating outwardly by diffraction in the outlet. The presence of a sleeve characterized as above allows all of the power EM arriving on the sleeve to be reflected towards the inside of the engine, the portion which rises towards the generator can then be returned to the thruster cavity again. by means of said circulator disposed at the output of said generator EM. Upon entering the cavity, a fraction of the power reflected by the circulator is in turn circularly polarized and absorbed by the ECR resonance plasma, the unabsorbed EM wave fraction at this stage being again subjected to same circulation cycle until all EM energy is absorbed by the ECR resonance plasma. The combination of such a sleeve coupled with such a circulator provides an energy efficiency close to unity in all operating configurations of the thruster. Note that a sleeve can be made of fine wire mesh and therefore be lightweight.
Notons que l'amorçage du plasma n'est pas réalisé par ECR comme c'est communément le cas dans l'état de l'art des propulseurs à force diamagnétique, mais par micro-décharge à cathode creuse. Une fois que le plasma est amorcé et positionné dans le volume dit d'amorçage à la sortie de la buse d'injection, ce plasma est mis en résonance ECR via l'onde électromagnétique, ce qui multiplie d'un facteur 5 à 10 son indice de réfraction et rend alors possible l'utilisation de ce volume comme cavité résonante de l'onde électromagnétique accroissant alors le rendement énergétique. Cet indice de réfraction du milieu de résonance de l'onde EM, plus élevé que dans l'état de l'art, permet d'une part de réduire la longueur de la chambre de décharge, puisque l'amorçage du plasma et son entretien ne nécessitent plus que la longueur de la chambre de décharge soit égale à un nombre entier de demi longueur d'onde de l'onde EM dans le vide, et d'autre part d'utiliser un champ magnétique d'intensité plus faible, atteignable avec un simple aimant permanent, puisque une fréquence plus faible de l'onde EM peut être utilisée.Note that the priming of the plasma is not performed by ECR as is commonly the case in the state of the art of the diamagnetic force thrusters, but by hollow cathode micro-discharge. Once the plasma is primed and positioned in the so-called priming volume at the outlet of the injection nozzle, this plasma is put into ECR resonance via the electromagnetic wave, which multiplies by a
L'amorçage du plasma par micro-décharge à cathode creuse procure un amorçage systématique et quasi instantané quelles que soient les conditions opérationnelles, notamment de débit de gaz et de puissance EM, et donc accroît nettement la fiabilité du propulseur. Le propulseur selon l'invention appartient donc à une nouvelle catégorie de propulseur plasmique.Plasma priming by hollow cathode micro-discharge provides a systematic and almost instantaneous initiation whatever the operating conditions, in particular of gas flow and EM power, and therefore greatly increases the reliability of the thruster. The propellant according to the invention therefore belongs to a new class of plasma thruster.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins, sur lesquels :
- la
figure 1 est une vue en coupe axiale d'un propulseur plasmique selon l'invention ; - la
figure 2 est une vue agrandie d'une partie de lafigure 1 représentant les lignes de champ du champ magnétique généré par un générateur du propulseur plasmique selon l'invention ; - la
figure 3 est un diagramme des étapes du procédé selon l'invention ; - La
figure 4 est une vue en coupe axiale d'un propulseur selon une variante de réalisation de l'invention ; et - La
figure 5 est un graphe représentant le champ magnétique le long de l'axe A-A du propulseur.
- the
figure 1 is an axial sectional view of a plasma thruster according to the invention; - the
figure 2 is an enlarged view of some of thefigure 1 representing the field lines of the magnetic field generated by a plasma thruster generator according to the invention; - the
figure 3 is a diagram of the steps of the process according to the invention; - The
figure 4 is an axial sectional view of a propellant according to an alternative embodiment of the invention; and - The
figure 5 is a graph representing the magnetic field along the AA axis of the thruster.
En référence à la
Le corps de support 4 est un corps creux amagnétique ouvert à chacune de ses extrémités 9, 11. Il comporte une cavité intérieure 14 cylindrique d'axe de révolution A-A, ci-après appelé axe prédéfini A-A.The support body 4 is a non-magnetic hollow body open at each of its
Cette cavité 14 comporte un canal d'injection central 10 coaxial à l'axe prédéfini A-A. Ce canal d'injection central 10 est par exemple constitué par un conduit métallique magnétique. Il présente un diamètre extérieur inférieur au diamètre de la cavité 14 de sorte qu'il forme avec le corps de support 4, un canal d'injection périphérique 12 aménagé entre la paroi interne du corps de support 4 et la paroi externe du canal d'injection central 10.This
En particulier, le canal d'injection central 10 présente un diamètre intérieur compris entre 0.5 et 2 mm, et de préférence compris entre 1 mm et 1,5 mm. Le canal d'injection périphérique 12 présente un diamètre extérieur compris entre 3 et 20 mm, et de préférence compris entre 6 mm et 12 mm, le diamètre intérieur du canal d'injection périphérique 12 étant le diamètre extérieur du canal d'injection central 10.In particular, the
Dit autrement, le canal d'injection central 10 présente une section intérieure comprise entre 0,7 millimètres carrés et 3 millimètres carrés. En variante, le canal d'injection central 10 et le canal d'injection périphérique 12, présentent une section carré.In other words, the
Le canal d'injection central 10 est fixé au corps de support 4 par l'intermédiaire d'un bloc isolant 16 et d'une bague de serrage 20. En particulier, une portion du canal d'injection central 10 est emmanchée dans un trou traversant du bloc isolant 16. Le bloc isolant 16 est agencé et fixé dans la cavité 14 entre un épaulement 18 du corps de support 4 et une face d'appui 21 de la bague de serrage 20. La bague de serrage 20 est vissée sur le pourtour extérieur de l'extrémité 9 du corps de support 4.The
Un premier joint torique 22 est interposé entre le bloc isolant 16 et l'épaulement 18. Un deuxième joint torique 24 est interposé entre le bloc isolant 16 et la face d'appui 21 de la bague de serrage 20.A first O-
Le canal d'injection central 10 et le canal d'injection périphérique 12 forment deux moyens d'injection de gaz propulsif dans la chambre 6, au sens de l'invention.The
A cet effet, une extrémité du canal d'injection central 10 est reliée, par une conduite 28, à une source de gaz propulsif 30. Une ouverture 31 est aménagée dans le corps de support 4. Cette ouverture 31 débouche dans le canal d'injection périphérique 12. Cette ouverture 31 est reliée par une conduite 44 à la source de gaz propulsif 30 pour alimenter le canal d'injection périphérique 12 en gaz propulsif, lors du fonctionnement du propulseur plasmique dans un second mode de fonctionnement dit « arc-jet », comme décrit ci-après.For this purpose, one end of the
Cette source 30 est munie d'un dispositif 32 de commande du débit du gaz.This
Dans un premier mode de fonctionnement dit « classique », le débit du gaz propulsif est compris entre 0.1 gramme par heure et 40 gramme par heure.In a first so-called "conventional" operating mode, the flow rate of the propellant gas is between 0.1 gram per hour and 40 gram per hour.
Dans un second mode de fonctionnement dit « arc jet », le débit du gaz propulsif est compris entre 1 gramme par heure et 400 gramme par heure, et de préférence compris entre 10 gramme par heure et 400 gramme par heure.In a second mode of operation known as "arc jet", the flow rate of the propellant gas is between 1 gram per hour and 400 gram per hour, and preferably between 10 gram per hour and 400 gram per hour.
L'autre extrémité du canal d'injection central 10 comprend une pointe 36, par exemple, formée par un biseautage de l'arrête annulaire du canal.The other end of the
La pointe 36 s'étend à l'extérieur du corps de support 4, dans la chambre de décharge 6. Elle contribue à l'ionisation du gaz propulsif par un effet appelé « effet de pointe ». L'effet de pointe permet de concentrer le champ magnétique dans un volume de la chambre de décharge, appelé volume d'amorçage. Il ne s'agit pas d'une décharge par ionisation Corona, laquelle concentre les lignes du champ électrique, mais d'une micro-décharge à cathode creuse entre les deux maxima mentionnés d'intensité du champ magnétique à proximité immédiate d'une sortie d'une buse d'injection.The
Il est à noter que la présence d'un maximum local de l'intensité du champ magnétique dans le volume d'amorçage et donc à l'intérieur du tube d'injection est possible pour deux raisons. Premièrement, parce que le présent propulseur à force diamagnétique constitue une cavité ouverte pour le champ magnétique, ou plus précisément un système coaxial ouvert à une extrémité. Deuxièmement, parce que le circuit magnétique complexe du propulseur comporte des pièces dont le rôle est justement de canaliser une grande partie du champ magnétique dans ce volume via notamment le canal d'injection 10 en matériau magnétique et surtout via sa pointe 36.It should be noted that the presence of a local maximum of the intensity of the magnetic field in the priming volume and therefore inside the injection tube is possible for two reasons. First, because the present diamagnetic force propellant constitutes an open cavity for the magnetic field, or more precisely a coaxial system open at one end. Secondly, because the complex magnetic circuit of the thruster comprises parts whose role is precisely to channel a large part of the magnetic field in this volume via including the
Dans le présent exemple, le volume d'amorçage est compris entre 0.5 mm3 et 5 mm3. Il est disposé de 12 mm à 15 mm en aval de la pointe 36 du canal d'injection central 10.In the present example, the priming volume is between 0.5 mm 3 and 5 mm 3 . It is disposed 12 mm to 15 mm downstream of the
Le canal d'injection central 10 est, en outre, propre à émettre des ondes électromagnétiques en particulier des microondes. Pour cela, le canal d'injection central 10 est réalisé dans un matériau conducteur électrique et est connecté électriquement à un générateur d'onde électromagnétique 38 par l'intermédiaire d'un connecteur 40 fixé, par exemple par vissage, au corps de support 4. Le connecteur 40 est, par exemple, un connecteur de type SMA (Marque déposée).The
Le générateur d'onde électromagnétique 38 est apte à irradier le gaz propulsif présent dans la chambre de décharge 6 avec au moins une onde électromagnétique dont le champ électrique tourne dans le même sens et à la même fréquence que les électrons magnétisés du gaz propulsif, de manière à obtenir une absorption totale de l'énergie électromagnétique par les électrons ECR. Plus précisément, le champ électrique a une polarisation circulaire droite et une fréquence égale à la fréquence de résonance gyromagnétique des électrons du gaz propulsif magnétisés par le générateur de champ magnétique.The
Le générateur d'onde électromagnétique 38 est muni d'un dispositif 42 de modulation de puissance électromagnétique. Il est propre à générer des ondes électromagnétiques de puissance comprise entre 0,5 et 300 Watts, et de préférence comprise entre 0,5 et 30 Watts dans un premier mode de fonctionnement dit « classique », et des ondes électromagnétiques de puissance comprise entre 50 et 500 Watts, et de préférence comprise entre 200 et 500 Watts dans le second mode de fonctionnement dit « arc jet ».The
La puissance des ondes électromagnétiques est suffisamment importante pour obtenir l'ECR et éjecter les électrons avant qu'ils n'aient le temps de rayonner, mais pas trop élevée de manière à éviter tout rayonnement de ces électrons avant éjection, ce qui permet d'éviter tout échauffement par rayonnement et de conserver un rendement énergétique optimal. La puissance électromagnétique que peut absorber le propulseur sans dégrader le rendement énergétique est liée à la taille du rayon de Larmor Rb des électrons dans le plasma. Celui-ci doit rester sensiblement inférieur au rayon de la cavité pour que les électrons ne percutent à aucun moment la paroi interne du propulseur (plasma dit en "lévitation magnétique"). Toutefois, pour un électron, de charge électrique qe et de masse me, dans un champ magnétique B0 de l'ordre de 0,1 Tesla (1000 gauss), un rayon de giration Rb de 1 millimètre correspondrait à une vitesse des électrons ve = Rb.qe.B0 /me = 1,76.107 m/s dans une direction perpendiculaire au champ magnétique. Exprimée en électronvolts, l'énergie cinétique correspondant à la rotation des électrons serait alors de l'ordre de 0,92.105 eV. Comparée à l'énergie d'ionisation du gaz de l'ordre de 10 à 20 eV par exemple, une telle limite parait difficilement atteignable avec les puissances électromagnétiques de quelques dizaines à quelques centaines de watts où l'on se situe.The power of the electromagnetic waves is large enough to obtain the ECR and eject the electrons before they have time to radiate, but not too high so as to avoid any radiation of these electrons before ejection, which makes it possible to avoid radiant heating and maintain efficiency optimal energy. The electromagnetic power that the propellant can absorb without degrading the energy efficiency is related to the size of the Larmor Rb radius of the electrons in the plasma. This must remain substantially less than the radius of the cavity so that the electrons do not strike at any time the inner wall of the thruster (plasma called "magnetic levitation"). However, for an electron, of electric charge qe and mass me, in a magnetic field B0 of the order of 0.1 Tesla (1000 Gauss), a radius of gyration Rb of 1 millimeter would correspond to a velocity of the electrons ve = Rb.qe.B0 / me = 1.76.10 7 m / s in a direction perpendicular to the magnetic field. Expressed in electronvolts, the kinetic energy corresponding to the rotation of the electrons would then be of the order of 0.92.10 5 eV. Compared to the ionization energy of the gas of the order of 10 to 20 eV for example, such a limit seems difficult to achieve with the electromagnetic power of a few tens to a few hundred watts where one is located.
On remarquera également que dans un processus adiabatique, l'accélération des électrons dans la tuyère conserve le moment magnétique mu = qe2. Rb2 . B0 / 2 me. Une diminution de B0 d'un facteur 10 par exemple n'induirait donc qu'un accroissement d'un facteur 3 environ du rayon de giration électronique Rb.It will also be noted that in an adiabatic process, the acceleration of the electrons in the nozzle retains the magnetic moment mu = qe 2 . Rb 2 . B0 / 2 me. A reduction of B0 by a factor of 10, for example, would therefore only lead to an increase by a factor of approximately 3 of the electronic radius of gyration Rb.
Enfin, si une puissance électromagnétique beaucoup plus importante devait être utilisée, on peut sans en augmenter les dimensions, augmenter la limite supérieure de fonctionnement du moteur, en accroissant corrélativement le champ magnétique B0 et la fréquence de l'onde EM excitatrice. Des aimants environ dix fois plus puissants que ceux utilisés dans nos expériences sont déjà disponibles sur le marché.Finally, if a much greater electromagnetic power was to be used, it is possible without increasing its size, to increase the upper operating limit of the motor, by correlatively increasing the magnetic field B0 and the frequency of the exciter EM wave. Magnets about ten times more powerful than those used in our experiments are already available on the market.
La chambre de décharge 6 comporte un générateur du champ magnétique 46 fixé, par exemple par vissage, à l'extrémité 11 du corps de support 4. Ce générateur 46 comprend une source 50 de champ magnétique ayant deux pôles, une rondelle 52 solidaire d'une surface d'extrémité constituant un pôle de ladite source 50, un écrou de serrage 54 en contact avec la rondelle 52, et une rondelle 58 solidaire d'une surface d'extrémité constituant l'autre pôle de ladite source 50.The discharge chamber 6 comprises a generator of the
La chambre de décharge 6 comprend en outre une ouverture de sortie 48 du plasma.The discharge chamber 6 further comprises an
La source de champ magnétique 50 est constituée, par exemple, par un aimant permanent de forme torique coaxial à l'axe prédéfini A-A. Pour simplifier la description, elle est appelée ci- après aimant 50.The
Le champ magnétique émis par l'aimant 50 présente une intensité comprise entre 0.05 Tesla et 1 Tesla, et de préférence comprise entre 0.085 Tesla et 0.2 Tesla.The magnetic field emitted by the
La rondelle 52 et l'écrou de serrage 54 forment un premier élément magnétique et la rondelle 58 forme un second élément magnétique au sens de l'invention.The
Les rondelles 52, 58 sont chacune solidaires d'une face annulaire de l'aimant 50. La rondelle 52 est en outre fixée, par exemple par vissage, sur le pourtour extérieur de l'extrémité 11 du corps de support.The
L'écrou de serrage 54 comporte une protubérance 62 sensiblement tronconique d'axe de révolution, l'axe prédéfini A-A. La protubérance 62 s'étend vers le canal d'injection central 10.The clamping
La rondelle 52, l'écrou de serrage 54 et la rondelle 58 sont constitués d'acier paramagnétique, et de préférence d'acier ferromagnétique.The
En référence à la
Comme la rondelle 58 est également propre à conduire le champ magnétique, la surface d'extrémité de la rondelle 58 la plus proche du canal d'injection central 10 forme un second pôle magnétique 66 disposé en aval de la buse d'injection 65 du canal d'injection central, en considérant le sens F1, et à une seconde distance D2 de l'axe prédéfini A-A; ladite seconde distance D2 étant plus longue que la première distance D1.Since the
Les lignes de champ 68 du champ émis par le générateur de champ magnétique 46 présentent une forme de tuyère. Elles coupent la buse d'injection 65 du canal d'injection central 10 et forment un angle compris entre 10° et 70° avec l'axe prédéfini A-A. Autrement dit, le champ magnétique émis par le générateur de champ magnétique 46 diverge. Au niveau de l'axe prédéfini A-A, le gradient de champ magnétique est parallèle à l'axe prédéfini A-A. De plus, ce gradient de champ magnétique est négatif de l'amont vers l'aval en considérant la direction d'éjection du gaz propulsif.The field lines 68 of the field emitted by the
Le champ magnétique présente en outre un premier maximum local d'intensité du champ magnétique au niveau de la buse d'injection 65 du canal d'injection central. Cette intensité est suffisante pour ioniser complètement, par résonance ECR, le gaz propulsif sortant de ladite la buse d'injection 65. Cette intensité est par exemple comprise entre 0,087 Tesla (ECR pour une fréquence microonde de 2,45 GHz), et environ 0,5 Tesla (limite supérieure atteignable avec des aimants permanents). La forme particulière des lignes de champ 68 conduit à ce que la surface ECR soit très proche dudit premier maximum local d'intensité et à ce que cette surface ECR enveloppe l'extrémité de sortie 165 de la buse d'injection 65. Pour une fréquence d'onde EM de 2,45 GHz, la surface ECR est située à une distance de l'ordre du millimètre en aval de l'extrémité de sortie 165.The magnetic field also has a first local maximum intensity of the magnetic field at the
Dans cette demande de brevet, on appelle « surface ECR » une région de l'espace où la fréquence de giration des électrons libres dans le champ magnétique local, est sensiblement égale à la fréquence de l'onde électromagnétique excitatrice.In this patent application, the term "ECR surface" is a region of the space where the free electron gyration rate in the local magnetic field is substantially equal to the frequency of the exciting electromagnetic wave.
Le générateur de champ magnétique 46 est en outre apte à accélérer vers l'ouverture de sortie 48, par une force diamagnétique, le plasma amorcé au niveau de la buse d'injection 65, ledit plasma éjecté dudit propulseur étant électriquement neutre. Il est à noter que l'un des principaux intérêts des sources de plasma ECR réside dans la possibilité d'agir uniquement sur les électrons libres du plasma et pas sur les ions, ce qui ne nécessite que des champs magnétiques relativement réduits, environ 0,1 Teslas (1000 Gauss) dans notre exemple. La neutralité électrique du plasma est assurée très efficacement par le champ électrique ambipolaire, ou champ de charge d'espace, qui apparaît immédiatement au sein du plasma et contre tout déséquilibre entre les populations d'ions positifs et d'électrons. Il n'est donc pas nécessaire d'utiliser de neutraliseur. En l'absence de champ électrique appliqué par une éventuelle grille accélératrice, le champ électrique ambipolaire n'est pas perturbé et les électrons soumis à la seule force diamagnétique vont alors entraîner avec eux dans leur mouvement les ions positifs non magnétisés (d'où le caractère dit « diamagnétique » du plasma). Réciproquement, en sortie du propulseur, les électrons reliés aux ions par la charge d'espace vont pouvoir échapper au champ magnétique résiduel du fait de l'inertie de ces ions préalablement accélérés à l'intérieur du propulseur. Contrairement aux autres propulseurs de l'état de l'art, l'accélération du plasma dans la tuyère magnétique ne nécessite donc pas de dépense de puissance électrique supplémentaire dans le cas où, comme dans cet exemple, la tuyère magnétique est générée par de simples aimants permanents. Cette économie de puissance électrique est un atout important pour une application spatiale.The
Le canal d'injection central 10 débouche au début de la partie divergente du champ magnétique, en amont de la zone de résonance ECR.The
Avantageusement, le canal d'injection central 10 sert à la fois d'antenne d'émission micro-onde 39 à l'intérieur de la chambre de décharge 6 et de buse d'injection 65 pour l'injection du gaz à ioniser. La buse d'injection 65 comprend une extrémité de sortie 165.Advantageously, the
L'aimant 50, la rondelle 52, l'écrou de serrage 54 et la rondelle 58 forment la chambre de décharge 6. Celle-ci présente un diamètre compris entre 6 mm et 60 mm, et de préférence compris entre 12 mm et 30 mm. La chambre de décharge 6 présente ainsi une section intérieure comprise entre 0.7 centimètres carré et 30 centimètres carré.The
La longueur, définie selon l'axe prédéfinie A-A, de la cavité intérieure 14 de la chambre de décharge 6 est de 5 à 10 fois inférieure à la demi-longueur d'onde dans le vide de l'onde électromagnétique émise par le générateur d'onde électromagnétique 38.The length, defined along the predefined axis AA, of the
Avantageusement, la chambre de décharge, présente une très faible dimension.Advantageously, the discharge chamber has a very small dimension.
Le propulseur plasmique 2 comporte, en outre, une bride de fixation 70 et un contre-écrou 72 vissés sur le pourtour extérieur du corps de support 4. Un joint torique 74 est disposé en outre entre la bride de fixation 70 et le contre-écrou 72.The plasma thruster 2 further comprises a
Avantageusement, le propulseur plasmique selon l'invention peut être utilisé au moyen d'aimants permanents ne consommant pas d'énergie.Advantageously, the plasma thruster according to the invention can be used by means of permanent magnets that do not consume energy.
Avantageusement, la chambre de décharge forme une cavité résonante haute fréquence ayant des dimensions de l'ordre du centimètre avec une fréquence relativement basse de l'ordre de 2,3 à 2,8 GHz. Ceci est possible car l'indice optique du plasma à l'ECR est très élevé, ce qui permet d'avoir une longueur d'onde relativement courte même avec une fréquence relativement basse. Comme la fréquence ECR est proportionnelle au champ magnétique, une cavité de cette taille est donc possible même avec un champ magnétique de l'ordre de 0,08 à 0,1 T, facilement réalisable par des aimants permanents annulaires de petites dimensions.Advantageously, the discharge chamber forms a high frequency resonant cavity having dimensions of the order of one centimeter with a relatively low frequency of the order of 2.3 to 2.8 GHz. This is possible because the optical index of the plasma at the ECR is very high, which makes it possible to have a relatively short wavelength even with a relatively low frequency. As the ECR frequency is proportional to the magnetic field, a cavity of this size is therefore possible even with a magnetic field of the order of 0.08 to 0.1 T, easily achievable by annular permanent magnets of small dimensions.
Le procédé de génération d'une poussée propulsive selon l'invention est réalisé au moyen d'un propulseur plasmique décrit ci-dessus. Dans le premier mode de fonctionnement dit « classique », il comporte, en référence à la
- génération 90
d'un champ magnétique 63 ; émission 100 des microondes par le générateur d'onde électromagnétique 38 ;- injection 104 du gaz propulsif dans la chambre de décharge 6 par l'intermédiaire du canal d'injection central 10 ;
- amorçage 101 du plasma ;
- entretien 103 du plasma par ECR
- modulation 102 de la puissance de l'onde électromagnétique émis par le générateur d'onde électromagnétique 38, par le dispositif de
modulation 42 ; - réglage 106 du débit de gaz propulsif dans le canal d'injection central 10 par le dispositif de commande 32.
- generation 90 of a
magnetic field 63; -
emission 100 of the microwaves by theelectromagnetic wave generator 38; - injection 104 of the propellant gas into the discharge chamber 6 via the
central injection channel 10; - priming 101 of the plasma;
- Plasma maintenance 103 by ECR
- modulation 102 of the power of the electromagnetic wave emitted by the
electromagnetic wave generator 38, by themodulation device 42; - setting 106 of the propellant gas flow in the
central injection channel 10 by thecontrol device 32.
Avantageusement, l'étape d'émission 100 est mise en oeuvre avant l'étape d'injection 104 lorsque l'utilisateur souhaite économiser le gaz propulsif, et l'étape d'injection 104 est mise en oeuvre avant l'étape d'émission 100 lorsque l'utilisateur souhaite économiser de l'électricité.Advantageously, the
Dans le second mode de fonctionnement dit « arc-jet », il comporte en outre les étapes suivantes :
- injection 108 de gaz propulsif supplémentaire par l'intermédiaire du
canal d'injection périphérique 12 ; - réglage 110 du débit de gaz propulsif dans le
canal d'injection périphérique 12 par le dispositif de commande 32 ; et - modulation, avec le dispositif de
modulation 42 de la puissance des microondes émises par le générateur d'onde électromagnétique 38, pour fonctionner dans le second mode de fonctionnement dit « arc jet ».
- injection 108 of additional propellant gas through the
peripheral injection channel 12; - setting 110 of the propellant gas flow in the
peripheral injection channel 12 by thecontrol device 32; and - modulation, with the
modulation device 42 of the power of the microwaves emitted by theelectromagnetic wave generator 38, to operate in the second operating mode called "arc jet".
Avantageusement, l'injection axiale du gaz propulsif est complétée dans ce mode de fonctionnement par une injection de gaz autour du conduit d'injection central. Celle-ci est généralement utilisée lors d'un fonctionnement temporaire à forte poussée du propulseur ici appelé second mode de fonctionnement dit « arc-jet ». Dans ce cas, la montée en pression de la chambre de décharge 6 permet d'y allumer un plasma de type arc électrique - très dense et très chaud sous l'effet de l'injection de microondes de fortes puissances (supérieure à une centaine de watts). Ceci permet de faire fonctionner le propulseur plasmique avec des poussées beaucoup plus importantes - de l'ordre de plusieurs centaines de milli-newtons, mais moyennant une dissipation calorifique beaucoup plus importante et un rendement énergétique plus réduit.Advantageously, the axial injection of the propellant gas is completed in this operating mode by an injection of gas around the central injection duct. This is generally used during a temporary operation with high thrust of the thruster here called second mode of operation called "arc-jet". In this case, the rise in pressure of the discharge chamber 6 makes it possible to ignite a plasma arc-type - very dense and very hot under the effect of the injection of microwaves of high power (greater than a hundred watts). This makes it possible to operate the plasma thruster with much larger surges - of the order of several hundred milli-newtons, but with a much greater heat dissipation and a lower energy efficiency.
Avantageusement, il est possible d'optimiser, par exemple, sur l'ensemble de la mission, à la fois la consommation de gaz et celle d'énergie, en jouant sur une plage de réglage du débit de gaz dans le canal d'injection central et sur une plage de réglage de la puissance des ondes électromagnétiques, les deux faisant varier différemment l'impulsion spécifique et la poussée du propulseur, et le cas échéant, en jouant, sur une plage de réglage du débit de gaz dans le canal périphérique et sur une plage de réglage de la puissance des ondes électromagnétiques.Advantageously, it is possible to optimize, for example, over the entire mission, both the consumption of gas and that of energy, by acting on a range of adjustment of the gas flow in the injection channel. and a range of electromagnetic wave power control, both of which vary the specific impulse and thrust of the thruster differently, and, where appropriate, by playing over a range of regulating the gas flow in the peripheral channel and a range of adjustment of the power of the electromagnetic waves.
Avantageusement, il est possible d'utiliser chaque mode de propulsion indépendamment ou en combinaison, une combinaison permettant, par exemple, de réaliser des réglages fins de la poussée totale, même pour de fortes amplitudes de cette poussée.Advantageously, it is possible to use each mode of propulsion independently or in combination, a combination making it possible, for example, to make fine adjustments to the total thrust, even for large amplitudes of this thrust.
Selon la variante de réalisation illustrée sur la
Le circulateur 80 est un dispositif, généralement en ferrite, qui est placé dans un circuit microonde pour protéger le générateur électromagnétique 38 ou un éventuel amplificateur contre un retour d'ondes EM, par exemple réfléchies par le plasma (qui est pour le générateur d'onde EM, la charge à irradier). Le flux d'ondes EM qui traverse le circulateur 80 en direction du plasma n'est pas absorbé par le circulateur. Le flux réfléchi en direction du générateur d'onde EM tourne dans le circulateur 80 et repart en direction du plasma de sorte que le générateur électromagnétique 38 est protégé et qu'il n'y a pas de perte de flux d'ondes EM par reflexion vers l'amont.The
Le manchon 85 présente un diamètre supérieur au diamètre de l'aimant permanent 50 et un rebord 86 fixé contre la rondelle 58 du générateur de champ magnétique 46. En particulier, le manchon 85 est, par exemple, un tronçon de guide d'onde circulaire de diamètre égal à 1/2 longueur d'onde et de longueur égale à 1/4 ou 3/4 de longueur d'onde de l'onde EM dans le vide. Le manchon 85 bloque la propagation de l'onde EM qui autrement rayonnerait dans l'espace libre par diffraction à partir de l'orifice de sortie du propulseur. Au lieu d'être émis dans l'espace libre, le flux d'ondes EM hyperfréquence est ainsi réfléchi vers le plasma à l'intérieur du propulseur et sa partie non absorbée par le plasma se dirige vers le circulateur 80. Le circulateur 80 renvoie alors à son tour ce flux rétrograde vers le propulseur plasmique 120, et ainsi de suite... jusqu'à absorption complète du flux d'ondes EM par le plasma.The
La
Comme visible sur cette figure, le champ magnétique présente un premier maximum local, A, et un deuxième maximum local, C, situé à l'intérieur de la buse d'injection 65, ainsi qu'un minimum local situé entre le premier maximum local A et le deuxième maximum local C.As visible in this figure, the magnetic field has a first local maximum, A, and a second local maximum, C, located inside the
Le premier maximum local A est situé à l'extrémité de sortie 165 de la buse d'injection 165. Le premier maximum local A est suffisant pour ioniser, par résonance cyclotronique des électrons du gaz propulsif sous l'effet de ladite onde électromagnétique, le gaz propulsif sortant de ladite buse d'injection 65 .The first local maximum A is located at the
Le premier maximum local A a une intensité supérieure à la valeur seuil BECR nécessaire pour obtenir une résonance cyclotronique définie par la formule suivante :
Dans laquelle
- me est la masse d'un électron,
- qe est la charge électrique d'un électron,
- FECR est la fréquence de résonance gyromagnétique.
- me is the mass of an electron,
- qe is the electric charge of an electron,
- F ECR is the gyromagnetic resonance frequency.
Le générateur de champ magnétique 50 est apte à accélérer vers l'ouverture de sortie 48 par la force diamagnétique, les électrons libres du plasma amorcé au niveau de la buse d'injection (65), les ions positifs, non magnétisés, suivant ces électrons libres du fait du champ électrique ambipolaire, ou champ de charge d'espace, qui apparaît quasi immédiatement au sein du plasma et s'oppose à tout déséquilibre entre les populations d'ions positifs et d'électrons, ce champ électrique, qui n'est perturbé par aucun champ électrique appliqué, assurant de manière très efficace la neutralité électrique du plasma éjecté dudit propulseur.The
La pointe 36 du moyen d'injection 10 permet, en y concentrant les lignes de champ magnétique, d'obtenir à partir du générateur de champ magnétique 50, d'une part le premier maximum local de l'intensité A, et d'autre part une micro-décharge à cathode creuse, entre le premier maximal local A et le minimum local B de l'intensité du champ magnétique. Cette micro-décharge est suffisante pour ioniser au moins une partie du gaz propulsif présent dans ladite buse d'injection 65 quel que soit son débit. Le générateur de champ magnétique 50 comprend par exemple des aimants permanents.The
Claims (10)
- Plasma thruster (2, 120) comprising a discharge chamber (6) comprising an internal cavity (14) and an outlet opening (48); at least one injection means (10, 12) comprising an injection nozzle (65) capable of injecting into the discharge chamber (6) a propellant gas along a predefined axis (A-A); said injection nozzle (65) having an outlet end (165); a magnetic field generator (50, 52, 54, 58) capable of setting electrons of the propellant gas present in the discharge chamber (6) in gyromagnetic rotation; and an electromagnetic wave generator (38) capable of irradiating the propellant gas present in the discharge chamber (6) by generating at least one electromagnetic wave the electric field of which has a right-hand circular polarization and a frequency equal to the frequency, FECR, of gyromagnetic resonance of the electrons of the propellant gas magnetized by said magnetic field generator (50, 52, 54, 58),- said magnetic field generator (50, 52, 54, 58) is capable:∘ on the one hand, of generating a magnetic field having field lines (68) which determine an iso-field surface, known as the "ECR surface", with an intensity equal to that allowing a cyclotron resonance of the electrons under the effect of said electromagnetic wave;∘ on the other hand, of giving said field lines (68) the shape of a nozzle, so as to generate a diamagnetic propulsion force;- said injection means (10) being produced from an electrically conductive material and being electrically connected to the electromagnetic wave generator (38) so as to also operate as an electromagnetic antenna (39) emitting said electromagnetic wave into the propellant gas at the outlet of said injection nozzle (65);
wherein said magnetic field generator (50, 52, 54, 58) is capable of generating a magnetic field■ producing an ECR surface enveloping the outlet end (165) of said injection nozzle (65), the volume delimited by this ECR surface being the resonant cavity of the electromagnetic wave ;■ having a first local maximum (A) of intensity inside the injection nozzle (65) and at the outlet end (165) of the injection nozzle (65);■ having a second local maximum (C) of the intensity of the magnetic field inside the injection nozzle (65), separated from the first local maximum (A) by a local minimum (B) of the intensity of the magnetic field inside said injection nozzle (65);- said injection means (10):■ is produced from a magnetically conductive material, making it possible to achieve, inside the latter, said second local maximum (C) of the intensity of the magnetic field;■ comprises, at the downstream end of said injection nozzle (65), an injection channel (10) with an external diameter strictly comprised between 0.5 and 3 mm. - Plasma thruster (2, 120) according to the previous claim, in which the magnetic field generator (50, 52, 54, 58) comprises as magnetic field source at least one permanent magnet (50) with a toric shape arranged coaxially to the predefined axis (A-A) and having a first magnetic pole (64) and a second magnetic pole (66), a first magnetic element (52, 54) integral with the first magnetic pole (64) and a second magnetic element (58) integral with the second magnetic pole (66), said first (64) and second (66) magnetic poles being arranged at a first distance (D1) and, respectively, a second distance (D2) from the predefined axis (A-A); the second distance (D2) being longer than the first distance (D1), the first magnetic pole (64) and the second magnetic pole (66) being arranged upstream and, respectively, downstream of the injection nozzle (65) with respect to the direction (F1) of flow of the propellant gas, the field lines (68) intersecting with the injection nozzle (65) and forming an angle comprised between 10° and 70° with said predefined axis (A-A).
- Plasma thruster (2, 120) according to one of the previous claims, in which the length, defined along the predefined axis (A-A), of the internal cavity (14) of the discharge chamber (6) is 5 to 10 times smaller than the half-wavelength of said electromagnetic wave in a vacuum, the discharge chamber (6) having an internal cross-sectional area comprised between 0.7 square centimeters and 30 square centimeters; in which the central injection channel (10) has an internal cross-sectional area comprised between 0.7 square millimeters and 3 square millimeters.
- Plasma thruster (2, 120) according to one of the previous claims, in which the magnetic field intensities of said first local maximum (A), local minimum (B) and second local maximum (C) are, respectively, approximately 0.18 tesla, 0.01 tesla and 0.05 tesla.
- Plasma thruster (2, 120) according to one of the previous claims, in which said electromagnetic wave is capable of propagating along an axis parallel to the predefined axis (A-A) and in which, at the predefined axis (A-A), the magnetic field gradient is parallel to the predefined axis (A-A); said magnetic field gradient being negative from upstream to downstream in a direction defined by the direction in which the propellant gas is ejected.
- Plasma thruster (2, 120) according to one of the previous claims, which comprises a device (42) for modulating the power of the electromagnetic wave and a device (32) for controlling the flow rate of the propellant gas, said power of the electromagnetic wave being comprised between 0.5 watts and 300 watts, and preferably between 0.5 watts and 30 watts in a first operating mode.
- Plasma thruster (120) according to one of the previous claims, which comprises, on the one hand, a circulator (80), arranged at the outlet of said electromagnetic wave generator (38) and, on the other hand, an electrically conductive cylindrical sleeve (85), arranged downstream of the plane defined by the outlet opening (48) known as the outlet plane (D-D) of the plasma thruster (120), the diameter of which is substantially equal to one quarter of the wavelength of the electromagnetic wave and the length of which is substantially equal to three quarters of the wavelength of the electromagnetic wave.
- Plasma thruster (2, 120) according to one of the previous claims, comprising two injection means (10, 12) coaxial to the axis (A-A), one supplying gas to be ionized to the ECR surface and the other increasing the thrust via a gas flow rate and an arcjet operation.
- Method for generating a propulsion thrust by means of a plasma thruster (2, 120) comprising the following steps:■ injection (104), into a discharge chamber (6) comprising an internal cavity (14) and an outlet opening (48), using at least one injection means (10, 12) comprising an outlet end called the injection nozzle (65), of a propellant gas along a predefined axis (A-A);- generation (90), using a magnetic field generator (50, 52, 54, 58), of a magnetic field (63) capable of setting electrons of the propellant gas present in the discharge chamber (6) in gyromagnetic rotation; said magnetic field generation (90) being such that:∘ on the one hand, the magnetic field has field lines (68) which determine an iso-field surface, known as the ECR surface, with an intensity equal to that allowing a cyclotron resonance of the electrons under the effect of said electromagnetic wave,∘ on the other hand, the magnetic field gives said field lines the shape of a nozzle, so as to generate a diamagnetic force;- emission (100) into the propellant gas present in the discharge chamber (6), using an electromagnetic wave generator (38), of at least one electromagnetic wave the electric field of which has a right-hand circular polarization and a frequency equal to the gyromagnetic resonance frequency, FECR, of the electrons of the propellant gas magnetized by said magnetic field generator (50, 52, 54, 58), the injection (104) of the propellant gas and the emission (100) of the electromagnetic wave being carried out by one and the same injection means (10, 12) and at the same location in the discharge chamber, said injection means (10, 12) being produced from an electrically conductive material and electrically connected to the electromagnetic wave generator (50, 52, 54, 58) in order to emit the electromagnetic wave into the propellant gas at the outlet of the gas from said injection nozzle (65), so as to maximize the level of ionization of the propellant gas on exiting;■ ignition (101) of the plasma by ionization of the propellant gas;■ sustaining (103) of the plasma by cyclotron resonance of the electrons; wherein the ignition (101) of the plasma is realized by microhollow cathode discharge using the injection means (10) which is made of magnetic material and comprises, at the downstream end of its injection nozzle (65), an injection channel (10) with an external diameter strictly comprised between 0.5 mm and 3 mm;- said magnetic field generation (90) being such that the magnetic field has:■ said ECR surface which envelops the outlet end (165) of said injection nozzle (65), the volume delimited by the ECR surface being the resonance cavity of the electromagnetic wave;■ a first local maximum (A) of intensity situated inside the injection nozzle (65) and at the outlet end (165) of the injection nozzle (65);■ a second local maximum (C) of the intensity of the magnetic field inside the injection nozzle (65), separated from the first local maximum (A) by a local minimum (B) of the intensity of the magnetic field inside said injection nozzle (65);- the sustaining (103) of the plasma by cyclotron resonance of the electrons being realized by resonance of the electromagnetic wave in the volume delimited by the ECR surface.
- Method according to the previous claim, in which the plasma thruster (2, 120) moreover comprises a device (42) for modulating the power of the electromagnetic wave, a device (32) for controlling the gas flow rate, a peripheral injection channel (12) capable of injecting the propellant gas into the discharge chamber (6); and in which the method comprises the following steps:- injection (108) of propellant gas into the discharge chamber (6) via the peripheral injection channel (12);- regulation (110) of the flow rate of propellant gas injected into the discharge chamber (6) via the peripheral injection channel (12);- modulation (112) of the power of the electromagnetic wave.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1162545A FR2985292B1 (en) | 2011-12-29 | 2011-12-29 | PLASMIC PROPELLER AND METHOD FOR GENERATING PLASMIC PROPULSIVE THRUST |
PCT/FR2012/052983 WO2013098505A1 (en) | 2011-12-29 | 2012-12-19 | Plasma thruster and method for generating a plasma propulsion thrust |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2798209A1 EP2798209A1 (en) | 2014-11-05 |
EP2798209B1 true EP2798209B1 (en) | 2016-09-28 |
Family
ID=47628312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12819095.6A Active EP2798209B1 (en) | 2011-12-29 | 2012-12-19 | Plasma thruster and method for generating propulsive plasma thrust |
Country Status (7)
Country | Link |
---|---|
US (1) | US9591741B2 (en) |
EP (1) | EP2798209B1 (en) |
JP (1) | JP6120878B2 (en) |
CN (1) | CN104114862B (en) |
FR (1) | FR2985292B1 (en) |
RU (1) | RU2610162C2 (en) |
WO (1) | WO2013098505A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024133796A1 (en) * | 2022-12-21 | 2024-06-27 | Office National D'etudes Et De Recherches Aerospatiales | Thruster employing electron cyclotron resonance |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170276109A1 (en) * | 2014-05-29 | 2017-09-28 | Imagineering, Inc. | Injector having in-built ignition system |
CN104454417B (en) * | 2014-10-29 | 2017-04-12 | 大连理工大学 | Bi-order grid spiral wave ion propulsion device |
CN104696180B (en) * | 2014-12-29 | 2017-07-28 | 中国空间技术研究院 | Magnetic field regulation type liquid phase working fluid large area microcavity discharge plasma micro-thruster |
CN104863811B (en) * | 2015-04-15 | 2017-06-27 | 大连理工大学 | negative particle thruster |
CN104947102B (en) * | 2015-07-08 | 2017-04-19 | 浙江大学 | Metal powder jetting device based on plasma magnetic field propelling |
CN105575584B (en) * | 2016-02-16 | 2017-08-29 | 兰州空间技术物理研究所 | A kind of erecting device of toroidal magnet |
CN105781921B (en) * | 2016-03-16 | 2018-06-19 | 中国空间技术研究院 | A kind of electromagnetic push device cavity based on periodic structure |
US10271415B2 (en) * | 2016-04-30 | 2019-04-23 | The Boeing Company | Semiconductor micro-hollow cathode discharge device for plasma jet generation |
CN106304595B (en) * | 2016-08-26 | 2019-02-05 | 大连理工大学 | Surface plasma body resonant vibration and electron cyclotron resonace double excitation type micro-wave thruster |
CN106337791B (en) * | 2016-08-31 | 2018-09-11 | 北京航空航天大学 | A kind of magnetic plasma propeller with conical porous hollow cathode |
WO2018118223A1 (en) * | 2016-12-21 | 2018-06-28 | Phase Four, Inc. | Plasma production and control device |
US9934929B1 (en) | 2017-02-03 | 2018-04-03 | Colorado State University Research Foundation | Hall current plasma source having a center-mounted or a surface-mounted cathode |
US11828273B2 (en) | 2017-03-23 | 2023-11-28 | The Board Of Trustees Of The Leland Stanford Junior University | Compact plasma thruster |
US20190107103A1 (en) | 2017-10-09 | 2019-04-11 | Phase Four, Inc. | Electrothermal radio frequency thruster and components |
CN109979794A (en) * | 2017-12-27 | 2019-07-05 | 核工业西南物理研究院 | A kind of radio frequency induction coupled plasma averager |
CN108417472B (en) * | 2018-02-26 | 2019-09-20 | 温州职业技术学院 | A kind of more enhancing hollow cathode ion sources |
EP3788261A1 (en) * | 2018-05-03 | 2021-03-10 | Neiser, Paul | Filtration apparatus and method |
ES2696227B2 (en) * | 2018-07-10 | 2019-06-12 | Centro De Investig Energeticas Medioambientales Y Tecnologicas Ciemat | INTERNAL ION SOURCE FOR LOW EROSION CYCLONES |
CN111456921B (en) * | 2019-01-22 | 2021-10-15 | 哈尔滨工业大学 | Colloid thruster based on microwave enhancement |
CN109779864B (en) * | 2019-03-11 | 2021-10-29 | 哈尔滨工业大学 | Hall thruster air supply pipeline insulation structure |
CN111765058B (en) * | 2019-04-02 | 2022-07-05 | 哈尔滨工业大学 | Cusp field thruster for microwave-enhanced auxiliary ionization |
DE102019111908B4 (en) * | 2019-05-08 | 2021-08-12 | Dreebit Gmbh | ECR ion source and method for operating an ECR ion source |
CN110469474B (en) * | 2019-09-04 | 2020-11-17 | 北京航空航天大学 | Radio frequency plasma source for microsatellite |
US11699575B2 (en) * | 2019-09-16 | 2023-07-11 | The Regents Of The University Of Michigan | Multiple frequency electron cyclotron resonance thruster |
CN112523984B (en) * | 2019-09-19 | 2022-04-05 | 哈尔滨工业大学 | Microwave ionization type cathode for micro cusp field thruster |
JP7355923B2 (en) * | 2020-04-07 | 2023-10-03 | 株式会社日立ハイテク | Charged particle guns, charged particle beam systems, and lock nuts |
CN111452999A (en) * | 2020-04-24 | 2020-07-28 | 北京卫星环境工程研究所 | Device and method suitable for cyclic supply of gas resources of space station |
CN111502940B (en) * | 2020-04-29 | 2021-09-24 | 武汉大学 | Microwave air plasma water vapor injection pushing device |
CN113423168B (en) * | 2021-06-25 | 2024-09-20 | 中国人民解放军国防科技大学 | Magnetic control vector high-speed plasma synthetic jet exciter |
US11988149B1 (en) * | 2021-09-14 | 2024-05-21 | United States Of America As Represented By The Administrator Of Nasa | Coil-on plug exciter |
CN114738217B (en) * | 2022-04-13 | 2024-05-24 | 哈尔滨工业大学 | Cathode based on microwave discharge and hollow cathode effect |
US11930583B1 (en) * | 2022-09-08 | 2024-03-12 | Ali Kaddoura | Heat conditioning through deflection/reflection/absorption of electromagnetic waves |
CN118067397B (en) * | 2024-04-19 | 2024-06-28 | 哈尔滨工业大学 | High-precision on-orbit monitoring method and device for thrust transition of ion thruster |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2856740B2 (en) | 1988-06-09 | 1999-02-10 | 株式会社東芝 | ECR type ion thruster |
EP0463408A3 (en) * | 1990-06-22 | 1992-07-08 | Hauzer Techno Coating Europe Bv | Plasma accelerator with closed electron drift |
IT1246684B (en) | 1991-03-07 | 1994-11-24 | Proel Tecnologie Spa | CYCLOTRONIC RESONANCE IONIC PROPULSOR. |
US5798602A (en) * | 1994-08-25 | 1998-08-25 | Societe Nationale Industrielle Et Aerospatial | Plasma accelerator with closed electron drift |
US5640843A (en) | 1995-03-08 | 1997-06-24 | Electric Propulsion Laboratory, Inc. Et Al. | Integrated arcjet having a heat exchanger and supersonic energy recovery chamber |
US5858477A (en) | 1996-12-10 | 1999-01-12 | Akashic Memories Corporation | Method for producing recording media having protective overcoats of highly tetrahedral amorphous carbon |
IL118638A (en) * | 1996-06-12 | 2002-02-10 | Fruchtman Amnon | Beam generator |
RU2120061C1 (en) * | 1997-07-10 | 1998-10-10 | Илья Иванович Лаптев | Plasma engine |
US6293090B1 (en) | 1998-07-22 | 2001-09-25 | New England Space Works, Inc. | More efficient RF plasma electric thruster |
DE19835512C1 (en) * | 1998-08-06 | 1999-12-16 | Daimlerchrysler Aerospace Ag | Ion engine designed as an electrostatic motor switched on by positive voltage |
RU2188337C2 (en) * | 2000-07-12 | 2002-08-27 | Федеральное государственное унитарное предприятие Российского авиационно-космического агентства "Опытное конструкторское бюро "Факел" | Closed electron drift plasma jet engine |
US7461502B2 (en) | 2003-03-20 | 2008-12-09 | Elwing Llc | Spacecraft thruster |
EP1460267B1 (en) * | 2003-03-20 | 2006-08-09 | Elwing LLC | Spacecraft thruster |
JP4200827B2 (en) | 2003-06-20 | 2008-12-24 | 株式会社デンソー | Impact detection device |
US7400096B1 (en) | 2004-07-19 | 2008-07-15 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Large area plasma source |
EP1995458B1 (en) * | 2004-09-22 | 2013-01-23 | Elwing LLC | Spacecraft thruster |
JP2006147449A (en) | 2004-11-24 | 2006-06-08 | Japan Aerospace Exploration Agency | High-frequency discharge plasma generation type two-step hole effect plasma accelerator |
FR2933532B1 (en) * | 2008-07-02 | 2010-09-03 | Commissariat Energie Atomique | ELECTRONIC CYCLOTRON RESONANCE ION GENERATING DEVICE |
-
2011
- 2011-12-29 FR FR1162545A patent/FR2985292B1/en active Active
-
2012
- 2012-12-19 JP JP2014549517A patent/JP6120878B2/en active Active
- 2012-12-19 EP EP12819095.6A patent/EP2798209B1/en active Active
- 2012-12-19 CN CN201280069755.6A patent/CN104114862B/en active Active
- 2012-12-19 US US14/369,282 patent/US9591741B2/en active Active
- 2012-12-19 WO PCT/FR2012/052983 patent/WO2013098505A1/en active Application Filing
- 2012-12-19 RU RU2014131219A patent/RU2610162C2/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024133796A1 (en) * | 2022-12-21 | 2024-06-27 | Office National D'etudes Et De Recherches Aerospatiales | Thruster employing electron cyclotron resonance |
FR3144229A1 (en) * | 2022-12-21 | 2024-06-28 | Office National D'etudes Et De Recherches Aérospatiales | ELECTRONIC CYCLOTRONIC RESONANCE PROPELLER |
Also Published As
Publication number | Publication date |
---|---|
JP6120878B2 (en) | 2017-04-26 |
FR2985292A1 (en) | 2013-07-05 |
US9591741B2 (en) | 2017-03-07 |
CN104114862A (en) | 2014-10-22 |
US20150020502A1 (en) | 2015-01-22 |
EP2798209A1 (en) | 2014-11-05 |
JP2015509262A (en) | 2015-03-26 |
RU2014131219A (en) | 2016-02-20 |
FR2985292B1 (en) | 2014-01-24 |
WO2013098505A1 (en) | 2013-07-04 |
CN104114862B (en) | 2017-11-21 |
RU2610162C2 (en) | 2017-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2798209B1 (en) | Plasma thruster and method for generating propulsive plasma thrust | |
EP0650557B1 (en) | Fixed plasma motor | |
RU2445510C2 (en) | Low-thrust rocket engine for space vehicle | |
EP0662195B1 (en) | Reduced length plasma engine with closed electron deviation | |
EP0013242B1 (en) | Generator for very high frequency electromagnetic waves | |
EP2812571B1 (en) | Hall effect thruster | |
EP3344873A1 (en) | Gridded ion thruster with integrated solid propellant | |
EP2873306B1 (en) | Coaxial microwave applicator for plasma production | |
FR2924473A1 (en) | ELECTRIC PROPULSION SYSTEM HALL. | |
EP0184475A1 (en) | Method and apparatus for igniting a hyperfrequency ion source | |
EP2652766B1 (en) | Electronic cyclotronic resonance ion source | |
EP0499514B1 (en) | Mode converter and power-dividing device for a microwave tube, and microwave tube with such a device | |
EP2311061B1 (en) | Electron cyclotron resonance ion generator | |
EP3574719B1 (en) | System for generating a plasma jet of metal ions | |
EP0813223B1 (en) | Magnetic field generation means and ECR ion source using the same | |
WO2024133796A1 (en) | Thruster employing electron cyclotron resonance | |
FR2985366A1 (en) | Microwave frequency generator, has waveguides equipped with sealing units, and sealing units allowing supply and/or extraction of electromagnetic waves from cavity by waveguides when sealing units are in pass configuration | |
FR2906674A1 (en) | Peripheral laser for maintaining current conducting plasma filament, has central tube connecting parabolic mirror to transmission mirror, and including inner face constituted of reflecting material, where mirrors have rim or ring shape | |
EP2747117A2 (en) | Device for generating microwaves with dual cathodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140702 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160425 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPAT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 833013 Country of ref document: AT Kind code of ref document: T Effective date: 20161015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012023594 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 833013 Country of ref document: AT Kind code of ref document: T Effective date: 20160928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161229 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161228 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170130 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170128 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012023594 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161219 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20121219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20221122 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20231121 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231121 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231122 Year of fee payment: 12 Ref country code: DE Payment date: 20231121 Year of fee payment: 12 |