[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2789842A1 - Ventil zum Zumessen von Fluid - Google Patents

Ventil zum Zumessen von Fluid Download PDF

Info

Publication number
EP2789842A1
EP2789842A1 EP20140155065 EP14155065A EP2789842A1 EP 2789842 A1 EP2789842 A1 EP 2789842A1 EP 20140155065 EP20140155065 EP 20140155065 EP 14155065 A EP14155065 A EP 14155065A EP 2789842 A1 EP2789842 A1 EP 2789842A1
Authority
EP
European Patent Office
Prior art keywords
valve
needle
valve needle
fluid
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20140155065
Other languages
English (en)
French (fr)
Inventor
Dietmar Schmieder
Tilo Landenfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2789842A1 publication Critical patent/EP2789842A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0675Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages
    • F02M51/0678Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages all portions having fuel passages, e.g. flats, grooves, diameter reductions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • F02M51/0607Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means the actuator being hollow, e.g. with needle passing through the hollow space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/50Arrangements of springs for valves used in fuel injectors or fuel injection pumps

Definitions

  • the invention is based on a valve for metering fluid according to the preamble of claim 1, wherein the standing for a flowing or flowing medium superordinate term fluid is used in accordance with the fluid flow theory for gases and liquids.
  • the valve housing has a hollow cylindrical nozzle body with an end arranged, a nozzle opening enclosing valve seat, a housing pot, through the bottom of the pot through the nozzle body centrally protrudes into the housing pot, and a housing pot final housing cap with cap jacket and cap bottom, wherein the cap jacket an inlet nozzle for the fluid is arranged.
  • a magnetic coil of an electromagnet Within the housing pot sits on the nozzle body, a magnetic coil of an electromagnet.
  • a ring plate of non-magnetic material is in each case fluid-tightly connected to the pot pot and the nozzle body and closes with the pot bottom of the housing pot an encapsulated coil space in which the magnetic coil rests, and with the housing cap a fluid-filled valve space into which the nozzle body protrudes.
  • a valve needle is axially displaceably guided, the ends carries a cooperating with the valve seat closing head. Between the valve needle and the cylinder wall of the nozzle body there is an annular gap in which the fluid flows from the valve chamber to the metering orifice.
  • a magnet armature of the electromagnet fastened on the valve needle delimits a working air gap of the electromagnet with the end face of the nozzle body protruding from the coil space.
  • Between magnet armature and support ring is formed as a plate spring trained Valve closing spring exerts a force on the armature, which applies the closing head to the valve seat via the valve needle.
  • Valve closing spring exerts a force on the armature, which applies the closing head to the valve seat via the valve needle.
  • the valve space extends between the Sch.kopffernen end of the valve needle and the cap base of the housing cap a Faltenbalonggan or Wellbalgan extract having a tightly connected to the valve needle and the cap base bellows or corrugated bellows and arranged in a folding or bellows calibration spring.
  • the calibration spring is supported, on the one hand, on the needle end of the valve needle and, on the other hand, on an adjusting bolt that is axially adjustable in the cap base.
  • the calibration spring can be biased by moving the adjusting bolt in the desired manner and acts on the valve needle with a pressure force acting in the valve opening direction.
  • the diameter of the valve seat and the hydraulic diameter of the bellows or bellows are the same size, so that the valve needle for all fluid pressures pressure balanced and the dynamic behavior of the valve is independent of the fluid pressure.
  • the valve according to the invention with the features of claim 1 has the advantage that the gimbaled spring differently than e.g. a commonly used as a valve closing spring coil spring or plate spring, no lateral force generated on the elongated, thin valve needle and thus a deflection of the valve needle is safely excluded.
  • the valve needle can be passed through components of the electrical actuator with only a small radial gap, so that both the outer diameter of the valve and the length of the valve can be kept small in conjunction with the only small overall height of the spring washer.
  • the valve needle receives by the gimbal-mounted spring washer an additional radial support, so that the number of sliding guides of the valve needle can be reduced in the valve housing. Tolerance-related inclinations of the support points of the spring washer to the central axis of the valve needle are compensated by the gimbal bearing. Overall, the manufacturing costs for the valve are reduced.
  • the spring washer is supported on the valve needle and the valve housing and formed one of the two support points as a cardanic bearing. Due to the bias of the spring washer required for generating the valve closing force, a frictional force is generated at the supporting point not formed by the cardan bearing, by means of which the valve needle is additionally supported radially and a radial swinging of the valve needle is prevented.
  • the cardanic bearing is formed on the existing on the valve needle radial shoulder and the spring washer is fixed at its supporting point on the existing on the valve housing radial shoulder at least pointwise on the radial shoulder.
  • the valve housing comprises a valve tube, a hollow, inflow-side valve body, in which the inlet opening is formed fluid-tightly connected to the valve tube at one end, and a hollow, voness documenten connected to the valve tube at the other end fluid-tight Valve body in which the orifice and the valve seat are formed and the valve needle is guided axially displaceable.
  • the existing on the valve housing radial shoulder is determined by an inlet side valve body facing annular surface of a support ring, which is integrally formed on the valve tube near the inlet side valve body or alternatively integrally formed on the literallyess districten valve body, and present on the valve needle radial shoulder of a hopefullyessseit documenten valve body facing end face on formed the valve needle fixed support sleeve, which sits near the upstream valve body or alternatively near the whatsoeveress districten valve body on the valve needle.
  • According to advantageous embodiments of the invention is to maintain the fluid flow from the inlet opening to the orifice of the outer ring of the valve tube fixed support ring provided with axial grooves when the support sleeve near the inlet side valve body fixed to the valve needle or alternatively facing the inlet side valve body annular surface of the valve body literallyessseitlichen molded support ring with Provide radial grooves when the support sleeve is set near the hopefullyess districten valve body on the valve needle.
  • the fixed to the valve needle near the inlet-side valve body sleeve is integrally formed on an intermediate piece which connects the Schellerkopfferne end of the valve needle with an elastic hollow body which is arranged coaxially with the valve needle in the hollow inlet side valve body with radial distance from the body wall ,
  • the intermediate piece at the same time closes the hollow body at the end in a fluid-tight manner, while a closure member which is inserted in a fluid-tight manner into the inlet-side valve body seals the other end face of the hollow body in a fluid-tight manner and has the inlet opening.
  • Such filled with a gas with low thermal expansion or a vacuum having, elastic hollow body causes a hydraulic pressure equalization on the valve needle, so that the force acting on the closing head in the valve opening direction fluid pressure is compensated.
  • the closing force of the spring washer can be kept smaller.
  • With a smaller valve closing force reduces the pressure required to open the valve pressure force of the electric actuator, so that a less powerful and thus smaller construction electrical actuator can be used.
  • the electric actuator may also be a piezoelectric or magnetostrictive actuator of known type, which has a central bore through which the valve needle is passed. The fluid flow is preferably guided via a hollow valve needle portion in the region of the piezoelectric actuator to the orifice.
  • the armature When using an electromagnet, the armature is firmly connected to the valve needle, a hollow cylindrical magnet core set inside the valve tube, the valve needle passed through the magnetic core, a magnet pot outside set on the valve tube and a magnetic coil in the magnet pot recorded, with its bobbin on the valve tube sitting.
  • valve shown in section in the drawing for metering pressurized fluid is used, for example, for injecting fuel into the combustion chamber of an internal combustion engine or into an intake duct leading to the combustion chamber of the internal combustion engine. However, it can also be used as a blow-in valve for the metered metering of gas quantities in gas engines.
  • the valve has a valve housing 11 with an inlet opening 12 for supplying fluid and an orifice 13 for the metered spraying of fluid.
  • the valve housing 11 is made of a valve tube 14, a hollow, whatsoeveress Japaneseen connected to the valve tube 14 at one end of the tube fluid-tight Valve body 15 and one connected to the valve tube 14 at the other end fluid-tight, hollow inlet-side valve body 16 composed.
  • the fluid-tight connection is made by means of material connection, for example, by the peripheral welds 17, 18.
  • the inlet-side valve body 16 has the inlet opening 12.
  • the valve has an elongated, thin valve needle 22 provided with a closing head 221, which is pressure-balanced by means of a flexible hollow body 23, which is connected to the valve needle 22 and is exposed to the fluid pressure by means of a closing head remote end of the valve needle 22.
  • pressure-balanced means that the pressure force of the fluid acting on the closing head 221 in the opening direction is approximately compensated by the tensile force generated by the hollow body 23 under the action of fluid pressure on the valve needle 22.
  • the elastic hollow body 23 is aligned coaxially with the valve needle 22 and received in the inlet-side valve body 16.
  • a valve closing spring 24 which engages the closing head 221 on the valve seat 19.
  • an electrical actuator 25 which engages the closing head end of the valve needle 22 is used.
  • the electrical actuator 25 is z.
  • the magnet pot 30 is fixed externally on the valve tube 14 with a smaller-diameter pot portion and is coupled to the valve tube 15 via a ferromagnetic yoke 36 located at its pot opening.
  • the inner pole or magnetic core 31 is fixed inside the valve tube 14 and encloses a needle portion of the valve needle 22.
  • the valve needle 22 is axially displaceable by means of two sliding portions 222, 223 in the valve body 16 voness districten.
  • the sliding portions 222, 223 are provided with axial grooves 32 for the passage of the fluid.
  • the intermediate piece 33 is attached to the closing head remote end of the valve needle 22 and the closure member 34 is inserted in the inflow-side valve body 16 in a fluid-tight manner.
  • the inlet opening 12 is introduced in the form of an axial through hole.
  • the bellows or bellows 35 has a hydraulic diameter D2 which is at least approximately equal to the diameter D1 of the valve seat 19.
  • Hydraulic diameter D2 is understood to mean a diameter at which the pressurized fluid acts over the entire axial length of the elastic hollow body 23 or of the corrugated bellows 35.
  • the pressure of the fluid on the bellows or corrugated bellows 35 is converted by the bellows or bellows 35 into a pulling force acting on the closing head distal end of the valve needle 22, which applies the closing head 221 to the valve seat 19.
  • the valve closing spring 24 is formed as a gimballed on the valve needle spring washer 40, which is supported on the valve needle 22 and the valve housing 11, wherein one of the two support points is designed as a cardanic bearing.
  • the spring washer 40 is in FIG. 2 in plan view and in FIG. 3 shown in section.
  • the valve needle-side support point of the spring washer 40 rests on a radial shoulder provided on the valve needle 22 and the valve housing-side support point of the spring washer 40 on a radial shoulder provided on the valve housing 11.
  • the cardanic bearing is formed by a spherical zone with the spherical radius r, which is integrally formed on the valve shoulder 22 of the radial shoulder on the valve pin 22 facing the metering valve body 15 or alternatively in the shoulder surface of the radial shoulder on the valve housing 11 facing the inlet valve body 16 with inlet opening 12 is formed.
  • the existing on the valve housing 11 radial shoulder of an inlet side valve body 16 with inlet opening 12 facing annular surface of a support ring 41 and the existing on the valve needle 22 support shoulder of the Kursess Japaneseen valve body 15 with Zumessö réelle 13 facing end face of a support sleeve 42 is formed near the inlet-side valve body 16th is arranged on the valve needle 22.
  • the support sleeve 42 is integrally formed on the folding or bellows 35 with the valve needle 22 connecting spacer 33 ( FIGS. 4 and 5 ).
  • the support ring 41 is attached near the inlet-side valve body 16 above the armature 26 on the valve tube 14, for example by welding and has in its voltage applied to the valve tube 14, outer annular jacket axial grooves 43 for the passage of fluid.
  • the gimbal bearing is formed on the support sleeve 42 by molding a spherical zone with the ball radius r to the lower end face of the support sleeve 42 facing the valve body 15 on the side.
  • the spring washer 40 rests with its spring edge under pretension on the annular surface of the support ring 41 facing the inlet-side valve body 16.
  • the bias creates a frictional force between the spring washer 40 and support ring 41. By this frictional force, the valve needle 22 is also radially mounted and prevents radial swinging of the valve needle 22.
  • the spring washer 40 is secured at least pointwise in its support point on the support ring 41, which can be achieved, for example, by welding tack points.
  • a sliding guide 222 on the valve needle 22 can be omitted.
  • the bias of the spring washer 40 is adjusted by appropriate displacement of the valve needle 22 in the intermediate piece 33, before the intermediate piece 33 is integrally connected to integrally formed support sleeve 42 with the valve needle 22.
  • FIG. 4 is the material connection between the valve needle 22 and spacer 33 through the weld 44 and the cohesive connection of the intermediate piece 33 with the folding or bellows 35 made visible by the circumferential weld 45.
  • FIG. 5 shown modification in the arrangement of the valve closing spring 24 differs from the in FIG. 4 represented arrangement in that gimbal bearing and supporting point of the spring washer 40 are swapped to support ring 41 and support sleeve 42, so the gimbal bearing on the support ring 41 and the support of the spring washer 40 is made on the support sleeve 42.
  • the spherical zone is formed with the ball radius r in the facing the inlet side valve body 16 annular surface of the support ring 41, in which the spring washer 40 rests with its outer edge region, while the inner edge region of the spring washer 40 under bias on the voness districten valve body 15 facing end face Support sleeve 42 rests.
  • FIGS. 6 to 8 illustrated embodiment of the valve differs from the embodiment described above only in the displacement of the arrangement of the valve closing spring 24 away from the inlet-side valve body 16 above the armature 26 toward the devisess districten valve body 15 below the magnetic core 31. Otherwise, true FIG. 6 With FIG. 1 match, so that the same components are provided with the same reference numerals.
  • the existing on the valve housing 11 radial shoulder of the inlet side valve body 16 with inlet opening 12 facing annular surface of a support ring 41 'and the existing on the valve needle 22 radial shoulder of the voness Japaneseen valve body 15 facing the orifice 13 end face of a support sleeve 42' is formed.
  • FIG. 6 and 7 is the gimbal bearing on the support sleeve 42 'and the support of the spring washer 40 made on the support ring 41'.
  • the ball zone with the ball radius r is formed on the lower end face of the support sleeve 42 'facing the valve body 15 on the side.
  • the bias of the spring washer 40, with which it rests on the support ring 41 ' is adjusted by appropriate positioning of the support sleeve 42' relative to the support ring 41 'before the support sleeve 42' is welded to the valve needle 22.
  • FIG. 8 shown modification in the arrangement of the spring washer 40 differs from the in FIG. 7 in turn by swapping the gimbal bearing and the support point for the spring washer 40.
  • the gimbal bearing is formed on the support ring 41 'and the support of the spring washer 40 takes place on the support sleeve 42'.
  • the spherical zone with the ball radius r formed in which the spring washer 40 rests positively with its outer edge, while the inner edge region of the spring washer 40 on the horress districten valve body 15 facing end face of Support sleeve 42 'rests under pretension.
  • the bias voltage is set in the same manner as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Analytical Chemistry (AREA)
  • Lift Valve (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Es wird ein Ventil zum Zumessen von unter Druck stehendem Fluid angegeben, das ein Ventilgehäuse (11) mit einer Zulauföffnung (12) und einer Zumessöffnung (13) sowie einen die Zumessöffnung (13) umschließenden Ventilsitz (19) mit nach außen weisender Sitzfläche, eine einen Schließkopf (221) tragende Ventilnadel (22), eine an der Ventilnadel (22) angreifende Ventilschließfeder (24), die den Schließkopf (221) an den Ventilsitz (19) anlegt, und einen elektrischen Aktor (25) aufweist, der die Ventilnadel (22) mit einer den Schließkopf (221) vom Ventilsitz (19) nach außen abhebenden Druckkraft beaufschlagt. Zur Vermeidung von Querkräften an der Ventilnadel (22), die eine Verbiegung der Ventilnadel (22) verursachen können, ist als Ventilschließfeder (24) eine auf die Ventilnadel (22) aufgeschobene, kardanisch gelagerte Federscheibe (40) eingesetzt.

Description

    Stand der Technik
  • Die Erfindung geht aus von einem Ventil zum Zumessen von Fluid nach dem Oberbegriff des Anspruchs 1, wobei der für ein strömendes oder fließendes Medium stehende übergeordnete Begriff Fluid in Übereinstimmung mit der Strömungslehre für Gase und Flüssigkeiten verwendet wird.
  • Bei einem sog. nach außen öffnenden bekannten Einspritzventil ( EP 2 366 888 A1 ) weist das Ventilgehäuse einen hohlzylindrischen Düsenkörper mit einem endseitig angeordneten, eine Düsenöffnung umschließenden Ventilsitz, einen Gehäusetopf, durch dessen Topfboden hindurch der Düsenkörper zentral in den Gehäusetopf hineinragt, und eine den Gehäusetopf abschließende Gehäusekappe mit Kappenmantel und Kappenboden auf, wobei am Kappenmantel ein Einlassstutzen für das Fluid angeordnet ist. Innerhalb des Gehäusetopfs sitzt auf den Düsenkörper eine Magnetspule eines Elektromagneten. Eine Ringplatte aus nichtmagnetischem Material ist mit dem Magnettopf und dem Düsenkörper jeweils fluiddicht verbunden und schließt mit dem Topfboden des Gehäusetopfs einen gekapselten Spulenraum, in dem die Magnetspule einliegt, und mit der Gehäusekappe einen fluidgefüllten Ventilraum ein, in den der Düsenkörper hineinragt. Im Düsenkörper ist eine Ventilnadel axial verschieblich geführt, die endseitig einen mit dem Ventilsitz zusammenwirkenden Schließkopf trägt. Zwischen Ventilnadel und Zylinderwand des Düsenkörpers besteht ein Ringspalt, in dem das Fluid vom Ventilraum zur Zumessöffnung strömt. Ein auf der Ventilnadel befestigter Magnetanker des Elektromagneten begrenzt mit der aus dem Spulenraum vorstehenden Stirnfläche des Düsenkörpers einen Arbeitsluftspalt des Elektromagneten. Zwischen Magnetanker und Stützring stützt sich eine als Tellerfeder ausgebildete Ventilschließfeder ab, die auf den Magnetanker eine Kraft ausübt, die über die Ventilnadel den Schließkopf an den Ventilsitz anlegt. Im Ventilraum erstreckt sich zwischen dem schließkopffernen Ende der Ventilnadel und dem Kappenboden der Gehäusekappe eine Falten- oder Wellbalganordnung, die einen mit der Ventilnadel und dem Kappenboden dicht verbundenen Falten- oder Wellbalg und eine im Falten- oder Wellbalg angeordnete Kalibrierfeder aufweist. Die Kalibrierfeder stützt sich einerseits am Nadelende der Ventilnadel und andererseits an einem im Kappenboden axial verstellbaren Justierbolzen ab. Die Kalibrierfeder kann durch Verschieben des Justierbolzens in gewünschter Weise vorgespannt werden und beaufschlagt die Ventilnadel mit einer in Ventilöffnungsrichtung wirkenden Druckkraft. Der Durchmesser des Ventilsitzes und der hydraulische Durchmesser des Falten- oder Wellbalgs sind gleich groß, so dass die Ventilnadel für alle Fluiddrücke druckausgeglichen und das dynamische Verhalten des Ventils unabhängig vom Fluiddruck ist.
  • Offenbarung der Erfindung
  • Das erfindungsgemäße Ventil mit den Merkmalen des Anspruchs 1 hat den Vorteil, dass die kardanisch gelagerte Feder anders als z.B. eine üblicherweise als Ventilschließfeder eingesetzte Schraubendruckfeder oder Tellerfeder, keine Querkraft an der langgestreckten, dünnen Ventilnadel erzeugt und damit eine Verbiegung der Ventilnadel sicher ausgeschlossen ist. Dadurch kann die Ventilnadel mit nur geringem Radialspalt durch Bauteile des elektrischen Aktors hindurchgeführt werden, so dass in Verbindung mit der nur geringen Bauhöhe der Federscheibe sowohl der Außendurchmesser des Ventils als auch die Länge des Ventils klein gehalten werden können. Die Ventilnadel erhält durch die kardanisch gelagerte Federscheibe eine zusätzliche radiale Abstützung, so dass die Anzahl der Gleitführungen der Ventilnadel im Ventilgehäuse verringert werden kann. Toleranzbedingte Schrägstellungen der Abstützstellen der Federscheibe zur Mittelachse der Ventilnadel werden durch die kardanische Lagerung ausgeglichen. Insgesamt reduzieren sich die Herstellungskosten für das Ventil.
  • Durch die in den weiteren Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Ventils möglich.
  • Gemäß einer vorteilhaften Ausführungsform der Erfindung ist die Federscheibe an der Ventilnadel und am Ventilgehäuse abgestützt und eine der beiden Abstützstellen als kardanisches Lager ausgebildet. Durch die zur Erzeugung der Ventilschließkraft erforderliche Vorspannung der Federscheibe entsteht an der nicht von dem kardanischen Lager gebildeten Abstützstelle eine Reibkraft, durch die die Ventilnadel zusätzlich radial gelagert und ein radiales Schwingen der Ventilnadel verhindert wird. Dies kann dadurch noch verbessert werden, dass das kardanische Lager an der an der Ventilnadel vorhandenen Radialschulter ausgebildet ist und die Federscheibe auf ihrer Abstützstelle auf der am Ventilgehäuse vorhandenen Radialschulter zumindest punktweise auf der Radialschulter festgelegt ist.
  • Gemäß einer vorteilhaften Ausführungsform der Erfindung weist das Ventilgehäuse ein Ventilrohr, einen mit dem Ventilrohr an dessen einem Ende fluiddicht verbundenen, hohlen, zulaufseitigen Ventilkörper, in dem die Zulauföffnung ausgebildet ist, und einen mit dem Ventilrohr an dessen anderem Ende fluiddicht verbundenen, hohlen, zumessseitigen Ventilkörper auf, in dem die Zumessöffnung und der Ventilsitz ausgebildet sind und die Ventilnadel axial verschieblich geführt ist. Die am Ventilgehäuse vorhandene Radialschulter wird von einer zum zulaufseitigen Ventilkörper weisenden Ringfläche eines Stützrings, der am Ventilrohr nahe dem zulaufseitigen Ventilkörper festgelegt oder alternativ an den zumessseitigen Ventilkörper einstückig angeformt ist, und die an der Ventilnadel vorhandene Radialschulter von einer zum zumessseitigen Ventilkörper weisenden Stirnfläche einer auf der Ventilnadel festgelegten Stützmuffe gebildet, die nahe dem zulaufseitigen Ventilkörper oder alternativ nahe dem zumessseitigen Ventilkörper auf der Ventilnadel sitzt. Diese konstruktiven Maßnahmen ermöglichen eine kostengünstig Fertigung und einfache Montage des Ventils bei zugleich erfolgender Realisierung der kardanischen Lagerung der Federscheibe.
  • Gemäß vorteilhaften Ausführungsformen der Erfindung ist zur Aufrechterhaltung der Fluidströmung von der Zulauföffnung zur Zumessöffnung der äußere Ringmantel des am Ventilrohr festgelegten Stützrings mit Axialnuten versehen, wenn die Stützmuffe nahe dem zulaufseitigen Ventilkörper an der Ventilnadel festgelegt oder alternativ die zum zulaufseitigen Ventilkörper weisende Ringfläche des am zumessseitigen Ventilkörper angeformten Stützrings mit Radialnuten versehen, wenn die Stützmuffe nahe dem zumessseitigen Ventilkörper auf der Ventilnadel festgelegt ist.
  • Gemäß einer vorteilhaften Ausführungsform der Erfindung ist die an der Ventilnadel nahe dem zulaufseitigen Ventilkörper festgelegte Muffe an einem Zwischenstück einstückig angeformt, das das schließkopfferne Ende der Ventilnadel mit einem elastischen Hohlkörper verbindet, der koaxial zur Ventilnadel im hohlen, zulaufseitigen Ventilkörper mit Radialabstand zur Körperwand angeordnet ist. Das Zwischenstück schließt zugleich den Hohlkörper stirnseitig fluiddicht ab, während ein in den zulaufseitigen Ventilkörper fluiddicht eingesetztes Verschlussglied die andere Stirnseite des Hohlkörpers fluiddicht abschließt und die Zulauföffnung aufweist. Ein solcher mit einem Gas mit geringer Wärmeausdehnung gefüllter oder ein Vakuum aufweisender, elastsicher Hohlkörper bewirkt einen hydraulischen Druckausgleich an der Ventilnadel ab, so dass der auf den Schließkopf in Ventilöffnungsrichtung wirkende Fluiddruck kompensiert ist. Dadurch kann die Schließkraft der Federscheibe kleiner gehalten werden. Mit kleinerer Ventilschließkraft reduziert sich die zum Öffnen des Ventils erforderliche Druckkraft des elektrischen Aktors, so dass ein leistungsschwächerer und damit baukleinerer elektrischer Aktor eingesetzt werden kann. Die Integration des Hohlkörpers in den zulaufseitigen Ventilkörper, der zusätzlich zu einem in eine Anschlusstasse einer Fluidzuführleitung einsteckbaren Anschlussstutzen ausgeformt ist, vermeidet eine Vergrößerung der axialen Bauhöhe des Ventils durch den Hohlkörper.
  • Als elektrischer Aktor ist vorteilhaft ein Elektromagnet eingesetzt. Der elektrische Aktor kann aber auch ein piezoelektrischer oder magnetostriktiver Aktor bekannter Art sein, der eine zentrale Bohrung aufweist, durch die die Ventilnadel hindurchgeführt ist. Die Fluidströmung wird dabei vorzugsweise über einen hohlen Ventilnadelabschnitt im Bereich des piezoelektrischen Aktors zur Zumessöffnung geführt.
  • Bei Einsatz eines Elektromagneten ist der Magnetanker mit der Ventilnadel fest verbunden, ein hohlzylindrischer Magnetkern im Innern des Ventilrohrs festgelegt, die Ventilnadel durch den Magnetkern hindurchgeführt, ein Magnettopf außen auf dem Ventilrohr festgelegt und eine Magnetspule im Magnettopf aufgenommen, die mit ihrem Spulenkörper auf dem Ventilrohr sitzt.
  • Kurze Beschreibung der Zeichnungen
  • Die Erfindung ist anhand von in den Zeichnungen dargestellten Ausführungsbeispielen in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
    • Figur 1 einen Längsschnitt eines Ventils zum Zumessen von Fluid,
    • Figur 2 eine Draufsicht einer Ventilschließfeder im Ventil gemäß Figur 1,
    • Figur 3 einen Schnitt längs der Linie III - III in Figur 2,
    • Figur 4 eine vergrößerte Darstellung des Ausschnitte IV in Figur 1,
    • Figur 5 eine gleiche Darstellung wie in Figur 4 mit einer Modifikation im Bereich der Ventilschließfeder,
    • Figur 6 einen Längsschnitt des Ventils gemäß einem weiteren Ausführungsbeispiel,
    • Figur 7 eine vergrößerte Darstellung des Ausschnitte VII in Figur 6,
    • Figur 8 eine gleiche Darstellung wie in Figur 7 mit einer Modifikation im Bereich der Ventilschließfeder.
  • Das in der Zeichnung im Schnitt dargestellte Ventil zum Zumessen von unter Druck stehendem Fluid wird beispielsweise zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschinen oder in einen zum Brennraum der Brennkraftmaschine führenden Ansaugkanal eingesetzt. Es kann jedoch auch als Einblasventil zum dosierten Zumessen von Gasmengen bei Gasmotoren verwendet werden.
  • Das Ventil weist ein Ventilgehäuse 11 mit einer Zulauföffnung 12 zum Zuführen von Fluid und einer Zumessöffnung 13 zum dosierten Abspritzen von Fluid auf. Das Ventilgehäuse 11 ist aus einem Ventilrohr 14, ein mit dem Ventilrohr 14 an dessen einem Rohrende fluiddicht verbundenen, hohlen, zumessseitigen Ventilkörper 15 und einen mit dem Ventilrohr 14 an dessen anderem Ende fluiddicht verbundenen, hohlen, zulaufseitigen Ventilkörper 16 zusammengesetzt. Die fluiddichte Verbindung ist mittels Stoffschlusses hergestellt, z.B. durch die umlaufenden Schweißnähte 17, 18. Im zumessseitigen Ventilkörper 15 ist endseitig die Zumessöffnung 13 und ein die Zumessöffnung 13 umschließender Ventilsitz 19 mit nach außen in Abspritzrichtung weisender Sitzfläche ausgebildet. Der zulaufseitige Ventilkörper 16 weist die Zulauföffnung 12 auf. Er ist zu einem Anschlussstutzen geformt, der in eine strichliniert angedeutete Anschlusstasse 20 einer Zuführleitung für das Fluid, einer sog. Rail, eingesteckt und darin mittels eines Dichtungsrings 21 abgedichtet. Das Ventil weist eine mit einem Schließkopf 221 versehene, langgestreckte, dünne Ventilnadel 22 auf, die mittels eines am schließkopffernen Ende der Ventilnadel 22 mit der Ventilnadel 22 verbundenen, dem Fluiddruck ausgesetzten, elastischen Hohlkörper 23 druckausgeglichen ist. Dabei bedeutet "druckausgeglichen", dass die auf den Schließkopf 221 in Öffnungsrichtung wirkende Druckkraft des Fluids durch die vom Hohlkörper 23 unter Fluiddruckeinwirkung an der Ventilnadel 22 erzeugte Zugkraft annähernd kompensiert wird. Der elastischen Hohlkörper 23 ist koaxial zur Ventilnadel 22 ausgerichtet und in dem zulaufseitigen Ventilkörper 16 aufgenommen. An der Ventilnadel 22 greift eine Ventilschließfeder 24 an, die den Schließkopf 221 auf den Ventilsitz 19 aufsetzt. Zum Abheben des Schließkopfs 221 der Ventilnadel 22 vom Ventilsitz 19 gegen die Schließkraft der Ventilschließfeder 24 dient ein elektrischer Aktor 25, der am schließkopffernen Ende der Ventilnadel 22 angreift. Der elektrische Aktor 25 ist z. B. ein Elektromagnet, der in bekannter Weise einen mit der Ventilnadel 22 verbundenen Magnetanker 26 mit Axialkanälen 37 für den Fluiddurchfluss, einen mit dem Magnetanker 26 einen Arbeitsluftspalt 27 einschließenden, einen sog. Innenpol darstellenden, hohlzylindrischen Magnetkern 31, eine Magnetspule 29 und einen die Magnetspule 29 umschließenden Magnettopf 30 aufweist. Der Magnettopf 30 ist mit einem durchmesserkleineren Topfabschnitt außen auf dem Ventilrohr 14 festgelegt und über ein an seiner Topföffnung gelegenes, ferromagnetisches Rückschlussjoch 36 an das Ventilrohr 15 angekoppelt. Der Innenpol oder Magnetkern 31 ist innen am Ventilrohr 14 festgelegt und umschließt einen Nadelabschnitt der Ventilnadel 22. Die Ventilnadel 22 ist mittels zweier Gleitabschnitte 222, 223 im zumessseitigen Ventilkörper 16 axial verschieblich geführt. Die Gleitabschnitte 222, 223 sind mit Axialnuten 32 für den Durchtritt des Fluids versehen.
  • Der koaxial zur Ventilnadel 22 ausgerichtete, elastische Hohlkörper 23, der vorzugsweise ein Falten- oder Wellbalg 35 aus Metall, vorzugsweise aus Edelstahl, ist, ist an einem Ende mit einem Zwischenstück 33 und am anderen Ende mit einem Verschlussglied 34 hermetisch abgeschlossen und weist eine Füllung mit einem Gas mit geringer Wärmeausdehnung oder ein Vakuum auf. Das Zwischenstück 33 ist am schließkopffernen Ende der Ventilnadel 22 befestigt und das Verschlussglied 34 in den zulaufseitigen Ventilkörper 16 fluiddicht eingesetzt. Im Verschlussglied 34 ist die Zulauföffnung 12 in Form einer axialen Durchgangsbohrung eingebracht. Die dichte Verbindung von Zwischenstück 33 und Verschlussglied 34 mit dem metallischen Falten- oder Wellbalg 35 erfolgt wiederum durch Stoffschluss. Ebenso wird die Verbindung des Zwischenstücks 33 mit der Ventilnadel 22 und des Verschlussglieds 34 mit dem zulaufseitigen Ventilkörper 16 durch Stoffschluss hergestellt. Der Falten- oder Wellbalg 35 weist einen hydraulischen Durchmesser D2 auf, der zumindest annähernd gleich dem Durchmesser D1 des Ventilsitzes 19 ist. Unter hydraulischem Durchmesser D2 wird dabei ein Durchmesser verstanden, an dem das unter Druck stehende Fluid über die gesamte axiale Länge des elastischen Hohlkörpers 23 bzw. des Falten- oder Wellbalgs 35 angreift. Der Druck des Fluids auf den Falten- oder Wellbalg 35 wird durch den Falten- oder Wellbalg 35 in eine am schließkopffernen Ende der Ventilnadel 22 angreifende Zugkraft umgesetzt, die den Schließkopf 221 an den Ventilsitz 19 anlegt.
  • Die Ventilschließfeder 24 ist als eine auf die Ventilnadel aufgeschobene, kardanisch gelagerte Federscheibe 40 ausgebildet, die sich an der Ventilnadel 22 und am Ventilgehäuse 11 abstützt, wobei eine der beiden Abstützstellen als kardanisches Lager ausgebildet ist. Die Federscheibe 40 ist in Figur 2 in Draufsicht und in Figur 3 im Schnitt dargestellt. Die ventilnadelseitige Abstützstelle der Federscheibe 40 liegt auf einer an der Ventilnadel 22 vorhandenen Radialschulter und die ventilgehäuseseitige Abstützstelle der Federscheibe 40 auf einer am Ventilgehäuse 11 vorhandenen Radialschulter. Das kardanische Lager wird von einer Kugelzone mit dem Kugelradius r gebildet, die an der zum zumessseitigen Ventilkörper 15 mit Zumessöffnung 13 weisenden Schulterfläche der Radialschulter an der Ventilnadel 22 angeformt oder alternativ in die zum zulaufseitigen Ventilkörper 16 mit Zulauföffnung 12 weisenden Schulterfläche der Radialschulter am Ventilgehäuse 11 eingeformt ist. Im Ausführungsbeispiel des Ventils gemäß Figur 1 bis 5 wird die am Ventilgehäuse 11 vorhandene Radialschulter von einer zum zulaufseitigen Ventilkörper 16 mit Zulauföffnung12 weisenden Ringfläche eines Stützrings 41 und die an der Ventilnadel 22 vorhandene Stützschulter von einer zum zumessseitigen Ventilkörper 15 mit Zumessöffnung 13 weisenden Stirnfläche einer Stützmuffe 42 gebildet, die nahe dem zulaufseitigen Ventilkörper 16 auf der Ventilnadel 22 angeordnet ist. Die Stützmuffe 42 ist einstückig an das den Falten- oder Wellbalg 35 mit der Ventilnadel 22 verbindenden Zwischenstück 33 angeformt (Figur 4 und 5). Der Stützring 41 ist nahe dem zulaufseitigen Ventilkörper 16 oberhalb des Magnetankers 26 am Ventilrohr 14 z.B. durch Schweißen befestigt und weist in seinem an dem Ventilrohr 14 anliegenden, äußeren Ringmantel Axialnuten 43 für den Fluiddurchtritt auf.
  • Bei dem Ausführungsbeispiel des Ventils gemäß Figur 1 bis 4 ist das kardanische Lager an der Stützmuffe 42 durch Anformung einer Kugelzone mit dem Kugelradius r an die zum zumessseitigen Ventilkörper 15 weisenden, unteren Stirnfläche der Stützmuffe 42 ausgebildet. Die Federscheibe 40 liegt mit ihrem Federrand unter Vorspannung auf der zum zulaufseitigen Ventilkörper 16 weisenden Ringfläche des Stützrings 41 auf. Durch die Vorspannung entsteht eine Reibkraft zwischen Federscheibe 40 und Stützring 41. Durch diese Reibkraft wird die Ventilnadel 22 zusätzlich radial gelagert und ein radiales Schwingen der Ventilnadel 22 verhindert. Dies kann noch dadurch verbessert werden, dass - wie hier nicht weiter dargestellt ist - die Federscheibe 40 in ihrer Abstützstelle auf dem Stützring 41 zumindest punktweise befestigt ist, was z.B. durch Schweiß-Heftpunkte erzielt werden kann. Bei dieser konstruktiven Ausführung kann die eine Gleitführung 222 an der Ventilnadel 22 entfallen. Die Vorspannung der Federscheibe 40 wird durch entsprechendes Verschieben der Ventilnadel 22 im Zwischenstück 33 eingestellt, bevor das Zwischenstück 33 mit angeformter Stützmuffe 42 stoffschlüssig mit der Ventilnadel 22 verbunden wird. In Figur 4 ist der Stoffschluss zwischen Ventilnadel 22 und Zwischenstück 33 durch die Schweißnaht 44 und die stoffschlüssige Verbindung des Zwischenstücks 33 mit dem Falten- oder Wellbalg 35 durch die umlaufende Schweißnaht 45 sichtbar gemacht.
  • Die in Figur 5 dargestellte Modifikation in der Anordnung der Ventilschließfeder 24 unterscheidet sich von der in Figur 4 dargestellten Anordnung dadurch, dass kardanisches Lager und Abstützstelle der Federscheibe 40 an Stützring 41 und Stützmuffe 42 vertauscht sind, also die kardanische Lagerung am Stützring 41 und die Abstützung der Federscheibe 40 an der Stützmuffe 42 vorgenommen ist. Hierzu ist die Kugelzone mit dem Kugelradius r in die zum zulaufseitigen Ventilkörper 16 weisenden Ringfläche des Stützrings 41 eingeformt, in der die Federscheibe 40 mit ihrem äußeren Randbereich einliegt, während der innere Randbereich der Federscheibe 40 unter Vorspannung auf der zum zumessseitigen Ventilkörper 15 weisende Stirnfläche der Stützmuffe 42 aufliegt.
  • Das in Figur 6 bis 8 dargestellte Ausführungsbeispiel des Ventils unterscheidet sich von dem zuvor beschriebenen Ausführungsbeispiel ausschließlich in der Verlagerung der Anordnung der Ventilschließfeder 24 weg vom zulaufseitigen Ventilkörper 16 oberhalb des Magnetankers 26 hin zum zumessseitigen Ventilkörper 15 unterhalb des Magnetkerns 31. Im Übrigen stimmt Figur 6 mit Figur 1 überein, so dass gleiche Bauteile mit gleichen Bezugszeichen versehen sind. Wiederum ist die am Ventilgehäuse 11 vorhandene Radialschulter von der zum zulaufseitigen Ventilkörper 16 mit Zulauföffnung12 weisenden Ringfläche eines Stützrings 41' und die an der Ventilnadel 22 vorhandene Radialschulter von der zum zumessseitigen Ventilkörper 15 mit Zumessöffnung 13 weisenden Stirnfläche einer Stützmuffe 42' gebildet. Im Unterschied zu Figur 1 bis 5 ist der Stützring 41' einstückig am zumessseitigen Ventilkörper 15 ausgebildet und weist für den Fluiddurchtritt in seiner Stirnfläche Radialnuten 46 auf, während die Stützmuffe 42' nahe dem zumessseitigen Ventilkörper 15 auf der Ventilnadel 22 stoffschlüssig befestigt ist. Der Stoffschluss ist mittels einer umlaufenden Schweißnaht 47 realisiert.
  • Im Ausführungsbeispiel der Figur 6 und 7 ist die kardanische Lagerung an der Stützmuffe 42' und die Abstützung der Federscheibe 40 an dem Stützring 41' vorgenommen. Zur Bildung des kardanischen Lagers ist an die untere, zum zumessseitigen Ventilkörper 15 weisende Stirnfläche der Stützmuffe 42' die Kugelzone mit dem Kugelradius r angeformt. Die Vorspannung der Federscheibe 40, mit der sie auf dem Stützring 41' aufliegt, ist durch entsprechende Positionierung der Stützmuffe 42' relativ zum Stützring 41' eingestellt, bevor die Stützmuffe 42' mit der Ventilnadel 22 verschweißt wird.
  • Die in Figur 8 dargestellte Modifikation in der Anordnung der Federscheibe 40 unterscheidet sich von der in Figur 7 wiederum durch Vertauschen des kardanischen Lagers und der Abstützstelle für die Federscheibe 40. Das kardanische Lager ist am Stützring 41' ausgebildet und die Abstützung der Federscheibe 40 erfolgt an der Stützmuffe 42'. Hierzu ist in die zum zulaufseitigen Ventilkörper 16 weisende Ringfläche des Stützrings 41' die Kugelzone mit dem Kugelradius r eingeformt, in der die Federscheibe 40 mit ihrem äußeren Rand formschlüssig einliegt, während der innere Federrandbereich der Federscheibe 40 an der zum zumessseitigen Ventilkörper 15 weisenden Stirnfläche der Stützmuffe 42' unter Vorspannung aufliegt. Die Vorspannung wird in gleicher Weise wie zuvor beschrieben eingestellt.

Claims (14)

  1. Ventil zum Zumessen von unter Druck stehendem Fluid, mit einem Ventilgehäuse (11), das eine Zulauföffnung (12) zum Zuführen und eine Zumessöffnung (13) zum Abspritzen von Fluid aufweist, mit einem am Ventilgehäuse (11) ausgebildeten, die Zumessöffnung (13) umschließenden Ventilsitz (19) mit in Abspritzrichtung weisender Sitzfläche, mit einer einen Schließkopf (221) tragenden Ventilnadel (22), mit einer an der Ventilnadel (22) angreifenden Ventilschließfeder (24), die den Schließkopf unter Schließen der Zumessöffnung (13) an den Ventilsitz (19) anlegt, und mit einem elektrischen Aktor (25), der zum Freigeben der Zumessöffnung (13) auf die Ventilnadel (22) eine den Schließkopf (221) vom Ventilsitz (19) nach außen abhebende Druckkraft aufbringt, dadurch gekennzeichnet, dass die Ventilschließfeder (24) eine auf die Ventilnadel (22) aufgeschobene, kardanisch gelagerte Federscheibe (40) ist.
  2. Ventil nach Anspruch 1, dadurch gekennzeichnet, dass die Federscheibe (40) an der Ventilnadel (22) und am Ventilgehäuse 11) abgestützt ist und eine der beiden Abstützstellen als kardanisches Lager ausgebildet ist.
  3. Ventil nach Anspruch 2, dadurch gekennzeichnet, dass die ventilnadelseitige Abstützstelle der Federscheibe (40) auf einer an der Ventilnadel (22) vorhandenen Radialschulter und die ventilgehäuseseitige Abstützstelle der Federscheibe (40) auf einer am Ventilgehäuse (11) vorhandenen Radialschulter liegt.
  4. Ventil nach Anspruch 3, dadurch gekennzeichnet, dass das kardanische Lager von einer Kugelzone gebildet ist, die an der zur Zumessöffnung (13) weisenden Schulterfläche der an der Ventilnadel (22) vorhandenen Radialschulter angeformt oder in die zur Zulauföffnung (12) weisende Schulterfläche der am Ventilgehäuse (11) vorhandenen Radialschulter eingeformt ist.
  5. Ventil nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das kardanische Lager an der an der Ventilnadel (22) vorhandenen Radialschulter ausgebildet ist und die Federscheibe (40) in ihrer Abstützstelle auf der am Ventilgehäuse (11) vorhandenen Radialschulter zumindest punktweise auf der Radialschulter festgelegt ist.
  6. Ventil nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass das Ventilgehäuse (11) ein Ventilrohr (14), einen mit dem Ventilrohr (14) an dessen einem Ende fluiddicht verbundenen, hohlen, zulaufseitigen Ventilkörper (16), in dem die Zulauföffnung (13) ausgebildet ist, und einen mit dem Ventilrohr (14) an dessen anderem Ende fluiddicht verbundenen, hohlen, zumessseitigen Ventilkörper (15) aufweist, in dem Zumessöffnung (13) und Ventilsitz (19) ausgebildet sind und die Ventilnadel (22) axial verschieblich geführt ist, und dass die am Ventilgehäuse (11) vorhandene Radialschulter von einer zum zulaufseitigen Ventilkörper (16) weisenden Ringfläche eines Stützrings (41; 41'), der am Ventilrohr (14) nahe dem zulaufseitigen Ventilkörper (16) festgelegt oder am zumessseitigen Ventilkörper (15) einstückig angeformt ist, und die an der Ventilnadel (22) vorhandene Radialschulter von einer zum zumessseitigen Ventilkörper (15) weisenden Stirnfläche einer Stützmuffe (42; 42') gebildet ist, die auf der Ventilnadel (22) nahe dem zulaufseitigen oder zumessseitigen Ventilkörper (16; 15) festgelegt ist.
  7. Ventil nach Anspruch 6, dadurch gekennzeichnet, dass der äußere Ringmantel des am Ventilrohr (14) festgelegten Stützrings (41) mit Axialnuten (43) versehen ist.
  8. Ventil nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die an der Ventilnadel (22) festgelegte Stützmuffe (42) an einem Zwischenstück (33) einstückig angeformt ist, das das schließkopfferne Ende der Ventilnadel (22) mit einem elastischen Hohlkörper (23) verbindet, der koaxial zur Ventilnadel (22) im zulaufseitigen Ventilkörper (15) mit Radialabstand zur Körperwand angeordnet ist.
  9. Ventil nach Anspruch 6, dadurch gekennzeichnet, dass die zum zulaufseitigen Ventilkörper (16) weisende Ringfläche des am zumessseitigen Ventilkörper (15) angeformten Stützrings (41') mit Radialnuten (46) versehen ist.
  10. Ventil nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der elastische Hohlkörper (23) stirnseitig von dem Zwischenstück (33) und einem in den zulaufseitigen Ventilkörper (16) fluiddicht eingesetzten Verschlussglied (34) dicht abgeschlossen ist und das Verschlussglied (34) die Zulauföffnung (12) aufweist.
  11. Ventil nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass der elastische Hohlkörper (23) eine Gasfüllung oder ein Vakuum aufweist.
  12. Ventil nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass der elastische Hohlkörper (23) von einem Falten- oder Wellbalg (35) aus Metall, vorzugsweise Edelstahl, gebildet ist.
  13. Ventil nach einem der Ansprüche 6 bis 12, dadurch gekennzeichnet, dass der elektrische Aktor (25) als Elektromagnet mit einem mit der Ventilnadel (22) fest verbundenen Magnetanker (26), einem im Ventilrohr (14) festgelegten, hohlzylindrischen Magnetkern (31), der von der Ventilnadel (22) zentral durchdrungen ist und mit dem Magentanker (26) einen Arbeitsluftspalt (27) begrenzt, einer Magnetspule (29) und einem die Magnetspule (29) aufnehmenden Magnettopf (30) ausgebildet ist, der außen auf dem Ventilrohr (14) festgelegt ist.
  14. Ventil nach einem der Ansprüche 6 bis 13, dadurch gekennzeichnet, dass auf der Ventilnadel (22) nahe dem Schließkopf (221) ein Gleitstück (223) angeordnet ist, das im zumessseitigen Ventilkörper (15) gleitgeführt ist und mindestens eine Axialnut (32) für den Fluiddurchtritt aufweist.
EP20140155065 2013-04-11 2014-02-13 Ventil zum Zumessen von Fluid Withdrawn EP2789842A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013206417.9A DE102013206417A1 (de) 2013-04-11 2013-04-11 Ventil zum Zumessen von Fluid

Publications (1)

Publication Number Publication Date
EP2789842A1 true EP2789842A1 (de) 2014-10-15

Family

ID=50097615

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20140155065 Withdrawn EP2789842A1 (de) 2013-04-11 2014-02-13 Ventil zum Zumessen von Fluid

Country Status (3)

Country Link
US (1) US9382884B2 (de)
EP (1) EP2789842A1 (de)
DE (1) DE102013206417A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2706222B1 (de) * 2012-09-06 2016-07-13 Delphi International Operations Luxembourg S.à r.l. Pumpeinheit
GB201602694D0 (en) * 2016-02-16 2016-03-30 Delphi Internat Operations Luxembourg S À R L Nozzle assembly and fuel injector
GB2549479A (en) * 2016-04-18 2017-10-25 Delphi Int Operations Luxembourg Sarl Fuel injector
SE539926C2 (en) * 2016-05-24 2018-01-16 Scania Cv Ab Sackless fuel injector
DE102017213454A1 (de) * 2017-08-03 2019-02-07 Robert Bosch Gmbh Verfahren zur Herstellung eines Dosierventils, Dosierventil
DE102018218460A1 (de) * 2018-10-29 2020-04-30 Zf Friedrichshafen Ag Dämpfventil für einen Schwingungsdämpfer
EP3667057B1 (de) * 2018-12-13 2022-08-31 Vitesco Technologies GmbH Flüssigkeitsinjektor mit einem bistabilen federelement
KR102241313B1 (ko) * 2020-03-09 2021-04-16 주식회사 현대케피코 인젝터
DE102022206483A1 (de) 2022-06-28 2023-12-28 Zf Friedrichshafen Ag Bodenventil in einem Schwingungsdämpfer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE933003C (de) * 1954-03-19 1955-09-15 Rudolf Dipl-Ing Schenk Einspritzventil fuer Brennkraftmaschinen
US2808293A (en) * 1953-04-21 1957-10-01 Kugelfischer G Schaefer & Co Fuel injection valves for internal combustion valves
FR2056461A5 (de) * 1969-07-23 1971-05-14 Kloeckner Humboldt Deutz Ag
WO2002046604A2 (de) * 2000-12-05 2002-06-13 Robert Bosch Gmbh Brennstoffeinspritzventil
DE102004027637A1 (de) * 2004-06-05 2006-01-05 Robert Bosch Gmbh Brennstoffeinspritzventil
DE102004045393A1 (de) * 2004-09-18 2006-03-23 Robert Bosch Gmbh Brennstoffeinspritzventil
EP2366888A1 (de) 2010-03-17 2011-09-21 Continental Automotive GmbH Ventilgruppe für ein Einspritzventil, Einspritzventil und Verfahren zum Zusammenbauen einer Ventilgruppe eines Einspritzventils

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3834444A1 (de) * 1988-10-10 1990-04-12 Mesenich Gerhard Elektromagnetisches einspritzventil mit membranfeder
JP2761405B2 (ja) * 1989-06-27 1998-06-04 三信工業株式会社 内燃機関の燃料噴射装置
DE19727992C2 (de) * 1997-07-01 1999-05-20 Siemens Ag Ausgleichselement zur Kompensation temperaturbedingter Längenänderungen von elektromechanischen Stellsystemen
DE19940293A1 (de) * 1999-08-25 2001-03-01 Bosch Gmbh Robert Kraftstoffeinspritzventil
US6575138B2 (en) * 1999-10-15 2003-06-10 Westport Research Inc. Directly actuated injection valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2808293A (en) * 1953-04-21 1957-10-01 Kugelfischer G Schaefer & Co Fuel injection valves for internal combustion valves
DE933003C (de) * 1954-03-19 1955-09-15 Rudolf Dipl-Ing Schenk Einspritzventil fuer Brennkraftmaschinen
FR2056461A5 (de) * 1969-07-23 1971-05-14 Kloeckner Humboldt Deutz Ag
WO2002046604A2 (de) * 2000-12-05 2002-06-13 Robert Bosch Gmbh Brennstoffeinspritzventil
DE102004027637A1 (de) * 2004-06-05 2006-01-05 Robert Bosch Gmbh Brennstoffeinspritzventil
DE102004045393A1 (de) * 2004-09-18 2006-03-23 Robert Bosch Gmbh Brennstoffeinspritzventil
EP2366888A1 (de) 2010-03-17 2011-09-21 Continental Automotive GmbH Ventilgruppe für ein Einspritzventil, Einspritzventil und Verfahren zum Zusammenbauen einer Ventilgruppe eines Einspritzventils

Also Published As

Publication number Publication date
DE102013206417A1 (de) 2014-10-16
US9382884B2 (en) 2016-07-05
US20140306034A1 (en) 2014-10-16

Similar Documents

Publication Publication Date Title
EP2789842A1 (de) Ventil zum Zumessen von Fluid
EP1080305B1 (de) Brennstoffeinspritzventil
EP2844864B1 (de) Ventil zum zumessen von fluid
DE102008041544B4 (de) Ventil zur Zumessung eines flüssigen oder gasförmigen Mediums
DE102005052255B4 (de) Brennstoffeinspritzventil
DE10122353B4 (de) Brennstoffeinspritzventil
DE112012003765T5 (de) Gas-Einspritzdüse mit hoher nach außen gerichteter Strömungsrate für Fahrzeug-Anwendungen
EP2786010B1 (de) Ventil zum zumessen eines strömenden mediums
DE102005052252A1 (de) Brennstoffeinspritzventil
DE102011075408B4 (de) Ventil zum Zumessen eines strömenden Mediums
DE102013223530A1 (de) Ventil zum Zumessen von Fluid
DE10345967B4 (de) Brennstoffeinspritzventil
CN106460750B (zh) 用于喷射流体的喷射器
EP2873849B1 (de) Ventil zum Zumessen von Fluid
EP2864623B1 (de) Einspritzventil
DE10317149A1 (de) Brennstoffeinspritzventil
DE102006046833A1 (de) Brennstoffeinspritzventil
DE10353641B4 (de) Brennstoffeinspritzventil
EP2789841B1 (de) Ventil zum Zumessen von Fluid
DE102006013958B4 (de) Brennstoffeinspritzventil
DE102014200884A1 (de) Kraftstoffinjektor
DE10123850C2 (de) Brennstoffeinspritzventil
EP2871353A1 (de) Ventil zum Zumessen von Fluid
US20180306152A1 (en) Fluid-Injection Device For Internal Combustion Engines
DE102005046434A1 (de) Ventilmodul zum Zuführen insbesondere gasförmiger Medien an eine Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150415

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20171009

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180220