[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2784268A1 - A turbine blade outer air seal comprising an abradable ceramic coating on the stator and the rotor respectively. - Google Patents

A turbine blade outer air seal comprising an abradable ceramic coating on the stator and the rotor respectively. Download PDF

Info

Publication number
EP2784268A1
EP2784268A1 EP13161673.2A EP13161673A EP2784268A1 EP 2784268 A1 EP2784268 A1 EP 2784268A1 EP 13161673 A EP13161673 A EP 13161673A EP 2784268 A1 EP2784268 A1 EP 2784268A1
Authority
EP
European Patent Office
Prior art keywords
stator
rotor
radial gap
coatings
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13161673.2A
Other languages
German (de)
French (fr)
Inventor
Sven Hiller
Erwin Bayer
Thomas Hess
Peter Geiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Priority to EP13161673.2A priority Critical patent/EP2784268A1/en
Priority to US14/228,471 priority patent/US9605554B2/en
Publication of EP2784268A1 publication Critical patent/EP2784268A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating

Definitions

  • the invention relates to a turbomachine according to the preamble of patent claim 1 and a turbomachine according to the preamble of patent claim 7.
  • radial gaps between rotating and static machine parts must be sealed in order to avoid secondary flow losses. This applies, for example, for the sealing of the radial gap between a vane tip and an opposite disc wing or between a blade tip and an opposite stator section.
  • labyrinth seals are conventionally used.
  • the machine parts forming the labyrinth seals are subject to high wear and high heating during rubbing. Grinding and heating can lead to cracks, which can have serious consequences especially for the rotating parts. Therefore, usually the rotating part is provided with a so-called armor.
  • the armor is in particular a hard coat, which is applied by a thermal spraying process.
  • the static part remains uncoated and thus soft against the rotating component. As a result, the static component is abraded and worn accordingly when rubbing.
  • the armor is usually rough, which leads to a corresponding warming when rubbing. In addition, it has been shown that the armor tends to flaking.
  • the object of the invention is to provide a turbomachine, which allow a long-lasting seal or reduction of a radial gap between a rotor and a stator of the turbomachine.
  • a turbomachine according to the invention has a rotor and a stator.
  • a seal for reducing the radial gap is arranged, which according to the invention has two opposing coatings, of which the one coating is applied to a radial gap radially outwardly limiting stator and the other coating on a radial gap radially inside limiting rotor section is applied, wherein the coatings are composed of a ceramic powder whose particle size is smaller than 1.0 microns.
  • the so-called nano-ceramic coatings according to the invention have a low risk of spalling, which they can be connected very well to the main body and thus to the rotor section and the stator section.
  • the ceramic powder is disposed on the rotor portion and the stator portion via an organometallic compound, respectively, and then subjected to pressure and temperature treatment.
  • the coatings can be made by sintering at only 800 ° C.
  • the nano-ceramic coatings are very thin, which further reduces the risk of chipping.
  • a total layer thickness is at most 0.1 mm.
  • the particle size is preferably at most 100 nm.
  • the nano-ceramic coatings have a very smooth surface, resulting in low friction coefficients when rubbing, whereby only a slight heating of the coatings takes place.
  • a particular surface quality of the nano-ceramic coatings can be additionally improved by smoothing grinding.
  • the coatings can have a different hardness.
  • the rotor-side coating is harder than the stator-side coating formed. This can prevent a catastrophic failure of the rotor section.
  • the coatings may have different thicknesses to create a certain elasticity in the sealing area during hard rubbing.
  • the rotor-side coating is made thicker than the stator-side coating, which also catastrophic failure of the rotating component can be prevented.
  • the coatings consist of a plurality of individual layers.
  • the individual layers each have a single-layer thickness, which in total does not exceed the total layer thickness of 0.1 mm. Through the single layers, the total layer thickness can be easily varied. In addition, a high stability of the coatings is achieved even with a high total layer thickness.
  • the individual layers are preferably applied in powder form in succession and subjected together to the pressure and temperature treatment. The individual layers are no longer recognizable after the pressure and temperature treatment, so that in the case of exclusive use of ceramic powder after the pressure and temperature treatment is a one-piece all-ceramic.
  • An alternative turbomachine has a rotor and a stator.
  • a seal for reducing the radial gap is arranged, which according to the invention has two opposing coatings, of which the one coating is applied to a radial gap radially outwardly limiting stator and the other coating on a radial gap radially inner rotor portion is applied, wherein the coatings are constructed of powder-based individual layers whose outer layer has a higher ceramic content than a rotor or statorabna near base layer, wherein the particle size of the powder material is less than 1.0 microns.
  • the coating Due to the graduated formation of the coatings, large material jumps between the rotor and stator section and the coating can be prevented.
  • the coating can thus be adapted in layers in terms of their thermal expansion or their modulus of elasticity to the rotor and stator.
  • the outer single layer has a ceramic content of 100% and thus consists exclusively of a nano-ceramic powder.
  • the base layer has a very high metal content.
  • a high sealing effect can be achieved if the radial gap seal takes place in the form of a labyrinth seal in both embodiments, wherein at least the rotor section is formed with a plurality of elevations pointing in the direction of the stator section.
  • Other advantageous embodiments of the invention are the subject of further subclaims.
  • FIG. 1 a seal 1 for reducing a radial gap s between a rotor section 2 and a stator section 4 of a turbomachine 6 is shown.
  • the turbomachine 6 is preferably a gas turbine and in particular an aircraft engine. However, the turbomachine 6 may also be designed as a steam turbine and the like.
  • the rotor section 2 forms part of an in FIG. 2
  • the rotor 8 rotates about a machine axis M extending in the axial direction of the turbomachine 6 and essentially has a multiplicity of rotor disks 10 arranged behind one another in the direction of flow of a hot gas, each of which carries a row of blades with a multiplicity of rotor blades 12 and are arranged on a common rotor hub, not shown.
  • the stator section 4 forms part of an in FIG. 2
  • the stator 14 essentially has a housing 16 and a multiplicity of guide blade rows arranged alternately with the rotor blade rows, which consist of individual guide blades 18 inserted in receptacles of the housing 16.
  • the stator 14 between the grilling vanes 18 and thus opposite to the blades 12 each have an outer sealing ring 20 inserted into the housing 16.
  • the outer sealing ring 20 may be a one-piece and circumferentially closed outer sealing ring or one of a plurality of sealing ring segments.
  • the seal 1 is for example in the in FIG. 2 sketched areas 22, 24, 26 each provided as a so-called intermediate stage seal.
  • the rotor section 2 is formed by the outer shrouds 28 of the blades of a front blade row and the opposite stator section 4 by the opposing outer sealing ring 20. This construction also applies to the rear region 26.
  • the rotor section 2 In the middle region 24, the rotor section 2, a rotor blade 10 extending between the rotor disks 10 and the stator section 4 an inner sealing ring 32, which is arranged on the guide vanes 18 interconnecting inner ring.
  • the seal 1 has a plurality of consecutively arranged elevations 34, 36, 38, a rotor-side coating 40 and a stator-side coating 42.
  • the elevations 34, 36, 38 are arranged on the rotor side.
  • the elevations 34, 36, 38 are then, for example, sealing tips of the outer cover strips 28.
  • the elevations 34, 36, 38 can in principle also be arranged on the stator side.
  • the respective opposing rotor section 2 or stator section 4 is preferably flat, but may also be provided with corresponding projections, which dip radially between each two elevations 34, 36, 38.
  • elevations 34, 36, 38 extend in the circumferential direction and in the radial direction of the turbomachine 8 in the direction of the stator section 4.
  • the seal 1 is designed as a labyrinth seal.
  • the elevations 34, 36, 38 have such a radial extension that they are minimally objected to in the heated state of the turbomachine 6 of the stator section 4 or easy to grind along the stator side coating 42, so that the radial gap s is closed.
  • three elevations 34, 36, 38 are shown, however, more or fewer elevations 34, 36, 38 may be provided.
  • the elevations 34, 36, 38 and laterally of the elevations 34, 36, 38 extending planar surfaces 44, 46, 48, 50 of the rotor section 2 are each provided with the rotor-side coating 40.
  • the coatings 40, 42 are so-called nano-ceramic coatings, each having a total layer thickness of preferably not more than 0.1 mm. They are each made up of a ceramic powder whose particle size is smaller than 1.0 microns. Preferably, their particle size is 100 nm.
  • the coatings 40, 42 are connected to the rotor section 4 or the stator section 6 by means of a pressure and temperature treatment, in particular a sintering process. As a result, a compound with high adhesion forces forms between the rotor section 4 or the stator section 6 and the coatings 40, 42.
  • the ceramic powder for application to the sections 4, 6 is bound in an organometallic compound.
  • the coatings 40, 42 each consist of a plurality of individual layers, which together do not exceed the total layer thickness.
  • the individual layers exist in the in FIG. 2 embodiment shown exclusively from the ceramic powder, so that ndi coatings 40, 42 are fully ceramics after their production.
  • the individual layers may have different ceramic components, and so an outer single layer may have a higher proportion of ceramic than a base layer close to the rotor or stator.
  • the outer single layer has a ceramic content of 100%, since such a low coefficient of friction is achieved.
  • the base layer has a very high metal content.
  • a particle size of the ceramic powder and the metal powder is always smaller than 1.0 ⁇ m. Consequently, in this exemplary embodiment, the proportion of ceramic, starting from the rotor section 4 or stator section 6, is increased in the direction of the outer individual layer and the metal component is lowered correspondingly. This makes it possible to prevent large material jumps between the rotor section 4 or the stator section 6 and the coatings 40, 42.
  • individual ceramic layers and metal layers may be arranged alternately, wherein in each case a ceramic layer forms the outer layer.
  • the coatings 40, 42 are of different hardness.
  • the rotor-side coating 40 is harder than the stator side Coating 42.
  • the elevations 34,36, 38 run in the case of a violent brushing in the stator-side coating 42 and do not break off.
  • the coatings 40, 42 are made different thickness.
  • the rotor-side coating 40 is thicker than the stator-side coating 42.
  • the different coating hardnesses and the different coating thicknesses can be realized both as individual features and in combination with one another.
  • a turbomachine with at least one radial gap seal which has at least two opposing ceramic coatings, each composed of a ceramic powder whose particle size is smaller than 1.0 microns, and a turbomachine with at least one radial gap seal, wherein the coatings are constructed of powder-based individual layers whose outer layer has a higher ceramic content than a rotor or statorabitessnahe base layer, wherein the particle size of the powder material is less than 1.0 microns.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Turbomachine (6) comprises a rotor and a stator. A sealing (1) for reducing the radial gap is arranged in at least one radial gap between the rotor and the stator. The sealing comprises two opposite coating. A first coating is applied on a stator section (4), which is bounding the radial gap in a radially outward manner, and the second coating (40) is applied to a rotor section (2), which is bounding the radial gap in a radially inward manner. The coatings are made of ceramic powder with particle size of less than 1 mm. Turbomachine (6) comprises a rotor and a stator. A sealing (1) for reducing the radial gap is arranged in at least one radial gap between the rotor and the stator. The sealing comprises two opposite coating. A first coating is applied on a stator section (4), which is bounding the radial gap in a radially outward manner, and the second coating (40) is applied to a rotor section (2), which is bounding the radial gap in a radially inward manner. The coatings are made of ceramic powder with particle size of less than 1 mm or powder-based individual layers with outer layer having a higher ceramic content than the section, which is near to rotor- or stator section of the base layer.

Description

Die Erfindung betrifft eine Strömungsmaschine nach dem Oberbegriff des Patentanspruchs 1 und eine Strömungsmaschine nach dem Oberbegriff des Patentanspruchs 7.The invention relates to a turbomachine according to the preamble of patent claim 1 and a turbomachine according to the preamble of patent claim 7.

Bei Strömungsmaschinen wie Gastrubinen und Dampfturbinen müssen Radialspalte zwischen rotierenden und statischen Maschinenteilen abgedichtet werden, um Sekundärstromverluste zu vermeiden. Dies gilt beispielsweise für die Abdichtung des Radialspaltes zwischen einer Leitschaufelspitze und einem gegenüberliegenden Scheibenflügel oder zwischen einer Laufschaufelspitze und einem gegenüberliegenden Statorabschnitt.In turbomachines such as gas turbines and steam turbines, radial gaps between rotating and static machine parts must be sealed in order to avoid secondary flow losses. This applies, for example, for the sealing of the radial gap between a vane tip and an opposite disc wing or between a blade tip and an opposite stator section.

Zur Abdichtungen der Radialspalte werden herkömmlicherweise Labyrinthdichtungen verwendet. Es hat sich jedoch gezeigt, dass die die Labyrinthdichtungen bildenden Maschinenteile einem hohen Verschleiß und einer hohen Erwärmung beim Anstreifen unterliegen. Das Anschleifen und die Erwärmung kann zu Rissen führen, was insbesondere bei den rotierenden Teilen schwerwiegende Folgen haben kann. Daher wird meist das rotierende Teil mit einer sogenannten Panzerung versehen. Die Panzerung ist insbesondere eine harte Schicht, die durch ein thermisches Spritzverfahren aufgebracht wird. Das statische Teil bleibt dagegen unbeschichtet und somit gegenüber dem rotierenden Bauteil weich. Als Folge wird das statische Bauteil beim Anstreifen entsprechend abgetragen und verschlissen. Die Panzerungen sind jedoch meist rau, was beim Anstreifen zu einer entsprechenden Erwärmung führt. Zudem hat sich gezeigt, dass die Panzerungen zu Abplatzungen neigen.For sealing the radial gaps, labyrinth seals are conventionally used. However, it has been found that the machine parts forming the labyrinth seals are subject to high wear and high heating during rubbing. Grinding and heating can lead to cracks, which can have serious consequences especially for the rotating parts. Therefore, usually the rotating part is provided with a so-called armor. The armor is in particular a hard coat, which is applied by a thermal spraying process. The static part, however, remains uncoated and thus soft against the rotating component. As a result, the static component is abraded and worn accordingly when rubbing. However, the armor is usually rough, which leads to a corresponding warming when rubbing. In addition, it has been shown that the armor tends to flaking.

Aufgabe der Erfindung ist es, eine Strömungsmaschine zu schaffen, die eine langlebige Abdichtung bzw. Reduzierung eines Radialspaltes zwischen einem Rotor und einem Stator der Strömungsmaschine ermöglichen.The object of the invention is to provide a turbomachine, which allow a long-lasting seal or reduction of a radial gap between a rotor and a stator of the turbomachine.

Diese Aufgabe wird gelöst durch eine Strömungsmaschine mit den Merkmalen des Patentanspruchs 1 und durch eine Strömungsmaschine mit den Merkmalen des Patentanspruchs 7.This object is achieved by a turbomachine having the features of patent claim 1 and by a turbomachine having the features of patent claim 7.

Eine erfindungsgemäße Strömungsmaschine hat einen Rotor und einen Stator. In zumindest einem Radialspalt zwischen dem Rotor und dem Stator ist eine Dichtung zur Reduzierung des Radialspaltes angeordnet, die erfindungsgemäß zwei gegenüberliegende Beschichtungen aufweist, von denen die eine Beschichtung auf einen den Radialspalt radial außen begrenzenden Statorabschnitt aufgebracht ist und die andere Beschichtung auf einen den Radialspalt radial innen begrenzenden Rotorabschnitt aufgebracht ist, wobei die Beschichtungen aus einem Keramikpulver aufgebaut sind, dessen Partikelgröße kleiner als 1,0 µm ist.A turbomachine according to the invention has a rotor and a stator. In at least one radial gap between the rotor and the stator, a seal for reducing the radial gap is arranged, which according to the invention has two opposing coatings, of which the one coating is applied to a radial gap radially outwardly limiting stator and the other coating on a radial gap radially inside limiting rotor section is applied, wherein the coatings are composed of a ceramic powder whose particle size is smaller than 1.0 microns.

Die erfindungsgemäßen sogenannten Nano-Keramik-Beschichtungen weisen ein geringes Abplatzrisiko auf, die sie sehr gut mit dem Grundkörper und somit mit dem Rotorabschnitt und dem Statorabschnitt verbindbar sind. Bevorzugterweise wird das Keramikpulver jeweils über eine metallorganische Verbindung auf dem Rotorabschnitt und dem Statorabschnitt angeordnet und dann einer Druck- und Temperaturbehandlung unterzogen. Die Beschichtungen können beispielsweise durch Sintern bei lediglich 800°C hergestellt werden. Zudem sind die Nano-Keramik-Beschichtungen sehr dünn, was das Abplatzrisiko weiter senkt. Vorzugsweise beträgt eine Gesamtschichtdicke maximal 0,1 mm. Die Partikelgröße beträgt bevorzugterweise maximal 100 nm. Des Weiteren weisen die Nano-Keramik-Beschichtungen eine sehr glatte Oberfläche auf, was zu geringen Reibungskoeffizienten beim Anstreifen führt, wodurch nur eine geringe Erwärmung der Beschichtungen erfolgt. Eine jeweilige Oberflächengüte der Nano-Keramik-Beschichtungen kann zusätzlich durch glättendes Schleifen verbessert werden.The so-called nano-ceramic coatings according to the invention have a low risk of spalling, which they can be connected very well to the main body and thus to the rotor section and the stator section. Preferably, the ceramic powder is disposed on the rotor portion and the stator portion via an organometallic compound, respectively, and then subjected to pressure and temperature treatment. For example, the coatings can be made by sintering at only 800 ° C. In addition, the nano-ceramic coatings are very thin, which further reduces the risk of chipping. Preferably, a total layer thickness is at most 0.1 mm. The particle size is preferably at most 100 nm. Furthermore, the nano-ceramic coatings have a very smooth surface, resulting in low friction coefficients when rubbing, whereby only a slight heating of the coatings takes place. A particular surface quality of the nano-ceramic coatings can be additionally improved by smoothing grinding.

Um beim heftigen Anstreifen der Beschichtungen eine Beschädigung der Rotor- und oder Statorabschnitte zu verhindern, können die Beschichtungen unterschiedlich hart ausgebildet sein.In order to prevent damage to the rotor and / or stator sections when the coatings are rubbing against one another, the coatings can have a different hardness.

Bevorzugterweise ist die rotorseitige Beschichtung härter als die statorseitige Beschichtung ausgebildet. Hierdurch kann ein katastrophales Versagen des Rotorabschnitts verhindert werden.Preferably, the rotor-side coating is harder than the stator-side coating formed. This can prevent a catastrophic failure of the rotor section.

Zudem können zur Schaffung einer gewissen Elastizität im Dichtungsbereich beim harten Anstreifen die Beschichtungen unterschiedliche Dicken aufweisen. Bevorzugterweise ist die rotorseitige Beschichtung dicker als die statorseitige Beschichtung ausgeführt, wodurch ebenfalls ein katastrophales Versagen des rotierenden Bauteils verhindert werden kann.In addition, the coatings may have different thicknesses to create a certain elasticity in the sealing area during hard rubbing. Preferably, the rotor-side coating is made thicker than the stator-side coating, which also catastrophic failure of the rotating component can be prevented.

Bevorzugterweise bestehen die Beschichtungen aus einer Vielzahl von Einzelschichten. Die Einzelschichten haben dabei jeweils eine Einzelschichtdicke, die in der Summe die Gesamtschichtdicke von 0,1 mm nicht übersteigt. Durch die Einzelschichten kann die Gesamtschichtdicke bequem variiert werden. Zudem wird selbst bei einer hohen Gesamtschichtdicke eine hohe Stabilität der Beschichtungen erreicht. Die Einzelschichten werden bevorzugterweise in Pulverform nacheinander aufgetragen und zusammen der Druck- und Temperaturbehandlung unterzogen. Die einzelnen Schichten sind nach der Druck- und Temperaturbehandlung nicht mehr zu erkennen, so dass im Falle einer ausschließlichen Verwendung von Keramikpulver nach der Druck- und Temperaturbehandlung eine einteilige Vollkeramik vorliegt.Preferably, the coatings consist of a plurality of individual layers. The individual layers each have a single-layer thickness, which in total does not exceed the total layer thickness of 0.1 mm. Through the single layers, the total layer thickness can be easily varied. In addition, a high stability of the coatings is achieved even with a high total layer thickness. The individual layers are preferably applied in powder form in succession and subjected together to the pressure and temperature treatment. The individual layers are no longer recognizable after the pressure and temperature treatment, so that in the case of exclusive use of ceramic powder after the pressure and temperature treatment is a one-piece all-ceramic.

Eine alternative erfindungsgemäße Strömungsmaschine hat einen Rotor und einen Stator. In zumindest einem Radialspalt zwischen dem Rotor und dem Stator ist eine Dichtung zur Reduzierung des Radialspaltes angeordnet, die erfindungsgemäß zwei gegenüberliegende Beschichtungen aufweist, von denen die eine Beschichtung auf einen den Radialspalt radial außen begrenzenden Statorabschnitt aufgebracht ist und die andere Beschichtung auf einen den Radialspalt radial innen begrenzenden Rotorabschnitt aufgebracht ist, wobei die Beschichtungen aus pulverbasierten Einzelschichten aufgebaut sind, deren äußere Schicht einen höheren Keramikanteil als eine rotor- bzw. statorabschnittsnahe Grundschicht aufweist, wobei die Partikelgröße des Pulvermaterials kleiner als 1,0 µm ist.An alternative turbomachine according to the invention has a rotor and a stator. In at least one radial gap between the rotor and the stator, a seal for reducing the radial gap is arranged, which according to the invention has two opposing coatings, of which the one coating is applied to a radial gap radially outwardly limiting stator and the other coating on a radial gap radially inner rotor portion is applied, wherein the coatings are constructed of powder-based individual layers whose outer layer has a higher ceramic content than a rotor or statorabna near base layer, wherein the particle size of the powder material is less than 1.0 microns.

Durch die graduierte Ausbildung der Beschichtungen können große Materialsprünge zwischen dem Rotor- und Statorabschnitt und der Beschichtung verhindert werden. Die Beschichtung kann somit hinsichtlich ihrer thermischen Ausdehnung oder ihres Elastizitätsmoduls schichtweise an den Rotor- und Statorabschnitt angepasst werden. Insbesondere weist die äußere Einzelschicht einen Keramikanteil von 100% auf und besteht somit ausschließlich aus einem Nano-Keramikpulver. Die Grundschicht weist hingegen einen sehr hohen Metallanteil auf.Due to the graduated formation of the coatings, large material jumps between the rotor and stator section and the coating can be prevented. The coating can thus be adapted in layers in terms of their thermal expansion or their modulus of elasticity to the rotor and stator. In particular, the outer single layer has a ceramic content of 100% and thus consists exclusively of a nano-ceramic powder. The base layer, however, has a very high metal content.

Eine hohe Dichtwirkung ist zu erzielen, wenn die Radialspaltabdichtung bei beiden Ausführungsbeispielen in Form einer Labyrinthdichtung erfolgt, wobei zumindest der Rotorabschnitt mit einer Vielzahl von in Richtung des Statorabschnitts weisenden Erhebungen ausgebildet ist. Sonstige vorteilhafte Ausführungsbeispiele der Erfindung sind Gegenstand weiterer Unteransprüche.A high sealing effect can be achieved if the radial gap seal takes place in the form of a labyrinth seal in both embodiments, wherein at least the rotor section is formed with a plurality of elevations pointing in the direction of the stator section. Other advantageous embodiments of the invention are the subject of further subclaims.

Im Folgenden wird ein bevorzugtes Ausführungsbeispiel der Erfindung anhand stark vereinfachter schematischer Darstellungen näher erläutert. Es zeigen:

Figur 1
eine Prinzipskizze einer Dichtung einer erfindungsgemäßen Strömungsmaschine, und
Figur 2
einen Teillängsschnitt durch eine erfindungsgemäße Strömungsmaschine.
In the following, a preferred embodiment of the invention is explained in more detail with reference to greatly simplified schematic illustrations. Show it:
FIG. 1
a schematic diagram of a seal of a turbomachine according to the invention, and
FIG. 2
a partial longitudinal section through a turbomachine according to the invention.

In Figur 1 ist eine Dichtung 1 zur Reduzierung eines Radialspaltes s zwischen einem Rotorabschnitt 2 und einem Statorabschnitt 4 einer Strömungsmaschine 6 gezeigt. Die Strömungsmaschine 6 ist bevorzugterweise eine Gasturbine und insbesondere ein Flugtriebwerk. Die Strömungsmaschine 6 kann allerdings auch als eine Dampfturbine und dergleichen ausgebildet sein.In FIG. 1 a seal 1 for reducing a radial gap s between a rotor section 2 and a stator section 4 of a turbomachine 6 is shown. The turbomachine 6 is preferably a gas turbine and in particular an aircraft engine. However, the turbomachine 6 may also be designed as a steam turbine and the like.

Der Rotorabschnitt 2 bildet einen Teil eines in Figur 2 angedeuteten Rotors 8 der Strömungsmaschine 6. Der Rotor 8 rotiert um eine sich in Axialrichtung der Strömungsmaschine 6 erstreckende Maschinenachse M und weist im Wesentlichen eine Vielzahl von in Strömungsrichtung eines Heißgases hintereinander angeordneten Rotorscheiben 10 auf, die jeweils eine Laufschaufelreihe mit einer Vielzahl von Laufschaufeln 12 tragen und auf einer gemeinsamen nicht gezeigten Rotornabe angeordnet sind.The rotor section 2 forms part of an in FIG. 2 The rotor 8 rotates about a machine axis M extending in the axial direction of the turbomachine 6 and essentially has a multiplicity of rotor disks 10 arranged behind one another in the direction of flow of a hot gas, each of which carries a row of blades with a multiplicity of rotor blades 12 and are arranged on a common rotor hub, not shown.

Der Statorabschnitt 4 bildet einen Teil eines in Figur 2 angedeuteten Stators 14 der Strömungsmaschine 6. Der Stator 14 weist im Wesentlichen ein Gehäuse 16 und eine Vielzahl von abwechselnd mit den Laufschaufelreihen angeordneten Leitschaufelreihen auf, die aus einzelnen in Aufnahmen des Gehäuses 16 eingesetzten Leitschaufeln 18 bestehen. Zudem hat der Stator 14 zwischen den Leischaufeln 18 und somit gegenüberliegend zu den Laufschaufeln 12 jeweils einen in das Gehäuse 16 eingesetzten Außendichtring 20. Der Außendichtring 20 kann ein einteiliges und umfangsseitig geschlossener Außendichtring oder ein aus einer Vielzahl von Dichtringsegmenten bestehen.The stator section 4 forms part of an in FIG. 2 The stator 14 essentially has a housing 16 and a multiplicity of guide blade rows arranged alternately with the rotor blade rows, which consist of individual guide blades 18 inserted in receptacles of the housing 16. In addition, the stator 14 between the grilling vanes 18 and thus opposite to the blades 12 each have an outer sealing ring 20 inserted into the housing 16. The outer sealing ring 20 may be a one-piece and circumferentially closed outer sealing ring or one of a plurality of sealing ring segments.

Die Dichtung 1 ist beispielsweise in den in Figur 2 skizzierten Bereichen 22, 24, 26 als jeweils eine sogenannte Zwischenstufendichtung vorgesehen. In dem in Strömungsrichtung des Heißgases betrachtet vorderen Bereich 22 wird der Rotorabschnitt 2 von den Außendeckbändern 28 der Laufschaufeln 12 einer vorderen Laufschaufelreihe und der gegenüberliegende Statorabschnitt 4 vom gegenüberliegenden Außendichtring 20 gebildet. Dieser Aufbau gilt ebenso für den hinteren Bereich 26. Im mittleren Bereich 24 stellt der Rotorabschnitt 2 einen sich zwischen den Rotorscheiben 10 erstreckenden Scheibenflügel 30 und der Statorabschnitt 4 einen Innendichtring 32, der an einen die Leitschaufeln 18 miteinander verbindenden Innenring angeordnet ist.The seal 1 is for example in the in FIG. 2 sketched areas 22, 24, 26 each provided as a so-called intermediate stage seal. In the front region 22 viewed in the direction of flow of the hot gas, the rotor section 2 is formed by the outer shrouds 28 of the blades of a front blade row and the opposite stator section 4 by the opposing outer sealing ring 20. This construction also applies to the rear region 26. In the middle region 24, the rotor section 2, a rotor blade 10 extending between the rotor disks 10 and the stator section 4 an inner sealing ring 32, which is arranged on the guide vanes 18 interconnecting inner ring.

Wie in Figur 1 beziffert, weist die Dichtung 1 eine Vielzahl von hintereinander angeordneten Erhebungen 34, 36, 38, eine rotorseitige Beschichtung 40 und eine statorseitige Beschichtung 42 auf. In dem hier skizzierten Ausführungsbeispiel, in dem die Dichtung 1 in den Bereichen 22 und 26 angeordnet ist, sind die Erhebungen 34, 36, 38, rotorseitig angeordnet. Die Erhebungen 34, 36, 38 sind dann beispielsweise Dichtspitzen der Außendeckbänder 28. Die Erhebungen 34, 36, 38 können grundsätzlich jedoch auch statorseitig angeordnet sein. Der jeweils gegenüberliegende Rotorabschnitt 2 bzw. Statorabschnitt 4 ist bevorzugterweise plan ausgebildet, kann jedoch auch mit entsprechenden Vorsprüngen versehen sein, die radial jeweils zwischen zwei Erhebungen 34, 36, 38 eintauchen.As in FIG. 1 numbered, the seal 1 has a plurality of consecutively arranged elevations 34, 36, 38, a rotor-side coating 40 and a stator-side coating 42. In the embodiment sketched here, in which the seal 1 is arranged in the regions 22 and 26, the elevations 34, 36, 38 are arranged on the rotor side. The elevations 34, 36, 38 are then, for example, sealing tips of the outer cover strips 28. However, the elevations 34, 36, 38 can in principle also be arranged on the stator side. The respective opposing rotor section 2 or stator section 4 is preferably flat, but may also be provided with corresponding projections, which dip radially between each two elevations 34, 36, 38.

Die in Figur 2 gezeigten Erhebungen 34, 36, 38 verlaufen in Umfangsrichtung und in Radialrichtung der Strömungsmaschine 8 in Richtung des Statorabschnitts 4. Hierdurch ist die Dichtung 1 als eine Labyrinthdichtung ausgeführt. Die Erhebungen 34, 36, 38 haben eine derartige radiale Erstreckung, dass sie im aufgeheizten Zustand der Strömungsmaschine 6 von dem Statorabschnitt 4 minimal beanstandet sind bzw. kopfseitig leicht entlang der statorseitigen Beschichtung 42 schleifen, so dass der Radialspalt s geschlossen ist. In dem gezeigten Ausführungsbeispiel sind drei Erhebungen 34, 36, 38 gezeigt, allerdings können auch mehr oder weniger Erhebungen 34, 36, 38 vorgesehen sein. Die Erhebungen 34, 36, 38 sowie seitlich der Erhebungen 34, 36, 38 verlaufende Planflächen 44, 46, 48, 50 des Rotorabschnitts 2 sind jeweils mit der rotorseitigen Beschichtung 40 versehen.In the FIG. 2 shown elevations 34, 36, 38 extend in the circumferential direction and in the radial direction of the turbomachine 8 in the direction of the stator section 4. As a result, the seal 1 is designed as a labyrinth seal. The elevations 34, 36, 38 have such a radial extension that they are minimally objected to in the heated state of the turbomachine 6 of the stator section 4 or easy to grind along the stator side coating 42, so that the radial gap s is closed. In the embodiment shown, three elevations 34, 36, 38 are shown, however, more or fewer elevations 34, 36, 38 may be provided. The elevations 34, 36, 38 and laterally of the elevations 34, 36, 38 extending planar surfaces 44, 46, 48, 50 of the rotor section 2 are each provided with the rotor-side coating 40.

Die Beschichtungen 40, 42 sind sogenannte Nano-Keramik-Beschichtungen mit jeweils einer Gesamtschichtdicke von bevorzugterweise maximal 0,1 mm. Sie sind jeweils aus einem Keramikpulver aufgebaut, dessen Partikelgröße kleiner als 1,0 µm ist. Bevorzugterweise beträgt ihre Partikelgröße 100 nm. Die Beschichtungen 40, 42 werden mittels einer Druck- und Temperaturbehandlung, insbesondere eines Sinterprozesses, an dem Rotorabschnitt 4 bzw. dem Statorabschnitt 6 angebunden. Hierdurch bildet sich eine Verbindung mit hohen Adhäsionskräften zwischen dem Rotorabschnitt 4 bzw. dem Statorabschnitt 6 aus und den Beschichtungen 40, 42 aus. Bevorzugterweise ist das Keramikpulver zum Auftragen auf die Abschnitte 4, 6 in einer metallorganischen Verbindung gebunden.The coatings 40, 42 are so-called nano-ceramic coatings, each having a total layer thickness of preferably not more than 0.1 mm. They are each made up of a ceramic powder whose particle size is smaller than 1.0 microns. Preferably, their particle size is 100 nm. The coatings 40, 42 are connected to the rotor section 4 or the stator section 6 by means of a pressure and temperature treatment, in particular a sintering process. As a result, a compound with high adhesion forces forms between the rotor section 4 or the stator section 6 and the coatings 40, 42. Preferably, the ceramic powder for application to the sections 4, 6 is bound in an organometallic compound.

Die Beschichtungen 40, 42 bestehen jeweils aus einer Vielzahl von Einzelschichten, die zusammen die Gesamtschichtdicke nicht überschreiten. Die Einzelschichten bestehen bei dem in Figur 2 gezeigten Ausführungsbeispiel ausschließlich aus dem Keramikpulver, so dass ndi Beschichtungen 40, 42 nach ihrer Herstellung Vollkeramiken sind.The coatings 40, 42 each consist of a plurality of individual layers, which together do not exceed the total layer thickness. The individual layers exist in the in FIG. 2 embodiment shown exclusively from the ceramic powder, so that ndi coatings 40, 42 are fully ceramics after their production.

Alternativ können die Einzelschichten unterschiedliche Keramikanteile aufweisen und so eine äußere Einzelschicht einen höheren Keramikanteil als eine rotor- bzw. statorabschnittsnahe Grundschicht haben. Bevozugterweise weist die äußere Einzelschicht einen Keramikanteil von 100% auf, da so ein geringer Reibkoeffizient erreicht wird. Die Grundschicht weist hingegen einen sehr hohen Metallanteil auf. Eine Partikelgröße des Keramikpulvers und der Metallpulvers ist jedoch stets kleiner als 1,0 µm. Konsequenterweise wird bei diesem Ausführungsbeispiel der Keramikanteil ausgehend vom Rotorabschnitt 4 bzw. Statorabschnitt 6 in Richtung des äußeren Einzelschicht erhöht und der Metallanteil korrespondierend gesenkt. Hierdurch lassen sich große Materialsprünge zwischen dem Rotorabschnitt 4 bzw. dem Statorabschnitt 6 und den Beschichtungen 40, 42 verhindern. Alternativ können auch einzelne Keramikschichten und Metallschichten alternierend angeordnet sein, wobei jeweils eine Keramikschicht die äußere Schicht bildet.Alternatively, the individual layers may have different ceramic components, and so an outer single layer may have a higher proportion of ceramic than a base layer close to the rotor or stator. Preferably, the outer single layer has a ceramic content of 100%, since such a low coefficient of friction is achieved. The base layer, however, has a very high metal content. However, a particle size of the ceramic powder and the metal powder is always smaller than 1.0 μm. Consequently, in this exemplary embodiment, the proportion of ceramic, starting from the rotor section 4 or stator section 6, is increased in the direction of the outer individual layer and the metal component is lowered correspondingly. This makes it possible to prevent large material jumps between the rotor section 4 or the stator section 6 and the coatings 40, 42. Alternatively, individual ceramic layers and metal layers may be arranged alternately, wherein in each case a ceramic layer forms the outer layer.

Um eine Zerstörung des Rotorabschnitts 4 in Folge eines heftigen Anstreifens der Erhebungen 34, 36, 38 am Statorabschnitt 4 zu verhindern, sind die Beschichtungen 40, 42 unterschiedlich hart ausgebildet. Bevorzugterweise ist die rotorseitige Beschichtung 40 härter als die statorseitige Beschichtung 42. Hierdurch laufen die Erhebungen 34,36, 38 im Falle eines heftigen Anstreifens in die statorseitige Beschichtung 42 ein und brechen nicht ab.In order to prevent destruction of the rotor section 4 as a result of vigorous brushing of the elevations 34, 36, 38 on the stator section 4, the coatings 40, 42 are of different hardness. Preferably, the rotor-side coating 40 is harder than the stator side Coating 42. As a result, the elevations 34,36, 38 run in the case of a violent brushing in the stator-side coating 42 and do not break off.

Zudem sind zur Verbesserung eines Versagensverhaltens der Dichtung 1 die Beschichtungen 40, 42 unterschiedlich dick ausgeführt. Insbesondere ist die rotorseitige Beschichtung 40 dicker als die statorseitige Beschichtung 42. Selbstverständlich sind die unterschiedlichen Beschichtungshärten und die unterschiedlichen Beschichtungsdicken sowohl als Einzelmerkmale als auch in Kombination miteinander realisierbar.In addition, to improve a failure behavior of the seal 1, the coatings 40, 42 are made different thickness. In particular, the rotor-side coating 40 is thicker than the stator-side coating 42. Of course, the different coating hardnesses and the different coating thicknesses can be realized both as individual features and in combination with one another.

Offenbart ist eine Strömungsmaschine mit zumindest einer Radialspaltdichtung, die zumindest zwei gegenüberliegende Keramikbeschichtungen aufweist, die jeweils aus einem Keramikpulver aufgebaut sind, dessen Partikelgröße kleiner als 1,0 µm ist, und eine Strömungsmaschine mit zumindest einer Radialspaltdichtung, wobei die Beschichtungen aus pulverbasierten Einzelschichten aufgebaut sind, deren äußere Schicht einen höheren Keramikanteil als eine rotor- bzw. statorabschnittsnahe Grundschicht aufweist, wobei die Partikelgröße des Pulvermaterials kleiner als 1,0 µm ist.Disclosed is a turbomachine with at least one radial gap seal, which has at least two opposing ceramic coatings, each composed of a ceramic powder whose particle size is smaller than 1.0 microns, and a turbomachine with at least one radial gap seal, wherein the coatings are constructed of powder-based individual layers whose outer layer has a higher ceramic content than a rotor or statorabschnittsnahe base layer, wherein the particle size of the powder material is less than 1.0 microns.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11 Dichtungpoetry 22 Rotorabschnittrotor section 44 Statorabschnittstator 66 Strömungsmaschineflow machine 88th Rotorrotor 1010 Rotorscheiberotor disc 1212 Laufschaufelnblades 1414 Statorstator 1616 Gehäusecasing 1818 Leitschaufelnvanes 2020 AußendichtringOuter sealing ring 2222 BereichArea 2424 BereichArea 2626 BereichArea 2828 AußendeckbandOuter shroud 3030 Scheibenflügeldisc wings 3232 InnendichtringInner sealing ring 3434 Erhebungsurvey 3636 Erhebungsurvey 3838 Erhebungsurvey 4040 rotorseitige Beschichtungrotor-side coating 4242 statorseitige Beschichtungstator-side coating 4444 Planflächeplane surface 4646 Planflächeplane surface 4848 Planflächeplane surface 5050 Planflächeplane surface MM Maschinenachsemachine axis ss Radialspaltradial gap

Claims (8)

Strömungsmaschine (6), mit einem Rotor (8) und einem Stator (14), wobei in zumindest einem Radialspalt (s) zwischen dem Rotor (8) und dem Stator (14) eine Dichtung (1) zur Reduzierung des Radialspaltes (s) angeordnet ist, dadurch gekennzeichnet, dass die Dichtung (1) zwei gegenüberliegende Beschichtungen (40, 42) aufweist, von denen die eine Beschichtung (42) auf einen den Radialspalt (s) radial außen begrenzenden Statorabschnitt (4) aufgebracht ist und die andere Beschichtung (40) auf einen den Radialspalt (s) radial innen begrenzenden Rotorabschnitt (2) aufgebracht ist, wobei die Beschichtungen (40, 42) aus einem Keramikpulver aufgebaut sind, dessen Partikelgröße kleiner als 1,0 µm ist.Turbomachine (6), comprising a rotor (8) and a stator (14), wherein in at least one radial gap (s) between the rotor (8) and the stator (14) a seal (1) for reducing the radial gap (s) is arranged, characterized in that the seal (1) has two opposing coatings (40, 42), of which the one coating (42) on a radial gap (s) radially outwardly limiting stator (4) is applied and the other coating (40) is applied to a radial section (s) radially inwardly limiting rotor section (2), wherein the coatings (40, 42) are constructed of a ceramic powder whose particle size is smaller than 1.0 microns. Strömungsmaschine nach Anspruch 1, wobei die Beschichtungen (40, 42) unterschiedlich hart sind.Turbomachine according to claim 1, wherein the coatings (40, 42) are of different hardness. Strömungsmaschine nach Anspruch 2, wobei die rotorseitige Beschichtung (40) härter als die statorseitige Beschichtung (42) ist.Turbomachine according to claim 2, wherein the rotor-side coating (40) is harder than the stator-side coating (42). Strömungsmaschine nach Anspruch 1, 2 oder 3, wobei die Beschichtungen (40, 42) unterschiedliche Dicken aufweisen.Turbomachine according to claim 1, 2 or 3, wherein the coatings (40, 42) have different thicknesses. Strömungsmaschine nach Anspruch 5, wobei die rotorseitige Beschichtung (40) dicker als die statorseitige Beschichtung (42) ist.Turbomachine according to claim 5, wherein the rotor-side coating (40) is thicker than the stator-side coating (42). Strömungsmaschine nach einem der vorhergehenden Ansprüche, wobei die Beschichtungen (40, 42) aus Einzelschichten aufgebaut sind.Turbomachine according to one of the preceding claims, wherein the coatings (40, 42) are composed of individual layers. Strömungsmaschine (6), mit einem Rotor und einem Stator (14), wobei in zumindest einem Radialspalt (s) zwischen dem Rotor (8) und dem Stator (14) eine Dichtung (1) zur Reduzierung des Radialspaltes (s) angeordnet ist, dadurch gekennzeichnet, dass die Dichtung (1) zwei gegenüberliegende Beschichtungen (40, 42) aufweist, von denen die eine Beschichtung (42) auf einen den Radialspalt (s) radial außen begrenzenden Statorabschnitt (4) aufgebracht ist und die andere Beschichtung (40) auf einen den Radialspalt (s) radial innen begrenzenden Rotorabschnitt (2) aufgebracht ist, wobei die Beschichtungen (40, 42) aus pulverbasierten Einzelschichten aufgebaut sind, deren äußere Schicht einen höheren Keramikanteil als eine rotor- bzw. statorabschnittsnahe Grundschicht aufweist, wobei die Partikelgröße des Pulvermaterials kleiner als 1,0 µm ist.Turbomachine (6) with a rotor and a stator (14), wherein in at least one radial gap (s) between the rotor (8) and the stator (14) a seal (1) for reducing the radial gap (s) is arranged, characterized in that the seal (1) has two opposing coatings (40, 42), of which the one coating (42) on a the radial gap (s) radially outwardly limiting stator (4) is applied and the other coating (40) on a radial gap (s) radially inwardly limiting rotor portion (2) is applied, wherein the coatings (40, 42) constructed of powder-based individual layers are whose outer layer has a higher ceramic content than a rotor or statorabschnittsnahe base layer, wherein the particle size of the powder material is less than 1.0 microns. Strömungsmaschine nach einem der vorhergehenden Ansprüche, wobei zumindest der Rotorabschnitt (2) mit einer Vielzahl von in Richtung des Statorabschnitts (4) weisenden Erhebungen (34, 36, 38) ausgebildet ist.Turbomachine according to one of the preceding claims, wherein at least the rotor section (2) with a plurality of in the direction of the stator (4) facing elevations (34, 36, 38) is formed.
EP13161673.2A 2013-03-28 2013-03-28 A turbine blade outer air seal comprising an abradable ceramic coating on the stator and the rotor respectively. Withdrawn EP2784268A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13161673.2A EP2784268A1 (en) 2013-03-28 2013-03-28 A turbine blade outer air seal comprising an abradable ceramic coating on the stator and the rotor respectively.
US14/228,471 US9605554B2 (en) 2013-03-28 2014-03-28 Turbomachine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13161673.2A EP2784268A1 (en) 2013-03-28 2013-03-28 A turbine blade outer air seal comprising an abradable ceramic coating on the stator and the rotor respectively.

Publications (1)

Publication Number Publication Date
EP2784268A1 true EP2784268A1 (en) 2014-10-01

Family

ID=48049798

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13161673.2A Withdrawn EP2784268A1 (en) 2013-03-28 2013-03-28 A turbine blade outer air seal comprising an abradable ceramic coating on the stator and the rotor respectively.

Country Status (2)

Country Link
US (1) US9605554B2 (en)
EP (1) EP2784268A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015224379A1 (en) * 2015-12-04 2017-06-08 MTU Aero Engines AG Stabilized sealing ring for a turbomachine
FR3065482B1 (en) * 2017-04-20 2019-07-05 Safran Aircraft Engines SEAL RING MEMBER FOR TURBINE COMPRISING A CAVITY INCLINED IN ABRADABLE MATERIAL

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0292250A1 (en) * 1987-05-19 1988-11-23 Union Carbide Corporation Rotary gas seals and turbine and compressor blades
DE10225532C1 (en) * 2002-06-10 2003-12-04 Mtu Aero Engines Gmbh Gap sealing system for turbine blade tips, includes ceramic layers with metallic adherent layer and no other intermediates
EP1739204A2 (en) * 2005-06-29 2007-01-03 The General Electric Company Field repairable high temperature smooth wear coating
EP2009141A2 (en) * 2007-06-19 2008-12-31 United Technologies Corporation Thermal barrier system and bonding method
DE102009012945A1 (en) * 2009-03-12 2010-09-16 Mtu Aero Engines Gmbh Method for producing an abrasive coating and component for a turbomachine
DE102011081323B3 (en) * 2011-08-22 2012-06-21 Siemens Aktiengesellschaft Fluid-flow machine i.e. axial-flow gas turbine, has abradable abrasion layer arranged at blade tip adjacent to radial inner side of housing and made of specific mass percent of zirconium oxide stabilized ytterbium oxide
EP2540973A1 (en) * 2011-06-30 2013-01-02 Siemens Aktiengesellschaft Seal system for a gas turbine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4299865A (en) * 1979-09-06 1981-11-10 General Motors Corporation Abradable ceramic seal and method of making same
US6682821B2 (en) * 2001-12-28 2004-01-27 Kyocera Corporation Corrosion-resistant ceramics
EP1806432A1 (en) * 2006-01-09 2007-07-11 Siemens Aktiengesellschaft Coating system with 2 pyrochlore phases
DE102007019476A1 (en) * 2007-04-25 2008-11-06 Mtu Aero Engines Gmbh Method of producing a scuffing pad
DE102010010595A1 (en) * 2010-03-08 2011-09-08 Lufthansa Technik Ag Method for repairing sealing segments in the rotor / stator seal of a gas turbine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0292250A1 (en) * 1987-05-19 1988-11-23 Union Carbide Corporation Rotary gas seals and turbine and compressor blades
DE10225532C1 (en) * 2002-06-10 2003-12-04 Mtu Aero Engines Gmbh Gap sealing system for turbine blade tips, includes ceramic layers with metallic adherent layer and no other intermediates
EP1739204A2 (en) * 2005-06-29 2007-01-03 The General Electric Company Field repairable high temperature smooth wear coating
EP2009141A2 (en) * 2007-06-19 2008-12-31 United Technologies Corporation Thermal barrier system and bonding method
DE102009012945A1 (en) * 2009-03-12 2010-09-16 Mtu Aero Engines Gmbh Method for producing an abrasive coating and component for a turbomachine
EP2540973A1 (en) * 2011-06-30 2013-01-02 Siemens Aktiengesellschaft Seal system for a gas turbine
DE102011081323B3 (en) * 2011-08-22 2012-06-21 Siemens Aktiengesellschaft Fluid-flow machine i.e. axial-flow gas turbine, has abradable abrasion layer arranged at blade tip adjacent to radial inner side of housing and made of specific mass percent of zirconium oxide stabilized ytterbium oxide

Also Published As

Publication number Publication date
US20140294570A1 (en) 2014-10-02
US9605554B2 (en) 2017-03-28

Similar Documents

Publication Publication Date Title
EP2647795B1 (en) Seal system for a turbo engine
DE102012106175A1 (en) Structured abrasive coatings for surfaces of stationary steam turbine components
DE19962316A1 (en) Brush seal
EP3324002B1 (en) Sealing system for a turbomachine and axial flowmachine
DE10047307A1 (en) sealing arrangement
EP1715140A1 (en) Turbine blade with a cover plate and a protective layer on the cover plate
EP3093372A2 (en) Coating method for producing a combination of armor plating for a blade tip and erosion resistant coating
EP2313615B1 (en) Blade arrangement of a gas turbine
EP2984294B1 (en) Turbine blade with staged and chamfered platform edge
EP3246430B1 (en) Method for the preparation of blades or blade assemblies of a flow engine with erosion protection layers and correspondingly manufactured component
EP2784268A1 (en) A turbine blade outer air seal comprising an abradable ceramic coating on the stator and the rotor respectively.
EP1654441A1 (en) Run-in coating for gas turbines composed of a titanium-aluminium material
EP3312388B1 (en) Rotor part, corresponding compressor, turbine and manufacturing method
WO2009059580A1 (en) Gas turbine component and compressor comprising said component
EP2860356B1 (en) Flow engine
DE102017204243A1 (en) Dichtfin with at least one curved side edge
EP3056684B1 (en) Axially split inner ring for a flow machine, guide blade assembly and aircraft engine
EP3274561B1 (en) Rotor blade for a gas turbine, manufacturing process and post production process
DE102012015137A1 (en) Low-modulus gas turbine compressor blade
EP3290649A1 (en) Abradable lining and method for manufacturing an abradable lining for sealing a gap between a rotor and a stator of a turbomachine
DE102010055435B4 (en) Innendeckband a gas turbine and method for producing a Innenendeckbandes
DE102010048147B4 (en) Layer system for rotor / stator seal of a turbomachine and method for producing such a layer system
EP2957718A1 (en) Turbine
EP4123123B1 (en) Turbine blade for a flow engine
DE102015224160A1 (en) Inlet lining for an external air seal of a turbomachine

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20130328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES GMBH

R17P Request for examination filed (corrected)

Effective date: 20150327

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES AG

17Q First examination report despatched

Effective date: 20180306

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 11/12 20060101AFI20181016BHEP

Ipc: F01D 5/20 20060101ALI20181016BHEP

Ipc: F01D 5/28 20060101ALI20181016BHEP

Ipc: C23C 28/00 20060101ALI20181016BHEP

Ipc: F01D 11/08 20060101ALI20181016BHEP

Ipc: F01D 5/00 20060101ALI20181016BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603