EP2784268A1 - A turbine blade outer air seal comprising an abradable ceramic coating on the stator and the rotor respectively. - Google Patents
A turbine blade outer air seal comprising an abradable ceramic coating on the stator and the rotor respectively. Download PDFInfo
- Publication number
- EP2784268A1 EP2784268A1 EP13161673.2A EP13161673A EP2784268A1 EP 2784268 A1 EP2784268 A1 EP 2784268A1 EP 13161673 A EP13161673 A EP 13161673A EP 2784268 A1 EP2784268 A1 EP 2784268A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- stator
- rotor
- radial gap
- coatings
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/12—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
- F01D11/122—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/005—Repairing methods or devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/20—Specially-shaped blade tips to seal space between tips and stator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/284—Selection of ceramic materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/611—Coating
Definitions
- the invention relates to a turbomachine according to the preamble of patent claim 1 and a turbomachine according to the preamble of patent claim 7.
- radial gaps between rotating and static machine parts must be sealed in order to avoid secondary flow losses. This applies, for example, for the sealing of the radial gap between a vane tip and an opposite disc wing or between a blade tip and an opposite stator section.
- labyrinth seals are conventionally used.
- the machine parts forming the labyrinth seals are subject to high wear and high heating during rubbing. Grinding and heating can lead to cracks, which can have serious consequences especially for the rotating parts. Therefore, usually the rotating part is provided with a so-called armor.
- the armor is in particular a hard coat, which is applied by a thermal spraying process.
- the static part remains uncoated and thus soft against the rotating component. As a result, the static component is abraded and worn accordingly when rubbing.
- the armor is usually rough, which leads to a corresponding warming when rubbing. In addition, it has been shown that the armor tends to flaking.
- the object of the invention is to provide a turbomachine, which allow a long-lasting seal or reduction of a radial gap between a rotor and a stator of the turbomachine.
- a turbomachine according to the invention has a rotor and a stator.
- a seal for reducing the radial gap is arranged, which according to the invention has two opposing coatings, of which the one coating is applied to a radial gap radially outwardly limiting stator and the other coating on a radial gap radially inside limiting rotor section is applied, wherein the coatings are composed of a ceramic powder whose particle size is smaller than 1.0 microns.
- the so-called nano-ceramic coatings according to the invention have a low risk of spalling, which they can be connected very well to the main body and thus to the rotor section and the stator section.
- the ceramic powder is disposed on the rotor portion and the stator portion via an organometallic compound, respectively, and then subjected to pressure and temperature treatment.
- the coatings can be made by sintering at only 800 ° C.
- the nano-ceramic coatings are very thin, which further reduces the risk of chipping.
- a total layer thickness is at most 0.1 mm.
- the particle size is preferably at most 100 nm.
- the nano-ceramic coatings have a very smooth surface, resulting in low friction coefficients when rubbing, whereby only a slight heating of the coatings takes place.
- a particular surface quality of the nano-ceramic coatings can be additionally improved by smoothing grinding.
- the coatings can have a different hardness.
- the rotor-side coating is harder than the stator-side coating formed. This can prevent a catastrophic failure of the rotor section.
- the coatings may have different thicknesses to create a certain elasticity in the sealing area during hard rubbing.
- the rotor-side coating is made thicker than the stator-side coating, which also catastrophic failure of the rotating component can be prevented.
- the coatings consist of a plurality of individual layers.
- the individual layers each have a single-layer thickness, which in total does not exceed the total layer thickness of 0.1 mm. Through the single layers, the total layer thickness can be easily varied. In addition, a high stability of the coatings is achieved even with a high total layer thickness.
- the individual layers are preferably applied in powder form in succession and subjected together to the pressure and temperature treatment. The individual layers are no longer recognizable after the pressure and temperature treatment, so that in the case of exclusive use of ceramic powder after the pressure and temperature treatment is a one-piece all-ceramic.
- An alternative turbomachine has a rotor and a stator.
- a seal for reducing the radial gap is arranged, which according to the invention has two opposing coatings, of which the one coating is applied to a radial gap radially outwardly limiting stator and the other coating on a radial gap radially inner rotor portion is applied, wherein the coatings are constructed of powder-based individual layers whose outer layer has a higher ceramic content than a rotor or statorabna near base layer, wherein the particle size of the powder material is less than 1.0 microns.
- the coating Due to the graduated formation of the coatings, large material jumps between the rotor and stator section and the coating can be prevented.
- the coating can thus be adapted in layers in terms of their thermal expansion or their modulus of elasticity to the rotor and stator.
- the outer single layer has a ceramic content of 100% and thus consists exclusively of a nano-ceramic powder.
- the base layer has a very high metal content.
- a high sealing effect can be achieved if the radial gap seal takes place in the form of a labyrinth seal in both embodiments, wherein at least the rotor section is formed with a plurality of elevations pointing in the direction of the stator section.
- Other advantageous embodiments of the invention are the subject of further subclaims.
- FIG. 1 a seal 1 for reducing a radial gap s between a rotor section 2 and a stator section 4 of a turbomachine 6 is shown.
- the turbomachine 6 is preferably a gas turbine and in particular an aircraft engine. However, the turbomachine 6 may also be designed as a steam turbine and the like.
- the rotor section 2 forms part of an in FIG. 2
- the rotor 8 rotates about a machine axis M extending in the axial direction of the turbomachine 6 and essentially has a multiplicity of rotor disks 10 arranged behind one another in the direction of flow of a hot gas, each of which carries a row of blades with a multiplicity of rotor blades 12 and are arranged on a common rotor hub, not shown.
- the stator section 4 forms part of an in FIG. 2
- the stator 14 essentially has a housing 16 and a multiplicity of guide blade rows arranged alternately with the rotor blade rows, which consist of individual guide blades 18 inserted in receptacles of the housing 16.
- the stator 14 between the grilling vanes 18 and thus opposite to the blades 12 each have an outer sealing ring 20 inserted into the housing 16.
- the outer sealing ring 20 may be a one-piece and circumferentially closed outer sealing ring or one of a plurality of sealing ring segments.
- the seal 1 is for example in the in FIG. 2 sketched areas 22, 24, 26 each provided as a so-called intermediate stage seal.
- the rotor section 2 is formed by the outer shrouds 28 of the blades of a front blade row and the opposite stator section 4 by the opposing outer sealing ring 20. This construction also applies to the rear region 26.
- the rotor section 2 In the middle region 24, the rotor section 2, a rotor blade 10 extending between the rotor disks 10 and the stator section 4 an inner sealing ring 32, which is arranged on the guide vanes 18 interconnecting inner ring.
- the seal 1 has a plurality of consecutively arranged elevations 34, 36, 38, a rotor-side coating 40 and a stator-side coating 42.
- the elevations 34, 36, 38 are arranged on the rotor side.
- the elevations 34, 36, 38 are then, for example, sealing tips of the outer cover strips 28.
- the elevations 34, 36, 38 can in principle also be arranged on the stator side.
- the respective opposing rotor section 2 or stator section 4 is preferably flat, but may also be provided with corresponding projections, which dip radially between each two elevations 34, 36, 38.
- elevations 34, 36, 38 extend in the circumferential direction and in the radial direction of the turbomachine 8 in the direction of the stator section 4.
- the seal 1 is designed as a labyrinth seal.
- the elevations 34, 36, 38 have such a radial extension that they are minimally objected to in the heated state of the turbomachine 6 of the stator section 4 or easy to grind along the stator side coating 42, so that the radial gap s is closed.
- three elevations 34, 36, 38 are shown, however, more or fewer elevations 34, 36, 38 may be provided.
- the elevations 34, 36, 38 and laterally of the elevations 34, 36, 38 extending planar surfaces 44, 46, 48, 50 of the rotor section 2 are each provided with the rotor-side coating 40.
- the coatings 40, 42 are so-called nano-ceramic coatings, each having a total layer thickness of preferably not more than 0.1 mm. They are each made up of a ceramic powder whose particle size is smaller than 1.0 microns. Preferably, their particle size is 100 nm.
- the coatings 40, 42 are connected to the rotor section 4 or the stator section 6 by means of a pressure and temperature treatment, in particular a sintering process. As a result, a compound with high adhesion forces forms between the rotor section 4 or the stator section 6 and the coatings 40, 42.
- the ceramic powder for application to the sections 4, 6 is bound in an organometallic compound.
- the coatings 40, 42 each consist of a plurality of individual layers, which together do not exceed the total layer thickness.
- the individual layers exist in the in FIG. 2 embodiment shown exclusively from the ceramic powder, so that ndi coatings 40, 42 are fully ceramics after their production.
- the individual layers may have different ceramic components, and so an outer single layer may have a higher proportion of ceramic than a base layer close to the rotor or stator.
- the outer single layer has a ceramic content of 100%, since such a low coefficient of friction is achieved.
- the base layer has a very high metal content.
- a particle size of the ceramic powder and the metal powder is always smaller than 1.0 ⁇ m. Consequently, in this exemplary embodiment, the proportion of ceramic, starting from the rotor section 4 or stator section 6, is increased in the direction of the outer individual layer and the metal component is lowered correspondingly. This makes it possible to prevent large material jumps between the rotor section 4 or the stator section 6 and the coatings 40, 42.
- individual ceramic layers and metal layers may be arranged alternately, wherein in each case a ceramic layer forms the outer layer.
- the coatings 40, 42 are of different hardness.
- the rotor-side coating 40 is harder than the stator side Coating 42.
- the elevations 34,36, 38 run in the case of a violent brushing in the stator-side coating 42 and do not break off.
- the coatings 40, 42 are made different thickness.
- the rotor-side coating 40 is thicker than the stator-side coating 42.
- the different coating hardnesses and the different coating thicknesses can be realized both as individual features and in combination with one another.
- a turbomachine with at least one radial gap seal which has at least two opposing ceramic coatings, each composed of a ceramic powder whose particle size is smaller than 1.0 microns, and a turbomachine with at least one radial gap seal, wherein the coatings are constructed of powder-based individual layers whose outer layer has a higher ceramic content than a rotor or statorabitessnahe base layer, wherein the particle size of the powder material is less than 1.0 microns.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
Die Erfindung betrifft eine Strömungsmaschine nach dem Oberbegriff des Patentanspruchs 1 und eine Strömungsmaschine nach dem Oberbegriff des Patentanspruchs 7.The invention relates to a turbomachine according to the preamble of patent claim 1 and a turbomachine according to the preamble of patent claim 7.
Bei Strömungsmaschinen wie Gastrubinen und Dampfturbinen müssen Radialspalte zwischen rotierenden und statischen Maschinenteilen abgedichtet werden, um Sekundärstromverluste zu vermeiden. Dies gilt beispielsweise für die Abdichtung des Radialspaltes zwischen einer Leitschaufelspitze und einem gegenüberliegenden Scheibenflügel oder zwischen einer Laufschaufelspitze und einem gegenüberliegenden Statorabschnitt.In turbomachines such as gas turbines and steam turbines, radial gaps between rotating and static machine parts must be sealed in order to avoid secondary flow losses. This applies, for example, for the sealing of the radial gap between a vane tip and an opposite disc wing or between a blade tip and an opposite stator section.
Zur Abdichtungen der Radialspalte werden herkömmlicherweise Labyrinthdichtungen verwendet. Es hat sich jedoch gezeigt, dass die die Labyrinthdichtungen bildenden Maschinenteile einem hohen Verschleiß und einer hohen Erwärmung beim Anstreifen unterliegen. Das Anschleifen und die Erwärmung kann zu Rissen führen, was insbesondere bei den rotierenden Teilen schwerwiegende Folgen haben kann. Daher wird meist das rotierende Teil mit einer sogenannten Panzerung versehen. Die Panzerung ist insbesondere eine harte Schicht, die durch ein thermisches Spritzverfahren aufgebracht wird. Das statische Teil bleibt dagegen unbeschichtet und somit gegenüber dem rotierenden Bauteil weich. Als Folge wird das statische Bauteil beim Anstreifen entsprechend abgetragen und verschlissen. Die Panzerungen sind jedoch meist rau, was beim Anstreifen zu einer entsprechenden Erwärmung führt. Zudem hat sich gezeigt, dass die Panzerungen zu Abplatzungen neigen.For sealing the radial gaps, labyrinth seals are conventionally used. However, it has been found that the machine parts forming the labyrinth seals are subject to high wear and high heating during rubbing. Grinding and heating can lead to cracks, which can have serious consequences especially for the rotating parts. Therefore, usually the rotating part is provided with a so-called armor. The armor is in particular a hard coat, which is applied by a thermal spraying process. The static part, however, remains uncoated and thus soft against the rotating component. As a result, the static component is abraded and worn accordingly when rubbing. However, the armor is usually rough, which leads to a corresponding warming when rubbing. In addition, it has been shown that the armor tends to flaking.
Aufgabe der Erfindung ist es, eine Strömungsmaschine zu schaffen, die eine langlebige Abdichtung bzw. Reduzierung eines Radialspaltes zwischen einem Rotor und einem Stator der Strömungsmaschine ermöglichen.The object of the invention is to provide a turbomachine, which allow a long-lasting seal or reduction of a radial gap between a rotor and a stator of the turbomachine.
Diese Aufgabe wird gelöst durch eine Strömungsmaschine mit den Merkmalen des Patentanspruchs 1 und durch eine Strömungsmaschine mit den Merkmalen des Patentanspruchs 7.This object is achieved by a turbomachine having the features of patent claim 1 and by a turbomachine having the features of patent claim 7.
Eine erfindungsgemäße Strömungsmaschine hat einen Rotor und einen Stator. In zumindest einem Radialspalt zwischen dem Rotor und dem Stator ist eine Dichtung zur Reduzierung des Radialspaltes angeordnet, die erfindungsgemäß zwei gegenüberliegende Beschichtungen aufweist, von denen die eine Beschichtung auf einen den Radialspalt radial außen begrenzenden Statorabschnitt aufgebracht ist und die andere Beschichtung auf einen den Radialspalt radial innen begrenzenden Rotorabschnitt aufgebracht ist, wobei die Beschichtungen aus einem Keramikpulver aufgebaut sind, dessen Partikelgröße kleiner als 1,0 µm ist.A turbomachine according to the invention has a rotor and a stator. In at least one radial gap between the rotor and the stator, a seal for reducing the radial gap is arranged, which according to the invention has two opposing coatings, of which the one coating is applied to a radial gap radially outwardly limiting stator and the other coating on a radial gap radially inside limiting rotor section is applied, wherein the coatings are composed of a ceramic powder whose particle size is smaller than 1.0 microns.
Die erfindungsgemäßen sogenannten Nano-Keramik-Beschichtungen weisen ein geringes Abplatzrisiko auf, die sie sehr gut mit dem Grundkörper und somit mit dem Rotorabschnitt und dem Statorabschnitt verbindbar sind. Bevorzugterweise wird das Keramikpulver jeweils über eine metallorganische Verbindung auf dem Rotorabschnitt und dem Statorabschnitt angeordnet und dann einer Druck- und Temperaturbehandlung unterzogen. Die Beschichtungen können beispielsweise durch Sintern bei lediglich 800°C hergestellt werden. Zudem sind die Nano-Keramik-Beschichtungen sehr dünn, was das Abplatzrisiko weiter senkt. Vorzugsweise beträgt eine Gesamtschichtdicke maximal 0,1 mm. Die Partikelgröße beträgt bevorzugterweise maximal 100 nm. Des Weiteren weisen die Nano-Keramik-Beschichtungen eine sehr glatte Oberfläche auf, was zu geringen Reibungskoeffizienten beim Anstreifen führt, wodurch nur eine geringe Erwärmung der Beschichtungen erfolgt. Eine jeweilige Oberflächengüte der Nano-Keramik-Beschichtungen kann zusätzlich durch glättendes Schleifen verbessert werden.The so-called nano-ceramic coatings according to the invention have a low risk of spalling, which they can be connected very well to the main body and thus to the rotor section and the stator section. Preferably, the ceramic powder is disposed on the rotor portion and the stator portion via an organometallic compound, respectively, and then subjected to pressure and temperature treatment. For example, the coatings can be made by sintering at only 800 ° C. In addition, the nano-ceramic coatings are very thin, which further reduces the risk of chipping. Preferably, a total layer thickness is at most 0.1 mm. The particle size is preferably at most 100 nm. Furthermore, the nano-ceramic coatings have a very smooth surface, resulting in low friction coefficients when rubbing, whereby only a slight heating of the coatings takes place. A particular surface quality of the nano-ceramic coatings can be additionally improved by smoothing grinding.
Um beim heftigen Anstreifen der Beschichtungen eine Beschädigung der Rotor- und oder Statorabschnitte zu verhindern, können die Beschichtungen unterschiedlich hart ausgebildet sein.In order to prevent damage to the rotor and / or stator sections when the coatings are rubbing against one another, the coatings can have a different hardness.
Bevorzugterweise ist die rotorseitige Beschichtung härter als die statorseitige Beschichtung ausgebildet. Hierdurch kann ein katastrophales Versagen des Rotorabschnitts verhindert werden.Preferably, the rotor-side coating is harder than the stator-side coating formed. This can prevent a catastrophic failure of the rotor section.
Zudem können zur Schaffung einer gewissen Elastizität im Dichtungsbereich beim harten Anstreifen die Beschichtungen unterschiedliche Dicken aufweisen. Bevorzugterweise ist die rotorseitige Beschichtung dicker als die statorseitige Beschichtung ausgeführt, wodurch ebenfalls ein katastrophales Versagen des rotierenden Bauteils verhindert werden kann.In addition, the coatings may have different thicknesses to create a certain elasticity in the sealing area during hard rubbing. Preferably, the rotor-side coating is made thicker than the stator-side coating, which also catastrophic failure of the rotating component can be prevented.
Bevorzugterweise bestehen die Beschichtungen aus einer Vielzahl von Einzelschichten. Die Einzelschichten haben dabei jeweils eine Einzelschichtdicke, die in der Summe die Gesamtschichtdicke von 0,1 mm nicht übersteigt. Durch die Einzelschichten kann die Gesamtschichtdicke bequem variiert werden. Zudem wird selbst bei einer hohen Gesamtschichtdicke eine hohe Stabilität der Beschichtungen erreicht. Die Einzelschichten werden bevorzugterweise in Pulverform nacheinander aufgetragen und zusammen der Druck- und Temperaturbehandlung unterzogen. Die einzelnen Schichten sind nach der Druck- und Temperaturbehandlung nicht mehr zu erkennen, so dass im Falle einer ausschließlichen Verwendung von Keramikpulver nach der Druck- und Temperaturbehandlung eine einteilige Vollkeramik vorliegt.Preferably, the coatings consist of a plurality of individual layers. The individual layers each have a single-layer thickness, which in total does not exceed the total layer thickness of 0.1 mm. Through the single layers, the total layer thickness can be easily varied. In addition, a high stability of the coatings is achieved even with a high total layer thickness. The individual layers are preferably applied in powder form in succession and subjected together to the pressure and temperature treatment. The individual layers are no longer recognizable after the pressure and temperature treatment, so that in the case of exclusive use of ceramic powder after the pressure and temperature treatment is a one-piece all-ceramic.
Eine alternative erfindungsgemäße Strömungsmaschine hat einen Rotor und einen Stator. In zumindest einem Radialspalt zwischen dem Rotor und dem Stator ist eine Dichtung zur Reduzierung des Radialspaltes angeordnet, die erfindungsgemäß zwei gegenüberliegende Beschichtungen aufweist, von denen die eine Beschichtung auf einen den Radialspalt radial außen begrenzenden Statorabschnitt aufgebracht ist und die andere Beschichtung auf einen den Radialspalt radial innen begrenzenden Rotorabschnitt aufgebracht ist, wobei die Beschichtungen aus pulverbasierten Einzelschichten aufgebaut sind, deren äußere Schicht einen höheren Keramikanteil als eine rotor- bzw. statorabschnittsnahe Grundschicht aufweist, wobei die Partikelgröße des Pulvermaterials kleiner als 1,0 µm ist.An alternative turbomachine according to the invention has a rotor and a stator. In at least one radial gap between the rotor and the stator, a seal for reducing the radial gap is arranged, which according to the invention has two opposing coatings, of which the one coating is applied to a radial gap radially outwardly limiting stator and the other coating on a radial gap radially inner rotor portion is applied, wherein the coatings are constructed of powder-based individual layers whose outer layer has a higher ceramic content than a rotor or statorabna near base layer, wherein the particle size of the powder material is less than 1.0 microns.
Durch die graduierte Ausbildung der Beschichtungen können große Materialsprünge zwischen dem Rotor- und Statorabschnitt und der Beschichtung verhindert werden. Die Beschichtung kann somit hinsichtlich ihrer thermischen Ausdehnung oder ihres Elastizitätsmoduls schichtweise an den Rotor- und Statorabschnitt angepasst werden. Insbesondere weist die äußere Einzelschicht einen Keramikanteil von 100% auf und besteht somit ausschließlich aus einem Nano-Keramikpulver. Die Grundschicht weist hingegen einen sehr hohen Metallanteil auf.Due to the graduated formation of the coatings, large material jumps between the rotor and stator section and the coating can be prevented. The coating can thus be adapted in layers in terms of their thermal expansion or their modulus of elasticity to the rotor and stator. In particular, the outer single layer has a ceramic content of 100% and thus consists exclusively of a nano-ceramic powder. The base layer, however, has a very high metal content.
Eine hohe Dichtwirkung ist zu erzielen, wenn die Radialspaltabdichtung bei beiden Ausführungsbeispielen in Form einer Labyrinthdichtung erfolgt, wobei zumindest der Rotorabschnitt mit einer Vielzahl von in Richtung des Statorabschnitts weisenden Erhebungen ausgebildet ist. Sonstige vorteilhafte Ausführungsbeispiele der Erfindung sind Gegenstand weiterer Unteransprüche.A high sealing effect can be achieved if the radial gap seal takes place in the form of a labyrinth seal in both embodiments, wherein at least the rotor section is formed with a plurality of elevations pointing in the direction of the stator section. Other advantageous embodiments of the invention are the subject of further subclaims.
Im Folgenden wird ein bevorzugtes Ausführungsbeispiel der Erfindung anhand stark vereinfachter schematischer Darstellungen näher erläutert. Es zeigen:
- Figur 1
- eine Prinzipskizze einer Dichtung einer erfindungsgemäßen Strömungsmaschine, und
Figur 2- einen Teillängsschnitt durch eine erfindungsgemäße Strömungsmaschine.
- FIG. 1
- a schematic diagram of a seal of a turbomachine according to the invention, and
- FIG. 2
- a partial longitudinal section through a turbomachine according to the invention.
In
Der Rotorabschnitt 2 bildet einen Teil eines in
Der Statorabschnitt 4 bildet einen Teil eines in
Die Dichtung 1 ist beispielsweise in den in
Wie in
Die in
Die Beschichtungen 40, 42 sind sogenannte Nano-Keramik-Beschichtungen mit jeweils einer Gesamtschichtdicke von bevorzugterweise maximal 0,1 mm. Sie sind jeweils aus einem Keramikpulver aufgebaut, dessen Partikelgröße kleiner als 1,0 µm ist. Bevorzugterweise beträgt ihre Partikelgröße 100 nm. Die Beschichtungen 40, 42 werden mittels einer Druck- und Temperaturbehandlung, insbesondere eines Sinterprozesses, an dem Rotorabschnitt 4 bzw. dem Statorabschnitt 6 angebunden. Hierdurch bildet sich eine Verbindung mit hohen Adhäsionskräften zwischen dem Rotorabschnitt 4 bzw. dem Statorabschnitt 6 aus und den Beschichtungen 40, 42 aus. Bevorzugterweise ist das Keramikpulver zum Auftragen auf die Abschnitte 4, 6 in einer metallorganischen Verbindung gebunden.The
Die Beschichtungen 40, 42 bestehen jeweils aus einer Vielzahl von Einzelschichten, die zusammen die Gesamtschichtdicke nicht überschreiten. Die Einzelschichten bestehen bei dem in
Alternativ können die Einzelschichten unterschiedliche Keramikanteile aufweisen und so eine äußere Einzelschicht einen höheren Keramikanteil als eine rotor- bzw. statorabschnittsnahe Grundschicht haben. Bevozugterweise weist die äußere Einzelschicht einen Keramikanteil von 100% auf, da so ein geringer Reibkoeffizient erreicht wird. Die Grundschicht weist hingegen einen sehr hohen Metallanteil auf. Eine Partikelgröße des Keramikpulvers und der Metallpulvers ist jedoch stets kleiner als 1,0 µm. Konsequenterweise wird bei diesem Ausführungsbeispiel der Keramikanteil ausgehend vom Rotorabschnitt 4 bzw. Statorabschnitt 6 in Richtung des äußeren Einzelschicht erhöht und der Metallanteil korrespondierend gesenkt. Hierdurch lassen sich große Materialsprünge zwischen dem Rotorabschnitt 4 bzw. dem Statorabschnitt 6 und den Beschichtungen 40, 42 verhindern. Alternativ können auch einzelne Keramikschichten und Metallschichten alternierend angeordnet sein, wobei jeweils eine Keramikschicht die äußere Schicht bildet.Alternatively, the individual layers may have different ceramic components, and so an outer single layer may have a higher proportion of ceramic than a base layer close to the rotor or stator. Preferably, the outer single layer has a ceramic content of 100%, since such a low coefficient of friction is achieved. The base layer, however, has a very high metal content. However, a particle size of the ceramic powder and the metal powder is always smaller than 1.0 μm. Consequently, in this exemplary embodiment, the proportion of ceramic, starting from the
Um eine Zerstörung des Rotorabschnitts 4 in Folge eines heftigen Anstreifens der Erhebungen 34, 36, 38 am Statorabschnitt 4 zu verhindern, sind die Beschichtungen 40, 42 unterschiedlich hart ausgebildet. Bevorzugterweise ist die rotorseitige Beschichtung 40 härter als die statorseitige Beschichtung 42. Hierdurch laufen die Erhebungen 34,36, 38 im Falle eines heftigen Anstreifens in die statorseitige Beschichtung 42 ein und brechen nicht ab.In order to prevent destruction of the
Zudem sind zur Verbesserung eines Versagensverhaltens der Dichtung 1 die Beschichtungen 40, 42 unterschiedlich dick ausgeführt. Insbesondere ist die rotorseitige Beschichtung 40 dicker als die statorseitige Beschichtung 42. Selbstverständlich sind die unterschiedlichen Beschichtungshärten und die unterschiedlichen Beschichtungsdicken sowohl als Einzelmerkmale als auch in Kombination miteinander realisierbar.In addition, to improve a failure behavior of the seal 1, the
Offenbart ist eine Strömungsmaschine mit zumindest einer Radialspaltdichtung, die zumindest zwei gegenüberliegende Keramikbeschichtungen aufweist, die jeweils aus einem Keramikpulver aufgebaut sind, dessen Partikelgröße kleiner als 1,0 µm ist, und eine Strömungsmaschine mit zumindest einer Radialspaltdichtung, wobei die Beschichtungen aus pulverbasierten Einzelschichten aufgebaut sind, deren äußere Schicht einen höheren Keramikanteil als eine rotor- bzw. statorabschnittsnahe Grundschicht aufweist, wobei die Partikelgröße des Pulvermaterials kleiner als 1,0 µm ist.Disclosed is a turbomachine with at least one radial gap seal, which has at least two opposing ceramic coatings, each composed of a ceramic powder whose particle size is smaller than 1.0 microns, and a turbomachine with at least one radial gap seal, wherein the coatings are constructed of powder-based individual layers whose outer layer has a higher ceramic content than a rotor or statorabschnittsnahe base layer, wherein the particle size of the powder material is less than 1.0 microns.
Claims (8)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13161673.2A EP2784268A1 (en) | 2013-03-28 | 2013-03-28 | A turbine blade outer air seal comprising an abradable ceramic coating on the stator and the rotor respectively. |
US14/228,471 US9605554B2 (en) | 2013-03-28 | 2014-03-28 | Turbomachine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13161673.2A EP2784268A1 (en) | 2013-03-28 | 2013-03-28 | A turbine blade outer air seal comprising an abradable ceramic coating on the stator and the rotor respectively. |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2784268A1 true EP2784268A1 (en) | 2014-10-01 |
Family
ID=48049798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13161673.2A Withdrawn EP2784268A1 (en) | 2013-03-28 | 2013-03-28 | A turbine blade outer air seal comprising an abradable ceramic coating on the stator and the rotor respectively. |
Country Status (2)
Country | Link |
---|---|
US (1) | US9605554B2 (en) |
EP (1) | EP2784268A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015224379A1 (en) * | 2015-12-04 | 2017-06-08 | MTU Aero Engines AG | Stabilized sealing ring for a turbomachine |
FR3065482B1 (en) * | 2017-04-20 | 2019-07-05 | Safran Aircraft Engines | SEAL RING MEMBER FOR TURBINE COMPRISING A CAVITY INCLINED IN ABRADABLE MATERIAL |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0292250A1 (en) * | 1987-05-19 | 1988-11-23 | Union Carbide Corporation | Rotary gas seals and turbine and compressor blades |
DE10225532C1 (en) * | 2002-06-10 | 2003-12-04 | Mtu Aero Engines Gmbh | Gap sealing system for turbine blade tips, includes ceramic layers with metallic adherent layer and no other intermediates |
EP1739204A2 (en) * | 2005-06-29 | 2007-01-03 | The General Electric Company | Field repairable high temperature smooth wear coating |
EP2009141A2 (en) * | 2007-06-19 | 2008-12-31 | United Technologies Corporation | Thermal barrier system and bonding method |
DE102009012945A1 (en) * | 2009-03-12 | 2010-09-16 | Mtu Aero Engines Gmbh | Method for producing an abrasive coating and component for a turbomachine |
DE102011081323B3 (en) * | 2011-08-22 | 2012-06-21 | Siemens Aktiengesellschaft | Fluid-flow machine i.e. axial-flow gas turbine, has abradable abrasion layer arranged at blade tip adjacent to radial inner side of housing and made of specific mass percent of zirconium oxide stabilized ytterbium oxide |
EP2540973A1 (en) * | 2011-06-30 | 2013-01-02 | Siemens Aktiengesellschaft | Seal system for a gas turbine |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4299865A (en) * | 1979-09-06 | 1981-11-10 | General Motors Corporation | Abradable ceramic seal and method of making same |
US6682821B2 (en) * | 2001-12-28 | 2004-01-27 | Kyocera Corporation | Corrosion-resistant ceramics |
EP1806432A1 (en) * | 2006-01-09 | 2007-07-11 | Siemens Aktiengesellschaft | Coating system with 2 pyrochlore phases |
DE102007019476A1 (en) * | 2007-04-25 | 2008-11-06 | Mtu Aero Engines Gmbh | Method of producing a scuffing pad |
DE102010010595A1 (en) * | 2010-03-08 | 2011-09-08 | Lufthansa Technik Ag | Method for repairing sealing segments in the rotor / stator seal of a gas turbine |
-
2013
- 2013-03-28 EP EP13161673.2A patent/EP2784268A1/en not_active Withdrawn
-
2014
- 2014-03-28 US US14/228,471 patent/US9605554B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0292250A1 (en) * | 1987-05-19 | 1988-11-23 | Union Carbide Corporation | Rotary gas seals and turbine and compressor blades |
DE10225532C1 (en) * | 2002-06-10 | 2003-12-04 | Mtu Aero Engines Gmbh | Gap sealing system for turbine blade tips, includes ceramic layers with metallic adherent layer and no other intermediates |
EP1739204A2 (en) * | 2005-06-29 | 2007-01-03 | The General Electric Company | Field repairable high temperature smooth wear coating |
EP2009141A2 (en) * | 2007-06-19 | 2008-12-31 | United Technologies Corporation | Thermal barrier system and bonding method |
DE102009012945A1 (en) * | 2009-03-12 | 2010-09-16 | Mtu Aero Engines Gmbh | Method for producing an abrasive coating and component for a turbomachine |
EP2540973A1 (en) * | 2011-06-30 | 2013-01-02 | Siemens Aktiengesellschaft | Seal system for a gas turbine |
DE102011081323B3 (en) * | 2011-08-22 | 2012-06-21 | Siemens Aktiengesellschaft | Fluid-flow machine i.e. axial-flow gas turbine, has abradable abrasion layer arranged at blade tip adjacent to radial inner side of housing and made of specific mass percent of zirconium oxide stabilized ytterbium oxide |
Also Published As
Publication number | Publication date |
---|---|
US20140294570A1 (en) | 2014-10-02 |
US9605554B2 (en) | 2017-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2647795B1 (en) | Seal system for a turbo engine | |
DE102012106175A1 (en) | Structured abrasive coatings for surfaces of stationary steam turbine components | |
DE19962316A1 (en) | Brush seal | |
EP3324002B1 (en) | Sealing system for a turbomachine and axial flowmachine | |
DE10047307A1 (en) | sealing arrangement | |
EP1715140A1 (en) | Turbine blade with a cover plate and a protective layer on the cover plate | |
EP3093372A2 (en) | Coating method for producing a combination of armor plating for a blade tip and erosion resistant coating | |
EP2313615B1 (en) | Blade arrangement of a gas turbine | |
EP2984294B1 (en) | Turbine blade with staged and chamfered platform edge | |
EP3246430B1 (en) | Method for the preparation of blades or blade assemblies of a flow engine with erosion protection layers and correspondingly manufactured component | |
EP2784268A1 (en) | A turbine blade outer air seal comprising an abradable ceramic coating on the stator and the rotor respectively. | |
EP1654441A1 (en) | Run-in coating for gas turbines composed of a titanium-aluminium material | |
EP3312388B1 (en) | Rotor part, corresponding compressor, turbine and manufacturing method | |
WO2009059580A1 (en) | Gas turbine component and compressor comprising said component | |
EP2860356B1 (en) | Flow engine | |
DE102017204243A1 (en) | Dichtfin with at least one curved side edge | |
EP3056684B1 (en) | Axially split inner ring for a flow machine, guide blade assembly and aircraft engine | |
EP3274561B1 (en) | Rotor blade for a gas turbine, manufacturing process and post production process | |
DE102012015137A1 (en) | Low-modulus gas turbine compressor blade | |
EP3290649A1 (en) | Abradable lining and method for manufacturing an abradable lining for sealing a gap between a rotor and a stator of a turbomachine | |
DE102010055435B4 (en) | Innendeckband a gas turbine and method for producing a Innenendeckbandes | |
DE102010048147B4 (en) | Layer system for rotor / stator seal of a turbomachine and method for producing such a layer system | |
EP2957718A1 (en) | Turbine | |
EP4123123B1 (en) | Turbine blade for a flow engine | |
DE102015224160A1 (en) | Inlet lining for an external air seal of a turbomachine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
17P | Request for examination filed |
Effective date: 20130328 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MTU AERO ENGINES GMBH |
|
R17P | Request for examination filed (corrected) |
Effective date: 20150327 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MTU AERO ENGINES AG |
|
17Q | First examination report despatched |
Effective date: 20180306 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01D 11/12 20060101AFI20181016BHEP Ipc: F01D 5/20 20060101ALI20181016BHEP Ipc: F01D 5/28 20060101ALI20181016BHEP Ipc: C23C 28/00 20060101ALI20181016BHEP Ipc: F01D 11/08 20060101ALI20181016BHEP Ipc: F01D 5/00 20060101ALI20181016BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20200603 |