[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2782711B1 - Dispositif de distribution de jets de fluide cryogénique à chambre de tranquillisation - Google Patents

Dispositif de distribution de jets de fluide cryogénique à chambre de tranquillisation Download PDF

Info

Publication number
EP2782711B1
EP2782711B1 EP12787811.4A EP12787811A EP2782711B1 EP 2782711 B1 EP2782711 B1 EP 2782711B1 EP 12787811 A EP12787811 A EP 12787811A EP 2782711 B1 EP2782711 B1 EP 2782711B1
Authority
EP
European Patent Office
Prior art keywords
fluid
jets
cryogenic
nozzle
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12787811.4A
Other languages
German (de)
English (en)
Other versions
EP2782711A1 (fr
Inventor
Jacques Quintard
Frédéric Richard
Charles Truchot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of EP2782711A1 publication Critical patent/EP2782711A1/fr
Application granted granted Critical
Publication of EP2782711B1 publication Critical patent/EP2782711B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G1/00Non-rotary, e.g. reciprocated, appliances
    • F28G1/16Non-rotary, e.g. reciprocated, appliances using jets of fluid for removing debris
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • B24C1/086Descaling; Removing coating films
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G1/00Non-rotary, e.g. reciprocated, appliances
    • F28G1/12Fluid-propelled scrapers, bullets, or like solid bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0396Involving pressure control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85938Non-valved flow dividers

Definitions

  • the invention relates to a device for dispensing cryogenic fluid jets as well as an installation and a working method using said jets, in particular jets of liquid nitrogen, under high pressure, in particular an installation and a method.
  • surface treatment, pickling, cleaning or peeling, coated or uncoated materials such as metals, concrete, wood, polymers, ceramics and plastics or any other type of material.
  • the surface treatment of coated or uncoated materials is essentially by sanding, by projection of ultra high pressure water (UHP), sander, jackhammer , at the shredder or by chemical means.
  • UHP ultra high pressure water
  • Document is known WO-2010/119201 a device for dispensing one or more jets of cryogenic fluid according to the preamble of claim 1.
  • cryogenic jets under very high pressure are used at a pressure of 300 to 4000 bar and at a cryogenic temperature of, for example, between -100 and -200 ° C., typically about-140 and -160 ° C., which are distributed by one or more nozzles animated or not with a rotary movement.
  • a jet of cryogenic fluid typically has a maximum coherence length of the order of 15 to 18 cm.
  • coherence length is meant the length of the jet of cryogenic fluid on which the jet remains sufficiently concentrated to be visible after its escape through the nozzle.
  • the effective length of a cryogenic fluid jet is also a very important feature as it corresponds to the maximum distance from the ejection nozzle beyond which the jet is no longer sufficiently concentrated to maintain its treatment efficiency. surface, pickling, cleaning or peeling the treated material.
  • the effective length is therefore less than or equal to the jet coherence length which is the visible jet length.
  • the greater the effective length of the jet the more efficient the working method is at equal distance between the nozzle and the treated substrate, and the more the process gains in yield, said yield corresponding for example, in the case from a concrete peeling process, to the volume of concrete crushed per unit of time.
  • the surface of the treated material is, relative to the outlet of the jet distribution nozzle, at a distance less than or equal to the effective length and therefore less than the coherence length of said jet.
  • This effective jet length is in some cases, that is to say according to the working method considered, low, that is to say of the order of a few centimeters and typically between 5 and 15 mm for a jet of cryogenic fluid at a pressure of the order of 3500 bar distributed by a nozzle with a diameter of the order of 300 microns.
  • the positioning tolerance of the jet distribution nozzle relative to the surface of the treated material is then problematic.
  • the areas of treated material located at these defects or depressions are at a greater distance from the exit of the nozzle, to which the jet has lost all or part of its effectiveness, which leads to a less efficient working method on these areas.
  • the working method is then less reliable, which is critical for certain applications, such as the cleaning of contaminated parts in a nuclear environment, for which the least pollution residue is not acceptable.
  • an effective length of the jet insufficient makes it very difficult, if not impossible, a working method performed on a part in which machining such as ducts or wakes are practiced.
  • the problem posed is then even more critical because the bottom of the duct or treated wake can be located beyond the effective length of the jet, and therefore out of reach, thus making the work process very inefficient, even inefficient, in this area.
  • the treated part that is to say the exchanger, itself consists of parts some of which are located more than 20 cm from the circumference of said exchanger, and that it must be possible to clean, which is not possible with the jets of cryogenic fluid of the prior art.
  • the problem to be solved is therefore to propose a method of working by jets of improved cryogenic fluid, that is to say for which the disadvantages related not only to the length of coherence, but also to the effective length, limited jets no longer exist or are greatly reduced, and thus making it more reliable and more efficient the working method implementing said jets.
  • the object of the present invention is to provide a method for operating more efficiently and with a better yield the surface treatment, pickling, cleaning or peeling of the coated or uncoated materials, such as metals, the concrete, wood, polymers, ceramics and plastics or any other type of material, in particular a material whose surface has unevenness, unevenness or a part in which machining is carried out, or a room itself made of hard to reach parts.
  • the coated or uncoated materials such as metals, the concrete, wood, polymers, ceramics and plastics or any other type of material, in particular a material whose surface has unevenness, unevenness or a part in which machining is carried out, or a room itself made of hard to reach parts.
  • the solution of the invention is then a device for dispensing one or more jets of cryogenic fluid comprising a fluid supply pipe supplying one or more fluid distribution nozzles arranged downstream of said pipe, the supply pipe fluid having a fluid passage section of a first diameter, characterized in that it further comprises at least one plenum chamber arranged between the fluid supply pipe and the fluid distribution nozzle or nozzles, being fluidly connected to said fluid supply pipe and to the or at the fluid distribution nozzles, each plenum having a fluid passage section having a second diameter greater than the first diameter of the fluid passage section of the fluid supply pipe.
  • the device of the invention then makes it possible to dispense one or more jets of cryogenic fluid with increased coherence length, typically at least 19 cm, preferably greater than or equal to 20 cm, and this, with an effective length also increased, and capable of even achieve in some cases the same values, compared to a device according to art prior not provided with such a plenum, all other conditions being equal.
  • the present invention thus makes it possible to solve the problems described above by proposing a device able to increase not only the coherence length of the cryogenic fluid jets distributed and used for a working method, but also to increase the effective length of said jets. .
  • the invention relates to a treatment plant with one or more jets of cryogenic fluid comprising a cryogenic fluid source at high pressure fluidically connected to a fluid supply pipe supplying one or more distribution nozzles of a or several jets of fluid at high pressure cryogenic temperature, characterized in that it further includes a device according to the invention.
  • the invention relates to a working method using one or more jets of cryogenic fluid distributed by means of a device according to the invention for producing, by means of one or more jets of cryogenic fluid under pressure, surface treatment, stripping, cleaning or peeling of a material.
  • the jets or cryogenic fluid distributed by the fluid distribution nozzle or nozzles have a temperature below -140 ° C and a pressure of at least 300 bar.
  • the cryogenic fluid used is liquid nitrogen.
  • the treated part is a heat exchanger.
  • the treated part preferably has at least one characteristic dimension greater than or equal to 20 cm.
  • the Figure 1 schematizes a device for dispensing a jet of cryogenic fluid 6 comprising a pipe 1 for supplying a fluid (arrow 7), the fluid passage section of which has a diameter d, feeding a nozzle 5 of fluid distribution arranged downstream of said pipe 6.
  • the diameter d is the inside diameter of the pipe 1.
  • the fluid 7 is a cryogenic fluid at high pressure emanating from a source of fluid (not shown), such as a compressor, a tank, a heat exchanger, a feed line, a gas cylinder or the like, supplying the fluid. upstream end of the pipe 1 fluid.
  • the pipe 1 is thus fluidly connected to the fluid source 7.
  • this pipe is a tube whose section is advantageously circular in shape.
  • This tube can be made of any type of suitable material, preferably stainless steel for its mechanical properties.
  • the thickness of the wall constituting the pipe 1 is defined so as to withstand the mechanical stresses resulting from the circulation of a cryogenic fluid at high pressure, typically said thickness is of the order of the internal diameter of the pipe, ie the section fluid passage of diameter d.
  • a fluid distribution nozzle 5 is fluidly connected to the pipe 1 so that it distributes a jet of cryogenic fluid 6 whose propagation axis is aligned with the central axis XX of the pipe 1 and the length of which coherence is denoted LC1.
  • the nozzle 5 is connected to the pipe 1 via a UHP type water jet connection 2.
  • the coherence length LC1 typically between 15 and 18 cm, may be insufficient for a number of applications, in particular for treatment of a part made of a material whose surface has unevenness, unevenness, or in which machining is performed, in particular when these machining operations are performed along a dimension of the treated part greater than the LC1 coherence length.
  • this also poses a problem for cleaning applications of heat exchangers, these exchangers being made up of parts that are difficult to access, in particular parts located more than 20 cm from the circumference of the exchanger.
  • a jet of cryogenic fluid 6 is incorporated in a delivery device a jet of cryogenic fluid 6 according to the prior art a so-called plenum chamber 4 capable of increasing the coherence length LC1 of the jet 6 to a length of LC2 consistency higher than LC1.
  • the plenum chamber 4 is arranged between the fluid supply pipe 1 and the fluid distribution nozzle 5.
  • the pipe 1 is fluidly connected to the plenum 4, said chamber being fluidly connected to the nozzle 5 of fluid distribution.
  • plenum chamber a device through which the fluid 7 circulates and capable of laminarizing the flow of said fluid, that is to say capable of making it more laminar or equivalent less turbulent, thanks to the use of a larger fluid passage section than that of the pipe 1 of fluid supply. More specifically, the circulation of the fluid 7 through the plenum 4 will induce a change in the dynamic characteristics of the jet of cryogenic fluid 6 at its outlet from the nozzle 5 by making it less turbulent, i. e. by lowering its Reynolds number. This results in an increase in the coherence length of the jet of cryogenic fluid 6 to a value LC2 greater than the value LC1 of the coherence length of the jet of cryogenic fluid obtained without the device of the invention.
  • the plenum 4 is a part of revolution in which is practiced a circular section of conduit having a fluid passage section of diameter D and length L.
  • the diameter D is the inside diameter of the chamber of 4.
  • the plenum 4 is formed of a material adapted to the passage of a cryogenic fluid under high pressure, preferably stainless steel, preferably type 316 stainless steel.
  • the fluid passage section of the plenum 4 has a diameter D greater than the diameter d of the fluid passage section of the pipe 1 for supplying fluid.
  • the plenum chamber 4 is connected to a fluid supply duct 1 whose internal diameter is 2.1 mm, for example a so-called 1 ⁇ 4 "tube, outer diameter equal to 6.35 mm, the internal diameter D of the chamber is greater than 2.1 mm.
  • the plenum 4 has a fluid passage section with a diameter D of between 2 and 6 mm, preferably between 3 and 5 mm, and a length L of between 20 and 100 mm, preferably between 50 and 70 mm. . These dimensions are adapted according to the intended application and the coherence length of the desired fluid jet 6.
  • a single plenum 4 is directly connected to the end of the pipe 1 of fluid supply by means of a connector 2 and is directly upstream of the nozzle 5 of fluid distribution.
  • the connection between the plenum 4 and the end of the pipe 1 is advantageously provided by a threaded connection.
  • the connection between the plenum 4 and the nozzle 5 is obtained through a tap made in the downstream portion of the plenum 4 and on which the nozzle 5 is screwed.
  • the axis of the plenum 4 is aligned with the axis XX of the pipe 1 for supplying fluid.
  • the device of the invention is able to dispense a jet of single and fixed cryogenic fluid 6 whose coherence length, denoted LC2 on the Figure 2 , is greater than the coherence length LC1 of a jet of fluid dispensed by a device according to the prior art.
  • the dispensing device of one or more jets of cryogenic fluid 6 comprises one or more nozzles 5 distributing one or more jets of cryogenic fluid 6.
  • the nozzle or nozzles 5 are positioned eccentrically, that is to say off-center relative to the axis XX of the pipe 1 for supplying fluid.
  • a nozzle-carrying tool 3 is connected to the end of the pipe 1 for supplying fluid by means of a connection 2.
  • This nozzle-carrying tool 3 then supports one or more stilling chambers 4 arranged between the nozzle holder tool 3 and the fluid delivery nozzle (s) 5.
  • a plenum 4 is arranged upstream of each cryogenic fluid delivery nozzle 5.
  • the device of the invention is thus able to dispense one or more cryogenic fluid jets 6 whose coherence length LC2 is greater than the coherence length LC1 of a jet of fluid distributed by a device according to the prior art.
  • the device for dispensing one or more jets of cryogenic fluid 6 comprises a nozzle-carrying tool 3 provided with means for rotating said tool around the axis XX of the pipe 1 so as to to give a circular movement to the fluid distribution nozzle (s) 5 and to obtain rotary jets (schematized by the arrow 8 on the Figure 3 ).
  • the tool 3 nozzle holder can be rotated by a set of gears, with or without transmission belt, moved by a electric or pneumatic motor via a first shaft or rotational transmission shaft connected to the motor, a box, a housing or a transmission enclosure comprising an internal gearset transmission mechanism and a second rotary shaft or transmission shaft connected in turn to the movable tool 3 provided with the plenums 4 and the nozzles 5.
  • the solution of the invention also relates to a working method implementing a device according to the invention capable of dispensing one or more jets of cryogenic fluid 6, fixed or rotary, the coherence length is increased to achieve a surface treatment, stripping, cleaning or even peeling of a material.
  • the method of the invention is particularly advantageous for carrying out a surface treatment operation or the like of a material or a part whose surface has a flatness defect, asperities or having at least one characteristic dimension of at least 20 cm, that is to say a width, height or length, in which are machined.
  • the solution of the invention is of great interest for the cleaning of large heat exchangers, that is to say at least 40 cm, for which component parts may be more than 20 cm from the circumference of the exchangers.
  • the cryogenic fluid jets or jets used in the working method have a coherence length LC 2 of at least 20 cm.
  • the fluid dispensed by the device of the invention is a fluid at cryogenic temperature and at high pressure, in particular liquid nitrogen at a pressure greater than 1500 bar and at a temperature below 140 ° C.
  • the tests were carried out with jets of liquid nitrogen at a pressure of 3500 bars, a flow rate of 6 l / min and at a temperature of -155 ° C.
  • the cryogenic fluid supply system is a 316L UHP stainless steel tube with an outside diameter of 6.35 mm and an inside diameter d equal to 2.1 mm.
  • the cryogenic fluid jet dispensing device comprises a unique plenum and dispensing nozzle, such as that illustrated in FIG. Figure 2 and does not implement a rotation system of the jet.
  • Example 1 Dispensing nozzle for cryogenic fluid with a diameter of 305 ⁇ m
  • the device for dispensing the jet of cryogenic fluid located downstream of the plenum is a nozzle derived from high-pressure water jet technology equipped with an ejection sapphire whose diameter fluid passage, that is to say the diameter of the outlet orifice, is 305 microns.
  • Table 1 gives the jet coherence lengths obtained during tests carried out with a plenum of length L equal to 60 mm and diameter D equal to 4.2 mm (test No. 1), in comparison with the lengths of coherence. jet obtained during tests carried out in the absence of such a plenum (test No. 2).
  • the arrangement of a plenum chamber according to the invention between the fluid supply pipe and the fluid distribution nozzle actually leads to a coherence length of the cryogenic fluid jet dispensed greater than that obtained. without the device of the invention.
  • Table 2 gives the jet coherence lengths obtained when using a plenum of diameter D equal to 4.2 mm and of different lengths L and Table 3 gives the jet consistency lengths obtained during the use of plenums of different diameters D and length L equal to 60 mm.
  • Table 4 gives the Reynolds numbers of the cryogenic fluid jets obtained during the use of plenums of different diameters D and length L equal to 60 mm.
  • the arrangement of a plenum chamber between the fluid supply pipe and the fluid distribution nozzle, in accordance with the invention effectively leads to coherence lengths of the higher distributed cryogenic fluid jets.
  • the invention also makes it possible to increase the effective length of the jet of cryogenic fluid.
  • the application of the invention is particularly advantageous when the treated part comprises at least one characteristic dimension, that is to say a length, width or height, the said characteristic dimension being of the order 20 cm and more, or when the treated part itself comprises parts located more than 20 cm from the circumference of said treated part.
  • Table 4 shows that the increase in the coherence length of the jet of cryogenic fluid is accompanied by a decrease in the Reynolds number of said jet and therefore a laminarization of said jet, which further demonstrates the interest of the invention to solve the problems mentioned above.
  • the results presented in Tables 2 and 3 show that the increase in the coherence length tends to reach a ceiling value when the diameter D of the plenum increases or when the length of the plenum L increases. It is therefore not necessary to increase indefinitely the dimensions L and D of the plenum, and the dimensions of the chamber are thus reasonable.
  • the diameters and lengths of the plenum chamber (s) will therefore be adjusted so that the fluid passage section D has a diameter of between 2 and 6 mm. that the length L of said section is between 20 and 100 mm.
  • the diameter D of the fluid passage section of the plenum is preferably preferably between 3 and 5.
  • the length L of the fluid passage section of the plenum is preferably between 50 and 70 mm, so as to distribute one or more jets of cryogenic fluid having an LC2 consistency length of at least 20 cm .
  • these dimensions make it possible to maintain a device for dispensing one or more jets of cryogenic fluid remaining of reasonable size, so that it can easily be used in an industrial working installation using the fluid jet or jets. cryogenic distributed. ⁇ u> Table 1 ⁇ / u> 305 ⁇ m ejection diameter Test N ° 1 - Invention Test No.
  • Example 2 Cryogenic fluid dispensing nozzle with a diameter of 432 ⁇ m
  • a second series of tests was carried out, under the same conditions as above, but this time with a nozzle provided with an ejection sapphire whose fluid passage diameter is 432 ⁇ m, the objective being to verify that the results obtained previously remain valid with an ejection nozzle of characteristics different from the first.
  • Table 5 gives the jet coherence lengths obtained when using a plenum of diameter D equal to 4.2 mm and of different lengths L.
  • Table 6 gives the jet coherence lengths obtained during the measurement. use of plenums of different diameters D and length L equal to 60 mm.
  • the diameter D of the fluid passage section of the plenum is preferentially preferably between 3 and 5 mm, and the length L of the fluid passage section of the plenum is preferably between 50 and 70 mm, so as to distribute one or more jets of cryogenic fluid having a coherence length LC2 at least 20 cm.
  • the jet coherence length is greater than with a nozzle with an ejection diameter of 305 ⁇ m and this, for the same plenum chamber. Indeed, with a larger ejection diameter, the flow rate at constant pressure is greater, which leads to a longer jet coherence length.
  • the method of peeling is carried out with liquid nitrogen at a pressure of the order of 3500 bar, a temperature of the order of -153 ° C. and a flow rate of about 71 / min.
  • the liquid nitrogen is distributed by a single nozzle, whose ejection diameter is 330 microns, rotated at a speed of about 1400 revolutions / min using a nozzle-holder tool provided with rotating said tool around the axis of the fluid supply pipe, so as to give circular movement to the fluid distribution nozzle.
  • the nozzle holder moves at a speed of about 130 cm / min.
  • a detailed description of this rotation tool is made in the document WO-2011010030 .
  • the crushed material is fine-grained and homogeneous concrete, a typical application of which is the formation of garden edging.
  • the structure of this concrete favors the realization of comparative measurements.
  • the nozzle distributing the liquid nitrogen is positioned at a distance of about 10 mm from the surface of the treated concrete.
  • Table 7 presents a comparison of the results obtained during the peeling of the concrete according to the prior art, that is to say without a plenum (Test No. 3), and with a device according to the invention, that is to say with a plenum, the chamber used having a length L of 60 mm and a diameter D of 4.2 mm (Test No. 4).
  • the invention makes it possible to increase the effective length of the jet to a value of between 15 to 20 mm, typically at least 17 mm, compared with an effective length of between 5 and 15 ⁇ m. mm, typically less than 13 mm, without still room.
  • the invention also makes it possible to increase the volume of concrete crushed per unit of time. In general, the use of the invention leads to a gain of about 260% in the concrete peeling performance.
  • the main application of the present invention is a method of surface treatment, pickling, cleaning or peeling of coated or uncoated materials, such as metals, concrete, wood, polymers, ceramics and plastics or any other type of material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles (AREA)
  • Cleaning In General (AREA)

Description

  • L'invention porte sur un dispositif de distribution de jets de fluide cryogénique ainsi qu'une installation et un procédé de travail mettant en oeuvre lesdits jets, en particulier des jets d'azote liquide, sous haute pression, en particulier une installation et un procédé de traitement de surface, de décapage, de nettoyage ou d'écroutage, de matériaux revêtus ou non, tels les métaux, le béton, le bois, les polymères, les céramiques et les plastiques ou tout autre type de matériau.
  • Actuellement, le traitement de surface de matériaux revêtus ou non, en particulier le décapage, l'écroutage ou analogue, se fait essentiellement par sablage, par projection d'eau à ultra haute pression (UHP), à la ponceuse, au marteau-piqueur, à la bouchardeuse ou encore par voie chimique.
  • Toutefois, lorsqu'il doit ne pas y avoir d'eau, par exemple en milieu nucléaire, ou de produit chimique, par exemple du fait de contraintes environnementales drastiques, seuls des procédés de travail dits « à sec » peuvent être utilisés.
  • Cependant, dans certains cas, ces procédés « à sec » sont difficiles à mettre en oeuvre, sont très laborieux ou pénibles à utiliser ou encore génèrent des pollutions supplémentaires, par exemple du fait de l'ajout de grenaille ou de sable à retraiter ensuite.
  • On connaît du document WO-A-2010/119201 un dispositif de distribution d'un ou plusieurs jets de fluide cryogénique selon le préambule de la revendication 1.
  • Une alternative à ces technologies repose sur l'utilisation de jets cryogéniques sous très haute pression comme proposé par les documents US-A-7,310,955 et US-A-7,316,363 . Dans ce cas, on utilise un ou des jets d'azote liquide à une pression de 300 à 4000 bars et à température cryogénique comprise par exemple entre -100 et -200°C, typiquement environ - 140 et -160°C, qui sont distribués par une ou plusieurs buses animées ou non d'un mouvement rotatif.
  • Habituellement, à une pression de l'ordre de 3500 bars, et pour un diamètre de buse de l'ordre de 300 µm, un jet de fluide cryogénique, en particulier un jet d'azote liquide, a typiquement une longueur de cohérence maximale de l'ordre de 15 à 18 cm. Par longueur de cohérence, on entend la longueur du jet de fluide cryogénique sur laquelle le jet reste suffisamment concentré pour être visible après son échappement par la buse.
  • Toutefois, la longueur efficace d'un jet de fluide cryogénique est également une caractéristique très importante car elle correspond à la distance maximale de la buse d'éjection au-delà de laquelle le jet n'est plus suffisamment concentré pour maintenir son efficacité de traitement de surface, de décapage, de nettoyage ou d'écroutage du matériau traité. La longueur efficace est dès lors inférieure ou égale à la longueur de cohérence de jet qui est la longueur de jet visible.
  • En d'autres termes, plus la longueur efficace du jet est grande, plus le procédé de travail est efficace à distance égale entre la buse et le substrat traité, et plus le procédé gagne en rendement, ledit rendement correspondant par exemple, dans le cas d'un procédé d'écroutage de béton, au volume de béton écrouté par unité de temps.
  • Ainsi, pour qu'un jet de fluide cryogénique soit efficace et apte à effectuer le procédé de travail voulu, il est nécessaire que la surface du matériau traité se situe, par rapport à la sortie de la buse de distribution du jet, à une distance inférieure ou égale à la longueur efficace et donc inférieure à la longueur de cohérence dudit jet. Cette longueur efficace de jet est dans certains cas, c'est-à-dire selon le procédé de travail considéré, faible, c'est-à-dire de l'ordre de quelques centimètres et typiquement comprise entre 5 et 15 mm pour un jet de fluide cryogénique à une pression de l'ordre de 3500 bars distribué par une buse d'un diamètre de l'ordre de 300 µm. La tolérance de positionnement de la buse de distribution du jet par rapport à la surface du matériau traité est alors problématique.
  • En effet, il est techniquement difficile de maintenir une distance rigoureusement fixe entre la buse de distribution du jet et la surface du matériau traité et ce, que le procédé soit utilisé en manuel ou en automatique, lorsque le matériau présente à sa surface un défaut de planéité, d'état de surface ou encore des aspérités, c'est-à-dire une succession de creux et de saillies, comme c'est le cas pour le béton par exemple.
  • Ainsi, si le défaut de planéité ou la profondeur des creux ont une amplitude trop importante, les zones de matériau traité situées au niveau de ces défauts ou de ces creux se trouvent à une distance plus grande de la sortie de la buse, à laquelle le jet a perdu tout ou partie de son efficacité, ce qui conduit à un procédé de travail moins efficace sur ces zones. Le procédé de travail est alors moins fiable, ce qui est critique pour certaines applications, telles le nettoyage de pièces contaminées en milieu nucléaire, pour lesquelles le moindre résidu de pollution n'est pas acceptable.
  • Par ailleurs, une longueur efficace du jet insuffisante rend très difficile, voire impossible, un procédé de travail effectué sur une pièce dans laquelle sont pratiqués des usinages tels des conduits ou des sillages. Le problème posé est alors encore plus critique car le fond du conduit ou du sillage traité peut se situer au-delà de la longueur efficace du jet, et de ce fait hors de sa portée, rendant ainsi le procédé de travail très peu efficace, voire inefficace, dans cette zone.
  • Par ailleurs, le fait que les jets de fluide cryogénique classiques aient une longueur de cohérence, et donc une longueur efficace, en général inférieure à 20 cm pose problème pour le traitement, en particulier le nettoyage, des échangeurs thermiques utilisés dans des installations du type, par exemple, usine de production d'énergie, usine de désulfurisation d'hydrocarbures, usine de traitement de l'air, de l'eau, les échangeurs thermiques pouvant avoir des diamètres supérieures à 40 cm. Dans ce cas, la pièce traitée, c'est-à-dire l'échangeur, est lui-même constitué de pièces dont certaines sont situées à plus de 20 cm de la circonférence dudit échangeur, et qu'il faut pouvoir nettoyer, ce qui n'est pas possible avec les jets de fluide cryogénique de l'art antérieur.
  • Le problème à résoudre est dès lors de proposer un procédé de travail par jets de fluide cryogénique amélioré, c'est-à-dire pour lequel les inconvénients liés non seulement à la longueur de cohérence, mais aussi à la longueur efficace, limitées des jets n'existent plus ou sont fortement réduits, et permettant ainsi de rendre plus fiable et plus efficace le procédé de travail mettant en oeuvre lesdits jets.
  • Dit autrement, le but de la présente invention est de proposer un procédé permettant d'opérer plus efficacement et avec un meilleur rendement le traitement de surface, de décapage, de nettoyage ou d'écroutage des matériaux revêtus ou non, tels les métaux, le béton, le bois, les polymères, les céramiques et les plastiques ou tout autre type de matériau., en particulier d'un matériau dont la surface présente des défauts de planéité, des aspérités ou d'une pièce dans laquelle sont pratiqués des usinages, ou encore d'une pièce elle-même constituée de pièces difficilement accessibles.
  • La solution de l'invention est alors un dispositif de distribution d'un ou plusieurs jets de fluide cryogénique comprenant une canalisation d'amenée de fluide alimentant une ou plusieurs buses de distribution de fluide agencées en aval de ladite canalisation, la canalisation d'amenée de fluide ayant une section de passage de fluide d'un premier diamètre,
    caractérisé en ce qu'il comprend en outre au moins une chambre de tranquillisation agencée entre la canalisation d'amenée de fluide et la ou les buses de distribution de fluide, en étant reliée fluidiquement à ladite canalisation d'amenée de fluide et à la ou aux buses de distribution de fluide, chaque chambre de tranquillisation ayant une section de passage de fluide présentant un deuxième diamètre supérieur au premier diamètre de la section de passage de fluide de la canalisation d'amenée de fluide.
  • En effet, les inventeurs de la présente invention ont mis en évidence qu'une telle chambre de tranquillisation permettait de laminariser un écoulement de fluide cryogénique, c'est-à-dire de le rendre plus laminaire ou de façon équivalente moins turbulent, grâce à l'utilisation d'une section de passage de fluide au sein de cette chambre de tranquillisation de dimension plus importante que celle de la canalisation d'amenée de fluide cryogénique.
  • Le dispositif de l'invention permet alors de distribuer un ou des jets de fluide cryogénique à longueur de cohérence accrue, typiquement au moins 19 cm, de préférence supérieure ou égale à 20 cm, et ce, avec une longueur efficace également accrue, et pouvant même atteindre dans certains cas les mêmes valeurs, par rapport à un dispositif selon l'art antérieur non muni d'une telle chambre de tranquillisation, toutes les autres conditions étant égales par ailleurs.
  • La présente invention permet ainsi de résoudre les problèmes exposés précédemment en proposant un dispositif apte à augmenter non seulement la longueur de cohérence des jets de fluide cryogénique distribués et mis en oeuvre pour un procédé de travail, mais également d'augmenter la longueur efficace desdits jets.
  • Par ailleurs, selon le mode de réalisation considéré, l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes :
    • la chambre de tranquillisation a une section de passage de fluide d'un diamètre compris entre 2 et 6 mm, de préférence entre 3 et 5 mm.
    • la chambre de tranquillisation a une longueur comprise entre 20 et 100 mm, de préférence entre 50 et 70 mm.
    • la chambre de tranquillisation est formée d'un matériau adapté aux températures cryogéniques, avantageusement de l'acier inoxydable, de préférence de l'acier inoxydable du type 316 ou 316L.
    • le dispositif de distribution d'un ou plusieurs jets de fluide cryogénique comprend une chambre de tranquillisation unique directement connectée à l'extrémité de la canalisation d'amenée de fluide au moyen d'un raccord.
    • le dispositif de distribution d'un ou plusieurs jets de fluide cryogénique comprend en outre un outil porte-buses connecté à l'extrémité de la canalisation d'amenée de fluide au moyen d'un raccord, lequel outil porte-buses supporte au moins une chambre de tranquillisation agencée entre l'outil porte-buses et la ou les buses de distribution de fluide.
    • le dispositif de distribution d'un ou plusieurs jets de fluide cryogénique comprend en outre un outil porte-buses muni de moyens de mise en rotation dudit outil porte-buses autour de l'axe de la canalisation d'amenée de fluide de manière à conférer un mouvement circulaire à la ou aux buses de distribution de fluide.
  • Par ailleurs, l'invention concerne une installation de traitement par un ou plusieurs jets de fluide cryogénique comprenant une source de fluide à température cryogénique sous haute pression reliée fluidiquement à une canalisation d'amenée de fluide alimentant une ou plusieurs buses de distribution d'un ou plusieurs jets de fluide à température cryogénique sous haute pression, caractérisée en ce qu'elle inclut en outre un dispositif selon l'invention.
  • Selon un autre aspect, l'invention a trait à un procédé de travail mettant en oeuvre un ou plusieurs jets de fluide cryogénique distribués au moyen d'un dispositif selon l'invention pour réaliser, au moyen d'un ou plusieurs jets de fluide cryogénique sous pression, un traitement de surface, un décapage, un nettoyage ou un écroutage d'un matériau.
  • De préférence, le ou les jets de fluide cryogénique distribués par la ou les buses de distribution de fluide ont une température inférieure à -140 °C et à une pression d'au moins 300 bars.
  • Avantageusement, le fluide cryogénique mis en oeuvre est de l'azote liquide.
  • Selon un mode de réalisation de l'invention, la pièce traitée est un échangeur thermique. La pièce traitée possède de préférence au moins une dimension caractéristique supérieure ou égale à 20 cm.
  • L'invention va maintenant être mieux comprise grâce à la description détaillée suivante faite en références aux Figures annexées parmi lesquelles :
    • la Figure 1 schématise un dispositif de distribution d'un jet de fluide cryogénique classique sans utilisation du dispositif de l'invention,
    • la Figure 2 schématise un dispositif de distribution d'un jet de fluide cryogénique selon un mode de réalisation de l'invention, et
    • la Figure 3 schématise un dispositif de distribution d'un ou plusieurs jets de fluide cryogénique selon un autre mode de réalisation de l'invention.
  • La Figure 1 schématise un dispositif de distribution d'un jet de fluide cryogénique 6 comprenant une canalisation 1 d'amenée d'un fluide (flèche 7), dont la section de passage de fluide a un diamètre d, alimentant une buse 5 de distribution de fluide agencées en aval de ladite canalisation 6. Dit autrement, le diamètre d est le diamètre intérieur de la canalisation 1.
  • Le fluide 7 est un fluide cryogénique à haute pression émanant d'une source de fluide (non schématisée), tel un compresseur, un réservoir, un échangeur thermique, une ligne d'alimentation, une ou des bouteilles de gaz ou analogue, alimentant l'extrémité amont de la canalisation 1 de fluide. La canalisation 1 est donc reliée fluidiquement à la source de fluide 7.
  • De façon habituelle, cette canalisation est un tube dont la section est avantageusement de forme circulaire. Ce tube peut être réalisé en tout type de matériau adapté, préférablement de l'acier inoxydable pour ses propriétés mécaniques. L'épaisseur de la paroi constituant la canalisation 1 est définie de sorte à supporter les contraintes mécaniques résultant de la circulation d'un fluide cryogénique à haute pression, typiquement ladite épaisseur est de l'ordre du diamètre intérieur de la canalisation, i. e. la section de passage de fluide de diamètre d. Comme on le voit sur la Figure 1, une buse 5 de distribution de fluide est reliée fluidiquement à la canalisation 1 de sorte qu'elle distribue un jet de fluide cryogénique 6 dont l'axe de propagation est aligné avec l'axe central XX de la canalisation 1 et dont la longueur de cohérence est dénotée LC1. La buse 5 est reliée à la canalisation 1 par l'intermédiaire d'un raccord type jet d'eau UHP 2.
  • Or la longueur de cohérence LC1, typiquement comprise entre 15 et 18 cm, peut s'avérer insuffisante pour nombre d'applications, en particulier pour des applications de traitement d'une pièce faite d'un matériau dont la surface présente des défauts de planéité, des aspérités, ou dans lequel sont pratiqués des usinages, en particulier lorsque ces usinages sont pratiqué le long d'une dimension de la pièce traitée supérieure à la longueur de cohérence LC1. Par ailleurs, ceci pose aussi problème pour les applications de nettoyage d'échangeurs thermiques, ces échangeurs étant constitué de pièces difficile d'accès, notamment des pièces situées à plus de 20 cm de la circonférence de l'échangeur.
  • Pour y remédier, selon la présente invention, on incorpore à un dispositif de distribution d'un jet de fluide cryogénique 6 selon l'art antérieur une chambre dite de tranquillisation 4 apte à augmenter la longueur de cohérence LC1 du jet 6 à une longueur de cohérence LC2 supérieure à LC1.
  • Comme on le voit sur la Figure 2, qui schématise un mode de réalisation de l'invention, la chambre de tranquillisation 4 est agencée entre la canalisation 1 d'amenée de fluide et la buse 5 de distribution de fluide. La canalisation 1 est reliée fluidiquement à la chambre de tranquillisation 4, la dite chambre étant reliée fluidiquement à la buse 5 de distribution de fluide.
  • Par chambre de tranquillisation, on entend un dispositif à travers lequel circule le fluide 7 et apte à laminariser l'écoulement dudit fluide, c'est-à-dire apte à le rendre plus laminaire ou de façon équivalente moins turbulent, grâce à l'utilisation d'une section de passage de fluide de dimension plus importante que celle de la canalisation 1 d'amenée de fluide. Plus précisément, la circulation du fluide 7 à travers la chambre de tranquillisation 4 va induire une modification des caractéristiques dynamiques du jet de fluide cryogénique 6 à sa sortie de la buse 5 en le rendant moins turbulent, i. e. en abaissant son nombre de Reynolds. Il en résulte une augmentation de la longueur de cohérence du jet de fluide cryogénique 6 à une valeur LC2 supérieure à la valeur LC1 de la longueur de cohérence du jet de fluide cryogénique obtenue sans le dispositif de l'invention.
  • Avantageusement, la chambre de tranquillisation 4 est une pièce de révolution dans laquelle est pratiqué un conduit de section circulaire ayant une section de passage de fluide de diamètre D et de longueur L. Dit autrement, le diamètre D est le diamètre intérieur de la chambre de tranquillisation 4. La chambre de tranquillisation 4 est formée d'un matériau est adapté au passage d'un fluide cryogénique sous haute pression, avantageusement de l'acier inoxydable, de préférence de l'acier inoxydable du type 316.
  • Dans tous les cas, et conformément à l'invention, la section de passage de fluide de la chambre de tranquillisation 4 a un diamètre D supérieur au diamètre d de la section de passage de fluide de la canalisation 1 d'amenée de fluide.
  • A titre d'exemple, si la chambre de tranquillisation 4 est raccordée à une canalisation 1 d'amenée de fluide dont le diamètre intérieur est de 2.1 mm, par exemple un tube dit ¼" de diamètre extérieur égal à 6.35 mm, le diamètre intérieur D de la chambre est supérieur à 2.1 mm.
  • La chambre de tranquillisation 4 a une section de passage de fluide d'un diamètre D compris entre 2 et 6 mm, de préférence entre 3 et 5 mm, et une longueur L comprise entre 20 et 100 mm, de préférence entre 50 et 70 mm. Ces dimensions sont adaptées selon l'application visée et la longueur de cohérence du jet de fluide 6 souhaitée.
  • Selon un mode particulier de réalisation de l'invention, comme illustré en Figure 2, une chambre de tranquillisation 4 unique est directement connectée à l'extrémité de la canalisation 1 d'amenée de fluide au moyen d'un raccord 2 et se situe directement en amont de la buse 5 de distribution de fluide. Au vu des pressions de fluide cryogénique mises en jeu, la connexion entre la chambre de tranquillisation 4 et l'extrémité de la canalisation 1 est avantageusement assurée par un raccord fileté. La liaison entre la chambre de tranquillisation 4 et la buse 5 est obtenue grâce à un taraud réalisé dans la partie aval de la chambre de tranquillisation 4 et sur lequel la buse 5 est vissée. L'axe de la chambre de tranquillisation 4 est aligné avec l'axe XX de la canalisation 1 d'amenée de fluide. Dans ce cas, le dispositif de l'invention est apte à distribuer un jet de fluide cryogénique 6 unique et fixe dont la longueur de cohérence, dénotée LC2 sur la Figure 2, est supérieure à la longueur de cohérence LC1 d'un jet de fluide distribué par un dispositif selon l'art antérieur.
  • Selon un autre mode de réalisation, illustré en Figure 3, le dispositif de distribution d'un ou plusieurs jets de fluide cryogénique 6 comprend une ou plusieurs buses 5 distribuant un ou plusieurs jets de fluide cryogéniques 6. La ou les buses 5 sont positionnées de manière excentrée, c'est-à-dire décentrées par rapport à l'axe XX de la canalisation 1 d'amenée de fluide. Dans ce cas, un outil porte-buses 3 est connecté à l'extrémité de la canalisation 1 d'amenée de fluide au moyen d'un raccord 2. Cet outil porte-buses 3 supporte alors une ou plusieurs chambres de tranquillisation 4 agencées entre l'outil porte-buses 3 et la ou les buses 5 de distribution de fluide. Bien entendu, lors de la distribution de multiples jets de fluide cryogéniques 6, on agence une chambre de tranquillisation 4 en amont de chaque buse 5 de distribution de fluide cryogénique. Le dispositif de l'invention est ainsi apte à distribuer un ou plusieurs jets de fluide cryogéniques 6 dont la longueur de cohérence LC2 est supérieure à la longueur de cohérence LC1 d'un jet de fluide distribué par un dispositif selon l'art antérieur.
  • Selon un mode particulier de réalisation, le dispositif de distribution d'un ou plusieurs jets de fluide cryogénique 6 comprend un outil porte-buses 3 muni de moyens de mise en rotation dudit outil autour de l'axe XX de la canalisation 1 de manière à conférer un mouvement circulaire à la ou aux buses 5 de distribution de fluide et à obtenir des jets rotatifs (schématisé par la flèche 8 sur la Figure 3). De façon habituelle, l'outil 3 porte-buses peut être mis en rotation par un jeu de pignons, avec ou sans courroie de transmission, mu par un moteur électrique ou pneumatique par l'intermédiaire d'un premier arbre ou axe de transmission rotatif relié au moteur, d'une boite, d'un boitier ou d'une enceinte de transmission comprenant un mécanisme de transmission à jeu de pignons interne et d'un deuxième arbre ou axe de transmission ici rotatif relié quant à lui à l'outil 3 mobile muni des chambres de tranquillisation 4 et des buses 5.
  • Par ailleurs, la solution de l'invention concerne également un procédé de travail mettant en oeuvre un dispositif selon l'invention apte à distribuer un ou plusieurs jets de fluide cryogénique 6, fixes ou rotatifs, dont la longueur de cohérence est augmentée pour réaliser un traitement de surface, un décapage, un nettoyage ou encore un écroutage d'un matériau. Le procédé de l'invention est particulièrement avantageux pour réaliser une opération de traitement de surface ou analogue d'un matériau ou d'une pièce dont la surface présente un défaut de planéité, des aspérités ou ayant au moins une dimension caractéristique d'au moins 20 cm, c'est-à-dire une largeur, une hauteur ou une longueur, dans laquelle sont pratiqués des usinages. En particulier, la solution de l'invention est d'un grand intérêt pour le nettoyage d'échangeurs thermiques de grande dimension, c'est-à-dire au moins 40 cm, pour lesquels des pièces constitutives penvent se situer à plus de 20 cm de la circonférence des échangeurs. De préférence, le ou les jets de fluide cryogéniques mis en oeuvre dans le procédé de travail ont une longueur de cohérence LC2 d'au moins 20 cm.
  • Dans le cadre de l'invention, le fluide distribué par le dispositif de l'invention est un fluide à température cryogénique et à haute pression, en particulier de l'azote liquide à une pression supérieure à 1500 bar et à une température inférieure à -140 °C.
  • Exemples
  • Afin de démontrer l'efficacité d'un dispositif selon l'invention pour augmenter la longueur de cohérence et la longueur efficace d'un jet de fluide cryogénique et par là-même minimiser, voire éviter, les problèmes liés à cette longueur de cohérence et à cette longueur d'efficacité limitées, des essais ont été menés pour comparer la longueur de cohérence de jet obtenu avec un dispositif de distribution de jet de fluide cryogénique classique, c'est-à-dire caractérisé par l'absence de chambre de tranquillisation (essai selon l'art antérieur), et un dispositif de distribution de jet de fluide cryogénique comprenant une ou plusieurs chambres de tranquillisation agencées entre la buse et la canalisation d'amenée de fluide (essais selon l'invention). Ces essais ont essentiellement consisté en des mesures de longueur de cohérence des jets, cette longueur correspondant à la longueur de jet visible, que l'on peut aisément apprécier. Bien entendu, une augmentation de la longueur de cohérence d'un jet de fluide traduit également une augmentation de la longueur efficace dudit jet.
  • Les essais ont été réalisés avec des jets d'azote liquide à une pression de 3500 bars, un débit de 6 1/min et à une température de -155 °C.
  • Le système d'amenée de fluide cryogénique est un tube en acier inoxydable 316L UHP de diamètre extérieur 6.35 mm et de diamètre intérieur d égal à 2.1 mm.
  • Le dispositif de distribution de jet de fluide cryogénique comprend une chambre de tranquillisation et une buse de distribution uniques, comme celui illustré en Figure 2, et ne met pas en oeuvre de système de rotation du jet.
  • Exemple 1 : Buse de distribution de fluide cryogénique de diamètre 305 µm
  • Dans cette première série d'essais, le dispositif de distribution du jet de fluide cryogénique situé en aval de la chambre de tranquillisation est une buse issue de la technologie jet d'eau à haute pression munie d'un saphir d'éjection dont le diamètre de passage de fluide, c'est-à-dire le diamètre de l'orifice de sortie, est de 305 µm.
  • Le tableau 1 donne les longueurs de cohérence de jet obtenues lors d'essais réalisés avec une chambre de tranquillisation de longueur L égale à 60 mm et de diamètre D égal à 4.2 mm (essai N°1), en comparaison avec les longueurs de cohérence de jet obtenues lors d'essais réalisés en l'absence d'une telle chambre de tranquillisation (essai N°2).
  • Comme on le voit, l'agencement d'une chambre de tranquillisation selon l'invention entre la canalisation d'amenée de fluide et la buse de distribution de fluide conduit effectivement à une longueur de cohérence du jet de fluide cryogénique distribué supérieure à celle obtenue sans le dispositif de l'invention.
  • Le tableau 2 donne les longueurs de cohérence de jet obtenues lors de l'utilisation d'une chambre de tranquillisation de diamètre D égal à 4.2 mm et de différentes longueurs L et le tableau 3 donne les longueurs de cohérence de jet obtenues lors de l'utilisation de chambres de tranquillisation de différents diamètres D et de longueur L égale à 60 mm. A titre indicatif, le tableau 4 donne les nombres de Reynolds des jets de fluide cryogénique obtenus lors de l'utilisation de chambres de tranquillisation de différents diamètres D et de longueur L égale à 60 mm.
  • Comme on le voit, l'agencement d'une chambre de tranquillisation entre la canalisation d'amenée de fluide et la buse de distribution de fluide, conformément à l'invention, conduit effectivement à des longueurs de cohérence des jets de fluide cryogénique distribués supérieures à la longueur de cohérence du jet de fluide distribué par un dispositif selon l'art antérieur, c'est-à-dire sans chambre de tranquillisation, et ce pour les différentes géométries de chambres de tranquillisation testées. Ainsi, l'invention permet également d'augmenter la longueur efficace du jet de fluide cryogénique.
  • Au vu des valeurs des longueurs de cohérence de jet de fluide cryogénique obtenues lors de ces essais, il est à noter que l'application de l'invention est particulièrement avantageuse lorsque la pièce traitée comprend au moins une dimension caractéristique, c'est-à-dire une longueur, une largeur ou une hauteur, ladite dimension caractéristique étant de l'ordre de 20 cm et plus, ou bien lorsque la pièce traitée comprend elle-même des pièces situées à plus de 20 cm de la circonférence de ladite pièce traitée.
  • En outre, le tableau 4 permet de constater que l'augmentation de la longueur de cohérence du jet de fluide cryogénique s'accompagne d'une baisse du nombre de Reynolds dudit jet et par conséquent d'une laminarisation dudit jet, ce qui démontre encore l'intérêt de l'invention pour résoudre les problèmes précédemment mentionnés.
  • Par ailleurs, les résultats présentés sur les tableaux 2 et 3 montrent que l'augmentation de la longueur de cohérence tend à atteindre une valeur plafond lorsque le diamètre D de la chambre de tranquillisation augmente ou lorsque la longueur de la chambre de tranquillisation L augmente. Il n'est donc pas nécessaire d'augmenter indéfiniment les dimensions L et D de la chambre de tranquillisation, et les dimensions de la chambre restent ainsi raisonnables. Pour un fonctionnement optimal de la solution de l'invention, on ajustera donc les diamètres et longueurs de la ou des chambres de tranquillisation de manière à ce que la section de passage de fluide D ait un diamètre compris entre 2 et 6 mm et à ce que la longueur L de ladite section soit comprise entre 20 et 100 mm.
  • Dans le cadre de l'invention, au vu des résultats des mesures de longueur de cohérence donnés dans les Tableaux ci-dessous, le diamètre D de la section de passage de fluide de la chambre de tranquillisation est préférentiellement compris de préférence entre 3 et 5 mm, et la longueur L de la section de passage de fluide de la chambre de tranquillisation est préférentiellement compris entre 50 et 70 mm, de manière à distribuer un ou plusieurs jets de fluide cryogénique présentant une longueur de cohérence LC2 d'au moins 20 cm. En outre, ces dimensions permettent de conserver un dispositif de distribution d'un ou plusieurs jets de fluide cryogénique restant d'encombrement raisonnable, de sorte qu'il soit aisément utilisable dans une installation de travail industrielle mettant en oeuvre le ou les jets de fluide cryogéniques distribués. Tableau 1
    Diamètre éjection 305 µm Essai N°1 - Invention Essai N°2 - Art antérieur
    Longueur de cohérence du jet 25 cm 18 cm
    Tableau 2
    Diamètre éjection 305 µm Diamètre de la chambre D= 4.2 mm
    Longueur de la chambre L 20 mm 40 mm 60 mm 500 mm
    Longueur de cohérence du jet 19 cm 22 cm 25 cm 25 cm
    Tableau 3
    Diamètre éjection 305 µm Longueur de la chambre L= 60 mm
    Diamètre de la chambre D 2.1 mm 3.2 mm 4.2 mm 5.5 mm
    Longueur de cohérence du jet 19 cm 21 cm 25 cm 25 cm
    Tableau 4
    Diamètre éjection 305 µm Longueur de la chambre L= 60 mm
    Diamètre de la chambre D 2.1 mm 3.2 mm 4.2 mm 5.5 mm
    Nombre de Reynolds 97627 64067 48813 37276
  • Exemple 2 : Buse de distribution de fluide cryogénique de diamètre 432 µm
  • Une deuxième série d'essais a été effectuée, dans les mêmes conditions que précédemment, mais cette fois avec une buse munie d'un saphir d'éjection dont le diamètre de passage de fluide est de 432 µm, l'objectif étant de vérifier que les résultats obtenus précédemment restent valables avec une buse d'éjection de caractéristiques différentes de la première.
  • Le tableau 5 donne les longueurs de cohérence de jet obtenues lors de l'utilisation d'une chambre de tranquillisation de diamètre D égal à 4.2 mm et de différentes longueurs L. Le tableau 6 donne les longueurs de cohérence de jet obtenues lors de l'utilisation de chambres de tranquillisation de différents diamètres D et de longueur L égale à 60 mm.
  • Ainsi, de même qu'avec une buse de diamètre d'éjection 305 µm, il s'avère que pour une buse de diamètre d'éjection 432 µm, le diamètre D de la section de passage de fluide de la chambre de tranquillisation est préférentiellement compris de préférence entre 3 et 5 mm, et la longueur L de la section de passage de fluide de la chambre de tranquillisation est préférentiellement compris entre 50 et 70 mm, de manière à distribuer un ou plusieurs jets de fluide cryogénique présentant une longueur de cohérence LC2 d'au moins 20 cm.
  • Il est à noter qu'avec une buse de diamètre d'éjection de 432 µm, la longueur de cohérence de jet est plus importante qu'avec une buse de diamètre d'éjection de 305 µm et ce, pour une même chambre de tranquillisation. En effet, avec un diamètre d'éjection plus important, le débit à pression constante est plus important, ce qui conduit à une longueur de cohérence de jet plus importante. Tableau 5
    Diamètre éjection 432 µm Diamètre de la chambre D= 4.2 mm
    Longueur de la chambre L 20 mm 40 mm 60 mm 500 mm
    Longueur de cohérence du jet 26 cm 30 cm 33 cm 32 cm
    Tableau 6
    Diamètre éjection 432 µm Longueur de la chambre L= 60 mm
    Diamètre de la chambre D 2.1 mm 3.2 mm 4.2 mm 5.5 mm
    Longueur de cohérence du jet 21 cm 28 cm 33 cm 33 cm
  • Exemple 3 : Procédé d'écroutage de béton par jet de fluide cryogénique
  • Afin de démontrer l'apport de la présente invention pour améliorer l'efficacité et le rendement d'un procédé de travail par jets de fluide cryogénique, il a été procédé à des essais d'écroutage de béton à l'aide d'un jet de fluide cryogénique distribué par un dispositif selon l'invention. Les performances obtenues ont été comparées à celles obtenues avec un jet de fluide cryogénique distribué avec un dispositif selon l'art antérieur, c'est-à-dire sans chambre de tranquillisation, toutes conditions d'essais étant identiques par ailleurs.
  • Le procédé d'écroutage est réalisé avec de l'azote liquide à une pression de l'ordre de 3500 bars, une température de l'ordre de -153°C et un débit de l'ordre de 71/min.
  • L'azote liquide est distribué par une buse unique, dont le diamètre d'éjection est de 330 µm, mise en rotation à une vitesse d'environ 1400 tours/min à l'aide d'un outil porte-buse muni de moyens de mise en rotation dudit outil autour de l'axe de la canalisation d'amenée de fluide, de manière à conférer un mouvement circulaire à la buse de distribution de fluide. L'outil porte-buse se déplace à une vitesse d'environ 130 cm/min. Une description détaillée de cet outil de rotation est faite dans le document WO-A-2011010030 .
  • Le matériau écrouté est du béton à granulométrie fine et homogène, dont une application typique est la formation de bordurette de jardin. La structure de ce béton favorise la réalisation de mesures comparatives.
  • La buse distribuant l'azote liquide est positionnée à une distance d'environ 10 mm par rapport à la surface du béton traité.
  • Le tableau 7 présente un comparatif les résultats obtenus lors de l'écroutage du béton selon l'art antérieur, c'est-à-dire sans chambre de tranquillisation (Essai N°3), et avec un dispositif selon l'invention, c'est-à-dire avec une chambre de tranquillisation, la chambre utilisée ayant une longueur L de 60 mm et un diamètre D de 4.2 mm (Essai N°4).
  • On constate que la profondeur de béton écroutée est considérablement augmentée avec utilisation d'une chambre de tranquillisation, ce qui traduit une plus grande efficacité du procédé.
    Ainsi, dans le cadre du procédé réalisé, l'invention permet d'accroître la longueur efficace du jet à une valeur comprise entre 15 à 20 mm, typiquement d'au moins 17 mm, en comparaison avec une longueur efficace comprise entre 5 et 15 mm, typiquement moins de 13 mm, sans chambre de tranquillisation. L'invention permet en outre d'augmenter le volume de béton écrouté par unité de temps. De manière générale, l'utilisation de l'invention conduit à un gain de l'ordre de 260% sur les performances d'écroutage du béton.
  • Ces essais d'écroutage démontrent donc qu'une augmentation de la longueur de cohérence d'un jet de fluide cryogénique s'accompagne d'une augmentation de la longueur efficace dudit jet, puisqu'à distance entre buse et substrat constante, l'efficacité du jet est plus importante. Tableau 7
    Distance buse-substrat = 10 mm Profondeur de béton écroutée Largeur de béton écroutée Volume de béton écrouté par minute
    Essai N°3 - Art antérieur 2 mm 52 mm 135 cm3/min
    Essai N°4 - Invention 7 mm 50 mm 490 cm3/min
  • L'ensemble des essais réalisés démontrent donc clairement l'efficacité de l'invention qui, sans complexifier le dispositif de distribution desdits jets, permet d'augmenter significativement la longueur de cohérence et donc d'accroître la longueur efficace du ou des jets de fluide cryogéniques distribués par le dispositif de l'invention en comparaison avec un dispositif classique selon l'art antérieur, toute condition de fonctionnement étant égale par ailleurs, et donc d'augmenter l'efficacité du procédé de travail mettant en oeuvre lesdits jets.
  • L'application principale de la présente invention est un procédé de traitement de surface, de décapage, de nettoyage ou d'écroutage des matériaux revêtus ou non, tels les métaux, le béton, le bois, les polymères, les céramiques et les plastiques ou tout autre type de matériau.

Claims (13)

  1. Dispositif de distribution d'un ou plusieurs jets de fluide cryogénique (6) comprenant une canalisation (1) d'amenée de fluide alimentant une ou plusieurs buses (5) de distribution de fluide agencées en aval de ladite canalisation, la canalisation (1) d'amenée de fluide ayant une section de passage de fluide d'un premier diamètre (d),
    caractérisé en ce qu'il comprend en outre au moins une chambre de tranquillisation (4) agencée entre la canalisation (1) d'amenée de fluide et la ou les buses (5) de distribution de fluide, en étant reliée fluidiquement à ladite canalisation (1) d'amenée de fluide et à la ou aux buses (5) de distribution de fluide, chaque chambre de tranquillisation étant apte à laminariser l'écoulement du fluide circulant à travers ladite chambre de tranquillisation et ayant une section de passage de fluide présentant un deuxième diamètre (D) supérieur au premier diamètre (d) de la section de passage de fluide de la canalisation (1) d'amenée de fluide.
  2. Dispositif selon la revendication 1, caractérisé en ce que la chambre de tranquillisation (4) a une section de passage de fluide d'un diamètre (D) compris entre 2 et 6 mm, de préférence entre 3 et 5 mm.
  3. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que la chambre de tranquillisation (4) a une longueur (L) comprise entre 20 et 100 mm, de préférence entre 50 et 70 mm.
  4. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la chambre de tranquillisation (4) est formée d'un matériau adapté aux températures cryogéniques, avantageusement de l'acier inoxydable, de préférence de l'acier inoxydable du type 316 ou 316L.
  5. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une chambre de tranquillisation (4) unique directement connectée à l'extrémité de la canalisation (1) d'amenée de fluide au moyen d'un raccord (2).
  6. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce qu'il comprend en outre un outil porte-buses (3) connecté à l'extrémité de la canalisation (1) d'amenée de fluide au moyen d'un raccord (2), lequel outil porte-buses (3) supporte au moins une chambre de tranquillisation (4) agencée entre l'outil porte-buses (3) et la ou les buses (5) de distribution de fluide.
  7. Dispositif selon l'une des revendications 1 à 6, caractérisé en ce qu'il comprend en outre un outil porte-buses (3) muni de moyens de mise en rotation dudit outil porte-buses (3) autour de l'axe (XX) de la canalisation (1) d'amenée de fluide de manière à conférer un mouvement circulaire à la ou aux buses (5) de distribution de fluide.
  8. Installation de traitement par un ou plusieurs jets de fluide cryogénique comprenant une source de fluide à température cryogénique sous haute pression reliée fluidiquement à une canalisation (1) d'amenée de fluide alimentant une ou plusieurs buses (5) de distribution d'un ou plusieurs jets de fluide à température cryogénique sous haute pression, caractérisée en ce qu'elle inclut en outre un dispositif selon les revendications 1 à 7.
  9. Procédé de travail mettant en oeuvre un ou plusieurs jets de fluide cryogénique (6) distribués au moyen d'un dispositif selon l'une des revendications 1 à 7 ou d'une installation selon la revendication 8 pour réaliser, au moyen d'un ou plusieurs jets de fluide cryogénique (6) sous pression, un traitement de surface, un décapage, un nettoyage ou un écroutage d'un matériau.
  10. Procédé de travail selon la revendication 9, caractérisé en ce que le ou les jets de fluide cryogénique (6) distribués par la ou les buses de distribution de fluide (5) ont une température inférieure à -140 °C et à une pression d'au moins 300 bars.
  11. Procédé de travail selon l'une des revendications 9 ou 10, caractérisé en ce que le fluide cryogénique mis en oeuvre est de l'azote liquide.
  12. Procédé de travail selon l'une des revendications 9 à 11, caractérisé en ce que la pièce traitée est un échangeur thermique.
  13. Procédé de travail selon l'une des revendications 9 à 12, caractérisé en ce que la pièce traitée possède au moins une dimension caractéristique supérieure ou égale à 20 cm.
EP12787811.4A 2011-11-24 2012-10-23 Dispositif de distribution de jets de fluide cryogénique à chambre de tranquillisation Active EP2782711B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1160727A FR2983106B1 (fr) 2011-11-24 2011-11-24 Dispositif de distribution de jets de fluide cryogenique a chambre de tranquillisation
PCT/FR2012/052432 WO2013076395A1 (fr) 2011-11-24 2012-10-23 Dispositif de distribution de jets de fluide cryogénique à chambre de tranquillisation

Publications (2)

Publication Number Publication Date
EP2782711A1 EP2782711A1 (fr) 2014-10-01
EP2782711B1 true EP2782711B1 (fr) 2016-09-14

Family

ID=47191992

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12787811.4A Active EP2782711B1 (fr) 2011-11-24 2012-10-23 Dispositif de distribution de jets de fluide cryogénique à chambre de tranquillisation

Country Status (6)

Country Link
US (1) US10180294B2 (fr)
EP (1) EP2782711B1 (fr)
JP (1) JP2015505719A (fr)
CN (1) CN103958127A (fr)
FR (1) FR2983106B1 (fr)
WO (1) WO2013076395A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10086903B2 (en) * 2015-10-27 2018-10-02 Suzuki Motor Corporation Saddle-ridden vehicle
EP3330660B1 (fr) * 2016-11-30 2019-04-24 AIC GmbH Dispositif, utilisation et procédé de nettoyage d'installations de tour de refroidissement
WO2019142435A1 (fr) 2018-01-18 2019-07-25 株式会社Ihi Procédé de pelage de matériau de revêtement
CA3124059A1 (fr) * 2018-12-17 2020-06-25 Cryoconcepts Lp Dispositif de modulation d'ecoulement servant a distribuer des fluides sous pression
JP7343387B2 (ja) * 2019-12-26 2023-09-12 荏原環境プラント株式会社 清掃装置システム及び清掃方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997111A (en) * 1975-07-21 1976-12-14 Flow Research, Inc. Liquid jet cutting apparatus and method
JPS5932796A (ja) * 1982-08-16 1984-02-22 Nikki Koji Kk 熱交換器のチユ−ブ内面清掃方法
IL111666A (en) * 1993-11-18 1996-10-31 Cqm Ltd Cleaning system for cleaning the face of liquid conductor pipes and an ancillary device
US6099398A (en) * 1998-08-20 2000-08-08 C.D.S. Inc. Media assist gaseous nitrogen distribution system for deflashing machine
CA2434733C (fr) * 2001-08-08 2009-03-10 Mitsubishi Heavy Industries, Ltd. Dispositif et procede de suppression de corps etrangers
JP2004340433A (ja) * 2003-05-14 2004-12-02 Tokai Engineering Co Ltd 熱交換コイル内洗浄方法
JP4118194B2 (ja) * 2003-06-02 2008-07-16 横河電機株式会社 洗浄装置
US7316363B2 (en) 2004-09-03 2008-01-08 Nitrocision Llc System and method for delivering cryogenic fluid
US7310955B2 (en) 2004-09-03 2007-12-25 Nitrocision Llc System and method for delivering cryogenic fluid
US7607594B2 (en) * 2004-12-30 2009-10-27 The Boeing Company Nozzle apparatus and methods for providing a stream for ultrasonic testing
CN101303214A (zh) * 2007-05-11 2008-11-12 湖南工业大学 一种旋液流态化清洗式套管高效换热装置
JP5198826B2 (ja) * 2007-10-17 2013-05-15 岩谷産業株式会社 洗浄装置
FR2944461B1 (fr) * 2009-04-15 2011-05-20 Air Liquide Procede et installation de traitement de surface par jets de fluide cryogenique.
FR2945761B1 (fr) * 2009-05-20 2012-06-01 Air Liquide Installation et procede de traitement de surface par jets de fluide cryogenique.
FR2948301B1 (fr) 2009-07-21 2013-01-11 Air Liquide Dispositif de distribution de jets de fluide sans joint tournant
JP2011167822A (ja) * 2010-02-22 2011-09-01 Cool Technos:Kk ドライアイススノー洗浄装置用噴射ノズル

Also Published As

Publication number Publication date
JP2015505719A (ja) 2015-02-26
FR2983106B1 (fr) 2014-01-10
US20140352794A1 (en) 2014-12-04
US10180294B2 (en) 2019-01-15
WO2013076395A1 (fr) 2013-05-30
FR2983106A1 (fr) 2013-05-31
CN103958127A (zh) 2014-07-30
EP2782711A1 (fr) 2014-10-01

Similar Documents

Publication Publication Date Title
EP2782711B1 (fr) Dispositif de distribution de jets de fluide cryogénique à chambre de tranquillisation
EP2066462B1 (fr) Procede et dispositif de decapage de tubes par action d'un fluide a tres haute pression
EP2456567A1 (fr) Dispositif de distribution de jets de fluide sans joint tournant
CH697336B1 (fr) Procédé pour délivrer un jet cohérent de réfrigérant à une roue de meulage et ensemble pour la mise en oeuvre dudit procédé.
EP2419241B1 (fr) Procédé et installation de traitement de surface par jets de fluide cryogénique
EP2503208A1 (fr) Système d'entretien de la paroi intérieure d'une conduite et procédé de mise en oeuvre
EP3787836A1 (fr) Dispositif et procédé pour le traitement superficiel d'un matériau
EP2855083B1 (fr) Procédé de compactage de peintures anodiques avec collision des jets de sablage
EP3468747A1 (fr) Cloche de projection de grenaille et d'aspiration de la grenaille projetee, robot pour la renovation de conduites forcees, muni d'une telle cloche
EP0659523B1 (fr) Dispositif de grenaillage de surfaces non accessibles par une canalisation droite
EP2741861B1 (fr) Dispositif de décapage cryogénique de surfaces non planes, en particulier de l'intérieur d'un tube
EP1453635B1 (fr) Procede et dispositif de decoupe laser
EP2480378A2 (fr) Dispositif de distribution de jets de fluide cryogénique avec joint en polymère à coefficient de dilatation donné
EP2514562A1 (fr) Dispositif et procédé de sablage d'une conduite
WO2011027064A1 (fr) Calorifugation des canalisations d'une installation de travail par jets de fluide cryogénique
EP0954619B1 (fr) Procede et dispositif pour la realisation d'un revetement sur un substrat
EP2576483A1 (fr) Procédé de décapage ou d'écroûtage d'une surface en béton
FR3022809A1 (fr) Procede de nettoyage d'une surface couverte de propergol
FR2950280A1 (fr) Procede de travail par jet de fluide cryogenique pulse
FR2950270A1 (fr) Dispositif de distribution de jets de fluide sans joint tournant avec moyens de refroidissement des parties mobiles
FR3015631A1 (fr) Dispositif de distribution de fluide a temperature cryogenique et procede de decapage ou d'ecroutage de beton par jet de fluide a temperature cryogenique mettant en œuvre un tel dispositif
FR2947192A1 (fr) Procede de fabrication et de controle d'un injecteur de brumisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140624

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150318

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160621

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 828405

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012022993

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 828405

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161215

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170116

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170114

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012022993

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

26N No opposition filed

Effective date: 20170615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161023

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161023

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231025

Year of fee payment: 12

Ref country code: DE

Payment date: 20231020

Year of fee payment: 12