[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2751317B1 - Method and apparatus for producing intertwining knots - Google Patents

Method and apparatus for producing intertwining knots Download PDF

Info

Publication number
EP2751317B1
EP2751317B1 EP12716024.0A EP12716024A EP2751317B1 EP 2751317 B1 EP2751317 B1 EP 2751317B1 EP 12716024 A EP12716024 A EP 12716024A EP 2751317 B1 EP2751317 B1 EP 2751317B1
Authority
EP
European Patent Office
Prior art keywords
channel
nozzle
auxiliary
pulse
nozzle ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12716024.0A
Other languages
German (de)
French (fr)
Other versions
EP2751317A1 (en
Inventor
Mathias STÜNDL
Claus Matthies
Jan Westphal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Textile GmbH and Co KG
Original Assignee
Oerlikon Textile GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Textile GmbH and Co KG filed Critical Oerlikon Textile GmbH and Co KG
Publication of EP2751317A1 publication Critical patent/EP2751317A1/en
Application granted granted Critical
Publication of EP2751317B1 publication Critical patent/EP2751317B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/16Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam
    • D02G1/161Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam yarn crimping air jets
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/16Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam
    • D02G1/162Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam with provision for imparting irregular effects to the yarn
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/08Interlacing constituent filaments without breakage thereof, e.g. by use of turbulent air streams

Definitions

  • the invention relates to a method for producing intertwining knots in a multifilament yarn according to the preamble of claim 1 and to an apparatus for producing intertwining knots in a multifilament yarn according to the preamble of claim 6.
  • a generic method and a generic device for generating interlacing knots in a multifilament yarn are known from DE 4140469 A1 known.
  • interlacing knots In the production of multifilament yarns, it is well known that the cohesion of the individual filament strands in the yarn is provided by so-called interlacing knots.
  • interlacing nodes are generated by a compressed air treatment of the thread.
  • the number of interlacing nodes desired per unit length and the stability of the interlacing nodes may be subject to different requirements. Particularly in the production of carpet yarns used for further processing immediately after a melt-spinning process, high knot stability and a high number of knots per unit length of the thread are desired.
  • the generic device has a rotating nozzle ring, which cooperates with a stationary stator.
  • the nozzle ring has a Faden arrangementsnut on the circumference, evenly distributed in the groove bottom over the circumference several radially aligned nozzle bores open.
  • the nozzle bores penetrate the nozzle ring from the guide groove to an inner jacket, which is guided on the circumference of the stator.
  • the stator has an internal pressure chamber, which by a at the periphery the stator formed chamber opening is connected.
  • the chamber opening on the stator and the nozzle bores in the nozzle ring lie in a plane, so that upon rotation of the nozzle ring, the nozzle bores are successively fed to the chamber opening.
  • the pressure chamber is connected to a compressed air source, so that during the interaction of the nozzle bore and the chamber opening, a compressed air pulse is generated in the Faden Installationsnut the nozzle ring.
  • the nozzle ring is associated with a cover above the chamber opening, which closes a portion of the guide groove on the circumference of the stator and together with the nozzle ring forms a treatment channel in which the airflow pulse generated by the nozzle channel enters and acts on the thread.
  • the intensity and the duration of the airflow pulse it is necessary for the intensity and the duration of the airflow pulse to be selected such that the turbulence of the airflow forming in the treatment channel has the effect of forming the interlacing nodes on the multifilament thread.
  • the airflow pulse in the guided over the nozzle channel bundle of filaments within the treatment channel blows in the direction of the cover. The entering into the treatment channel airflow pulse is thereby braked by the opposite cover and redirected to several sub-streams.
  • This process is essentially influenced by the pulse time, which determines the duration of the airflow pulse flowing into the treatment channel, and by the volume flow of the airflow pulse. In this case, the relationship is generally observed that the longer the pulse time and the larger the volume flow of the air flow pulse, the more intense and stronger the entanglement nodes are formed.
  • the invention was not affected by the WO 2003/029539 A1 obvious, from which a method and a device for swirling multifilament threads emerges.
  • a method and a device for swirling multifilament threads emerges.
  • a substantially constant flow course of the air within the treatment channel sets in.
  • there are no dynamic flow changes in the treatment channel as caused for example in the invention by the air flow pulse.
  • the findings of the known method and the known device can not be taken obvious.
  • the invention is based on the fact that a repeatedly injected with a predetermined frequency air flow pulse within the treatment channel for generating dynamic flow changes is supported so that its effect is improved to form knots on the multifilament yarn.
  • both a continuously generated auxiliary air flow and a discontinuously generated auxiliary air flow which is injected together with the air flow pulse in the treatment channel, led to an intensification and amplification of knotting.
  • the auxiliary air flow has in this case in relation to the air flow pulse to a much smaller volume flow, so that even with continuous supply of the auxiliary air flow energy savings could be achieved.
  • the method according to the invention is therefore particularly suitable for supporting the dynamic compressed air streams of the airflow pulse within the treatment channel in such a way that the compressed air level of the airflow pulse can be reduced with the same nodal quality.
  • the method variant is preferably used, in which the auxiliary air flow is injected through at least one auxiliary nozzle channel in the treatment channel, wherein the auxiliary air flow and the air flow pulse act on the thread with different blowing direction.
  • additional effects can be achieved by the auxiliary air flow, for example, to influence the position of the thread within the treatment channel.
  • a permanently generated auxiliary air flow which identifies the opposite blowing direction with respect to the airflow pulse, would, for example, lead during the pause times to the fact that the thread can be guided in the mouth region of the nozzle channel.
  • the air flow pulse must be generated at a relatively high frequency.
  • the process variant has proven particularly useful in which the pause time and the pulse time of the air flow pulses can be influenced by a rotational speed of a driven nozzle ring, wherein the nozzle ring carries the nozzle channel and this periodically by rotation connects to a pressure source.
  • the rotational speed is variable with a frequency in the range of 0.5 Hz to 20 Hz.
  • the auxiliary air flow can preferably be generated in a pulse-like manner, so that the auxiliary air flow enters the treatment channel only with the pulse time.
  • the supply of the auxiliary nozzle channel can be combined with the nozzle ring such that only by rotation of the nozzle ring of the auxiliary nozzle channel is periodically connected to the compressed air source.
  • the auxiliary nozzle channel is preferably coupled via a stationary cover with the compressed air source.
  • the method according to the invention is not limited to the fact that the incoming air flow pulses are generated in the treatment channel by means of a rotating nozzle ring.
  • the method according to the invention can also be carried out by devices which have stationary means and in which the airflow pulses are generated by valve controls.
  • the inventive device For the multifilament yarns produced in a melt spinning process relatively high yarn speeds, however, a relatively high frequency of the air flow pulses for generating the entanglement node is required, so that the inventive device is particularly suitable to produce a high number of stable entanglement nodes with relatively low consumption of compressed air ,
  • the inventive device has for this purpose in the nozzle ring and / or in the cover at least one opening into the treatment channel auxiliary nozzle channel, wherein the Auxiliary nozzle channel is continuously or periodically connected to the compressed air source.
  • the device according to the invention is preferably designed such that the auxiliary nozzle channel has a free flow cross section which is smaller than the flow cross section of the nozzle channel.
  • the compressed air supply can be carried out via a common compressed air source.
  • auxiliary nozzle channel and the nozzle channel offset from each other in the treatment channel open so that different blowing directions can be generated is particularly advantageous to make a targeted influencing the flow of compressed air within the treatment channel and a targeted influencing the position of the thread can ,
  • the device according to the invention is preferably designed such that the cover has a distribution chamber and an opening into the distribution chamber supply channel, wherein an opposite end of the auxiliary nozzle channel opens into the distribution chamber and wherein the supply channel periodically cooperates with a passageway in the nozzle ring. Upon rotation of the nozzle ring thus takes place only during the pulse time generation of the auxiliary air flow through the auxiliary nozzle channel.
  • the generation of the auxiliary air flow and the generation of the air flow pulse can alternatively be generated with different pressure levels of the compressed air.
  • the development of the invention is particularly suitable, in which the supply channel in the nozzle ring via an auxiliary chamber opening cooperates with a separate auxiliary pressure chamber in the stator.
  • the nozzle ring has two opposing auxiliary nozzle channels, which open in the side walls of the guide groove, wherein the auxiliary nozzle channels cooperate through a plurality of supply channels via the chamber opening of the pressure chamber in the stator.
  • a sealing joint which is usually formed between the nozzle ring and the cover, avoidable.
  • inventive method and apparatus according to the invention are particularly suitable for producing stable, pronounced entanglement nodes in a high number, uniformity and predetermined sequence with minimal energy consumption on multifilament yarns at yarn speeds of above 3000 m / min.
  • FIGS. 1 and 2 a first embodiment of the device according to the invention is shown in several views.
  • FIG. 1 shows the embodiment in a longitudinal sectional view and in FIG. 2 the embodiment is shown in a cross-sectional view.
  • FIG. 1 shows the embodiment in a longitudinal sectional view
  • FIG. 2 the embodiment is shown in a cross-sectional view.
  • the embodiment of the device according to the invention for producing interlacing nodes in a multifilament yarn has a rotating nozzle ring 1, which is annular and carries a circumferential guide groove 7 at its periphery. In the groove bottom of the guide groove 7 open several nozzle channels 8, which are formed uniformly distributed over the circumference of the nozzle ring 1. In this embodiment, two nozzle channels 8 are included in the nozzle ring 1. The nozzle channels 8 penetrate the nozzle ring 1 to its inner diameter.
  • the number of nozzle channels 8 and the position of the nozzle channels 8 in the nozzle ring 1 is exemplary. The number and position is essentially determined by the desired number of nodes per thread length and a node pattern.
  • the nozzle ring 1 is connected to a drive shaft 6 via a front wall 4 formed on the end face and a hub 5 arranged centrally on the end wall 4.
  • the hub 5 is attached to the free end of the drive shaft 6 for this purpose.
  • the nozzle ring 1 is rotatably guided at a front end 29 of a stator 2. Between the stator 2 and the nozzle ring 1, a circumferential sealing gap 12 is formed.
  • the sealing gap 12 has a gap height in the range of 0.01 mm to 0.1 mm, so that the nozzle ring 1 is guided without contact on the circumference of the stator 2.
  • the stator 2 has within the sealing gap 12 at its periphery a chamber opening 10 which is connected to a pressure chamber 9 formed in the interior of the stator 2.
  • the pressure chamber 9 is connected via a compressed air connection 11 with a compressed air source 25. Between the pressure chamber 9 and the compressed air source 25, an accumulator 27 is provided.
  • the chamber opening 10 on the stator 2 and the nozzle channels 8 of the nozzle ring 1 are formed in a plane, so that by rotation of the nozzle ring 1, the nozzle channels alternately in the region of the chamber opening 10 are led.
  • the size of the chamber opening 10 thus determines an opening time of the respective nozzle channel 8, which is referred to herein as a pulse time and the time interval, during which an airflow pulse is generated, defined.
  • the time that elapses until immersion of the nozzle channel 8 offset by 180 ° into the opening region of the chamber opening 10 is defined here as a break time.
  • the break time the chamber opening 10 on the stator 2 is closed by the nozzle ring 1.
  • the rotational speed of the nozzle ring 1 thus both the pulse time and the pause time can be changed.
  • the axial gap 17 is formed between the end wall 4 of the nozzle ring 1 and the front end 29 of the stator 2.
  • the stator 2 is held on a carrier 3 and has a central bearing bore 18, which is formed concentrically to the sealing gap 12. Within the bearing bore 18, a drive shaft 6 is rotatably supported by a bearing 23.
  • the drive shaft 6 is coupled at one end to a drive 19, through which the nozzle ring 1 can be driven at a predetermined rotational speed.
  • the drive 19 could for example be formed by an electric motor which is arranged laterally on the stator 2.
  • the nozzle ring 1 is associated with a cover 13 on the circumference, which is held by the carrier 3.
  • the cover 13 extends in the radial direction on the circumference of the nozzle ring 1 over a region which encloses the chamber opening 10 of the stator 2.
  • the cover 13 has on the side facing the nozzle ring 1 a customized cover surface which completely covers the guide grooves 7 on the circumference of the nozzle ring 1 and thus forms a treatment channel 14 together with the nozzle ring 1.
  • a thread 20 is guided in the guide groove 7 on the circumference of the nozzle ring 1.
  • the nozzle ring 1 on an inlet side 21, an inlet yarn guide 15 and on a discharge side 22, a drain guide 16 assigned.
  • the thread 20 can thus be guided between the inlet yarn guide 15 and the outlet yarn guide 16 with a partial looping on the nozzle ring 1 within the guide groove 7.
  • an auxiliary nozzle channel 24 is formed, which opens into the treatment channel 14 with one end and is connected to the opposite end via a pressure valve 26 to the compressed air source 25.
  • the auxiliary nozzle channel 24 is arranged in the cover 13 opposite to the guide groove 7 of the nozzle ring 1.
  • the auxiliary nozzle channel 24 has a free flow cross section, which is formed substantially smaller than the free flow cross section of the nozzle channel 8. A generated by the auxiliary nozzle channel 24 auxiliary air flow forms compared to the air flow pulse generated by the nozzle channel 8, a much smaller volume flow.
  • a compressed air is introduced into the pressure chamber 9 of the stator 2 for generating interlacing nodes in the multifilament yarn 20.
  • the nozzle ring 1 which guides the thread 20 into the guide groove 7, generates periodic air flow pulses as soon as the nozzle channels 8 reach the region of the chamber opening 10.
  • the air flow pulses lead to local Turbulences on the multifilament yarn, so that form on the thread a series of intertwining knots.
  • an auxiliary air flow is simultaneously injected through the auxiliary nozzle channel 24 into the treatment channel 14, which is opposite to the blowing direction of the nozzle channel 8 and influences the distribution and formation of the air flow within the treatment channel 14 for improved knot formation.
  • FIG. 3 is a graph showing a pressure waveform of the air flow pulses and the auxiliary air flow over time.
  • the time axis is formed by the abscissa and on the ordinate, the pressure of the air flow pulse and the auxiliary air flow is entered.
  • the air pressure pulses generated by the nozzle channels 8 are each the same size, each setting a constant pulse time.
  • the pulse time is entered with the lower case letter t I on the time axis. There is a pause between successive airflow pulses.
  • the break time is indicated by the lowercase letter t P.
  • constant pulse times and constant pause times in the swirling of the thread are maintained by a constant rotational speed of the nozzle ring.
  • the pressure profile of the airflow pulse is characterized by a solid line, which is determined by the reference L.
  • the duration of the pulse time and the pause times depend on the number of nozzle channels 8 on the nozzle ring 1, the size of the chamber opening 10 and the rotational speed of the nozzle ring 1.
  • auxiliary air flow Parallel to the air flow impulse acts in the treatment chamber 14 of the injected through the auxiliary nozzle channel 24 auxiliary air flow.
  • two different process variants for swirling the yarn are possible.
  • a first variant of the auxiliary air flow is generated only with the pulse time, so that the auxiliary air flow is pulsed injected into the treatment channel 14.
  • H 1 and H 2 the pressure curve of the auxiliary air flow is indicated by a dashed line and designated by the letters H 1 and H 2 .
  • H 1 stands for the pulse-like generation of the auxiliary air flow.
  • the period of the auxiliary air flow is smaller than the pulse time t I.
  • the auxiliary air flow and the air flow pulse are generated such that the center of the pulse time forms the maximum of the auxiliary air flow.
  • the pressure curves of the auxiliary air flow and the air flow pulse are symmetrical to each other. Basically, however, there is also the possibility that the pressure curves are asymmetrical to each other, so that, for example, the auxiliary air flow is generated only after exceeding half the pulse time, so that the main effect of the auxiliary air flow during the fall of the air flow pulse begins.
  • the pulse times of the auxiliary air flow can be selected to be equal to the pulse times of the airflow pulse.
  • FIG. 3 shown that both air streams are generated with the same compressed air level, so that the maximum pressure is equal.
  • the air pressure pulse and the auxiliary air flow could also be generated at different compressed air levels.
  • pulse-like course of the auxiliary air flow can be generated by a corresponding control of the pressure valve 26, so that in each case a pulse-like auxiliary air flow is blown into the treatment channel 14 via the auxiliary nozzle channel 24.
  • the pressure curve of the continuously generated auxiliary air flow is in FIG. 3 shown by a dashed line parallel to the abscissa and designated by the code letter H 2 .
  • the pressure level of the auxiliary pressure flow H 2 is less than the maximum compressed air level of the air flow pulses in this embodiment.
  • an arbitrary pressure for generating the auxiliary air flow via the pressure valve 26 can also be set here.
  • the method according to the invention can be achieved not only by the in FIG. 1 and 2 execute illustrated device.
  • the pulse-like airflow pulses can also be achieved by a valve control, so that the treatment channel could be formed between stationary plates.
  • the relatively large number of entangling knots per thread length in a melt-spinning process preferably with the FIG. 1 and 2 perform executed device.
  • FIG. 4 a further alternative embodiment of the device according to the invention is shown in a partial view of the longitudinal sectional view.
  • the Embodiment after FIG. 4 is essentially identical to the embodiment according to FIG. 1 and 2 , so that at this point reference is made to the above description and will be explained below to avoid repetition, only the differences.
  • the cover 13 on the side facing the nozzle ring 1 a corresponding to the guide groove 7 longitudinal groove 35 extends advantageously over the entire length of the cover 13 and forms together with the guide groove 7 in the nozzle ring 1, the treatment channel 14.
  • the auxiliary nozzle channels 24.1 and 24.2 in the cover 13 are offset from one another in such a way that two parallel auxiliary air streams enter the treatment channel 14 in the region of the side flanks of the guide groove 7.
  • the nozzle channel 8 opposite the nozzle ring during rotation of the pulse ring opens in a middle region of the guide groove 7 between the auxiliary nozzle channels 24.1 and 24.2.
  • auxiliary nozzle channels 24.1 and 24.2 in the cover 13 are coupled via compressed air lines to the pressure valve 26 which is connected to the compressed air source 25, not shown here.
  • the nozzle ring 1 is guided on the stator 2, wherein a between the stator 2 and the nozzle ring circumferential sealing gap 12 is sealed by a labyrinth seal 28.
  • the labyrinth seal 28 extends in each case on both sides of the chamber opening 10 and is executed by a plurality of circumferential grooves on the stator 2.
  • a labyrinth seal 28 which is formed by frontal hubs on the stator 2.
  • FIG. 4 illustrated embodiment of the device according to the invention is identical to the aforementioned embodiment, wherein the auxiliary air streams via the auxiliary nozzle channels 24.1 and 24.2 are permanently or periodically generated.
  • FIGS. 1 to 4 illustrated embodiments of the device according to the invention are preferably used to permanently inject an auxiliary air flow into the treatment channel 14 via the auxiliary nozzle channel 24.
  • the device according to the invention is preferably in the in Figure 5.1 and 5.2 shown version.
  • the embodiment is shown in a partial view of the longitudinal sectional view, wherein in Figure 5.1 the operating situation during a break and in Figure 5.2 represents the operating situation during a pulse time.
  • auxiliary nozzle channels 24.1 and 24.2 open two parallel juxtaposed auxiliary nozzle channels 24.1 and 24.2 in a longitudinal groove 35 which is introduced in the cover 13 on the side facing the nozzle ring 1 side.
  • a distribution chamber 30 is formed in which the opposite ends of the auxiliary nozzle channels 24.1 and 24.2 open.
  • the distribution chamber 30 extends in the axial direction in a region which covers the width of the longitudinal groove 35.
  • a supply channel 31 is formed within the cover 13, which extends from the distribution chamber 30 up to a separation gap 36.
  • the separation gap 36 forms the separation between the cover 13 and the rotating nozzle ring. 1
  • the nozzle ring 1 carries next to the guide groove 7 and the nozzle channel 8 parallel to the guide groove 7 and the nozzle channel 8 formed passage 32 which opens into the separating gap 36 with one end and cooperates with the opposite supply channel 31 in the cover 13.
  • the opposite end of the passage 32 terminates in the sealing gap 12 and cooperates with the chamber opening 10 of the pressure chamber 9 in the stator 2.
  • both the air flow pulse and the auxiliary air streams from the pressure chamber 9 of the stator 1 are fed.
  • the passage 32 communicates with the chamber opening 10 and with the supply channel 31, a stream of compressed air is directed into the distribution chamber 30 of the cover 13.
  • the compressed air passes via the auxiliary nozzle channels 24.1 and 24.2 in each case as an auxiliary air flow into the treatment chamber 14th
  • the time duration for generating the auxiliary air flows is determined essentially by the geometry of the chamber opening 10, the passage channel 32 and the supply channel 31.
  • the chamber opening 10 and the supply channel 31 have an elongated radially extending opening to obtain a sufficient time to build up and generate the auxiliary air streams.
  • the auxiliary nozzle channels 24.1 and 24.2 are arranged on the opposite side of the treatment channel 14 to the nozzle channel 8, so that set opposite blowing directions. Basically, however, there is also the possibility that the blowing directions of the auxiliary air streams generated by the auxiliary nozzle channels 24.1 and 24.2 open transversely into the treatment channel 14.
  • FIG. 6 For this purpose, an embodiment is shown, which is identical in construction to the embodiment according to FIG. 1 and 2 is. In that regard, to avoid repetition only the differences are explained here.
  • auxiliary nozzle channels 24.1 and 24.2 are provided in the nozzle ring 1, which open into the side wall of the guide groove 7.
  • the auxiliary nozzle channels 24.1 and 24.2 are fed via two supply channels 31.1 and 31.2 arranged parallel to one another, which are formed parallel to the nozzle channel 8 on the nozzle ring 1 and interact periodically on rotation of the nozzle ring 1 via the chamber opening 10 of the pressure chamber 9.
  • This can also generate advantageous pulse-like auxiliary air streams, which are blown transversely to the blowing direction of the air pressure pulse in the treatment channel 14.
  • FIG. 7 a further embodiment shown, which is identical to the embodiment according to Figure 5.2 is. In that regard, reference is made to the above description and only the differences explained below.
  • the passage 32 in the nozzle ring 1 is connected periodically separately to an auxiliary chamber opening 33 and an auxiliary pressure chamber 34 in the stator 2 by rotation of the nozzle ring 1.
  • the nozzle channel 8 formed in parallel in the nozzle ring 1 cooperates with the chamber opening 10 and the pressure chamber 9.
  • the pressure chamber 9 and the auxiliary pressure chamber 34 are separated from each other and can be operated in the stator 2 by different compressed air supply with different pressure. In that regard, it is possible to generate the auxiliary air streams and the air flow pulse with different operating pressures.
  • the operating pressures are usually in a range of 0.5 bar to 10 bar.
  • the illustrated embodiments of the device according to the invention are all suitable for carrying out the method according to the invention.
  • the method according to the invention can also be operated by such devices, in which the treatment channel is stationary and in which an air supply is assigned in the nozzle channel, generate the pulse-like compressed air streams and introduce it into the nozzle channels.
  • air supply can be realized for example by rotating pressure chambers or compressed air valves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Erzeugen von Verflechtungsknoten in einem multifilen Faden gemäß dem Oberbegriff des Anspruchs 1 sowie eine Vorrichtung zum Erzeugen von Verflechtungsknoten in einem multifilen Faden gemäß dem Oberbegriff des Anspruchs 6.The invention relates to a method for producing intertwining knots in a multifilament yarn according to the preamble of claim 1 and to an apparatus for producing intertwining knots in a multifilament yarn according to the preamble of claim 6.

Ein gattungsgemäßes Verfahren sowie eine gattungsgemäße Vorrichtung zum Erzeugen von Verflechtungsknoten in einem multifilen Faden sind aus der DE 4140469 A1 bekannt.A generic method and a generic device for generating interlacing knots in a multifilament yarn are known from DE 4140469 A1 known.

Bei der Herstellung von multifilen Fäden ist es allgemein bekannt, dass der Zusammenhalt der einzelnen Filamentstränge in dem Faden durch so genannte Verflechtungsknoten erbracht wird. Derartige Verflechtungsknoten werden durch eine Druckluftbehandlung des Fadens erzeugt. Je nach Fadentyp und Prozess können hierbei die pro Längeneinheit gewünschte Anzahl der Verflechtungsknoten sowie die Stabilität der Verflechtungsknoten unterschiedlichen Forderungen unterliegen. Insbesondere bei der Herstellung von Teppichgarnen, die unmittelbar nach einem Schmelz-Spinnprozess zur Weiterverarbeitung verwendet werden, sind eine hohe Knotenstabilität sowie eine hohe Anzahl von Verflechtungsknoten pro Längeneinheit des Fadens erwünscht.In the production of multifilament yarns, it is well known that the cohesion of the individual filament strands in the yarn is provided by so-called interlacing knots. Such interlacing nodes are generated by a compressed air treatment of the thread. Depending on the thread type and process, the number of interlacing nodes desired per unit length and the stability of the interlacing nodes may be subject to different requirements. Particularly in the production of carpet yarns used for further processing immediately after a melt-spinning process, high knot stability and a high number of knots per unit length of the thread are desired.

Um insbesondere eine relativ hohe Anzahl von Verflechtungsknoten bei höheren Fadengeschwindigkeiten zu realisieren, weist die gattungsgemäße Vorrichtung einen rotierenden Düsenring auf, der mit einem stationären Stator zusammenwirkt. Der Düsenring weist am Umfang eine Fadenführungsnut auf, in dessen Nutgrund über den Umfang gleichmäßig verteilt mehrere radial ausgerichtete Düsenbohrungen münden. Die Düsenbohrungen durchdringen den Düsenring von der Führungsnut bis hin zu einem Innenmantel, der am Umfang des Stators geführt ist. Der Stator weist eine innenliegende Druckkammer auf, die durch eine am Umfang des Stators ausgebildete Kammeröffnung verbunden ist. Die Kammeröffnung am Stator sowie die Düsenbohrungen im Düsenring liegen in einer Ebene, so dass bei Rotation des Düsenringes die Düsenbohrungen nacheinander der Kammeröffnung zugeführt werden. Die Druckkammer ist mit einer Druckluftquelle verbunden, so dass während des Zusammenwirkens der Düsenbohrung und der Kammeröffnung ein Druckluftimpuls in der Fadenführungsnut des Düsenrings erzeugt wird.In order to realize in particular a relatively high number of entanglement nodes at higher yarn speeds, the generic device has a rotating nozzle ring, which cooperates with a stationary stator. The nozzle ring has a Fadenführungsnut on the circumference, evenly distributed in the groove bottom over the circumference several radially aligned nozzle bores open. The nozzle bores penetrate the nozzle ring from the guide groove to an inner jacket, which is guided on the circumference of the stator. The stator has an internal pressure chamber, which by a at the periphery the stator formed chamber opening is connected. The chamber opening on the stator and the nozzle bores in the nozzle ring lie in a plane, so that upon rotation of the nozzle ring, the nozzle bores are successively fed to the chamber opening. The pressure chamber is connected to a compressed air source, so that during the interaction of the nozzle bore and the chamber opening, a compressed air pulse is generated in the Fadenführungsnut the nozzle ring.

Dem Düsenring ist oberhalb der Kammeröffnung eine Abdeckung zugeordnet, die einen Abschnitt der Führungsnut am Umfang des Stators verschließt und gemeinsam mit dem Düsenring einen Behandlungskanal bildet, in welchem der durch den Düsenkanal erzeugte Luftstromimpuls eintritt und an dem Faden wirkt. Hierbei ist es erforderlich, dass die Intensität und die Dauer des Luftstromimpulses derart gewählt sind, dass die sich in dem Behandlungskanal ausbildenden Turbulenzen des Luftstroms zur Bildung der Verflechtungsknoten an dem multifilen Faden auswirken. So ist bekannt, dass der Luftstromimpuls in das über den Düsenkanal geführte Bündel von Filamenten innerhalb des Behandlungskanals in Richtung der Abdeckung bläst. Der in den Behandlungskanal eintretende Luftstromimpuls wird dabei durch die gegenüberliegende Abdeckung gebremst und zu mehreren Teilströmen umgelenkt. Damit werden die erforderlichen Verdrallungen und Verwicklungen der Filamentstränge erzeugt, die zu den Verflechtungsknoten führen. Dieser Vorgang wird im Wesentlichen durch die Impulszeit, die die Dauer des in den Behandlungskanal einströmenden Luftstromimpulses bestimmt, und von dem Volumenstrom des Luftstromimpulses beeinflusst. Hierbei ist allgemein der Zusammenhang zu beobachten, dass je länger die Impulszeit und je größer der Volumenstrom des Luftstromimpulses ist, umso intensiver und stärker werden die Verflechtungsknoten ausgebildet.The nozzle ring is associated with a cover above the chamber opening, which closes a portion of the guide groove on the circumference of the stator and together with the nozzle ring forms a treatment channel in which the airflow pulse generated by the nozzle channel enters and acts on the thread. In this case, it is necessary for the intensity and the duration of the airflow pulse to be selected such that the turbulence of the airflow forming in the treatment channel has the effect of forming the interlacing nodes on the multifilament thread. Thus, it is known that the airflow pulse in the guided over the nozzle channel bundle of filaments within the treatment channel blows in the direction of the cover. The entering into the treatment channel airflow pulse is thereby braked by the opposite cover and redirected to several sub-streams. This produces the necessary twisting and entanglement of the filament strands leading to the merge nodes. This process is essentially influenced by the pulse time, which determines the duration of the airflow pulse flowing into the treatment channel, and by the volume flow of the airflow pulse. In this case, the relationship is generally observed that the longer the pulse time and the larger the volume flow of the air flow pulse, the more intense and stronger the entanglement nodes are formed.

Es ist nun Aufgabe der Erfindung, das gattungsgemäße Verfahren sowie die gattungsgemäße Vorrichtung zur Erzeugung von Verflechtungsknoten in einem multifilen Faden derart zu verbessern, dass auch bei relativ geringen Volumenströmen und kurzen Impulszeiten stark ausgeprägte Verflechtungsknoten in dem Faden erzeugbar sind.It is an object of the invention to provide the generic method as well as the generic device for generating interlacing nodes be improved in a multifilament so that even at relatively low flow rates and short pulse times strongly pronounced intertwining knots in the thread can be generated.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen nach Anspruch 1 und durch eine Vorrichtung mit den Merkmalen nach Anspruch 6 gelöst.This object is achieved by a method with the features of claim 1 and by a device having the features of claim 6.

Vorteilhafte Weiterbildungen der Erfindungen sind durch die Merkmale und Merkmalskombinationen der jeweiligen Unteransprüche definiert.Advantageous developments of the inventions are defined by the features and feature combinations of the respective subclaims.

Die Erfindung war auch nicht durch die WO 2003/029539 A1 naheliegend, aus welcher ein Verfahren und eine Vorrichtung zum Verwirbeln multifiler Fäden hervorgeht. In einem zwischen zwei Platten ausgebildeten Behandlungskanal münden neben einer Hauptbohrung mehrere Hilfsbohrungen, so dass in dem Behandlungskanal neben einem permanent erzeugten Hauptluftstrom mehrere konstante Nebenluftströme eingeleitet werden, die gemeinsam auf den Faden einwirken. Hierbei stellt sich ein im Wesentlichen konstanter Strömungsverlauf der Luft innerhalb des Behandlungskanals ein. Es treten jedoch keine dynamischen Strömungsveränderungen in dem Behandlungskanal auf, wie sie beispielsweise bei der Erfindung durch den Luftstromimpuls verursacht werden. Insoweit können die Erkenntnisse des bekannten Verfahrens und der bekannten Vorrichtung nicht nahe liegend übernommen werden.The invention was not affected by the WO 2003/029539 A1 obvious, from which a method and a device for swirling multifilament threads emerges. In a trained between two plates treatment channel open next to a main bore several auxiliary holes, so that in the treatment channel in addition to a permanently generated main air stream several constant secondary air streams are introduced, which act together on the thread. In this case, a substantially constant flow course of the air within the treatment channel sets in. However, there are no dynamic flow changes in the treatment channel, as caused for example in the invention by the air flow pulse. In that regard, the findings of the known method and the known device can not be taken obvious.

Demgegenüber basiert die Erfindung darauf, dass ein mit vorgegebener Frequenz wiederholt eingeblasener Luftstromimpuls innerhalb des Behandlungskanals zur Erzeugung dynamischer Strömungsveränderungen derart unterstütz wird, dass seine Wirkung zur Ausbildung von Verflechtungsknoten auf den multifilen Faden verbessert wird. Überraschenderweise hat sich herausgestellt, dass sowohl ein kontinuierlich erzeugter Hilfsluftstrom als auch ein diskontinuierliche erzeugter Hilfsluftstrom, der gemeinsam mit dem Luftstromimpuls in den Behandlungskanal eingeblasen wird, zu einer Intensivierung und Verstärkung der Knotenbildung führte. So war es möglich, die Impulszeit, während der Luftstromimpuls in den Behandlungskanal eingeblasen wird, zu reduzieren. Der Hilfsluftstrom weist dabei im Verhältnis zu dem Luftstromimpuls einen wesentlich kleineren Volumenstrom auf, so dass selbst bei kontinuierlicher Zufuhr des Hilfsluftstroms eine Energieeinsparung erzielt werden konnte. Das erfindungsgemäße Verfahren ist somit besonders geeignet, um die dynamischen Druckluftströme des Luftstromimpulses innerhalb des Behandlungskanals derart zu unterstützen, dass bei gleicher Knotenqualität das Druckluftniveau des Luftstromimpulses gesenkt werden kann.In contrast, the invention is based on the fact that a repeatedly injected with a predetermined frequency air flow pulse within the treatment channel for generating dynamic flow changes is supported so that its effect is improved to form knots on the multifilament yarn. Surprisingly, it has been found that both a continuously generated auxiliary air flow and a discontinuously generated auxiliary air flow, which is injected together with the air flow pulse in the treatment channel, led to an intensification and amplification of knotting. Thus, it was possible to reduce the pulse time while injecting the airflow pulse into the treatment channel. The auxiliary air flow has in this case in relation to the air flow pulse to a much smaller volume flow, so that even with continuous supply of the auxiliary air flow energy savings could be achieved. The method according to the invention is therefore particularly suitable for supporting the dynamic compressed air streams of the airflow pulse within the treatment channel in such a way that the compressed air level of the airflow pulse can be reduced with the same nodal quality.

Um den Hilfsluftstrom möglichst gezielt in den Behandlungskanal einblasen zu können, ist die Verfahrensvariante bevorzugt verwendet, bei welcher der Hilfsluftstrom durch zumindest einen Hilfsdüsenkanal in den Behandlungskanal eingeblasen wird, wobei der Hilfsluftstrom und der Luftstromimpuls mit unterschiedlicher Blasrichtung auf den Faden einwirken. Damit können zusätzliche Effekte durch den Hilfsluftstrom erreicht werden, um beispielsweise die Lage des Fadens innerhalb des Behandlungskanals zu beeinflussen. Ein permanent erzeugter Hilfsluftstrom, der die entgegengesetzte Blasrichtung gegenüber dem Luftstromimpuls ausweist, würde beispielsweise in den Pausenzeiten dazu führen, dass der Faden in dem Mündungsbereich des Düsenkanals führbar ist.In order to be able to inject the auxiliary air flow as specifically as possible into the treatment channel, the method variant is preferably used, in which the auxiliary air flow is injected through at least one auxiliary nozzle channel in the treatment channel, wherein the auxiliary air flow and the air flow pulse act on the thread with different blowing direction. Thus, additional effects can be achieved by the auxiliary air flow, for example, to influence the position of the thread within the treatment channel. A permanently generated auxiliary air flow, which identifies the opposite blowing direction with respect to the airflow pulse, would, for example, lead during the pause times to the fact that the thread can be guided in the mouth region of the nozzle channel.

Damit selbst bei hohen Fadenlaufgeschwindigkeiten eine hohe Anzahl von Verflechtungsknoten pro Fadenlänge erzeugbar ist, muss der Luftstromimpuls mit einer relativ hohen Frequenz erzeugbar sein. Hierzu hat sich die Verfahrensvariante besonders bewährt, bei welcher die Pausenzeit und die Impulszeit der Luftstromimpulse durch eine Rotationsgeschwindigkeit eines angetriebenen Düsenringes beeinflussbar sind, wobei der Düsenring den Düsenkanal trägt und diesen durch Drehung periodisch mit einer Druckquelle verbindet. Damit können auch bei Hochgeschwindigkeitsprozessen eine ausreichende Variation von Verflechtungsknoten in dem Faden erzeugt werden, wobei die Rotationsgeschwindigkeit mit einer Frequenz im Bereich von 0,5 Hz bis 20 Hz veränderbar ist.Thus, even at high yarn speeds, a high number of entanglement nodes per thread length can be generated, the air flow pulse must be generated at a relatively high frequency. For this purpose, the process variant has proven particularly useful in which the pause time and the pulse time of the air flow pulses can be influenced by a rotational speed of a driven nozzle ring, wherein the nozzle ring carries the nozzle channel and this periodically by rotation connects to a pressure source. Thus, even in high-speed processes, a sufficient variation of entanglement nodes in the thread can be generated, wherein the rotational speed is variable with a frequency in the range of 0.5 Hz to 20 Hz.

Der Hilfsluftstrom lässt sich bei dieser Verfahrensvariante bevorzugt impulsartig erzeugen, so dass ein Eintreten des Hilfsluftstromes in den Behandlungskanal nur mit der Impulszeit auftritt. Hierzu lässt sich die Versorgung des Hilfsdüsenkanals derart mit dem Düsenring kombinieren, dass nur durch Drehung des Düsenringes der Hilfsdüsenkanal periodisch mit der Druckluftquelle verbunden wird.In this variant of the method, the auxiliary air flow can preferably be generated in a pulse-like manner, so that the auxiliary air flow enters the treatment channel only with the pulse time. For this purpose, the supply of the auxiliary nozzle channel can be combined with the nozzle ring such that only by rotation of the nozzle ring of the auxiliary nozzle channel is periodically connected to the compressed air source.

Alternativ besteht jedoch auch die Möglichkeit, den Hilfsluftstrom während der Pausenzeiten und der Impulszeiten andauernd zu erzeugen. Dabei wird der Hilfsdüsenkanal vorzugsweise über eine stationäre Abdeckung mit der Druckluftquelle gekoppelt.Alternatively, however, it is also possible to continuously generate the auxiliary air flow during the pause times and the pulse times. In this case, the auxiliary nozzle channel is preferably coupled via a stationary cover with the compressed air source.

Das erfindungsgemäße Verfahren ist jedoch nicht darauf beschränkt, dass die eintretenden Luftstromimpulse in den Behandlungskanal mittels eines rotierenden Düsenringes erzeugt werden. Grundsätzlich lässt sich das erfindungsgemäße Verfahren auch durch Vorrichtungen ausführen, die über stationäre Mittel verfügen und bei denen die Luftstromimpulse durch Ventilsteuerungen erzeugt werden.However, the method according to the invention is not limited to the fact that the incoming air flow pulses are generated in the treatment channel by means of a rotating nozzle ring. In principle, the method according to the invention can also be carried out by devices which have stationary means and in which the airflow pulses are generated by valve controls.

Für die in einem Schmelz-Spinnprozess relativ hohen Fadengeschwindigkeiten erzeugten multifilen Fäden ist jedoch eine relativ hohe Frequenz der Luftstromimpulse zur Erzeugung der Verflechtungsknoten gefordert, so dass die erfindungsgemäße Vorrichtung besonders geeignet ist, um mit relativ geringem Verbrauch von Druckluft eine hohe Anzahl stabiler Verflechtungsknoten zu erzeugen. Die erfindungsgemäße Vorrichtung weist hierzu im Düsenring und/oder in der Abdeckung zumindest einen in den Behandlungskanal mündenden Hilfsdüsenkanal auf, wobei der Hilfsdüsenkanal stetig oder periodisch mit der Druckluftquelle verbindbar ist. Damit können je nach Fadentyp und Anzahl der Filamente kontinuierliche oder diskontinuierliche Hilfsluftströme erzeugt werden, die in den Behandlungskanal gemeinsam mit dem Luftstromimpuls eingeblasen werden.For the multifilament yarns produced in a melt spinning process relatively high yarn speeds, however, a relatively high frequency of the air flow pulses for generating the entanglement node is required, so that the inventive device is particularly suitable to produce a high number of stable entanglement nodes with relatively low consumption of compressed air , The inventive device has for this purpose in the nozzle ring and / or in the cover at least one opening into the treatment channel auxiliary nozzle channel, wherein the Auxiliary nozzle channel is continuously or periodically connected to the compressed air source. Thus, depending on the type of thread and the number of filaments continuous or discontinuous auxiliary air streams can be generated, which are blown into the treatment channel together with the air flow pulse.

Um möglichst geringe Volumenströme bei der Erzeugung des Hilfsluftstromes zu benötigen, ist die erfindungsgemäße Vorrichtung bevorzugt derart ausgebildet, dass der Hilfsdüsenkanal einen freien Strömungsquerschnitt aufweist, der kleiner ist als der Strömungsquerschnitt des Düsenkanals. So lässt sich beispielsweise trotz sehr stark unterschiedlicher Volumenströme die Druckluftversorgung über eine gemeinsame Druckluftquelle ausführen.In order to require the lowest possible volume flows in the generation of the auxiliary air flow, the device according to the invention is preferably designed such that the auxiliary nozzle channel has a free flow cross section which is smaller than the flow cross section of the nozzle channel. Thus, for example, despite very different volume flows, the compressed air supply can be carried out via a common compressed air source.

Die Weiterbildung der Erfindung, bei welcher der Hilfsdüsenkanal und der Düsenkanal derart versetzt zueinander in den Behandlungskanal einmünden, dass unterschiedliche Blasrichtungen erzeugbar sind, ist besonders vorteilhaft, um eine gezielte Beeinflussung der Druckluftströmung innerhalb des Behandlungskanals und eine gezielte Beeinflussung der Lage des Fadens vornehmen zu können.The development of the invention in which the auxiliary nozzle channel and the nozzle channel offset from each other in the treatment channel open so that different blowing directions can be generated, is particularly advantageous to make a targeted influencing the flow of compressed air within the treatment channel and a targeted influencing the position of the thread can ,

Dieser Effekt lässt sich noch dadurch verbessern, indem die Abdeckung mehrere gegenüberliegende zur Führungsnut des Düsenringes ausgebildete Hilfsdüsenkanäle aufweist, die gemeinsam mit der Druckluftquelle verbindbar sind.This effect can be further improved by the cover having a plurality of opposite to the guide groove of the nozzle ring formed auxiliary nozzle channels, which are connected together with the compressed air source.

Um trotz entgegengesetzter Blasrichtung der Hilfsdüsenkanäle eine impulsartige Erzeugung des Hilfsluftstromes zu ermöglichen, ist die erfindungsgemäße Vorrichtung bevorzugt derart ausgebildet, dass die Abdeckung eine Verteilkammer und einen in die Verteilkammer mündenden Versorgungskanal aufweist, wobei ein gegenüberliegendes Ende des Hilfsdüsenkanals in die Verteilkammer mündet und wobei der Versorgungskanal periodisch mit einem Durchlasskanal in dem Düsenring zusammenwirkt. Bei Rotation des Düsenringes erfolgt somit nur während der Impulszeit eine Erzeugung des Hilfsluftstromes durch den Hilfsdüsenkanal.In order to allow a pulse-like generation of the auxiliary air flow despite opposite blowing direction of the auxiliary nozzle channels, the device according to the invention is preferably designed such that the cover has a distribution chamber and an opening into the distribution chamber supply channel, wherein an opposite end of the auxiliary nozzle channel opens into the distribution chamber and wherein the supply channel periodically cooperates with a passageway in the nozzle ring. Upon rotation of the nozzle ring thus takes place only during the pulse time generation of the auxiliary air flow through the auxiliary nozzle channel.

Die Erzeugung des Hilfsluftstromes und die Erzeugung des Luftstromimpulses können alternativ auch mit unterschiedlichem Druckniveau der Druckluft erzeugt werden. Hierzu ist die Weiterbildung der Erfindung besonders geeignet, bei welcher der Versorgungskanal in dem Düsenring über eine Hilfskammeröffnung mit einer separaten Hilfsdruckkammer im Stator zusammenwirkt.The generation of the auxiliary air flow and the generation of the air flow pulse can alternatively be generated with different pressure levels of the compressed air. For this purpose, the development of the invention is particularly suitable, in which the supply channel in the nozzle ring via an auxiliary chamber opening cooperates with a separate auxiliary pressure chamber in the stator.

Um mehrere Hilfsluftströme unmittelbar durch den rotierenden Düsenring zu erzeugen, ist des Weiteren vorgesehen, dass alternativ der Düsenring zwei gegenüberliegende Hilfsdüsenkanäle aufweist, die in den Seitenwänden der Führungsnut münden, wobei die Hilfsdüsenkanäle durch mehrere Versorgungskanäle über die Kammeröffnung der Druckkammer im Stator zusammenwirken. Damit ist der Durchtritt durch eine Dichtfuge, die üblicherweise zwischen dem Düsenring und der Abdeckung gebildet ist, vermeidbar.In order to generate a plurality of auxiliary air streams directly through the rotating nozzle ring, it is further provided that alternatively the nozzle ring has two opposing auxiliary nozzle channels, which open in the side walls of the guide groove, wherein the auxiliary nozzle channels cooperate through a plurality of supply channels via the chamber opening of the pressure chamber in the stator. Thus, the passage through a sealing joint, which is usually formed between the nozzle ring and the cover, avoidable.

Das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung sind besonders geeignet, um an multifilen Fäden bei Fadengeschwindigkeiten von oberhalb 3000 m/min stabile aus ausgeprägten Verflechtungsknoten in hoher Anzahl, Gleichmäßigkeit und vorbestimmter Folge bei minimalem Energieverbrauch zu erzeugen.The inventive method and apparatus according to the invention are particularly suitable for producing stable, pronounced entanglement nodes in a high number, uniformity and predetermined sequence with minimal energy consumption on multifilament yarns at yarn speeds of above 3000 m / min.

Die Erfindung wird nachfolgend anhand einiger Ausführungsbeispiele der erfindungsgemäßen Vorrichtung unter Bezug auf die beigefügten Figuren näher erläutert.The invention will be explained in more detail with reference to some embodiments of the device according to the invention with reference to the accompanying figures.

Es stellen dar:

  • Figur 1 schematisch eine Längsschnittansicht eines ersten Ausführungsbeispiels der erfindungsgemäßen Vorrichtung,
  • Figur 2 schematisch eine Querschnittsansicht des Ausführungsbeispiels aus Figur 1,
  • Figur 3 schematisch ein zeitlicher Verlauf der erzeugten Luftstromimpulse und Hilfsluftströme,
  • Figur 4 schematisch eine Teilansicht einer Längsschnittdarstellung eines weiteren Ausführungsbeispiels der erfindungsgemäßen Vorrichtung,
  • Figur 5.1 und 5.2 schematisch eine Teilansicht einer Längsschnittdarstellung eines weiteren Ausführungsbeispiels der erfindungsgemäßen Vorrichtung,
  • Figur 6 schematisch eine Teilansicht einer Längsschnittdarstellung eines weiteren Ausführungsbeispiels der erfindungsgemäßen Vorrichtung,
  • Figur 7 schematisch eine Teilansicht einer Längsschnittdarstellung eines weiteren Ausführungsbeispiels der erfindungsgemäßen Vorrichtung.
They show:
  • FIG. 1 1 is a schematic longitudinal sectional view of a first embodiment of the device according to the invention;
  • FIG. 2 schematically a cross-sectional view of the embodiment of FIG. 1 .
  • FIG. 3 schematically a time course of the generated air flow pulses and auxiliary air flows,
  • FIG. 4 1 is a schematic partial view of a longitudinal section of another embodiment of the device according to the invention;
  • Figure 5.1 and 5.2 1 is a schematic partial view of a longitudinal section of another embodiment of the device according to the invention;
  • FIG. 6 1 is a schematic partial view of a longitudinal section of another embodiment of the device according to the invention;
  • FIG. 7 schematically a partial view of a longitudinal sectional view of another embodiment of the device according to the invention.

In den Figuren 1 und 2 ist ein erstes Ausführungsbeispiel der erfindungsgemäßen Vorrichtung in mehreren Ansichten dargestellt. Figur 1 zeigt das Ausführungsbeispiel in einer Längsschnittansicht und in Figur 2 ist das Ausführungsbeispiel in einer Querschnittsansicht gezeigt. Insoweit kein ausdrücklicher Bezug zu einer der Figuren gemacht ist, gilt die nachfolgende Beschreibung für beide Figuren.In the FIGS. 1 and 2 a first embodiment of the device according to the invention is shown in several views. FIG. 1 shows the embodiment in a longitudinal sectional view and in FIG. 2 the embodiment is shown in a cross-sectional view. Unless an explicit reference is made to one of the figures, the following description applies to both figures.

Das Ausführungsbeispiel der erfindungsgemäßen Vorrichtung zum Erzeugen von Verflechtungsknoten in einem multifilen Faden weist einen rotierenden Düsenring 1 auf, der ringförmig ausgebildet ist und an seinem Umfang eine umlaufende Führungsnut 7 trägt. In dem Nutgrund der Führungsnut 7 münden mehrere Düsenkanäle 8, die über den Umfang des Düsenringes 1 gleichmäßig verteilt ausgebildet sind. In diesem Ausführungsbeispiel sind zwei Düsenkanäle 8 in dem Düsenring 1 enthalten. Die Düsenkanäle 8 durchdringen den Düsenring 1 bis zu seinem Innendurchmesser. Die Anzahl der Düsenkanäle 8 und die Lage der Düsenkanäle 8 in dem Düsenring 1 ist beispielhaft. Die Anzahl und Lage wird im Wesentlichen von der gewünschten Knotenanzahl pro Fadenlänge sowie einem Knotenmuster bestimmt.The embodiment of the device according to the invention for producing interlacing nodes in a multifilament yarn has a rotating nozzle ring 1, which is annular and carries a circumferential guide groove 7 at its periphery. In the groove bottom of the guide groove 7 open several nozzle channels 8, which are formed uniformly distributed over the circumference of the nozzle ring 1. In this embodiment, two nozzle channels 8 are included in the nozzle ring 1. The nozzle channels 8 penetrate the nozzle ring 1 to its inner diameter. The number of nozzle channels 8 and the position of the nozzle channels 8 in the nozzle ring 1 is exemplary. The number and position is essentially determined by the desired number of nodes per thread length and a node pattern.

Der Düsenring 1 ist über eine stirnseitig ausgebildete Stirnwand 4 und eine zentrisch an der Stirnwand 4 angeordnete Nabe 5 mit einer Antriebswelle 6 verbunden. Die Nabe 5 ist hierzu am freien Ende der Antriebswelle 6 befestigt. Der Düsenring 1 ist an einem Stirnende 29 eines Stators 2 drehbar geführt. Zwischen dem Stator 2 und dem Düsenring 1 ist ein umlaufender Dichtspalt 12 gebildet. Der Dichtspalt 12 weist eine Spalthöhe im Bereich von 0,01 mm bis 0,1 mm auf, so dass der Düsenring 1 ohne Berührung am Umfang des Stators 2 geführt wird.The nozzle ring 1 is connected to a drive shaft 6 via a front wall 4 formed on the end face and a hub 5 arranged centrally on the end wall 4. The hub 5 is attached to the free end of the drive shaft 6 for this purpose. The nozzle ring 1 is rotatably guided at a front end 29 of a stator 2. Between the stator 2 and the nozzle ring 1, a circumferential sealing gap 12 is formed. The sealing gap 12 has a gap height in the range of 0.01 mm to 0.1 mm, so that the nozzle ring 1 is guided without contact on the circumference of the stator 2.

Der Stator 2 weist innerhalb des Dichtspaltes 12 an seinem Umfang eine Kammeröffnung 10 auf, die mit einer im Innern des Stators 2 ausgebildeten Druckkammer 9 verbunden ist. Die Druckkammer 9 ist über einen Druckluftanschluss 11 mit einer Druckluftquelle 25 verbunden. Zwischen der Druckkammer 9 und der Druckluftquelle 25 ist ein Druckspeicher 27 vorgesehen.The stator 2 has within the sealing gap 12 at its periphery a chamber opening 10 which is connected to a pressure chamber 9 formed in the interior of the stator 2. The pressure chamber 9 is connected via a compressed air connection 11 with a compressed air source 25. Between the pressure chamber 9 and the compressed air source 25, an accumulator 27 is provided.

Die Kammeröffnung 10 an dem Stator 2 und die Düsenkanäle 8 des Düsenringes 1 sind einer Ebene ausgebildet, so dass durch Drehung des Düsenringes 1 die Düsenkanäle abwechselnd in dem Bereich der Kammeröffnung 10 geführt werden. Die Kammeröffnung 10 ist hierzu als ein Langloch ausgebildet und erstreckt sich in radialer Richtung über einen längeren Führungsbereich der Düsenkanäle 8. Die Größe der Kammeröffnung 10 bestimmt somit eine Öffnungszeit des jeweiligen Düsenkanals 8, die hier als Impulszeit bezeichnet wird und die Zeitspanne, währenddessen ein Luftstromimpuls erzeugt wird, definiert.The chamber opening 10 on the stator 2 and the nozzle channels 8 of the nozzle ring 1 are formed in a plane, so that by rotation of the nozzle ring 1, the nozzle channels alternately in the region of the chamber opening 10 are led. The size of the chamber opening 10 thus determines an opening time of the respective nozzle channel 8, which is referred to herein as a pulse time and the time interval, during which an airflow pulse is generated, defined.

Die Zeitspanne, die bis zum Eintauchen des um 180° versetzten Düsenkanals 8 in den Öffnungsbereich der Kammeröffnung 10 vergeht, wird hier als Pausenzeit definiert. Während der Pausenzeit ist die Kammeröffnung 10 am Stator 2 durch den Düsenring 1 verschlossen. Durch die Rotationsgeschwindigkeit des Düsenringes 1 lassen sich somit sowohl die Impulszeit als auch die Pausenzeit verändern.The time that elapses until immersion of the nozzle channel 8 offset by 180 ° into the opening region of the chamber opening 10 is defined here as a break time. During the break time, the chamber opening 10 on the stator 2 is closed by the nozzle ring 1. By the rotational speed of the nozzle ring 1, thus both the pulse time and the pause time can be changed.

Zwischen der Stirnwand 4 des Düsenringes 1 und dem Stirnende 29 des Stators 2 ist ein Axialspalt 17 ausgebildet. Der Axialspalt 17 ist vorzugsweise etwas größer als der Radialspalt 12 am Umfang des Stators 2.Between the end wall 4 of the nozzle ring 1 and the front end 29 of the stator 2, an axial gap 17 is formed. The axial gap 17 is preferably slightly larger than the radial gap 12 on the circumference of the stator 2.

Der Stator 2 ist an einem Träger 3 gehalten und weist eine mittlere Lagerbohrung 18 auf, die konzentrisch zu dem Dichtspalt 12 ausgebildet ist. Innerhalb der Lagerbohrung 18 ist eine Antriebswelle 6 durch eine Lagerung 23 drehbar gelagert.The stator 2 is held on a carrier 3 and has a central bearing bore 18, which is formed concentrically to the sealing gap 12. Within the bearing bore 18, a drive shaft 6 is rotatably supported by a bearing 23.

Die Antriebswelle 6 ist mit einem Ende mit einem Antrieb 19 gekoppelt, durch welchen der Düsenring 1 mit vorbestimmter Rotationsgeschwindigkeit antreibbar ist. Der Antrieb 19 könnte beispielsweise durch einen Elektromotor gebildet sein, der seitlich an dem Stator 2 angeordnet ist.The drive shaft 6 is coupled at one end to a drive 19, through which the nozzle ring 1 can be driven at a predetermined rotational speed. The drive 19 could for example be formed by an electric motor which is arranged laterally on the stator 2.

Wie aus der Darstellung in Figur 1 hervorgeht, ist dem Düsenring 1 am Umfang eine Abdeckung 13 zugeordnet, die von dem Träger 3 gehalten ist.As from the illustration in FIG. 1 As can be seen, the nozzle ring 1 is associated with a cover 13 on the circumference, which is held by the carrier 3.

Wie ergänzend aus der Darstellung in Figur 2 hervorgeht, erstreckt sich die Abdeckung 13 in radialer Richtung am Umfang des Düsenringes 1 über einen Bereich, der die Kammeröffnung 10 des Stators 2 einschließt. Die Abdeckung 13 weist auf der zum Düsenring 1 gewandten Seite eine angepasste Abdeckfläche auf, die die Führungsnuten 7 am Umfang des Düsenringes 1 komplett abdeckt und somit gemeinsam mit dem Düsenring 1 einen Behandlungskanal 14 bildet. Innerhalb des Behandlungskanals 14 wird ein Faden 20 in der Führungsnut 7 am Umfang des Düsenringes 1 geführt. Hierzu ist dem Düsenring 1 auf einer Zulaufseite 21 ein Einlauffadenführer 15 und auf einer Ablaufseite 22 ein Ablauffadenführer 16 zugeordnet. Der Faden 20 lässt sich somit zwischen dem Einlauffadenführer 15 und dem Auslauffadenführer 16 mit einer Teilumschlingung an dem Düsenring 1 innerhalb der Führungsnut 7 führen.As additional from the representation in FIG. 2 As can be seen, the cover 13 extends in the radial direction on the circumference of the nozzle ring 1 over a region which encloses the chamber opening 10 of the stator 2. The cover 13 has on the side facing the nozzle ring 1 a customized cover surface which completely covers the guide grooves 7 on the circumference of the nozzle ring 1 and thus forms a treatment channel 14 together with the nozzle ring 1. Within the treatment channel 14, a thread 20 is guided in the guide groove 7 on the circumference of the nozzle ring 1. For this purpose, the nozzle ring 1 on an inlet side 21, an inlet yarn guide 15 and on a discharge side 22, a drain guide 16 assigned. The thread 20 can thus be guided between the inlet yarn guide 15 and the outlet yarn guide 16 with a partial looping on the nozzle ring 1 within the guide groove 7.

Wie aus der Darstellung in den Figuren 1 und 2 hervorgeht, ist in der Abdeckung 13 ein Hilfsdüsenkanal 24 ausgebildet, der mit einem Ende in den Behandlungskanal 14 mündet und mit dem gegenüberliegenden Ende über ein Druckventil 26 mit der Druckluftquelle 25 verbunden ist. In diesem Ausführungsbeispiel ist der Hilfsdüsenkanal 24 in der Abdeckung 13 gegenüberliegend zu der Führungsnut 7 des Düsenringes 1 angeordnet. Der Hilfsdüsenkanal 24 weist einen freien Strömungsquerschnitt auf, der wesentlich kleiner ausgebildet ist, als der freie Strömungsquerschnitt des Düsenkanals 8. Ein durch den Hilfsdüsenkanal 24 erzeugter Hilfsluftstrom bildet gegenüber dem durch den Düsenkanal 8 erzeugten Luftstromimpuls eine wesentlich kleinere Volumenstrommenge.As from the presentation in the FIGS. 1 and 2 shows, in the cover 13, an auxiliary nozzle channel 24 is formed, which opens into the treatment channel 14 with one end and is connected to the opposite end via a pressure valve 26 to the compressed air source 25. In this embodiment, the auxiliary nozzle channel 24 is arranged in the cover 13 opposite to the guide groove 7 of the nozzle ring 1. The auxiliary nozzle channel 24 has a free flow cross section, which is formed substantially smaller than the free flow cross section of the nozzle channel 8. A generated by the auxiliary nozzle channel 24 auxiliary air flow forms compared to the air flow pulse generated by the nozzle channel 8, a much smaller volume flow.

Bei dem in Figur 1 und 2 dargestellten Ausführungsbeispiel wird zur Erzeugung von Verflechtungsknoten in die multifilen Faden 20 eine Druckluft in die Druckkammer 9 des Stators 2 eingeleitet. Der Düsenring 1 welcher den Faden 20 in die Führungsnut 7 führt, erzeugt periodische Luftstromimpulse, sobald die Düsenkanäle 8 in den Bereich der Kammeröffnung 10 gelangen. Hierbei führen die Luftstromimpulse zu örtlichen Verwirbelungen an dem multifilen Faden, so dass sich an dem Faden ein Folge von Verflechtungsknoten ausbilden. Parallel wird durch den Hilfsdüsenkanal 24 gleichzeitig ein Hilfsluftstrom in den Behandlungskanal 14 eingeblasen, der der Blasrichtung des Düsenkanals 8 entgegengesetzt ist und die Verteilung und Ausbildung der Luftströmung innerhalb des Behandlungskanals 14 zur verbesserten Knotenbildung beeinflusst.At the in FIG. 1 and 2 illustrated embodiment, a compressed air is introduced into the pressure chamber 9 of the stator 2 for generating interlacing nodes in the multifilament yarn 20. The nozzle ring 1, which guides the thread 20 into the guide groove 7, generates periodic air flow pulses as soon as the nozzle channels 8 reach the region of the chamber opening 10. Here, the air flow pulses lead to local Turbulences on the multifilament yarn, so that form on the thread a series of intertwining knots. At the same time, an auxiliary air flow is simultaneously injected through the auxiliary nozzle channel 24 into the treatment channel 14, which is opposite to the blowing direction of the nozzle channel 8 and influences the distribution and formation of the air flow within the treatment channel 14 for improved knot formation.

Zur Erläuterung des erfindungsgemäßen Verfahrens und der zuvor beschriebenen Vorgänge wird an dieser Stelle zusätzlich zu der Figur 3 Bezug genommen.To explain the method according to the invention and the processes described above, in addition to the FIG. 3 Referenced.

In Figur 3 ist in einem Diagramm ein Druckverlauf der Luftstromimpulse und des Hilfsluftstroms über der Zeit dargestellt. Die Zeitachse wird hierbei durch die Abszisse gebildet und auf der Ordinate ist der Druck des Luftstromimpulses und des Hilfsluftstroms eingetragen.In FIG. 3 is a graph showing a pressure waveform of the air flow pulses and the auxiliary air flow over time. The time axis is formed by the abscissa and on the ordinate, the pressure of the air flow pulse and the auxiliary air flow is entered.

Wie aus der Darstellung in Figur 3 hervorgeht, sind die durch die Düsenkanäle 8 erzeugten Luftdruckimpulse jeweils gleich groß, wobei sich jeweils eine konstante Impulszeit einstellt. Die Impulszeit ist mit dem Kleinbuchstaben tI an der Zeitachse eingetragen. Zwischen den aufeinander folgenden Luftstromimpulsen stellt sich eine Pausenzeit ein. Die Pausenzeit ist durch den Kleinbuchstaben tP gekennzeichnet. Hierbei wird durch eine konstante Rotationsgeschwindigkeit des Düsenringes jeweils konstante Impulszeiten und konstante Pausenzeiten bei der Verwirbelung des Fadens eingehalten. Der Druckverlauf des Luftstromimpulses ist mit einer durchgehenden Linie gekennzeichnet, die durch das Bezugszeichen L bestimmt ist. Die Zeitdauer der Impulszeit und die Pausenzeiten sind von der Anzahl der Düsenkanäle 8 am Düsenring 1, der Größe der Kammeröffnung 10 und der Rotationsgeschwindigkeit des Düsenring 1 abhängig.As from the illustration in FIG. 3 shows, the air pressure pulses generated by the nozzle channels 8 are each the same size, each setting a constant pulse time. The pulse time is entered with the lower case letter t I on the time axis. There is a pause between successive airflow pulses. The break time is indicated by the lowercase letter t P. In this case, constant pulse times and constant pause times in the swirling of the thread are maintained by a constant rotational speed of the nozzle ring. The pressure profile of the airflow pulse is characterized by a solid line, which is determined by the reference L. The duration of the pulse time and the pause times depend on the number of nozzle channels 8 on the nozzle ring 1, the size of the chamber opening 10 and the rotational speed of the nozzle ring 1.

Parallel neben dem Luftstromimpuls wirkt in der Behandlungskammer 14 der durch den Hilfsdüsenkanal 24 eingeblasene Hilfsluftstrom. Dabei sind zwei unterschiedliche Verfahrensvarianten zur Verwirbelung des Fadens möglich. Bei einer ersten Variante wird der Hilfsluftstrom nur mit der Impulszeit erzeugt, so dass der Hilfsluftstrom impulsartig in den Behandlungskanal 14 eingeblasen wird. In Figur 3 ist der Druckverlauf des Hilfsluftstroms durch eine gestrichelte Linie gekennzeichnet und mit den Buchstaben H1 und H2 bezeichnet. Die Bezeichnung H1 steht hierbei für die impulsartige Erzeugung des Hilfsluftstromes. Wie aus der Darstellung in Figur 3 hervorgeht, ist die Zeitspanne des Hilfsluftstroms kleiner als die Impulszeit tI. Zudem werden der Hilfsluftstrom und der Luftstromimpuls derart erzeugt, dass die Mitte der Impulszeit das Maximum des Hilfsluftstroms bildet. Die Druckverläufe des Hilfsluftstroms und des Luftstromimpulses sind symmetrisch zueinander ausgebildet. Grundsätzlich besteht jedoch auch die Möglichkeit, dass die Druckverläufe asymmetrisch zueinander stehen, so dass beispielsweise der Hilfsluftstrom erst nach Überschreiten der halben Impulszeit erzeugt wird, so dass die Hauptwirkung des Hilfsluftstroms während des Abfalls des Luftstromimpulses einsetzt. Des Weiteren können die Impulszeiten des Hilfsluftstroms gleich groß den Impulszeiten des Luftstromimpulses gewählt werden. Zudem ist in Figur 3 dargestellt, dass beide Luftströme mit gleichem Druckluftniveau erzeugt werden, so dass der maximale Druck gleich groß ist. Alternativ könnten der Luftdruckimpuls und der Hilfsluftstrom jedoch auch mit unterschiedlichen Druckluftniveaus erzeugt werden.Parallel to the air flow impulse acts in the treatment chamber 14 of the injected through the auxiliary nozzle channel 24 auxiliary air flow. In this case, two different process variants for swirling the yarn are possible. In a first variant of the auxiliary air flow is generated only with the pulse time, so that the auxiliary air flow is pulsed injected into the treatment channel 14. In FIG. 3 the pressure curve of the auxiliary air flow is indicated by a dashed line and designated by the letters H 1 and H 2 . The term H 1 stands for the pulse-like generation of the auxiliary air flow. As from the illustration in FIG. 3 shows, the period of the auxiliary air flow is smaller than the pulse time t I. In addition, the auxiliary air flow and the air flow pulse are generated such that the center of the pulse time forms the maximum of the auxiliary air flow. The pressure curves of the auxiliary air flow and the air flow pulse are symmetrical to each other. Basically, however, there is also the possibility that the pressure curves are asymmetrical to each other, so that, for example, the auxiliary air flow is generated only after exceeding half the pulse time, so that the main effect of the auxiliary air flow during the fall of the air flow pulse begins. Furthermore, the pulse times of the auxiliary air flow can be selected to be equal to the pulse times of the airflow pulse. Moreover, in FIG. 3 shown that both air streams are generated with the same compressed air level, so that the maximum pressure is equal. Alternatively, however, the air pressure pulse and the auxiliary air flow could also be generated at different compressed air levels.

Bei dem in Figur 1 und 2 dargestellten Ausführungsbeispiel könnte der in Figur 3 gezeigte impulsartige Verlauf des Hilfsluftstroms durch eine entsprechenden Steuerung des Druckventils 26 erzeugt werden, so dass über den Hilfsdüsenkanal 24 jeweils ein impulsartiger Hilfsluftstrom in den Behandlungskanal 14 eingeblasen wird.At the in FIG. 1 and 2 illustrated embodiment, the in FIG. 3 shown pulse-like course of the auxiliary air flow can be generated by a corresponding control of the pressure valve 26, so that in each case a pulse-like auxiliary air flow is blown into the treatment channel 14 via the auxiliary nozzle channel 24.

Alternativ besteht jedoch auch die Möglichkeit, dass über das Druckventil 26 ein permanenter Druckluftstrom dem Hilfsdüsenkanal 24 zugeführt wird, so dass der Hilfsluftstrom stetig in den Behandlungskanal 14 eingeblasen wird.Alternatively, however, there is also the possibility that a permanent compressed air flow is supplied to the auxiliary nozzle channel 24 via the pressure valve 26, so that the auxiliary air stream is continuously blown into the treatment channel 14.

Der Druckverlauf des kontinuierlich erzeugten Hilfsluftstroms ist in Figur 3 durch eine gestrichelte Linie parallel zur Abszisse gezeigt und mit dem Kennbuchstaben H2 bezeichnet. Das Druckniveau des Hilfsdruckstroms H2 ist in diesem Ausführungsbeispiel geringer als das maximale Druckluftniveau der Luftstromimpulse. Grundsätzlich lässt sich aber auch hier ein beliebiger Druck zur Erzeugung des Hilfsluftstroms über das Druckventil 26 einstellen.The pressure curve of the continuously generated auxiliary air flow is in FIG. 3 shown by a dashed line parallel to the abscissa and designated by the code letter H 2 . The pressure level of the auxiliary pressure flow H 2 is less than the maximum compressed air level of the air flow pulses in this embodiment. In principle, however, an arbitrary pressure for generating the auxiliary air flow via the pressure valve 26 can also be set here.

Insgesamt hat sich jedoch herausgestellt, dass die Verwirbelung des Fadens innerhalb des Behandlungskanals 14 derart positiv durch den Hilfsluftstrom beeinflusst werden kann, so dass das Druckniveau und die Impulszeit der Luftstromimpulse reduziert werden können. Im Vergleich zu denen im Stand der Technik bekannten Verfahren und Vorrichtungen lassen sich somit Energieeinsparungen bei gleich bleibender Knotenqualität und gleich bleibender Knotenanzahl in dem multifilen Faden erreichen.Overall, however, it has been found that the turbulence of the thread within the treatment channel 14 can be positively influenced by the auxiliary air flow, so that the pressure level and the pulse time of the air flow pulses can be reduced. In comparison to the methods and devices known in the prior art, energy savings can thus be achieved with a constant node quality and a constant number of nodes in the multifilament yarn.

Das erfindungsgemäße Verfahren lässt sich nicht nur durch die in Figur 1 und 2 dargestellte Vorrichtung ausführen. Grundsätzlich können die impulsartigen Luftstromimpulse ebenfalls durch eine Ventilsteuerung erzielt werden, so dass der Behandlungskanal zwischen stationären Platten ausgebildet werden könnte. Allerdings lässt sich die relativ große Anzahl von Verflechtungsknoten pro Fadenlänge in einem Schmelz-Spinnprozess bevorzugt mit der nach Figur 1 und 2 dargestellten Vorrichtung ausführen.The method according to the invention can be achieved not only by the in FIG. 1 and 2 execute illustrated device. In principle, the pulse-like airflow pulses can also be achieved by a valve control, so that the treatment channel could be formed between stationary plates. However, the relatively large number of entangling knots per thread length in a melt-spinning process preferably with the FIG. 1 and 2 perform executed device.

In Figur 4 ist eine weitere alternative Ausführung der erfindungsgemäßen Vorrichtung in einer Teilansicht der Längsschnittdarstellung gezeigt. Das Ausführungsbeispiel nach Figur 4 ist im Wesentlichen identisch zu dem Ausführungsbeispiel nach Figur 1 und 2, so dass an dieser Stelle Bezug zu der vorgenannten Beschreibung genommen wird und nachfolgend zur Vermeidung von Wiederholungen nur die Unterschiede erläutert werden.In FIG. 4 a further alternative embodiment of the device according to the invention is shown in a partial view of the longitudinal sectional view. The Embodiment after FIG. 4 is essentially identical to the embodiment according to FIG. 1 and 2 , so that at this point reference is made to the above description and will be explained below to avoid repetition, only the differences.

Bei dem in Figur 4 dargestellten Ausführungsbeispiel weist die Abdeckung 13 auf der zum Düsenring 1 hingewandten Seite eine zur Führungsnut 7 korrespondierende Längsnut 35 auf. Die Längsnut 35 erstreckt sich vorteilhaft über die gesamte Länge der Abdeckung 13 und bildet gemeinsam mit der Führungsnut 7 in dem Düsenring 1 den Behandlungskanal 14. In dem Nutgrund der Längsnut 35 münden jeweils zwei in Abstand zueinander angeordnete Hilfsdüsenkanäle 24.1 und 24.2. Die Hilfsdüsenkanäle 24.1 und 24.2 in der Abdeckung 13 sind derart versetzt zueinander, dass zwei parallele Hilfsluftströme im Bereich der Seitenflanken der Führungsnut 7 in den Behandlungskanal 14 eintreten. Der bei Drehung des Düsenrings während der Impulszeit gegenüberliegende Düsenkanal 8 mündet in einem mittleren Bereich der Führungsnut 7 zwischen den Hilfsdüsenkanälen 24.1 und 24.2.At the in FIG. 4 illustrated embodiment, the cover 13 on the side facing the nozzle ring 1 a corresponding to the guide groove 7 longitudinal groove 35. The longitudinal groove 35 extends advantageously over the entire length of the cover 13 and forms together with the guide groove 7 in the nozzle ring 1, the treatment channel 14. In the groove bottom of the longitudinal groove 35 open two mutually spaced auxiliary nozzle channels 24.1 and 24.2. The auxiliary nozzle channels 24.1 and 24.2 in the cover 13 are offset from one another in such a way that two parallel auxiliary air streams enter the treatment channel 14 in the region of the side flanks of the guide groove 7. The nozzle channel 8 opposite the nozzle ring during rotation of the pulse ring opens in a middle region of the guide groove 7 between the auxiliary nozzle channels 24.1 and 24.2.

Die Hilfsdüsenkanäle 24.1 und 24.2 in der Abdeckung 13 sind über Druckluftleitungen mit dem Druckventil 26 gekoppelt, das mit der hier nicht dargestellten Druckluftquelle 25 verbunden ist.The auxiliary nozzle channels 24.1 and 24.2 in the cover 13 are coupled via compressed air lines to the pressure valve 26 which is connected to the compressed air source 25, not shown here.

Der Düsenring 1 ist an dem Stator 2 geführt, wobei ein zwischen dem Stator 2 und dem Düsenring umlaufender Dichtspalt 12 durch eine Labyrinthdichtung 28 abgedichtet wird. Die Labyrinthdichtung 28 erstreckt sich dabei jeweils zu beiden Seiten der Kammeröffnung 10 und ist durch mehrere umlaufende Nuten an dem Stator 2 ausgeführt.The nozzle ring 1 is guided on the stator 2, wherein a between the stator 2 and the nozzle ring circumferential sealing gap 12 is sealed by a labyrinth seal 28. The labyrinth seal 28 extends in each case on both sides of the chamber opening 10 and is executed by a plurality of circumferential grooves on the stator 2.

Ebenso ist der axiale Spalt 17 zwischen dem Stator 2 und der Stirnwand 4 durch eine Labyrinthdichtung 28 abgedichtet, die durch stirnseitige Naben am Stator 2 gebildet ist.Likewise, the axial gap 17 between the stator 2 and the end wall 4 is sealed by a labyrinth seal 28, which is formed by frontal hubs on the stator 2.

Die Funktion der in Figur 4 dargestellten Ausführung der erfindungsgemäßen Vorrichtung ist identisch zu dem vorgenannten Ausführungsbeispiel, wobei die Hilfsluftströme über die Hilfsdüsenkanäle 24.1 und 24.2 permanent oder periodisch erzeugbar sind.The function of in FIG. 4 illustrated embodiment of the device according to the invention is identical to the aforementioned embodiment, wherein the auxiliary air streams via the auxiliary nozzle channels 24.1 and 24.2 are permanently or periodically generated.

Die in den Figuren 1 bis 4 dargestellten Ausführungsbeispiele der erfindungsgemäßen Vorrichtung werden vorzugsweise dazu genutzt, um über den Hilfsdüsenkanal 24 permanent einen Hilfsluftstrom in den Behandlungskanal 14 einzublasen. Damit bei einer impulsartigen Erzeugung des Hilfsluftstroms höhere Frequenzen erreicht werden können, ist die erfindungsgemäße Vorrichtung vorzugsweise in der in Figur 5.1 und 5.2 gezeigten Version ausgeführt. Hierbei ist das Ausführungsbeispiel in einer Teilansicht der Längsschnittdarstellung gezeigt, wobei in Figur 5.1 die Betriebssituation während einer Pausenzeit und in Figur 5.2 die Betriebssituation während einer Impulszeit darstellt.The in the FIGS. 1 to 4 illustrated embodiments of the device according to the invention are preferably used to permanently inject an auxiliary air flow into the treatment channel 14 via the auxiliary nozzle channel 24. So that higher frequencies can be achieved during a pulse-like generation of the auxiliary air flow, the device according to the invention is preferably in the in Figure 5.1 and 5.2 shown version. Here, the embodiment is shown in a partial view of the longitudinal sectional view, wherein in Figure 5.1 the operating situation during a break and in Figure 5.2 represents the operating situation during a pulse time.

Das Ausführungsbeispiel nach Figur 5.1 und 5.2 ist im Wesentlichen identisch zu dem Ausführungsbeispiel nach Figur 1 und 2, so dass nachfolgend Bezug zu der vorgenannten Beschreibung genommen wird und nur die Unterschiede erläutert werden.The embodiment according to Figure 5.1 and 5.2 is essentially identical to the embodiment according to FIG. 1 and 2 , so that reference is made below to the above description and only the differences will be explained.

Bei dem in Figur 5.1 und 5.2 dargestellten Ausführungsbeispiel münden zwei parallel nebeneinander ausgebildete Hilfsdüsenkanäle 24.1 und 24.2 in eine Längsnut 35, die in der Abdeckung 13 auf der zum Düsenring 1 gewandten Seite eingebracht ist. Innerhalb der Abdeckung 13 ist eine Verteilkammer 30 ausgebildet in welcher die gegenüberliegenden Enden der Hilfsdüsenkanäle 24.1 und 24.2 einmünden. Die Verteilkammer 30 erstreckt sich in axialer Richtung in einen Bereich, der die Breite der Längsnut 35 überdeckt. Am Ende der Verteilkammer 30 ist ein Versorgungskanal 31 innerhalb der Abdeckung 13 ausgebildet, der sich von der Verteilkammer 30 bis hin zu einem Trennspalt 36 erstreckt. Der Trennspalt 36 bildet die Trennung zwischen der Abdeckung 13 und dem rotierenden Düsenring 1.At the in Figure 5.1 and 5.2 illustrated embodiment open two parallel juxtaposed auxiliary nozzle channels 24.1 and 24.2 in a longitudinal groove 35 which is introduced in the cover 13 on the side facing the nozzle ring 1 side. Within the cover 13, a distribution chamber 30 is formed in which the opposite ends of the auxiliary nozzle channels 24.1 and 24.2 open. The distribution chamber 30 extends in the axial direction in a region which covers the width of the longitudinal groove 35. At the end of the distribution chamber 30, a supply channel 31 is formed within the cover 13, which extends from the distribution chamber 30 up to a separation gap 36. The separation gap 36 forms the separation between the cover 13 and the rotating nozzle ring. 1

Wie insbesondere aus der Figur 5.2 hervorgeht, trägt der Düsenring 1 neben der Führungsnut 7 und dem Düsenkanal 8 einen parallel neben der Führungsnut 7 und dem Düsenkanal 8 ausgebildeten Durchlasskanal 32, der mit einem Ende in den Trennspalt 36 mündet und mit dem gegenüberliegenden Versorgungskanal 31 in der Abdeckung 13 zusammenwirkt. Das gegenüberliegende Ende des Durchlasskanals 32 endet in dem Dichtspalt 12 und wirkt mit der Kammeröffnung 10 der Druckkammer 9 im Stator 2 zusammen.As in particular from the Figure 5.2 shows, the nozzle ring 1 carries next to the guide groove 7 and the nozzle channel 8 parallel to the guide groove 7 and the nozzle channel 8 formed passage 32 which opens into the separating gap 36 with one end and cooperates with the opposite supply channel 31 in the cover 13. The opposite end of the passage 32 terminates in the sealing gap 12 and cooperates with the chamber opening 10 of the pressure chamber 9 in the stator 2.

In der in in Figur 5.2 gezeigten Situation werden sowohl der Luftstromimpuls als auch die Hilfsluftströme aus der Druckkammer 9 des Stators 1 gespeist. Sobald bei Drehung des Düsenringes 1 der Durchlasskanal 32 mit der Kammeröffnung 10 und mit dem Versorgungskanal 31 in Verbindung steht, wird ein Druckluftstrom in die Verteilkammer 30 der Abdeckung 13 geleitet. Von der Verteilkammer 30 gelangt die Druckluft über die Hilfsdüsenkanäle 24.1 und 24.2 jeweils als Hilfsluftstrom in die Behandlungskammer 14.In the in in Figure 5.2 shown situation, both the air flow pulse and the auxiliary air streams from the pressure chamber 9 of the stator 1 are fed. As soon as, upon rotation of the nozzle ring 1, the passage 32 communicates with the chamber opening 10 and with the supply channel 31, a stream of compressed air is directed into the distribution chamber 30 of the cover 13. From the distribution chamber 30, the compressed air passes via the auxiliary nozzle channels 24.1 and 24.2 in each case as an auxiliary air flow into the treatment chamber 14th

Die Zeitdauer zur Erzeugung der Hilfsluftströme wird hierbei im Wesentlichen durch die Geometrie der Kammeröffnung 10, des Durchlasskanals 32 und des Versorgungskanals 31 bestimmt. Insbesondere die Kammeröffnung 10 und der Versorgungskanal 31 weisen eine längliche in radialer Richtung erstreckende Öffnung auf, um eine ausreichende Zeitspanne zum Aufbau und Erzeugen der Hilfsluftströme zu erhalten.The time duration for generating the auxiliary air flows is determined essentially by the geometry of the chamber opening 10, the passage channel 32 and the supply channel 31. In particular, the chamber opening 10 and the supply channel 31 have an elongated radially extending opening to obtain a sufficient time to build up and generate the auxiliary air streams.

Bei der in Figur 5.1 gezeigten Situation befindet sich der Düsenkanal 8 und der Durchlasskanal 32 in geänderter Winkelposition, so dass die Kammeröffnung 10 verschlossen ist und innerhalb des Behandlungskanals 14 kein Luftstrom eingeblasen wird.At the in Figure 5.1 shown situation, the nozzle channel 8 and the passage 32 is in a changed angular position, so that the chamber opening 10 is closed and within the treatment channel 14 no air flow is blown.

Bei dem vorgenannten Ausführungsbeispiel sind die Hilfsdüsenkanäle 24.1 und 24.2 auf der zum Düsenkanal 8 gegenüberliegenden Seite des Behandlungskanals 14 angeordnet, so dass sich entgegengesetzte Blasrichtungen einstellen. Grundsätzlich besteht jedoch auch die Möglichkeit, dass die durch die Hilfsdüsenkanäle 24.1 und 24.2 erzeugten Blasrichtungen der Hilfsluftströme quergerichtet in den Behandlungskanal 14 einmünden. In Figur 6 ist hierzu ein Ausführungsbeispiel gezeigt, das im Aufbau identisch zu dem Ausführungsbeispiel nach Figur 1 und 2 ist. Insoweit werden zur Vermeidung von Wiederholungen auch hier nur die Unterschiede erläutert.In the aforementioned embodiment, the auxiliary nozzle channels 24.1 and 24.2 are arranged on the opposite side of the treatment channel 14 to the nozzle channel 8, so that set opposite blowing directions. Basically, however, there is also the possibility that the blowing directions of the auxiliary air streams generated by the auxiliary nozzle channels 24.1 and 24.2 open transversely into the treatment channel 14. In FIG. 6 For this purpose, an embodiment is shown, which is identical in construction to the embodiment according to FIG. 1 and 2 is. In that regard, to avoid repetition only the differences are explained here.

Bei dem in Figur 6 dargestellten Ausführungsbeispiel sind in dem Düsenring 1 zwei gegenüberliegende Hilfsdüsenkanäle 24.1 und 24.2 vorgesehen, die in die Seitenwandung der Führungsnut 7 einmünden. Die Hilfsdüsenkanäle 24.1 und 24.2 werden über zwei parallel zueinander angeordnete Versorgungskanäle 31.1 und 31.2 gespeist, die parallel zu dem Düsenkanal 8 an dem Düsenring 1 ausgebildet sind und bei Drehung des Düsenringes 1 periodisch über die Kammeröffnung 10 der Druckkammer 9 zusammenwirken. Damit lassen sich ebenfalls vorteilhafte impulsartige Hilfsluftströme erzeugen, die quergerichtet zur Blasrichtung des Luftdruckimpulses in den Behandlungskanal 14 eingeblasen werden.At the in FIG. 6 illustrated embodiment, two opposing auxiliary nozzle channels 24.1 and 24.2 are provided in the nozzle ring 1, which open into the side wall of the guide groove 7. The auxiliary nozzle channels 24.1 and 24.2 are fed via two supply channels 31.1 and 31.2 arranged parallel to one another, which are formed parallel to the nozzle channel 8 on the nozzle ring 1 and interact periodically on rotation of the nozzle ring 1 via the chamber opening 10 of the pressure chamber 9. This can also generate advantageous pulse-like auxiliary air streams, which are blown transversely to the blowing direction of the air pressure pulse in the treatment channel 14.

Bei denen in den Figuren 5 und 6 dargestellten Ausführungsbeispielen erfolgt die Erzeugung des Luftstromimpulses und der Hilfsluftströme gemeinsam über die im Stator ausgebildete Druckkammer 9. Damit werden die Luftstromimpulse und die Hilfsluftströme mit gleichem Druckniveau erzeugt. Grundsätzlich besteht jedoch auch die Möglichkeit, die Luftstromimpulse und die Hilfsluftströme mit unterschiedlichem Druckniveau zu erzeugen. Hierzu ist in Figur 7 ein weiteres Ausführungsbeispiel gezeigt, das identisch zu dem Ausführungsbeispiel nach Figur 5.2 ist. Insoweit wird auf die vorgenannte Beschreibung Bezug genommen und nur die Unterschiede nachfolgend erläutert.In those in the Figures 5 and 6 illustrated embodiments, the generation of the air flow pulse and the auxiliary air flows together via the pressure chamber formed in the stator 9. Thus, the air flow pulses and the auxiliary air streams are generated at the same pressure level. In principle, however, it is also possible to generate the air flow pulses and the auxiliary air streams with different pressure levels. This is in FIG. 7 a further embodiment shown, which is identical to the embodiment according to Figure 5.2 is. In that regard, reference is made to the above description and only the differences explained below.

Bei dem in Figur 7 dargestellten Ausführungsbeispiel wird der Durchlasskanal 32 in dem Düsenring 1 separat mit einer Hilfskammeröffnung 33 und einer Hilfsdruckkammer 34 im Stator 2 durch Drehung des Düsenringes 1 periodisch verbunden. Der parallel in dem Düsenring 1 ausgebildete Düsenkanal 8 wirkt mit der Kammeröffnung 10 und der Druckkammer 9 zusammen. Die Druckkammer 9 und die Hilfsdruckkammer 34 sind getrennt voneinander und können im Stator 2 durch unterschiedliche Druckluftversorgung mit unterschiedlichem Druck betrieben werden. Insoweit besteht die Möglichkeit, die Hilfsluftströme und den Luftstromimpuls mit unterschiedlichen Betriebsdrücken zu erzeugen. Die Betriebsdrücke liegen üblicherweise in einem Bereich von 0,5 bar bis 10 bar.At the in FIG. 7 1, the passage 32 in the nozzle ring 1 is connected periodically separately to an auxiliary chamber opening 33 and an auxiliary pressure chamber 34 in the stator 2 by rotation of the nozzle ring 1. The nozzle channel 8 formed in parallel in the nozzle ring 1 cooperates with the chamber opening 10 and the pressure chamber 9. The pressure chamber 9 and the auxiliary pressure chamber 34 are separated from each other and can be operated in the stator 2 by different compressed air supply with different pressure. In that regard, it is possible to generate the auxiliary air streams and the air flow pulse with different operating pressures. The operating pressures are usually in a range of 0.5 bar to 10 bar.

Die dargestellten Ausführungsbeispiele der erfindungsgemäßen Vorrichtung sind alle geeignet, um das erfindungsgemäße Verfahren auszuführen. Grundsätzlich lässt sich das erfindungsgemäße Verfahren auch durch derartige Vorrichtungen betreiben, bei welchen der Behandlungskanal ortsfest ausgebildet ist und bei welchem im Düsenkanal eine Luftzuführung zugeordnet ist, die impulsartige Druckluftströme erzeugen und in die Düsenkanäle einleiten. Derartige Luftzuführungen können beispielsweise durch rotierende Druckkammern oder Druckluftventile realisiert sein.The illustrated embodiments of the device according to the invention are all suitable for carrying out the method according to the invention. In principle, the method according to the invention can also be operated by such devices, in which the treatment channel is stationary and in which an air supply is assigned in the nozzle channel, generate the pulse-like compressed air streams and introduce it into the nozzle channels. Such air supply can be realized for example by rotating pressure chambers or compressed air valves.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

  1. 1. Düsenring1st nozzle ring
  2. 2. Stator2nd stator
  3. 3. Träger3. carrier
  4. 4. Stirnwand4. end wall
  5. 5. Nabe5th hub
  6. 6. Antriebswelle6. Drive shaft
  7. 7. Führungsnut7. guide groove
  8. 8. Düsenkanal8. nozzle channel
  9. 9. Druckkammer9. pressure chamber
  10. 10. Kammeröffnung10. Chamber opening
  11. 11. Druckluftanschluss11. Compressed air connection
  12. 12. Dichtspalt12. sealing gap
  13. 13. Abdeckung13. cover
  14. 14. Behandlungskanal14th treatment channel
  15. 15. Einlauffadenführer15. Einlauffadenführer
  16. 16. Auslauffadenführer16. Run-out yarn guide
  17. 17. Axialspalt17. Axial gap
  18. 18. Lagerbohrung18. Bearing bore
  19. 19. Antrieb19th drive
  20. 20. Faden20. Thread
  21. 21. Zulaufseite21. inlet side
  22. 22. Ablaufseite22nd drain page
  23. 23. Lager23rd camp
  24. 24. Hilfsdüsenkanal24. auxiliary nozzle channel
  25. 25. Druckluftquelle25. Compressed air source
  26. 26. Druckventil26. Pressure valve
  27. 27. Druckspeicher27. Pressure accumulator
  28. 28. Labyrinthdichtung28. Labyrinth seal
  29. 29. Stirnende29. front end
  30. 30. Verteilkammer30. distribution chamber
  31. 31. Versorgungkanal31. Supply channel
  32. 32. Durchlasskanal32nd passageway
  33. 33. Hilfskammeröffnung33. Auxiliary chamber opening
  34. 34. Hilfsdruckkammer34. auxiliary pressure chamber
  35. 35. Längsnut35. longitudinal groove
  36. 36. Trennspalt36th separation gap

Claims (12)

  1. Method for producing intertwining knots in a multifilament thread, wherein an air stream pulse is generated by a nozzle channel opening into a treatment channel periodically with an interval between successive air stream pulses and wherein during an interval the air stream pulse is directed transversely onto the thread guided in the treatment channel, so that a continuous sequence of intertwining knots is produced in the running thread, characterised in that an auxiliary air stream is generated continuously or discontinuously and that the auxiliary air stream and the air stream pulse are blown in together into the treatment channel.
  2. Method according to Claim 1, characterised in that the auxiliary air stream is blown through at least one auxiliary nozzle channel into the treatment channel, wherein the auxiliary air stream and the air stream pulse act on the thread with different blowing directions.
  3. Method according to Claim 1 or 2, characterised in that the interval and the pulse time of the air stream pulses can be influenced by a rotational speed of a driven nozzle ring, wherein the nozzle ring supports the nozzle channel and connects this to a pressure source periodically by turning.
  4. Method according to Claim 3, characterised in that the auxiliary air stream is generated in pulses only during the pulse time, wherein by rotation of the nozzle ring the auxiliary nozzle channel is periodically connected to the compressed air source.
  5. Method according to Claim 3, characterised in that the auxiliary air stream is generated continuously during the intervals and the pulse times, wherein the auxiliary nozzle channel is connected via a stationary cover to the compressed air source.
  6. Device for producing intertwining knots in a multifilament thread with a rotating nozzle ring (1), which has on the circumference a circumferential guide groove (7) and at least one nozzle channel (8) which opens radially into the guide groove (7), with a stator (21) which has a pressure chamber (9) with a chamber opening (10), wherein the pressure chamber (9) can be connected via a compressed air connection (11) to a compressed air source (25) and wherein by rotation of the nozzle ring (1) the nozzle channel (8) can be connected to the pressure chamber (9) via the chamber opening (10) in order to produce an air stream pulse, and with a cover (13) which is associated with a portion of the guide groove (7) and forms a treatment channel (14) in the guide groove together with the nozzle ring (1) opposite the chamber opening (10) of the stator (2), characterised in that the nozzle ring 1 and/or the cover (13) has at least one auxiliary nozzle channel (24) opening into the treatment channel (14), wherein the auxiliary nozzle channel (24) can be connected constantly or periodically to the compressed air source (25).
  7. Device according to Claim 6, characterised in that the auxiliary nozzle channel (24) has a free flow cross-section which is smaller than a flow cross-section of the nozzle channel (8).
  8. Device according to Claim 6 or 7, characterised in that the auxiliary nozzle channel (24) and the nozzle channel (8) open, offset with respect to one another, into the treatment channel (14) in such a way that different blowing directions can be produced.
  9. Device according to any one of Claims 6 to 8, characterised in that the cover (13) has a plurality of auxiliary nozzle channels (24.1, 24.2) which are constructed opposite the guide groove (7) of the nozzle ring (1) and which can be connected jointly to the compressed air source (25).
  10. Device according to one of Claims 6 to 9, characterised in that the cover (13) has a distribution chamber (30) and a supply channel (31) which opens into the distribution chamber (30), wherein an opposite end of the auxiliary nozzle channel (24) opens into the distribution chamber (30) and wherein the supply channel (31) co-operates periodically with a through channel (32) in the nozzle ring (1).
  11. Device according to Claim 10, characterised in that the through channel (32) of the nozzle ring (1) co-operates by means of the chamber opening (10) with the pressure chamber (9) in the stator (2) or by means of an auxiliary chamber opening (33) with a separate auxiliary pressure chamber (34) in the stator (2).
  12. Device according to any one of Claims 6 to 8, characterised in that the nozzle ring (1) has two opposing auxiliary nozzle channels (24.1, 24.2) which open into the side walls of the guide groove (7), wherein the auxiliary nozzle channels (24.1, 24.2) co-operate through a plurality of supply channels (31.1, 31.2) by means of the chamber opening (10) with the pressure chamber (9) in the stator (2).
EP12716024.0A 2011-08-30 2012-04-23 Method and apparatus for producing intertwining knots Active EP2751317B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011112017 2011-08-30
PCT/EP2012/057382 WO2013029810A1 (en) 2011-08-30 2012-04-23 Method and device for producing intertwining knots

Publications (2)

Publication Number Publication Date
EP2751317A1 EP2751317A1 (en) 2014-07-09
EP2751317B1 true EP2751317B1 (en) 2017-03-08

Family

ID=45998381

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12716024.0A Active EP2751317B1 (en) 2011-08-30 2012-04-23 Method and apparatus for producing intertwining knots

Country Status (6)

Country Link
US (1) US9447526B2 (en)
EP (1) EP2751317B1 (en)
JP (1) JP6129175B2 (en)
CN (1) CN103717793B (en)
IN (1) IN2014CN02225A (en)
WO (1) WO2013029810A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2721203B1 (en) * 2011-06-16 2015-11-18 Oerlikon Textile GmbH & Co. KG Method and device for producing a crimped multifilament thread
DE102017009256A1 (en) * 2017-10-05 2019-04-11 Rpe Technologies Gmbh yarn treating
US11280030B2 (en) * 2018-05-29 2022-03-22 Nicolas Charles Sear Textile interlacing jet with smooth yarn channel
CN117552143B (en) * 2024-01-12 2024-04-02 江苏欣战江纤维科技股份有限公司 Air textured yarn machine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3110151A (en) * 1961-05-26 1963-11-12 Du Pont Process for producing compact interlaced yarn
NL6510903A (en) * 1965-08-20 1966-06-27
USRE27717E (en) * 1971-08-19 1973-08-07 Fluid jet process for twisting yarn
US3937252A (en) * 1974-12-02 1976-02-10 Mikuni Kogyo Co., Ltd. Impulse signal producing device of the pneumatic pressure type
US4058960A (en) * 1976-08-17 1977-11-22 Pavel Mikhailovich Movshovich Distributing device for supplying compressed air to chambers of apparatus for making self-twisted product
NL7802153A (en) * 1977-02-28 1978-08-30 Du Pont VOLUMINOUS THERMOPLASTIC YARN FROM CONTINUOUS CANDLE THREADS AND PROCEDURE FOR TREATING THEM.
JPS53122836A (en) 1977-03-30 1978-10-26 Toray Industries Yarn fluid treating method
US5134840A (en) * 1988-07-29 1992-08-04 Niederer Kurt W Twisted yarn product
DE4113927A1 (en) * 1991-04-29 1992-11-05 Kugelfischer G Schaefer & Co Yarn eddy jet - has two support air channels working with main channel to cover both sides of mixt. yarn
DE4140469A1 (en) 1991-12-09 1993-06-17 Kugelfischer G Schaefer & Co Multifilament entanglement and interlacing - uses a rotary airjet to vary the nodal positions
DE19501309A1 (en) * 1994-02-04 1995-08-10 Barmag Barmer Maschf Air jet interlacing of continuous filament yarn
US6089009A (en) * 1997-08-28 2000-07-18 Belmont Textile Machinery Co., Inc. Fluid-jet false-twisting method and product
US6935229B2 (en) * 2000-08-03 2005-08-30 Microfibres, Inc. Systems and methods for stabilizing the rotation of embossing stencils used for air embossing fabrics
US7353575B2 (en) * 2001-09-29 2008-04-08 Oerlikon Heberlein Temco Wattwil Method and device for producing a fancy knotted yarn
EP2463417B1 (en) * 2010-12-13 2013-07-10 Oerlikon Textile GmbH & Co. KG Godet unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN103717793B (en) 2016-10-26
US20140250646A1 (en) 2014-09-11
CN103717793A (en) 2014-04-09
IN2014CN02225A (en) 2015-06-12
WO2013029810A1 (en) 2013-03-07
JP2014527583A (en) 2014-10-16
US9447526B2 (en) 2016-09-20
EP2751317A1 (en) 2014-07-09
JP6129175B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
EP1090170B1 (en) Spinner for spinning a synthetic thread
EP2591153B1 (en) Method and device for producing a composite yarn
EP2630279B1 (en) Method for producing a multifilament composite thread and melt spinning device
EP2721203B1 (en) Method and device for producing a crimped multifilament thread
EP2751317B1 (en) Method and apparatus for producing intertwining knots
EP3433400B1 (en) Device for melt-spinning, drawing, and winding a thread group
EP0735170B1 (en) Method for improving the weft inserting performance in an air jet loom and inserting nozzle for carrying out the method
EP2463417B1 (en) Godet unit
EP1761664B1 (en) Device and method for treating filament yarn and fancy knotted, migrated, and false-twist yarn
EP2646608B1 (en) Device and method for producing interweaving knots
EP2655710B1 (en) Device for producing interlaced knots
EP2737115B1 (en) Melt spinning device
EP1725702B1 (en) Device for melt spinning and cooling
DE19703572C2 (en) Method and device for generating swirl nodes
EP1585850A1 (en) Device and method for texturing a number of synthetic mixed threads
EP2710178B1 (en) Method and apparatus for producing intertwining knots in a multifilament thread
EP1614782A1 (en) Method and device for crimping a multifilament yarn with a stufferbox
WO2008128863A1 (en) Method and device for twisting a multifilament thread
EP3358052B1 (en) Device for entangling a plurality of individual filaments of a composite yarn
EP2691564B1 (en) Apparatus for producing entanglements on a multifilament thread
EP2732083B1 (en) Device for producing intertwining knots
EP2971293A1 (en) Device for melt-spinning, drawing and winding up a plurality of synthetic threads
WO2019025263A1 (en) Apparatus for producing synthetic threads
WO2012107378A1 (en) Method and device for texturing a synthetic thread
DE10122973A1 (en) To eddy filaments for a multifilament yarn the filaments pass through separate channels to be bonded by structured compressed air pulses/pause times for simultaneous yarn bonding and constant compressed air consumption

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 873617

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012009720

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170608

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170708

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170710

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012009720

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170509

26N No opposition filed

Effective date: 20171211

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170423

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170608

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 873617

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190410

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230420

Year of fee payment: 12

Ref country code: CH

Payment date: 20230502

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230419

Year of fee payment: 12