EP2743493A2 - Injecteur de carburant - Google Patents
Injecteur de carburant Download PDFInfo
- Publication number
- EP2743493A2 EP2743493A2 EP13189766.2A EP13189766A EP2743493A2 EP 2743493 A2 EP2743493 A2 EP 2743493A2 EP 13189766 A EP13189766 A EP 13189766A EP 2743493 A2 EP2743493 A2 EP 2743493A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- valve
- valve element
- fuel injector
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 77
- 238000002347 injection Methods 0.000 claims abstract description 22
- 239000007924 injection Substances 0.000 claims abstract description 22
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 17
- 238000007789 sealing Methods 0.000 claims description 28
- 238000002485 combustion reaction Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 240000001439 Opuntia Species 0.000 description 1
- 235000004727 Opuntia ficus indica Nutrition 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M47/00—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
- F02M47/02—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
- F02M47/027—Electrically actuated valves draining the chamber to release the closing pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0003—Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
- F02M63/0005—Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using valves actuated by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0012—Valves
- F02M63/0014—Valves characterised by the valve actuating means
- F02M63/0028—Valves characterised by the valve actuating means hydraulic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0012—Valves
- F02M63/007—Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
- F02M63/0078—Valve member details, e.g. special shape, hollow or fuel passages in the valve member
- F02M63/008—Hollow valve members, e.g. members internally guided
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/28—Details of throttles in fuel-injection apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2547/00—Special features for fuel-injection valves actuated by fluid pressure
- F02M2547/001—Control chambers formed by movable sleeves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2547/00—Special features for fuel-injection valves actuated by fluid pressure
- F02M2547/003—Valve inserts containing control chamber and valve piston
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2547/00—Special features for fuel-injection valves actuated by fluid pressure
- F02M2547/008—Means for influencing the flow rate out of or into a control chamber, e.g. depending on the position of the needle
Definitions
- the connection to the fuel return is closed again.
- fuel flows from at least one throttle element from a high-pressure fuel volume in the control chamber, with the result that the nozzle needle is displaced again in the direction of its rest position and closes.
- the proposed fuel injector comprises a control valve for controlling the lifting movement of a liftable nozzle needle for releasing and closing at least one injection opening, wherein the end of the nozzle needle facing away from the injection opening delimits a control space.
- the control chamber can be filled to influence a control chamber pressure acting on the nozzle needle via an inlet throttle with high-pressure fuel and can be relieved in the open position of the control valve via an outlet throttle.
- upstream of the inlet throttle is a pressure-actuated further valve with a displaceable valve element for releasing and closing a hydraulic connection of the inlet throttle formed with a high-pressure region. Due to the further valve formed upstream of the inlet throttle, the inflow from a high-pressure fuel volume into the control chamber can be interrupted.
- the control valve is opened and the control chamber is relieved via the outlet throttle.
- the control chamber is relieved faster because no additional amount of fuel flows into the control chamber, on the other hand, the return flow reduces and thus increases the efficiency of the fuel injection system.
- the outlet throttle can be designed with a considerably reduced throttle cross-section.
- the valve element of the pressure-actuable further valve has a first control surface, which abuts the pressure prevailing in the control chamber, and at least one further control surface, at which the downstream of the outlet throttle between the outlet throttle and a valve seat of the control valve and / or the upstream of the inlet throttle between the other valve and the inlet throttle ruling pressure prevails.
- the first control surface therefore preferably limits - together with the nozzle needle - the control chamber in the axial direction.
- the at least one further control surface preferably defines a further pressure chamber, which is formed downstream of the outlet throttle in front of the valve seat of the control valve and / or upstream, preferably immediately upstream, of the inlet throttle.
- the control chamber pressure preferably causes a force acting on the valve element in the closing direction, while the pressure in at least one further pressure chamber causes a force acting on the valve element in the opening direction. If, for example, the control valve is opened, the pressure drops sharply in at least one further pressure space, preferably between the outlet throttle and the valve seat of the control valve. The pressure difference causes the other valve closes and there is no connection of the control chamber via the inlet throttle with the high-pressure region of the fuel injector. This means that no fuel can flow into the control chamber via the inlet throttle. As a result, the amount of fuel flowing out via the outlet throttle is significantly reduced. Only the amount of fuel displaced from the control chamber by the nozzle needle in the course of its opening movement must still escape via the outlet throttle from the control chamber.
- the outlet throttle can be designed in the episode with a much smaller throttle cross-section, without thereby reducing the opening speed of the nozzle needle or delayed the beginning of the injection.
- valve element of the pressure-actuatable further valve is acted upon in the closing direction by the spring force of a spring.
- the spring serves to return the valve element of the further valve after the end of an injection.
- the spring is supported either directly or indirectly on the one hand on the valve element and on the other hand on the nozzle needle. In this way, the spring can be used in addition to the loading of the nozzle needle with a force independent of the high pressure closing force.
- the valve element limits the control chamber in the axial and / or radial direction. This simplifies the formation of a first control surface to which control chamber pressure is applied.
- the valve element may be designed to be piston-shaped and / or have a section designed as a hollow piston.
- the valve element has a preferably axially extending bore in which the outlet throttle is formed.
- the bore preferably opens on the one hand into the control chamber and on the other hand into a further pressure chamber, which is delimited by a further control surface of the valve element.
- the bore thus connects the control room with the further pressure chamber.
- This further pressure chamber is preferably formed between the outlet throttle and the valve seat of the control valve.
- the valve element has an inlet bore extending preferably radially or obliquely to a longitudinal axis A of the valve element, which connects the control chamber to a pressure chamber.
- the inlet throttle is preferably formed in the inlet bore or upstream thereof outside of the valve element.
- the radially or obliquely extending inlet bore opens on the one hand into the control chamber upstream of the outlet throttle, on the other hand into a pressure chamber, which is connectable in dependence on the switching position of the other valve with the high-pressure region of the fuel injector.
- the valve element is at least partially axially slidably received in a guide bore of a valve member, wherein the guide bore is designed to form at least one pressure chamber and / or cooperating with the valve element annular sealing edge stepped.
- the annular sealing edge seals the at least one further pressure chamber with respect to the high-pressure region of the fuel injector when the valve element bears against the sealing edge.
- the annular sealing edge can also be arranged on the valve element and interact with a sealing surface on the valve piece.
- valve element delimit the at least one pressure chamber formed in the guide bore in the radial and / or axial direction.
- the surfaces defining a pressure chamber in the axial direction preferably also serve as control surfaces, via which the valve element of the further valve can be acted upon by a pressure force.
- the valve element defines at least two pressure chambers, which are arranged at an axial distance from one another and are hydraulically connected via the inlet throttle.
- the inlet throttle is preferably formed in the valve piece and not in the valve element.
- the valve element is acted upon in the opening direction of the spring force of a spring - alternatively or in addition to acting in the closing direction spring force of the aforementioned spring.
- the spring force of the further, acting in the opening direction spring is preferably selected to be greater than the spring force of the spring acting in the closing direction. This applies in particular when the spring acting in the closing direction also serves to return the nozzle needle.
- the spring force of the other spring causes the other valve in the idle state assumes an open position.
- the valve element has a cooperating with a stroke stop radially extending stop surface.
- the opening stroke of the valve element is limited in this way.
- the stroke stop can be formed by a body of the fuel injector, in particular a nozzle body or a holding body, or by a separate, preferably disk-shaped component.
- the disk-shaped component is used in the high-pressure region of the fuel injector and preferably has at least one through-flow opening in order to ensure a connection of the pressure chambers located on either side of and beyond the disk-shaped component.
- the Indian FIG. 1 schematically illustrated fuel injector according to the invention comprises a liftable nozzle needle 2 for releasing and closing a plurality of injection openings 3.
- the movement of the nozzle needle 2 is controlled by a control valve 1, which in the present case designed as a ball valve and a solenoid actuator 27 can be actuated.
- the pressure drop in the control chamber 4 has the consequence that the nozzle needle 2, which limits the control chamber 4 with one end, opens and the injection openings 3 releases. High-pressure fuel from a high-pressure region 11 is then injected into the combustion chamber of an internal combustion engine (not shown) via the injection openings 3. To close the nozzle needle 2, the activation of the solenoid actuator 27 is terminated, so that the spring force of the spring 29 causes the return of the anchor member 31, wherein the spherical control valve member 28 is placed back in the valve seat 30 and the control valve 1 closes.
- the fuel flowing through an inlet throttle 8 from a volume of fuel under high pressure into the control chamber 4 causes a reversal of direction of the nozzle needle movement and, consequently, a continuous closing movement of the nozzle needle 2.
- the nozzle needle 2 returns to its starting position spent and the injection ends.
- a pressure-actuatable further valve 9 is arranged upstream of the inlet throttle 8, which interrupts the supply of high-pressure fuel to the inlet throttle 8 and then into the control chamber 4 in the closed position.
- the pressure-actuable further valve 9 has a displaceable valve element 10 with a first control surface 12 and a second control surface 13.
- the first control surface 12 limits the control chamber 4, so that here control chamber pressure is applied.
- the pressure prevails downstream of the outlet throttle 7 between the outlet throttle 7 and the valve seat 30 of the control valve 1. With the opening of the control valve 1, the pressure drops downstream of the outlet throttle 7 more than in the control chamber 4.
- the high-pressure fuel from a high-pressure volume 11 of the injector in front of the sealing seat of the other valve 9 may act on a part of the second control surface 13, which favors the immediate initiation of the opening operation of the further valve 9 after closing the control valve 1.
- the first still present opening movement of the nozzle needle 2 now leads to a compression of the fuel in the control chamber 4 and thus to a brief Increase in the control room pressure.
- the control chamber pressure may exceed the high pressure in the high-pressure region 11 of the injector. Due to the increase in the control chamber pressure, the nozzle needle 2 is braked and reverses its direction of movement, so that the fuel in the control chamber 4 relaxes again and the control chamber pressure decreases again. If the sealing diameter 20 selected larger than the control chamber diameter, so the short-term exceeding the pressure level in the high pressure chamber 11 by the pressure in the control chamber 4 and in the pressure chambers 17, 18 and 19 results in a resulting opening force on the valve element 10 and thus to open at the Sealing edge 20 formed sealing seat.
- the opening operation of the valve element 10 causes a further increase in the force in the opening direction on the valve element 10 and thus a positive feedback on the opening movement, which stabilizes the opening operation of the other valve 9.
- a received between the valve member 16 and a body 24 disc-shaped member 25 forms a stroke stop 22, which cooperates with a radially extending stop surface 23 on the valve element 10 to limit limiting.
- the spring 14 which at the same time serves as a nozzle needle closing spring in the present case, is not supported on the valve element 10 but, for example, on the body 24, it is not necessary for the spring force of the spring 21 to be greater than that of the spring 14.
- An additional spring 21, whose spring force acts on the valve element 10 in the opening direction, can also in the in the FIGS. 3 to 5 used embodiment shown.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Fuel-Injection Apparatus (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012223166.8A DE102012223166A1 (de) | 2012-12-14 | 2012-12-14 | Kraftstoffinjektor |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2743493A2 true EP2743493A2 (fr) | 2014-06-18 |
EP2743493A3 EP2743493A3 (fr) | 2015-07-29 |
EP2743493B1 EP2743493B1 (fr) | 2017-02-08 |
Family
ID=49447474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13189766.2A Active EP2743493B1 (fr) | 2012-12-14 | 2013-10-22 | Injecteur de carburant |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2743493B1 (fr) |
DE (1) | DE102012223166A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015205582A1 (de) * | 2015-03-27 | 2016-09-29 | Robert Bosch Gmbh | Kraftstoffinjektor für ein Kraftstoffeinspritzsystem |
DE102015226070A1 (de) * | 2015-12-18 | 2017-06-22 | Robert Bosch Gmbh | Kraftstoffinjektor |
DE102017205772A1 (de) | 2017-04-05 | 2018-10-11 | Robert Bosch Gmbh | Kugelventil |
EP3990770A1 (fr) * | 2019-06-25 | 2022-05-04 | Ganser-Hydromag AG | Soupape d'injection de carburant pour des moteurs à combustion interne |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006049050A1 (de) | 2006-10-18 | 2008-04-30 | Robert Bosch Gmbh | Injektor zum Einspritzen von Kraftstoff |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4428357B2 (ja) * | 2006-04-03 | 2010-03-10 | 株式会社デンソー | 燃料噴射弁 |
CH700396A1 (de) * | 2009-02-09 | 2010-08-13 | Ganser Hydromag | Brennstoffeinspritzventil für Verbrennungskraftmaschinen. |
JP5531713B2 (ja) * | 2010-03-29 | 2014-06-25 | 株式会社デンソー | 燃料噴射装置 |
-
2012
- 2012-12-14 DE DE102012223166.8A patent/DE102012223166A1/de not_active Withdrawn
-
2013
- 2013-10-22 EP EP13189766.2A patent/EP2743493B1/fr active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006049050A1 (de) | 2006-10-18 | 2008-04-30 | Robert Bosch Gmbh | Injektor zum Einspritzen von Kraftstoff |
Also Published As
Publication number | Publication date |
---|---|
EP2743493A3 (fr) | 2015-07-29 |
DE102012223166A1 (de) | 2014-06-18 |
EP2743493B1 (fr) | 2017-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0657642B1 (fr) | Dispositif d'injection de combustible pour moteurs à combustion interne | |
EP1332282B1 (fr) | Electrovanne pour piloter une soupape d'injection de moteur a combustion interne | |
EP1387940B1 (fr) | Soupape d'injection de carburant pour moteurs a combustion | |
EP2108080B1 (fr) | Injecteur pour injecter du carburant dans les chambres de combustion des moteurs à combustion interne | |
EP1654456B1 (fr) | Dispositif d'injection de carburant pour moteur a combustion interne | |
EP1387937B1 (fr) | Soupape d'injection de carburant pour moteurs a combustion, comprenant une chambre d'amortissement reduisant les oscillations de pression | |
EP1865192B1 (fr) | Injecteur de carburant doté d'une assistance adaptative à la direction | |
EP2743493B1 (fr) | Injecteur de carburant | |
EP1598551B1 (fr) | Dispositif d'injection de carburant | |
DE102009000181A1 (de) | Kraftstoff-Injektor | |
EP1853813B1 (fr) | Injecteur | |
WO2007141094A1 (fr) | Dispositif d'injection de carburant pour un moteur à combustion interne | |
DE102009001266A1 (de) | Kraftstoff-Injektor mit piezoelektrischem Aktuator sowie hydraulischem Koppler | |
WO2004022929A1 (fr) | Actionneur hydraulique de soupape servant a actionner une soupape d'echange de gaz | |
EP1911966A2 (fr) | Injecteur de carburant pour un moteur à combustion interne | |
EP2957760B1 (fr) | Ensemble de buses pour un injecteur de carburant et injecteur de carburant | |
DE102007001365A1 (de) | Injektor mit Steuer- und Schaltkammer | |
WO2008086941A1 (fr) | Injecteur de carburant à coupleur | |
DE102016201539A1 (de) | Kraftstoffinjektor | |
EP3095998A1 (fr) | Injecteur de carburant | |
EP3126663A1 (fr) | Injecteur de carburant | |
DE102015205582A1 (de) | Kraftstoffinjektor für ein Kraftstoffeinspritzsystem | |
DE102019215119A1 (de) | Kraftstoffinjektor | |
DE102018200500A1 (de) | Kraftstoffinjektor | |
WO2009135708A1 (fr) | Injecteur de carburant comprenant une vanne de commande dotée d'un étage de pression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131022 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F02M 47/02 20060101ALI20150619BHEP Ipc: F02M 63/00 20060101AFI20150619BHEP |
|
R17P | Request for examination filed (corrected) |
Effective date: 20160129 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20161018 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 866989 Country of ref document: AT Kind code of ref document: T Effective date: 20170215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013006315 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170508 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170509 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170608 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170508 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013006315 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20171109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20171022 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171022 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171022 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171022 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131022 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 866989 Country of ref document: AT Kind code of ref document: T Effective date: 20181022 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181022 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170208 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170608 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20211214 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20221020 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20221031 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502013006315 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 |