[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2618362B1 - Light emitter and method for its operation - Google Patents

Light emitter and method for its operation Download PDF

Info

Publication number
EP2618362B1
EP2618362B1 EP13000279.3A EP13000279A EP2618362B1 EP 2618362 B1 EP2618362 B1 EP 2618362B1 EP 13000279 A EP13000279 A EP 13000279A EP 2618362 B1 EP2618362 B1 EP 2618362B1
Authority
EP
European Patent Office
Prior art keywords
discharge chamber
chamber
discharge
space
lighting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13000279.3A
Other languages
German (de)
French (fr)
Other versions
EP2618362A1 (en
Inventor
Christoph Kaiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruher Institut fuer Technologie KIT filed Critical Karlsruher Institut fuer Technologie KIT
Publication of EP2618362A1 publication Critical patent/EP2618362A1/en
Application granted granted Critical
Publication of EP2618362B1 publication Critical patent/EP2618362B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/33Special shape of cross-section, e.g. for producing cool spot
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/125Selection of substances for gas fillings; Specified operating pressure or temperature having an halogenide as principal component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/32Special longitudinal shape, e.g. for advertising purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/044Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by a separate microwave unit

Definitions

  • the present invention relates to the term claimed above and thus relates to bulbs.
  • light sources are sources of visible, ultraviolet or infrared optical radiation which are operated with electrical energy.
  • the exciting field in the gas-filled space in which the plasma is ignited not in all places has a strength that is sufficient for plasma ignition. Rather, the electromagnetic field used for plasma excitation has a spatially limited penetration depth when the high-frequency alternating field is coupled in transmission or surface wave, which is particularly strong in lamps operated with medium and low pressure plasmas with pressures up to several 100 mbar; Such lamps are of particular importance for industrial applications, as UV lamps, energy-saving lamps and fluorescent lamps. Especially with bulbs in which the discharge spaces should remain free of electrodes or - for example, the use of chemically unstable or aggressive substituents - must, so the low penetration depth of the exciting alternating electromagnetic fields is observed.
  • the low penetration depth causes a comparatively low heating of the gas in the discharge space. If it is not possible with a given power to ensure a sufficient temperature for a plasma discharge in the entire discharge space, either a higher power must be coupled or a drop in the efficiency can be accepted.
  • a discharge tube assembly with an excitation device and a discharge tube which is formed of translucent, dielectric material.
  • the excitation device is designed to excite surface waves in the filling of the discharge tube.
  • at least one impedance matching network is provided between a coupling-in point and a high-frequency power source.
  • the gas column is comprised in an elongate, insulated housing, wherein a first metallic tube, which is open on both sides, and a second tube, which surrounds the first, so that a coaxial arrangement is obtained, are provided.
  • a high-frequency lamp for low and high pressure applications that seeks to improve properties in terms of efficiency, emission spectrum, cost and longevity.
  • a high-frequency signal is coupled via a shielded RF line circuit in a designated as ionization glass flask, wherein one or two electrodes in a surrounded with quartz glass and filled with gases or optionally metal vapors and / or halogens ionization protrude or surrounded with quartz glass and externally contact ionization chamber filled with gases and optionally metal vapors and / or halogens and / or sulfur to effect ionization.
  • This known lamp is supposed to be used as a high-pressure as well as a low-pressure gas discharge lamp; It wants to be distinguished by the fact that, depending on the design, it has a small point-shaped or a large spherical ionization region with large current flows and thus high color temperatures with a coverage of up to several square decimeters, so that the setting of the light output can allegedly be varied over a large range.
  • the WO 03 / 047318A1 shows a lamp with centrally located feed antenna. No information is given about the conditions in the area of the feed-in antenna. The same applies to EM Barkhudarov et al. in "Killing Bacteria present on surfaces in films or droplets using microwave UV lamps", ISSN 1573-0972 ,
  • GB 2 400 975 A is a lamp with a arranged between two coaxial cylinders discharge space is known, wherein the space provided inside clear space is open on both sides. The same applies to the lamp according to DE 39 13 519 A showing a curing system for a fiber.
  • the inventor of the present application has proposed a luminous means and a method for operating a luminous means, in which high-frequency waves are coupled into a gas volume for generating and maintaining plasma with only little shadowing, a small construction is achieved, broadband transmissivity for high-frequency waves in the Component is guaranteed, the self-consumption or idle consumption is very low and the high-frequency wave can be easily transported into the interior of the bulb.
  • a light source with a gas volume and a coaxial RF energy coupling device be provided for exciting the same with surface waves, that the coaxial RF energy Einkopplungsvorraumiques has a guided in the gas volume central conductor.
  • the various launchers may in part enable operation with reasonably high efficiency, it is desirable to further increase it and / or to obtain it with other electrode geometries and so on.
  • the temperature in the discharge space of the luminous means influences the efficiency
  • lamps be actively cooled, which makes it possible to couple very high powers and, moreover, contributes to a thermal stabilization.
  • the cooling of lamp bodies can take place here by a fluid flow and is for example common in systems for UV curing of paints.
  • thermal stabilization of luminaires provides to rotate the lamp body. This is known, for example, from sulfur lamps, in which the complete discharge vessel is rotated to avoid local overheating, which is technically complicated.
  • the object of the present invention is to provide new products for commercial use.
  • a space at least partially enclosed by the discharge space brings less heat losses.
  • the convection is reduced. This is true even if the enclosed space is only partially enclosed. Even then, heat removal from the region of high temperature in the discharge space is already substantially reduced, because particles from the region of particularly high temperature are prevented by the wall from unconfined convective and / or diffusion movement into a colder zone.
  • the enclosed space does not necessarily have to be a cavity. Rather, the enclosed space also with Be filled with material, such as glass or other material, where it may be completely or partially filled.
  • the space at least partially enclosed by the discharge space can be configured geometrically in such a way that a desired area results in the discharge chamber in which the gas discharge takes place. This allows a certain power density. It is typically no separate heat supply or removal required.
  • the space from the discharge space is at least partially enclosed, at the same time the heat loss is minimized by radiation, since at least a portion of the reaching into the at least partially enclosed space thermal radiation passes back into the discharge space.
  • the boundary wall between partially enclosed space and discharge space for the wavelength of the respective heat radiation is not or not completely transparent, it will heat up and accordingly emit heat radiation of different wavelength at least in part to an opposite boundary wall, so that at least by re-absorption a reduction in radiation is obtained.
  • the at least partially enclosed by the discharge space Space is a vacuum space, preferably at a pressure of less than 1/10 of the standard atmospheric pressure.
  • the enclosed space may optionally be filled with a certain gas under reduced pressure.
  • the means for microwave coupling are provided for exciting a plasma light.
  • a high power density can be achieved by the design according to the invention.
  • the microwave coupling takes place with discharge space free of electrodes, through the outer wall of the discharge space. This allows the choice of the medium present in the discharge space to be made irrespective of whether chemical reactions occur with materials typically used for electrodes. Thanks to the simultaneously possible by the geometric design adjustment of the power density, the invention thus opens up considerable freedom in terms of the choice of the existing medium in the discharge space, which offers quite significant advantages for the achievement of a particular spectrum to be radiated.
  • the luminous element is formed from glass, quartz glass and / or glass ceramic. This is advantageous because it allows the use per se of long known and proven materials and, accordingly, the use as per se reliably known manufacturing method.
  • the discharge space is arranged at least partially coaxially with the space at least partially enclosed by the discharge space.
  • the enclosed space will be central and the discharge space will be arranged around it. That a central arrangement is also possible where the outer wall of the discharge space is not cylindrical, but, for example, flattened or the like, should be mentioned.
  • the space at least partially enclosed by the discharge space is completely enclosed by the latter at least on one side, preferably on both sides.
  • a luminous means comprises a luminous body which a discharge space 1 and a means for thermal stabilization 2, which is formed as a space 2 at least partially enclosed by the discharge space 1.
  • the light-emitting means 1 has external electrodes (not shown), which are arranged on the outer wall of the discharge space 1 in per se known manner and feed high-frequency energy into the substances present in the interior of the discharge space.
  • the outer electrodes (not shown) are connected to a suitable high frequency power source of sufficient power.
  • the discharge generating bulb has been filled with, for example, indium-argon to achieve discharge with indium iodide as a carrier to achieve the required partial pressures of the indium.
  • the luminous element is made of quartz glass in the present embodiment.
  • a cylindrical quartz glass body is formed with vertical to the cylinder wall end faces, which are also made of quartz glass.
  • an inner cylinder coaxial with the outer quartz glass body is now provided, which is also closed at its end faces by the vertical end faces of quartz glass (in FIG Fig. 2 not shown) .
  • the partially enclosed by the discharge space and against the ambient atmosphere through this together with the vertical end surfaces of quartz glass completely sealed against the ambient atmosphere space is evacuated, here - as preferred - to a pressure of less than 1/10 of the standard atmospheric pressure.
  • the plasma discharge generated by the high frequency power has its hottest point away from the central axis of the cylinder. Due to the temperature gradient less heat radiation is received from other areas in the direction of the central axis as in this emitted. A considerable part of the radiation emitted in the space 2 partially enclosed by the discharge space 1 will, however, pass through this partially enclosed space 2 in such a way that it again enters the discharge space 1 on the opposite side, where the radiation Moreover, some can be absorbed again, for example, from the plasma present there. Since the pressure in the space 2 partially enclosed by the discharge space 1 is small, the otherwise occurring convective heat transport to the end surfaces made of quartz glass is also correspondingly irrelevant. The total heat loss of the arrangement according to the invention is thus low.
  • the space partially enclosed by the discharge space 1 thus serves for thermal stabilization and can thus be regarded as a means for thermal stabilization.
  • Fig. 1b is one of the two cylinder end faces of the discharge space, which in Fig. 1a closed by flat round quartz glass plates, completed by a hemispherical rounding.
  • the boundary wall between the discharge space 1 and the partially enclosed by this space 2 is also continued by a hemispherical rounding end.
  • the distance between the outer wall and boundary wall is chosen to be as large here in the area of the hemispherical rounding as on the cylinder jacket area.
  • Fig. 1c is also the second of the two cylinder end faces in Fig. 1a closed by flat round quartz glass plates, replaced by a hemispherical conclusion of the discharge space.
  • the boundary wall between the discharge space 1 and the partially enclosed by this space 2 is also formed by a hemispherical curve.
  • the distance between the outer and boundary wall in the region of the hemispherical curves here chosen to be as large as the cylinder jacket area. It encloses so in the embodiment of Fig. 1c the discharge space 1 the thermally stabilizing space 2 here completely.
  • the power density of the excitation power of the gas discharge resulting from a luminous means can easily be optimized. Since at the same time by the present invention, substances are used for the first time or at least easier, their partial pressure is set in the discharge by the existing temperature and would be too cold spots, the design of bulbs undergoes significant relief and enhancements. In particular, it becomes possible to provide mercury-free lamps, which offers particular advantages.
  • thermal stabilization of a gas discharge vessel by a space separated from the discharge space can also bring advantages where it does not depend on the emission of visible radiation, but a gas discharge other reasons is needed.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Description

Die vorliegende Erfindung betrifft das oberbegrifflich Beanspruchte und bezieht sich somit auf Leuchtmittel.The present invention relates to the term claimed above and thus relates to bulbs.

Als Leuchtmittel werden vorliegend Quellen von im Sichtbaren, im Ultravioletten oder im Infraroten liegender optischer Strahlung verstanden, die mit elektrischer Energie betrieben werden.In the present case, light sources are sources of visible, ultraviolet or infrared optical radiation which are operated with electrical energy.

Prinzipiell ist es wünschenswert, Leuchtmittel mit einem vertretbaren Energieaufwand sehr hell zum Leuchten zu bringen. Bereits vorgeschlagen wurde, ein Gasvolumen durch Zuführung elektrischer Hochfrequenzenergie soweit zu erregen, dass ein leuchtendes Plasma entsteht.In principle, it is desirable to illuminate bulbs with a reasonable energy consumption very bright. It has already been proposed to excite a gas volume by supplying electrical high-frequency energy so far that a luminous plasma is formed.

Wenn bei Leuchtmitteln ein hochfrequentes Wechselfeld zur Anregung verwendet wird, ist zu beachten, dass das anregende Feld im gaserfüllten Raum, in welchem das Plasma gezündet wird, nicht an allen Stellen eine Stärke besitzt, die zur Plasmazündung ausreicht. Vielmehr hat das zur Plasmaerregung verwendete elektromagnetische Feld eine räumlich nur begrenzte Eindringtiefe, wenn das hochfrequente Wechselfeld in Transmission oder als Oberflächenwelle eingekoppelt wird, was sich besonders stark bei Lampen auswirkt, die mit Mittel- und Niederdruckplasmen mit Drücken bis zu einigen 100 mbar betrieben werden; derartige Lampen sind für industrielle Anwendungen von besonderer Bedeutung, als UV-Lampen, Energiesparlampen und Fluoreszenzstofflampen. Gerade bei Leuchtmitteln, in denen die Entladungsräume elektrodenfrei bleiben sollen oder - etwa zur Verwendung chemisch instabiler oder agressiver Substituenten - müssen, ist also die geringe Eindringtiefe der erregenden elektromagnetischen Wechselfelder zu beachten.When using a high-frequency alternating field for excitation, it should be noted that the exciting field in the gas-filled space in which the plasma is ignited, not in all places has a strength that is sufficient for plasma ignition. Rather, the electromagnetic field used for plasma excitation has a spatially limited penetration depth when the high-frequency alternating field is coupled in transmission or surface wave, which is particularly strong in lamps operated with medium and low pressure plasmas with pressures up to several 100 mbar; Such lamps are of particular importance for industrial applications, as UV lamps, energy-saving lamps and fluorescent lamps. Especially with bulbs in which the discharge spaces should remain free of electrodes or - for example, the use of chemically unstable or aggressive substituents - must, so the low penetration depth of the exciting alternating electromagnetic fields is observed.

Die geringe Eindringtiefe bedingt eine vergleichsweise geringe Aufheizung des Gases im Entladungsraum. Wenn es mit einer gegebenen Leistung nicht gelingt, eine für eine Plasmaentladung ausreichende Temperatur im gesamten Entladungsraum zu gewährleisten, muss entweder eine höhere Leistung eingekoppelt werden oder ein Absinken des Wirkungsgrades in Kauf genommen werden.The low penetration depth causes a comparatively low heating of the gas in the discharge space. If it is not possible with a given power to ensure a sufficient temperature for a plasma discharge in the entire discharge space, either a higher power must be coupled or a drop in the efficiency can be accepted.

Um ein Leuchtmittel gleichwohl mit hohem Wirkungsgrad betreiben zu können, sind bereits verschiedene Arten der Einkopplung vorgeschlagen worden.However, in order to operate a light source with high efficiency, various types of coupling have already been proposed.

So ist eine Vorrichtung zur Plasmaerregung mit Mikrowellen zum Beispiel aus der DE 103 35 523 B4 bekannt, in welcher eine Mikrowellenleiterzuleitung sich verzweigt und daran Stegelektroden gebildet sind, deren Länge zu einer Mikrowellenphasenverschiebung führt.So is a device for plasma excitation with microwaves for example from DE 103 35 523 B4 in which a microwave conductor feed line is branched and thereon are formed stick electrodes whose length leads to a microwave phase shift.

Eine weitere Mikrowellen verwendende Plasmaerzeugungsvorrichtung ist beispielsweise bekannt aus der US 4,908,492 . Dort wird eine zylindrische HF-Leiteranordnung mit einem zylindrischen äußeren Leiter und einem wendelförmigen inneren Leiter vorgeschlagen, zwischen denen Mikrowellenenergie zugeführt wird. Innerhalb der wendelförmigen Spule soll ein Entladungsrohr angeordnet werden. Beschränkungen hinsichtlich der Abmessungen und der Form sollen eliminiert sein und es soll hinreichend viel Energie in das Gas beziehungsweise Plasma einkoppelbar sein. Erwähnt wird die Verwendung als Lichtquelle hoher Helligkeit und kurzer Wellenlänge für Zwecke optischer Reaktionen.Another plasma generating device using microwaves is known, for example, from US Pat US 4,908,492 , There is proposed a cylindrical RF conductor arrangement with a cylindrical outer conductor and a helical inner conductor, between which microwave energy is supplied. Within the helical coil, a discharge tube is to be arranged. Limitations on dimensions and the form should be eliminated and sufficient energy should be able to be coupled into the gas or plasma. The use is mentioned as a high-brightness, short-wavelength light source for the purpose of optical reactions.

Aus der US 5,072,157 ist eine Entladungsröhrenanordnung mit einer Erregungsvorrichtung und mit einer Entladungsröhre bekannt, welche aus lichtdurchlässigem, dielektrischem Material gebildet ist. Die Erregungsvorrichtung ist dazu ausgebildet, Oberflächenwellen in der Füllung der Entladungsröhre zu erregen. Dabei ist mindestens ein Impedanzanpassungsnetzwerk zwischen einer Einkopplungsstelle und einer Hochfrequenzleistungsquelle vorgesehen.From the US 5,072,157 For example, a discharge tube assembly with an excitation device and a discharge tube is known, which is formed of translucent, dielectric material. The excitation device is designed to excite surface waves in the filling of the discharge tube. In this case, at least one impedance matching network is provided between a coupling-in point and a high-frequency power source.

Aus der US 4,049,940 ist eine Vorrichtung bekannt, in welcher ein Plasma in einer Gassäule durch Erregung einer Oberflächenwelle mit Hochfrequenzenergie erzeugt wird. Das Oberflächenwellenerzeugungsmittel zur Hochfrequenzenergie-Einkopplung erstreckt sich nur über einen Teil der Gassäule und es wird soviel Leistung im erregenden elektrischen Feld zur Verfügung gestellt, dass sich das erzeugte Plasma über den entsprechenden Teil der Gassäule hinaus ausdehnt. In einem Ausführungsbeispiel ist die Gassäule in einem länglichen, isolierten Gehäuse umfasst, wobei eine erste metallische Röhre, die an beiden Seiten offen ist, und eine zweite Röhre, die die erste umgibt, so dass eine koaxiale Anordnung erhalten wird, vorgesehen sind.From the US 4,049,940 An apparatus is known in which a plasma is generated in a gas column by exciting a surface wave with high frequency energy. The surface acoustic wave generating means for RF energy coupling extends only over part of the gas column and so much power is provided in the exciting electric field that the generated plasma expands beyond the corresponding part of the gas column. In one embodiment, the gas column is comprised in an elongate, insulated housing, wherein a first metallic tube, which is open on both sides, and a second tube, which surrounds the first, so that a coaxial arrangement is obtained, are provided.

Aus dem Aufsatz " Application of an antenna excited high pressure microwave discharge to compact discharge lamps" von M Kando, T. Fukaya, Y. Ohishi, T. Mizojiri, Y. Morimoto, M. Shido und T. Serita, in J. Phys. D: Appl. Phys. 41 (2008) 144026 (10pp) ist ein weiteres mit Mikrowellenenergie erregtes Leuchtemittel bekannt.From the essay " M Kando, T. Fukaya, Y. Ohishi, T. Mizojiri, Y. Morimoto, M. Shido and T. Serita, in J. Phys. D: Appl. Phys. 41 (2008) 144026 (10pp) is another excited with microwave energy lighting.

Die DE 10 2009 022 755 A1 beschreibt eine Hochfrequenzlampe für Nieder- und Hochdruckanwendungen, die Eigenschaften im Hinblick auf Wirkungsgrad, Emissionsspektrum, Kosten und Langlebigkeit zu verbessern sucht. Dazu soll bei einer Hochfrequenzlampe ein Hochfrequenzsignal über eine geschirmte HF-Leitungsschaltung in einen als Ionisationskammer bezeichneten Glaskolben eingekoppelt werden, wobei eine oder zwei Elektroden in eine mit Quarzglas umgebene und mit Gasen beziehungsweise gegebenenfalls Metalldämpfen und/oder Halogenen gefüllte Ionisationskammer ragen oder eine mit Quarzglas umgebene und mit Gasen und gegebenenfalls Metalldämpfen und/oder Halogenen und/oder Schwefel gefüllte Ionisationskammer von außen kontaktieren, um eine Ionisation zu bewirken. Diese bekannte Lampe soll angeblich als Hochdruck- wie auch als Niederdruckgasentladungslampe einsetzbar sein; sie will sich dadurch auszeichnen, dass sie je nach Auslegung einen kleinen punktförmigen oder einen großen kugelförmigen Ionisationsbereich mit großen Stromflüssen und somit hohen Farbtemperaturen mit einer Abdeckung bis zu mehreren Quadratdezimetern aufweist, so dass die Einstellung der Lichtleistung angeblich über einen großen Bereich variiert werden kann.The DE 10 2009 022 755 A1 describes a high frequency lamp for low and high pressure applications that seeks to improve properties in terms of efficiency, emission spectrum, cost and longevity. For this purpose, in a high-frequency lamp, a high-frequency signal is coupled via a shielded RF line circuit in a designated as ionization glass flask, wherein one or two electrodes in a surrounded with quartz glass and filled with gases or optionally metal vapors and / or halogens ionization protrude or surrounded with quartz glass and externally contact ionization chamber filled with gases and optionally metal vapors and / or halogens and / or sulfur to effect ionization. This known lamp is supposed to be used as a high-pressure as well as a low-pressure gas discharge lamp; It wants to be distinguished by the fact that, depending on the design, it has a small point-shaped or a large spherical ionization region with large current flows and thus high color temperatures with a coverage of up to several square decimeters, so that the setting of the light output can allegedly be varied over a large range.

Erwähnt sei weiter die die KR 2004/0107335A . Diese zeigt eine von Kühlwasser durchströmte und damit besonders hohen Wärmeverlusten unterworfene UV-Lampe.Mention should be further the the KR 2004 / 0107335A , This shows a flowed through by cooling water and thus particularly high heat losses subjected UV lamp.

Die WO 03/ 047318A1 zeigt eine Lampe mit zentral angeordneter Einspeiseantenne. Es werden keine Angaben über die Bedingungen im Bereich der Einspeiseantenne gemacht. Gleiches gilt für E.M. Barkhudarov et al. in "Killing Bacteria present on surfaces in films or droplets using microwave UV lamps", ISSN 1573-0972 .The WO 03 / 047318A1 shows a lamp with centrally located feed antenna. No information is given about the conditions in the area of the feed-in antenna. The same applies to EM Barkhudarov et al. in "Killing Bacteria present on surfaces in films or droplets using microwave UV lamps", ISSN 1573-0972 ,

In GB 2 400 975 A ist eine Lampe mit einem zwischen zwei koaxialen Zylindern angeordneten Entladungsraum bekannt, wobei der im inneren vorgesehene lichte Raum beidseits offen ist. Gleiches gilt für die Lampe gemäß DE 39 13 519 A , die ein Aushärtesystem für eine Faser zeigt.In GB 2 400 975 A is a lamp with a arranged between two coaxial cylinders discharge space is known, wherein the space provided inside clear space is open on both sides. The same applies to the lamp according to DE 39 13 519 A showing a curing system for a fiber.

Verwiesen sei zudem auch auf die JP HO6 203807 , die JP 2004 127538A , die US 2004/004422A1 und die US 2011/279065A1 . Verwiesen sei auch auf den Aufsatz " Compact Sulfur Lamps Operated by Antenna-Excited Microwave Discharge" von Takafumi Mizojiri, Mitsuru Ikeuchi, Yukihiro Morimoto, and Masashi Kando im Japanese Journal of Applied Physics, Vol. 47, No. 10, 2008, pp. 8012-8016 . Darin wird eine Schwefellampe mit über Antennen erregter Mikrowellenentladung beschrieben.Reference is also made to the JP HO6 203807 , the JP 2004 127538A , the US 2004 / 004422A1 and the US 2011 / 279065A1 , Reference is also made to the article " Compact Sulfur Lamps Operated by Antenna-Excited Microwave Discharge "by Takafumi Mizojiri, Mitsuru Ikeuchi, Yukihiro Morimoto, and Masashi Kando in the Japanese Journal of Applied Physics, Vol. 47, No. 10, 2008, pp. 8012-8016 , It describes a sulfur lamp with antenna excitation microwave discharge.

Weiter ist vom Erfinder der vorliegenden Anmeldung ein Leuchtmittel und ein Verfahren zum Betreiben eines Leuchtmittels vorgeschlagen worden, bei welchen hochfrequente Wellen in ein Gasvolumen zur Plasmaerzeugung und -erhaltung bei nur geringer Abschattung eingekoppelt werden, eine kleine Bauweise erreicht wird, eine breitbandige Transmissivität für Hochfrequenzwellen im Bauteil gewährleistet wird, der Eigenverbrauch beziehungsweise Leerlaufverbrauch sehr gering ist und die hochfrequente Welle ohne weiteres in das Innere des Leuchtmittels transportiert werden kann. Dazu soll bei einem Leuchtmittel mit einem Gasvolumen und einer koaxialen HF-Energie-Einkopplungsvorrichtung zur Erregung desselben mit Oberflächenwellen vorgesehen werden, dass die koaxiale HF-Energie-Einkopplungsvorrichtung einen in das Gasvolumen geführten Zentralleiter aufweist.Furthermore, the inventor of the present application has proposed a luminous means and a method for operating a luminous means, in which high-frequency waves are coupled into a gas volume for generating and maintaining plasma with only little shadowing, a small construction is achieved, broadband transmissivity for high-frequency waves in the Component is guaranteed, the self-consumption or idle consumption is very low and the high-frequency wave can be easily transported into the interior of the bulb. For this purpose, in a light source with a gas volume and a coaxial RF energy coupling device be provided for exciting the same with surface waves, that the coaxial RF energy Einkopplungsvorrichtung has a guided in the gas volume central conductor.

Obgleich die verschiedenen Einkopplungsvorrichtungen zum Teil einen Betrieb mit recht ordentlichem Wirkungsgrad ermöglichen, ist es wünschenswert, diesen weiter zu steigern und/ oder auch mit anderen Elektrodengeometrien usw. zu erhalten.While the various launchers may in part enable operation with reasonably high efficiency, it is desirable to further increase it and / or to obtain it with other electrode geometries and so on.

Im Hinblick darauf, dass die Temperatur im Entladungsraum des Leuchtmittels den Wirkungsgrad beeinflusst, ist auch schon vorgeschlagen worden, den Leuchtkörper mit einem Mittel zur Verringerung der Wärmeverluste zu versehen. Dabei wurde um den Entladungsraum herum ein Vakuum vorgesehen, um Wandverluste zu verringern. Dies ist insbesondere, aber nicht ausschließlich, von High Intensity Discharge-Lampen bekannt. Durch die thermische Isolierung werden Konvektionsverluste am Lampenkörper verringert.In view of the fact that the temperature in the discharge space of the luminous means influences the efficiency, it has also been proposed to provide the luminous body with a means for reducing the heat losses. It was provided around the discharge space around a vacuum to reduce wall losses. This is especially, but not exclusively, known from High Intensity Discharge lamps. The thermal insulation reduces convection losses on the lamp body.

Weiter ist auch schon vorgeschlagen worden, dass Lampen aktiv gekühlt werden, was es erlaubt, sehr hohe Leistungen einzukoppeln und überdies zu einer thermischen Stabilisierung beiträgt. Die Kühlung von Lampenkörpern kann hierbei durch einen Fluidstrom erfolgen und ist beispielsweise gebräuchlich bei Anlagen zur UV-Aushärtung von Lacken.Furthermore, it has also been proposed that lamps be actively cooled, which makes it possible to couple very high powers and, moreover, contributes to a thermal stabilization. The cooling of lamp bodies can take place here by a fluid flow and is for example common in systems for UV curing of paints.

Eine andere Art der thermischen Stabilisierung von Leuchtkörpern sieht vor, den Leuchtenkörper zu rotieren. Dies ist beispielsweise von Schwefellampen bekannt, bei denen das komplette Entladungsgefäß zur Vermeidung lokaler Überhitzungen in Rotation versetzt wird, was aber technisch aufwendig ist.Another type of thermal stabilization of luminaires provides to rotate the lamp body. This is known, for example, from sulfur lamps, in which the complete discharge vessel is rotated to avoid local overheating, which is technically complicated.

Die Aufgabe der vorliegenden Erfindung besteht darin, Neues für die gewerbliche Anwendung bereitzustellen.The object of the present invention is to provide new products for commercial use.

Die Lösung dieser Aufgabe wird in unabhängiger Form beansprucht. Bevorzugte Ausführungsformen finden sich in den Unteransprüchen.The solution to this problem is claimed in an independent form. Preferred embodiments can be found in the subclaims.

Gemäß einem Grundgedanken der Erfindung wird somit eine Anordnung nach Anspruch 1 vorgeschlagen.According to a basic idea of the invention, an arrangement according to claim 1 is thus proposed.

Ausgehend von der Erkenntnis, dass sich dann, wenn die Einkopplung wandnah erfolgt und am Ort der Einkopplung eine vergleichsweise hohe Temperatur herrscht, die kälteste Stelle eines Entladungsraums nach dem Stand der Technik nicht mehr zwingend an dessen Außenwandung befinden muss, wird eine Ausgestaltung des Leuchtmittels vorgeschlagen, die dazu beiträgt, die Temperatur der Gasentladung zu erhöhen beziehungsweise die Temperatur derselben zu stabilisieren.Based on the knowledge that when the coupling is close to the wall and at the location of coupling prevails a relatively high temperature, the coldest point of a discharge space according to the prior art no longer necessarily on the outer wall must be, an embodiment of the bulb is proposed which helps to increase the temperature of the gas discharge or to stabilize the temperature thereof.

Dazu wird ausgenutzt, dass ein vom Entladungsraum zumindest partiell umschlossener Raum geringere Wärmeverluste mit sich bringt. Einerseits wird nämlich die Konvektion verringert. Dies gilt selbst dann, wenn der umschlossene Raum nur partiell umschlossen ist. Selbst dann ist nämlich eine Wärmeabfuhr aus dem Bereich hoher Temperatur im Entladungsraum bereits schon wesentlich verringert, weil Teilchen aus dem Bereich besonders hoher Temperatur durch die Wand an der ungehemmten konvektiven und/oder Diffusionsbewegung in eine kältere Zone gehindert sind. Es sei zudem erwähnt, dass es sich bei dem umschlossenen Raum nicht zwingend um einen Hohlraum handeln muss. Vielmehr kann der umschlossene Raum auch mit Material gefüllt sein, etwa mit Glas oder einem anderen Material, wobei er vollständig oder partiell gefüllt sein kann. Es sei erwähnt, dass durch das Vorhandensein eines Festkörper-Materials zwar aufgrund der gegenüber einem Bereich mit Gas verringerten Drucks höheren Wärmekapazität gerade während einer Anlaufphase womöglich sogar mehr Wärmeenergie aus der Gasentladungszone abströmt, dass aber nach Aufwärmen des Zentralbereichs das Wärmegleichgewicht gerade durch die höhere Wärmekapazität besser stabilisiert wird. Damit ergeben sich insbesondere dann Vorteile, wenn die Gasentladung lange betrieben wird und ein anfängliches Anlaufverhalten unkritisch ist oder kompensiert werden kann. Es sei erwähnt, dass gegebenenfalls etwa Wandungen besonders dick gestaltet werden können, um so das Einbringen zusätzlichen Materials mit vom Gefäßkörper abweichenden Ausdehnungskoeffizienten und die damit verbundenen Nachteile vermeiden zu können und gleichwohl eine erhöhte Wärmekapazität vorzusehen.For this purpose, it is exploited that a space at least partially enclosed by the discharge space brings less heat losses. On the one hand, the convection is reduced. This is true even if the enclosed space is only partially enclosed. Even then, heat removal from the region of high temperature in the discharge space is already substantially reduced, because particles from the region of particularly high temperature are prevented by the wall from unconfined convective and / or diffusion movement into a colder zone. It should also be mentioned that the enclosed space does not necessarily have to be a cavity. Rather, the enclosed space also with Be filled with material, such as glass or other material, where it may be completely or partially filled. It should be noted that due to the presence of a solid material, although due to the lower gas compared to a region of reduced pressure pressure even more heat energy flows out of the gas discharge zone during a start-up phase, but that after warming the central region, the heat balance just by the higher heat capacity is stabilized better. This results in particular advantages if the gas discharge is operated for a long time and an initial startup behavior is uncritical or can be compensated. It should be mentioned that possibly walls, for example, can be made particularly thick so as to be able to avoid the introduction of additional material with deviating from the vessel body expansion coefficient and the associated disadvantages and nevertheless provide an increased heat capacity.

Es findet also eine Stabilisierung der Temperatur im Leuchtmittelinneren statt. Auf diese Weise kann ohne bewegliche Teile bei einer elektrodenlosen Anregung ein besonders günstiger Betrieb ermöglicht werden. Diese Anordnung ist für Leuchtmittel geeignet.So there is a stabilization of the temperature in the bulb interior. In this way, a particularly favorable operation can be made possible without moving parts in an electrodeless excitation. This arrangement is suitable for bulbs.

Hingewiesen sei darauf, dass der vom Entladungsraum zumindest partiell umschlossene Raum geometrisch so ausgestaltet werden kann, dass sich in der Entladungskammer ein gewünschter Bereich ergibt, in welchem die Gasentladung stattfindet. Damit wird eine bestimmte Leistungsdichte ermöglicht. Dabei ist typisch keine separate Wärmezu- oder -abfuhr erforderlich.It should be noted that the space at least partially enclosed by the discharge space can be configured geometrically in such a way that a desired area results in the discharge chamber in which the gas discharge takes place. This allows a certain power density. It is typically no separate heat supply or removal required.

Da der Raum vom Entladungsraum zumindest partiell umschlossen ist, wird zugleich der Wärmeverlust durch Abstrahlung minimiert, da zumindest ein Teil der in den zumindest partiell umschlossenen Raum gelangenden Wärmestrahlung wieder in den Entladungsraum zurück gelangt. Selbst dann, wenn die Begrenzungswand zwischen partiell umschlossenem Raum und Entladungsraum für die Wellenlänge der jeweiligen Wärmestrahlung nicht oder nicht vollständig transparent ist, wird sie sich erwärmen und dementsprechend Wärmestrahlung anderer Wellenlänge zumindest zum Teil an eine gegenüberliegende Begrenzungswand abgeben, so dass zumindest durch Re-Absorption eine Verringerung der Abstrahlung erhalten wird.Since the space from the discharge space is at least partially enclosed, at the same time the heat loss is minimized by radiation, since at least a portion of the reaching into the at least partially enclosed space thermal radiation passes back into the discharge space. Even if the boundary wall between partially enclosed space and discharge space for the wavelength of the respective heat radiation is not or not completely transparent, it will heat up and accordingly emit heat radiation of different wavelength at least in part to an opposite boundary wall, so that at least by re-absorption a reduction in radiation is obtained.

Es ist also nur durch die erfindungsgemäße Ausgestaltung des Leuchtmittelkörpers und ohne Vorsehen zusätzlicher bewegter Teile möglich, die Temperatur im Gasentladungsinneren zu erhöhen und zu stabilisieren, eine gewünschte Leistungsdichte auch in elektrodenlosem Betrieb vorzusehen und einen insgesamt hohen Wirkungsgrad zu ermöglichen.It is therefore possible only by the inventive design of the lamp body and without providing additional moving parts to increase the temperature in the gas discharge interior and to stabilize, provide a desired power density in electrodeless operation and to allow a total of high efficiency.

Es ist vorteilhaft, wenn im vom Entladungsraum zumindest partiell umschlossenen Raum ein Druck unterhalb des Atmosphärendrucks herrscht. In einem solchen Fall wird die Wärmeabfuhr von der Begrenzungswand durch Wärmeabfuhr noch weiter verringert, weil zunächst zur Ermöglichung eines Unterdrucks der vom Entladungsraum zumindest partiell umschlossene Raum gegen die Umgebung vollständig abgeschlossen sein muss, was konvektiven Wärmeaustausch noch weiter verringert. Überdies ist auch durch die Verringerung des Drucks selbst der konvektive Wärmeaustausch, zum Beispiel zu den Stirnflächen, reduziert. Es ist daher einsichtig, dass es besonders vorteilhaft ist, wenn der vom Entladungsraum zumindest partiell umschlossene Raum ein Vakuumraum ist, bevorzugt mit einem Druck von weniger als 1/10 des Standard-Atmosphärendrucks. Aufgrund der stärkeren Ausprägung der beschriebenen Effekte ist es insbesondere bevorzugt, den Druck nicht über 1/100 des Standard-Atmosphärendrucks zu wählen; noch weiter bevorzugt ist es, einen Druck um oder unter 1/1000 des Atmosphärendrucks zu verwenden. Noch weiter verringerte Drücke sind verwendbar; allerdings sind die beschriebenen positiven Effekte dadurch nicht mehr wesentlich ausgeprägter, während gleichzeitig der technologische Aufwand steigt. Dass der umschlossene Raum gegebenenfalls mit einem bestimmten Gas unter verringertem Druck gefüllt sein kann, sei erwähnt.It is advantageous if a pressure below the atmospheric pressure prevails in the space at least partially enclosed by the discharge space. In such a case, the heat dissipation from the boundary wall is further reduced by heat removal, because first to allow a negative pressure of the discharge space at least partially enclosed space against the environment must be completely completed, which even further reduces convective heat exchange. Moreover, even by reducing the pressure itself, the convective heat exchange, for example to the end faces, is reduced. It is therefore obvious that it is particularly advantageous if the at least partially enclosed by the discharge space Space is a vacuum space, preferably at a pressure of less than 1/10 of the standard atmospheric pressure. Because of the greater severity of the effects described, it is particularly preferred not to select the pressure above 1/100 of the standard atmospheric pressure; even more preferable is to use a pressure around or below 1/1000 of the atmospheric pressure. Still further reduced pressures are usable; however, the described positive effects are no longer significantly more pronounced, while at the same time increasing the technological effort. It may be mentioned that the enclosed space may optionally be filled with a certain gas under reduced pressure.

Es ist vorteilhaft, wenn die Mittel zur Mikrowelleneinkopplung zum Erregen eines Plasmaleuchtens vorgesehen sind. Wie dargelegt, ist ungeachtet der oftmals geringen Eindringtiefe eine hohe Leistungsdichte durch die erfindungsgemäße Ausgestaltung erzielbar. Es ist zugleich erfindungsgemäß vorgesehen, dass die Mikrowelleneinkopplung mit von Elektroden freiem Entladungsraum erfolgt, und zwar durch die äußere Wand des Entladungsraumes. Dies erlaubt es, die Wahl des im Entladungsraum vorhandenen Mediums unabhängig davon zu treffen, ob mit typischerweise für Elektroden verwendeten Materialien chemische Reaktionen auftreten. Dank der gleichzeitig durch die geometrische Auslegung möglichen Einstellung der Leistungsdichte eröffnet die Erfindung so auch hinsichtlich der Wahl des im Entladungsraum vorhandenen Mediums erhebliche Freiheiten, was etwa für die Erzielung eines bestimmten abzustrahlenden Spektrums ganz erhebliche Vorteile bietet. Es ist möglich, dass der Leuchtkörper aus Glas, Quarzglas und/oder Glaskeramik gebildet ist. Dies ist vorteilhaft, weil es die Verwendung per se lange bekannter und erprobter Materialien und entsprechend die Verwendung als per se zuverlässig bekannter Herstellungsverfahren erlaubt.It is advantageous if the means for microwave coupling are provided for exciting a plasma light. As stated, regardless of the often low penetration depth, a high power density can be achieved by the design according to the invention. It is also provided according to the invention that the microwave coupling takes place with discharge space free of electrodes, through the outer wall of the discharge space. This allows the choice of the medium present in the discharge space to be made irrespective of whether chemical reactions occur with materials typically used for electrodes. Thanks to the simultaneously possible by the geometric design adjustment of the power density, the invention thus opens up considerable freedom in terms of the choice of the existing medium in the discharge space, which offers quite significant advantages for the achievement of a particular spectrum to be radiated. It is possible that the luminous element is formed from glass, quartz glass and / or glass ceramic. This is advantageous because it allows the use per se of long known and proven materials and, accordingly, the use as per se reliably known manufacturing method.

Es ist vorteilhaft, wenn der Entladungsraum zumindest partiell koaxial zum vom Entladungsraum zumindest partiell umschlossenen Raum angeordnet ist. Mit anderen Worten wird der umschlossene Raum zentral liegen und der Entladungsraum um ihn herum angeordnet werden. Dass eine zentrale Anordnung auch dort möglich ist, wo die Außenwand des Entladungsraums nicht zylindrisch ist, sondern zum Beispiel abgeflacht oder dergleichen, sei erwähnt.It is advantageous if the discharge space is arranged at least partially coaxially with the space at least partially enclosed by the discharge space. In other words, the enclosed space will be central and the discharge space will be arranged around it. That a central arrangement is also possible where the outer wall of the discharge space is not cylindrical, but, for example, flattened or the like, should be mentioned.

Es sei als vorteilhaft auch erwähnt, dass der vom Entladungsraum zumindest partiell umschlossene Raum von diesem wenigstens einseitig, bevorzugt beidseitig vollständig umschlossen ist. So ergeben sich die Vorteile der Erfindung in besonderem Maß.It may also be mentioned as advantageous that the space at least partially enclosed by the discharge space is completely enclosed by the latter at least on one side, preferably on both sides. Thus, the advantages of the invention result in particular.

Die Erfindung wird im Folgenden nur beispielsweise mit Bezug auf die Zeichnung beschrieben. In dieser ist dargestellt durch:

Fig.1 a-c
verschiedene erfindungsgemäße Anordnungen von Entladungsraum und davon zumindest partiell umschlossenem Raum;
Fig. 2
eine perspektivische Darstellung zur Ausführungsform von Fig. 1a.
The invention will now be described by way of example only with reference to the drawings. In this is represented by:
Fig.1 ac
various inventive arrangements of discharge space and at least partially enclosed space;
Fig. 2
a perspective view of the embodiment of Fig. 1a ,

Nach Fig. 1 umfasst ein Leuchtmittel einen Leuchtkörper, der einem Entladungsraum 1 und ein Mittel zur thermischen Stabilisierung 2 aufweist, das als ein vom Entladungsraum 1 zumindest partiell umschlossener Raum 2 gebildet ist.To Fig. 1 a luminous means comprises a luminous body which a discharge space 1 and a means for thermal stabilization 2, which is formed as a space 2 at least partially enclosed by the discharge space 1.

Das Leuchtmittel 1 weist Außenelektroden auf (nicht dargestellt), die an der Außenwand des Entladungsraumes 1 in per se bekannter Weise angeordnet sind und hochfrequente Energie in die im Inneren des Entladungsraumes vorhandenen Substanzen einspeisen. Die Außenelektroden (nicht dargestellt) sind mit einer geeigneten Hochfrequenzleistungsquelle ausreichender Leistung verbunden.The light-emitting means 1 has external electrodes (not shown), which are arranged on the outer wall of the discharge space 1 in per se known manner and feed high-frequency energy into the substances present in the interior of the discharge space. The outer electrodes (not shown) are connected to a suitable high frequency power source of sufficient power.

In einem Ausführungsbeispiel wurde das Leuchtmittel zur Erzeugung einer Entladung etwa mit Indium-Argon gefüllt, um eine Entladung mit Indiumiodid als Carrier zum Erreichen der benötigten Partialdrücke des Indiums zu erreichen.In one embodiment, the discharge generating bulb has been filled with, for example, indium-argon to achieve discharge with indium iodide as a carrier to achieve the required partial pressures of the indium.

Der Leuchtkörper ist im vorliegenden Ausführungsbeispiel aus Quarzglas hergestellt.The luminous element is made of quartz glass in the present embodiment.

In Fig. 1a ist dabei ein Ausführungsbeispiel dargestellt, bei welchem ein zylindrischer Quarzglaskörper mit auf die Zylinderwand senkrechten Stirnflächen gebildet ist, die ebenfalls aus Quarzglas hergestellt sind. Im Inneren dieses Quarzglaskörper mit zylindrischer Außenwand ist nun ein mit dem äußeren Quarzglaskörper koaxialer Innenzylinder vorgesehen, der an seinen Stirnseiten ebenfalls von den senkrechten Endflächen aus Quarzglas abgeschlossen ist (in Fig. 2 nicht dargestellt) .In Fig. 1a Here, an embodiment is shown in which a cylindrical quartz glass body is formed with vertical to the cylinder wall end faces, which are also made of quartz glass. In the interior of this quartz glass body with a cylindrical outer wall, an inner cylinder coaxial with the outer quartz glass body is now provided, which is also closed at its end faces by the vertical end faces of quartz glass (in FIG Fig. 2 not shown) .

Damit ist durch die Zylinderwandung des koaxialen Innenzylinders und die senkrechten Endflächen aus Quarzglas ein geschlossener, zentraler Raum gebildet und durch die Zylinderwandung eine Begrenzungswand zwischen Entladungsraum 1 und dem von diesem zumindest partiell umschlossenen Raum 2 gebildet.Thus, by the cylinder wall of the coaxial inner cylinder and the vertical end surfaces of quartz glass is a closed, formed central space and formed by the cylinder wall, a boundary wall between the discharge space 1 and at least partially enclosed by this space 2.

Es sei erwähnt, dass hier - wie insbesondere in den anderen Ausführungsbeispielen auch - die geometrische Auslegung so gewählt werden kann, dass sich ein bestimmter Gasentladungsquerschnitt ergibt und damit eine optimale Leistungsdichte verwendet werden kann.It should be mentioned that here - as in particular in the other embodiments also - the geometric design can be chosen so that there is a certain gas discharge cross-section and thus optimal power density can be used.

Der vom Entladungsraum partiell umschlossene und gegen die Umgebungsatmosphäre durch diesen gemeinsam mit den senkrechten Endflächen aus Quarzglas vollständig gegen die Umgebungsatmosphäre verschlossene Raum ist evakuiert, hier - wie bevorzugt - auf einen Druck von weniger als 1/10 des Standard-Atmosphärendrucks.The partially enclosed by the discharge space and against the ambient atmosphere through this together with the vertical end surfaces of quartz glass completely sealed against the ambient atmosphere space is evacuated, here - as preferred - to a pressure of less than 1/10 of the standard atmospheric pressure.

Im Betrieb wird Leistung über die Außenelektroden in den Entladungsraum eingekoppelt, wo eine Plasmaentladung nahe der Außenwand stattfindet und dementsprechend nahe der Außenwand die höchsten Temperaturen herrschen.During operation, power is coupled into the discharge space via the outer electrodes, where a plasma discharge occurs close to the outer wall and accordingly the highest temperatures occur near the outer wall.

Die durch die Hochfrequenzleistung erzeugte Plasmaentladung hat ihre heißeste Stelle entfernt von der Mittelachse des Zylinders. Aufgrund des Temperaturgradienten wird in Richtung der Mittelachse weniger Wärmestrahlung von anderen Bereichen empfangen als in diese abgegeben. Ein erheblicher Teil der in den vom Entladungsraum 1 partiell umschlossenen Raum 2 emittierten Strahlung wird diesen partiell umschlossenen Raum 2 aber so durchlaufen, dass er auf der gegenüberliegenden Seite wieder in den Entladungsraum 1 eintritt, wo die Strahlung überdies zum Teil wieder, zum Beispiel vom dort vorhandenen Plasma, absorbiert werden kann. Da der Druck im vom Entladungsraum 1 partiell umschlossenen Raum 2 gering ist, ist der sonst stattfindende konvektive Wärmetransport an die Endflächen aus Quarzglas darüber hinaus entsprechend unbeachtlich. Der Gesamtwärmeverlust der erfindungsgemäßen Anordnung ist somit gering. Der vom Entladungsraum 1 hier partiell umschlossene Raum dient somit der thermischen Stabilisierung und kann somit als Mittel zur thermischen Stabilisierung angesehen werden.The plasma discharge generated by the high frequency power has its hottest point away from the central axis of the cylinder. Due to the temperature gradient less heat radiation is received from other areas in the direction of the central axis as in this emitted. A considerable part of the radiation emitted in the space 2 partially enclosed by the discharge space 1 will, however, pass through this partially enclosed space 2 in such a way that it again enters the discharge space 1 on the opposite side, where the radiation Moreover, some can be absorbed again, for example, from the plasma present there. Since the pressure in the space 2 partially enclosed by the discharge space 1 is small, the otherwise occurring convective heat transport to the end surfaces made of quartz glass is also correspondingly irrelevant. The total heat loss of the arrangement according to the invention is thus low. The space partially enclosed by the discharge space 1 thus serves for thermal stabilization and can thus be regarded as a means for thermal stabilization.

In der Ausführungsform von Fig. 1b ist eine der beiden Zylinderstirnflächen des Entladungsraums, die in Fig. 1a durch ebene runde Quarzglasplatten verschlossen sind, durch eine halbkugelförmige Rundung abgeschlossen. Zudem ist endseitig die Begrenzungswand zwischen dem Entladungsraum 1 und dem von diesem partiell umschlossenen Raum 2 ebenfalls durch eine halbkugelförmige Rundung fortgesetzt. Der Abstand zwischen Außenwand und Begrenzungswand ist im Bereich der halbkugelförmigen Rundung hier so groß gewählt wie am Zylindermantelbereich.In the embodiment of Fig. 1b is one of the two cylinder end faces of the discharge space, which in Fig. 1a closed by flat round quartz glass plates, completed by a hemispherical rounding. In addition, the boundary wall between the discharge space 1 and the partially enclosed by this space 2 is also continued by a hemispherical rounding end. The distance between the outer wall and boundary wall is chosen to be as large here in the area of the hemispherical rounding as on the cylinder jacket area.

In Fig. 1c ist auch die zweite der beiden Zylinderstirnflächen, die in Fig. 1a durch ebene runde Quarzglasplatten verschlossen sind, durch einen halbkugelförmigen Abschluss des Entladungsraums ersetzt. Wiederum ist die Begrenzungswand zwischen dem Entladungsraum 1 und dem von diesem partiell umschlossenen Raum 2 ebenfalls durch eine halbkugelförmige Rundung gebildet. Wiederum ist auch der Abstand zwischen Außen- und Begrenzungswand im Bereich der halbkugelförmigen Rundungen hier so groß gewählt wie am Zylindermantelbereich. Es umschließt so im Ausführungsbeispiel von Fig. 1c der Entladungsraum 1 den thermisch stabilisierenden Raum 2 hier vollständig.In Fig. 1c is also the second of the two cylinder end faces in Fig. 1a closed by flat round quartz glass plates, replaced by a hemispherical conclusion of the discharge space. Again, the boundary wall between the discharge space 1 and the partially enclosed by this space 2 is also formed by a hemispherical curve. Again, the distance between the outer and boundary wall in the region of the hemispherical curves here chosen to be as large as the cylinder jacket area. It encloses so in the embodiment of Fig. 1c the discharge space 1 the thermally stabilizing space 2 here completely.

Es ergeben sich vergleichbare Effekte wie beim Ausführungsbeispiel von Fig. 1a. Wiederum wirkt der vom Entladungsraum 1 umschlossene Raum 2 im Betrieb thermisch stabilisierend; die stabilisierende Wirkung ist dabei - entsprechend des vollständigeren Umschließens - aber sogar besser.This results in comparable effects as in the embodiment of Fig. 1a , Once again, the space 2 enclosed by the discharge space 1 has a thermally stabilizing effect during operation; the stabilizing effect is - but even better - according to the more complete enclosing.

Zusammenfassend wurde somit vorstehend ein neues Leuchtmittel vorgeschlagen, bei welchem im Inneren des Entladungsraumes ein davon getrennter Raum zur thermischen Stabilisierung vorgesehen ist. Durch diesen wirken sich wiederum Variationen der Umgebungstemperatur weniger stark aus und Inhomogenitäten in der Entladung können zumindest reduziert werden. Dies gilt auch, wenn - wie bei Leuchtmitteln mit elektrodenfreien Entladungsräumen - die Annahme nicht mehr zutrifft, dass das Temperaturprofil ausgehend vom Mittelpunkt einer Entladung abfällt.In summary, a new illuminant has thus been proposed above, in which a separate space for thermal stabilization is provided in the interior of the discharge space. As a result, variations in the ambient temperature in turn have less effect and inhomogeneities in the discharge can at least be reduced. This also applies if - as with bulbs with electrode-free discharge spaces - the assumption is no longer true that the temperature profile drops starting from the center of a discharge.

Durch Dimensionierung und Formgebung von Entladungsgefäß und Vakuumraum ist die sich bei einem Leuchtmittel ergebende Leistungsdichte der Anregungsleistung der Gasentladung leicht optimierbar. Da zugleich durch die vorliegende Erfindung auch Stoffe erstmals oder zumindest einfacher verwendbar werden, deren Partialdruck in der Entladung durch die vorhandene Temperatur eingestellt wird und die an zu kalten Stellen ausfallen würden, erfährt der Entwurf von Leuchtmitteln wesentliche Erleichterungen und Erweiterungen. Insbesondere wird es so möglich, quecksilberfreie Leuchtmittel zu schaffen, was besondere Vorteile bietet.By dimensioning and shaping of the discharge vessel and the vacuum space, the power density of the excitation power of the gas discharge resulting from a luminous means can easily be optimized. Since at the same time by the present invention, substances are used for the first time or at least easier, their partial pressure is set in the discharge by the existing temperature and would be too cold spots, the design of bulbs undergoes significant relief and enhancements. In particular, it becomes possible to provide mercury-free lamps, which offers particular advantages.

Es sei erwähnt, dass, obgleich die vorstehende Beschreibung sich überwiegend auf ein Leuchtmittel bezogen hat, die thermische Stabilisierung eines Gasentladungsgefäßes durch einen vom Entladungsraum getrennten Raum auch dort Vorteile bringen kann, wo es nicht auf die Emission von sichtbarer Strahlung ankommt, sondern eine Gasentladung aus anderen Gründen benötigt wird.It should be noted that, although the above description has mainly referred to a lamp, the thermal stabilization of a gas discharge vessel by a space separated from the discharge space can also bring advantages where it does not depend on the emission of visible radiation, but a gas discharge other reasons is needed.

Claims (8)

  1. Lighting means
    comprising a lighting body having
    an electrodeless discharge chamber (1) which comprises an outer wall and into which microwaves are coupled,
    and
    thermal stabilisation means comprising a chamber (2) that is
    separated from the discharge chamber (1) by a partition,
    at least partially surrounded by the discharge chamber (1)
    and central with respect to the discharge chamber (1),
    characterised in that
    outer electrodes are provided at the outer wall of the discharge chamber (1) configured to couple microwaves into the discharge chamber (1) through its outer wall
    and
    the chamber (2), which is at least partially surrounded by the discharge chamber (1), is a closed vacuum chamber or is filled with solid material so as to reduce heat dissipation from the discharge chamber through the partition defining the discharge chamber.
  2. The lighting means according to claim 1, characterised in that the chamber (2), which is at least partially surrounded by the discharge chamber (1), is a closed vacuum chamber having a pressure of less than 1/10 of standard atmospheric pressure, preferably of less than 1/100 of standard atmospheric pressure.
  3. The lighting means according to claim 1, characterised in that the chamber (2), which is surrounded at least partially by the discharge chamber (1), is filled with glass.
  4. The lighting means according to any of the preceding claims, characterised in that the outer electrodes are configured to couple in microwaves for exciting plasma luminescence.
  5. The lighting means according to any of the preceding claims, characterised in that the lighting body is formed of glass, fused quartz glass and/or glass ceramics.
  6. The lighting means according to any of the preceding claims, characterised in that the discharge chamber (1) and the chamber (2), which is at least partially surrounded by the discharge chamber (1), are arranged coaxially with respect to each other.
  7. The lighting means according to any of the preceding claims, characterised in that the chamber (2), which is at least partially surrounded by the discharge chamber (1), is completely closed by the latter at least on one side.
  8. The lighting means according to any of the preceding claims, characterised in that the chamber (2), which is at least partially surrounded by the discharge chamber (1), is completely enclosed inside the discharge chamber.
EP13000279.3A 2012-01-20 2013-01-21 Light emitter and method for its operation Active EP2618362B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012001000A DE102012001000A1 (en) 2012-01-20 2012-01-20 Illuminants and operating methods for this

Publications (2)

Publication Number Publication Date
EP2618362A1 EP2618362A1 (en) 2013-07-24
EP2618362B1 true EP2618362B1 (en) 2019-09-11

Family

ID=47630133

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13000279.3A Active EP2618362B1 (en) 2012-01-20 2013-01-21 Light emitter and method for its operation

Country Status (2)

Country Link
EP (1) EP2618362B1 (en)
DE (1) DE102012001000A1 (en)

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1738991A (en) * 1925-11-24 1929-12-10 American Thermos Bottle Co Manufacture of double-walled vacuum receptacles
FR2290126A1 (en) 1974-10-31 1976-05-28 Anvar IMPROVEMENTS TO EXCITATION DEVICES, BY HF WAVES, OF A GAS COLUMN ENCLOSED IN A ENCLOSURE
US4065701A (en) * 1976-07-14 1977-12-27 Gte Laboratories Incorporated Electrodeless light source with reduced heat losses
US4963790A (en) * 1985-12-27 1990-10-16 Gte Products Corporation Low wattage metal halide discharge lamp
US4871946A (en) * 1988-03-14 1989-10-03 General Electric Company Electrodeless high intensity discharge lamp
JP2805009B2 (en) 1988-05-11 1998-09-30 株式会社日立製作所 Plasma generator and plasma element analyzer
GB8821672D0 (en) 1988-09-02 1988-10-19 Emi Plc Thorn Discharge tube arrangement
DE3913519C2 (en) * 1989-04-25 1996-06-27 Rheydt Kabelwerk Ag UV curing system for optical fibers
JPH06203807A (en) * 1992-12-28 1994-07-22 Toshiba Lighting & Technol Corp Electrodeless electric discharge lamp, lighting circuit thereof and lighting system using same
US5438235A (en) * 1993-10-05 1995-08-01 General Electric Company Electrostatic shield to reduce wall damage in an electrodeless high intensity discharge lamp
JP3202910B2 (en) * 1995-12-04 2001-08-27 松下電器産業株式会社 Microwave discharge lamp
ITPI20010078A1 (en) * 2001-11-29 2003-05-29 Cnr Consiglio Naz Delle Rice R METHOD FOR PRODUCTION WITH A LAMP WITHOUT ELECTRODES OF A UV RADIATION. VISIBLE OR IR AND LAMP THAT IMPLEMENTS THIS METHOD
US6747419B2 (en) * 2002-07-03 2004-06-08 Ushio America, Inc. Method and apparatus for heat pipe cooling of an excimer lamp
JP2004127538A (en) * 2002-09-30 2004-04-22 Harison Toshiba Lighting Corp Cold cathode fluorescent lamp
GB2400975B (en) * 2003-04-17 2006-04-12 Jenact Ltd A light source and a method of manufacture thereof
KR20040107335A (en) * 2003-06-13 2004-12-20 (주)아트램프 Electrodeless discharge ultraviolet rays lamp
DE10335523B4 (en) 2003-07-31 2009-04-30 Koch, Berthold, Dr.-Ing. Device for plasma excitation with microwaves
WO2008029328A1 (en) * 2006-09-05 2008-03-13 Koninklijke Philips Electronics N.V. Low-pressure gas discharge lamp having an improved efficiency
US7993528B2 (en) * 2007-04-25 2011-08-09 Necamp David Richard Method and apparatus for treating materials using electrodeless lamps
EP2386113A2 (en) * 2009-01-09 2011-11-16 Koninklijke Philips Electronics N.V. Mercury-free molecular discharge lamp
DE102009022755A1 (en) 2009-05-26 2010-12-02 Fachhochschule Aachen Electrode-less high frequency-high pressure lamp i.e. high pressure gas discharge lamp, for use as e.g. motor vehicle headlamp, has oscillator generating high-frequency signals processed in ionization chambers in high frequency mode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102012001000A1 (en) 2013-07-25
EP2618362A1 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
DE69718460T2 (en) metal halide
DE69719145T2 (en) High frequency discharge power supply device and electrodeless high frequency discharge lamp device
EP0371304B1 (en) High-power radiation device
DE60020476T2 (en) High frequency excited point light source lamp device
DE4302465C1 (en) Appts. for producing dielectrically-hindered discharge - comprises gas-filled discharge space between two ignition voltage-admitted electrodes
DE202011106953U1 (en) Gas discharge lamp and conveyor system for exposure of substrates
EP2618362B1 (en) Light emitter and method for its operation
DE69712122T2 (en) Electrodeless microwave discharge lamp and method for producing such a lamp
EP2246874B1 (en) Plasma lamp
DE2601587A1 (en) ELECTRODE-LESS FLUORESCENT LAMP
EP3323141A1 (en) Method for operating a xenon excimer lamp and lamp system comprising an excimer lamp
EP2909856B1 (en) Uv light source having combined ionization and formation of excimers
DE2656949A1 (en) ELECTRODE-LESS FLUORESCENT LAMP
DE102014110677A1 (en) Flash lamp arrangement and processing arrangement
DE3923277C2 (en)
DE69325349T2 (en) Electrodeless lamp
DE112010001171T5 (en) Dielectric filled field generator for EHID lamps and this comprehensive EHID lamp assembly
DE102010033446B4 (en) Mercury vapor lamp for homogeneous planar irradiation
EP0334355B1 (en) Wall-stabilized high-pressure discharge lamp
DE102004021016A1 (en) Microwave radiation introducing method e.g. for transmission and aerial system, involves introducing radiation over high temperature-steady coaxial cable into applicator
EP0334356A1 (en) Wall stabilized metal vapour halide discharge lamp
DE2150740B2 (en) High intensity fluorescent lamp
EP0387248A1 (en) Laser and process for production of a laser beam
DE2202680C2 (en) Gas discharge lamp
DE102014116189A1 (en) Flash lamp assembly and flash lamp bearing assembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140124

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171222

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190328

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1179558

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013013541

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190911

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191212

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013013541

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013013541

Country of ref document: DE

26N No opposition filed

Effective date: 20200615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200121

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200121

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200121

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200121

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1179558

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911