EP2687697B1 - Mixing device for the aftertreatment of exhaust gases - Google Patents
Mixing device for the aftertreatment of exhaust gases Download PDFInfo
- Publication number
- EP2687697B1 EP2687697B1 EP13002561.2A EP13002561A EP2687697B1 EP 2687697 B1 EP2687697 B1 EP 2687697B1 EP 13002561 A EP13002561 A EP 13002561A EP 2687697 B1 EP2687697 B1 EP 2687697B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- exhaust gas
- exhaust
- mixing device
- mixing
- inner pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007789 gas Substances 0.000 title claims description 218
- 239000007788 liquid Substances 0.000 claims description 32
- 230000007423 decrease Effects 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 23
- 238000002485 combustion reaction Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 6
- 239000007921 spray Substances 0.000 description 29
- 239000002245 particle Substances 0.000 description 11
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- 239000004202 carbamide Substances 0.000 description 6
- 239000011343 solid material Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000008092 positive effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/21—Mixing gases with liquids by introducing liquids into gaseous media
- B01F23/213—Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
- B01F23/2132—Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/10—Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
- B01F25/102—Mixing by creating a vortex flow, e.g. by tangential introduction of flow components wherein the vortex is created by two or more jets introduced tangentially in separate mixing chambers or consecutively in the same mixing chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/313—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
- B01F25/3131—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2892—Exhaust flow directors or the like, e.g. upstream of catalytic device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/36—Arrangements for supply of additional fuel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F2025/93—Arrangements, nature or configuration of flow guiding elements
- B01F2025/931—Flow guiding elements surrounding feed openings, e.g. jet nozzles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/20—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/03—Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/06—Adding substances to exhaust gases the substance being in the gaseous form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/025—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
- F01N3/0253—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
Definitions
- the invention relates to a mixing device for the aftertreatment of exhaust gases in an exhaust system of an internal combustion engine, which comprises a housing with an inlet opening having an inlet cross section and an inner tube arranged inside the housing with a mixing area formed inside the inner tube, with a metering device for Supply of a liquid and / or a liquid-gas mixture is arranged.
- the inner pipe has access openings on its outer surface, through which the exhaust gases can be introduced into the mixing area.
- the invention further relates to a method for mixing an exhaust gas with a liquid and/or a liquid-gas mixture using such a mixing device.
- a hydrolysis catalytic converter to reduce nitrogen oxides in an exhaust gas stream, in particular in a motor vehicle.
- SCR selective catalytic reduction
- a substance with a direct reducing effect such as ammonia or a precursor, such as an aqueous urea solution, which only releases reducing substances in the exhaust gas, is fed to the exhaust gas stream.
- the precursor is sprayed into the exhaust gas stream before the SCR catalytic converter.
- a so-called particle filter is regularly used to minimize the emission of fine particles in a motor vehicle.
- the exhaust gas usually flows through the filter medium. This can lead to a "clogging" of the particle filter and consequently to an increase in the exhaust back pressure. This in turn has a negative effect on engine performance and fuel consumption of the internal combustion engine. Therefore, as a rule, a particle filter regeneration is carried out, which is carried out in particular by an active increase in the exhaust gas temperature of an exhaust gas flow, which then the particle filter is supplied, is realized.
- hydrocarbons are usually added to the exhaust gas flow upstream of the particle filter in order to heat the exhaust gas flow.
- This mixture is then fed to an HC oxidation catalytic converter, the active component of which generates a heated exhaust gas stream with the hydrocarbons through an exothermic reaction.
- This hot flow of exhaust gas flows to the particle filter, where the carbonaceous soot particles stored in the particle filter are converted into CO, CO2, N2 and NO, which regenerates the particle filter.
- the substance to be introduced into the exhaust gas which is usually in liquid form, is usually sprayed into the exhaust gas flow via a nozzle of a metering device.
- a uniform distribution of the liquid introduced into the exhaust gas is of particular importance.
- a mixing device of the type mentioned is for example in DE 42 03 807 A1 disclosed.
- an arrangement designed as a mixing device for after-treatment of exhaust gases in an exhaust system of an internal combustion engine is presented, which enables thorough mixing of exhaust gases with a urea solution before they enter a hydrolysis catalytic converter.
- a conical guide plate designed as an inner tube is arranged in a housing.
- the baffle has a multiplicity of bores as access openings into a mixing region formed within the baffle.
- a dosing device designed as a pressure atomizer nozzle is arranged on the front side of the housing, via which a urea solution is supplied as a spray into the mixing area.
- the exhaust gas is introduced into the housing via an inlet opening and flows through the holes in the baffle into the mixing area, where the exhaust gas is mixed with the spray.
- the disadvantage here is that, seen in the circumferential direction, forces of different strengths act on the introduced spray as a result of the exhaust gas introduced via the bores, which leads to a deflection and thus to an asymmetrical spread of the spray. As a result, the spray is not mixed homogeneously with the urea.
- the WO 2011/163395 A1 which discloses a mixing device according to the preamble of claim 1, discloses an exhaust aftertreatment device having a mixing tube and a swirling structure that swirls exhaust gas into the mixing tube.
- the swirling structure may have a cross section that gradually decreases along an exhaust gas flow path.
- the FR 1 323 501 A discloses an apparatus for atomizing or mixing solid particles or a liquid in a gaseous carrier.
- the device has a vortex chamber which has a tangential inlet and an axial outlet but, apart from its outer walls, has no inner guide walls for the carrier medium.
- the device has a feed line, which runs axially through the vortex chamber, for the substances to be mixed with the carrier medium.
- the cross-section of the vortex chamber has the outline of a logarithmic spiral and the feed line ends approximately in the cross-sectional plane of the outlet opening.
- the device can be used as a carburetor, spray gun, burner, aerosol generator or nebulizer.
- the DE 40 12 411 A1 discloses a burner that can be operated with exhaust gas from an internal combustion engine for regenerating a particle filter device in the exhaust system of an internal combustion engine.
- An exhaust gas supply device of the burner divides the exhaust gas into partial exhaust gas streams that are essentially the same in terms of quantity and direction, symmetrically around the circumference at least before entering a precombustion chamber of the burner.
- An inflow casing is helical.
- the invention is based on the first object of providing a mixing device which is as homogeneous as possible mixing a liquid and / or a liquid-gas mixture with the exhaust gas is ensured independently or only under the slight influence of an inflowing inflowing exhaust gas volume flow. Furthermore, the invention is based on the second object of providing a method for mixing a liquid and/or a liquid-gas mixture with the exhaust gas as homogeneously as possible.
- a mixing device for the after-treatment of exhaust gases in an exhaust system of an internal combustion engine which comprises a housing with an inlet opening having an inlet cross section and an inner tube arranged inside the housing with a mixing area formed inside the inner tube, wherein on a front side of the housing a dosing device for supplying a liquid and/or a liquid-gas mixture is arranged, and wherein the inner tube has access openings on its outer surface, through which the exhaust gases can be introduced into the mixing area.
- the housing has a spiral-shaped housing section, with the spiral-shaped housing section extending at least along all access openings of the inner tube.
- the invention is based on the consideration that homogeneous spreading of the spray in the mixing area is necessary for homogeneous mixing of the liquid introduced in particular in the form of a spray and/or the liquid-gas mixture introduced with the exhaust gas.
- the invention is based on the consideration that for a homogeneous spread of the spray onto it, uniform flow forces must prevail in the circumferential direction around the central main flow axis of the spray. In other words, there must be uniform flow and pressure conditions in the circumferential direction.
- the invention therefore provides that the housing has a spiral-shaped housing section which extends at least along all of the access openings of the inner tube.
- the spiral shape ensures that approximately the same flow and pressure conditions prevail on the outer lateral surface along the section of the inner tube provided with access openings, so that, especially seen in the circumferential direction, a uniform supply of the exhaust gas via the Access openings takes place in the mixing area and rotationally symmetrical flow conditions can form in the mixing area.
- the inlet opening of the housing serves in particular to feed exhaust gas into the housing.
- the main body of the inner tube is, in particular, an elongate hollow body with a circular, oval, rectangular or polygonal cross section.
- the mixing area is formed inside the inner tube, in which the exhaust gas is mixed with a liquid and/or a liquid-gas mixture supplied via the metering device.
- the liquid contains urea and/or hydrocarbons.
- the spiral-shaped housing section guides the exhaust gas flowing in via the inlet opening to the inner tube and in the circumferential direction along the inner tube.
- the spiral shape causes a volume reduction in the circumferential direction in this housing section between the outer surface of the inner tube and the housing wall, and the spiral shape imparts a certain twist to an exhaust gas flow flowing through the spiral housing section.
- This spiral-shaped housing section extends at least along all access openings, that is, all access openings of the inner tube are arranged within this housing section.
- the invention has the advantage that a mixing device is thereby provided which ensures the most homogeneous possible mixing of a liquid and/or a liquid-gas mixture with the exhaust gas independently of or only under the slight influence of the inflowing exhaust gas volume flow. Due to the spiral-shaped housing section running along the access openings, approximately the same flow and pressure conditions occur on the outer lateral surface, so that, particularly viewed in the circumferential direction, the exhaust gas is fed evenly via the access openings into the mixing area and rotationally symmetrical flow conditions can develop in the mixing area.
- a passage cross section formed by the access openings advantageously decreases towards the axial end of the inner tube facing away from the metering device.
- the passage cross-section is the cross-sectional area that is available for the exhaust gas to enter the mixing area due to the access openings.
- This passage cross section can, for example, steadily decrease towards the end facing away from the dosing device.
- the passage cross-section can also decrease, in particular in certain areas, towards the end facing away from the dosing device.
- the passage cross section in an area close to the metering device is larger than the passage cross section in an area further away from the metering device.
- the individual areas are essentially the same size as one another.
- One area is formed by a defined peripheral area of the inner tube, this peripheral area resulting from the sum of the area of the solid material and the cross-sectional area of the access openings.
- the ratio of the area of the solid material to the cross-sectional area of the access openings in an area close to the dosing device is smaller than the ratio of the area of the solid material to the cross-sectional area of the access openings in an area further away from the dosing device.
- the number of access openings expediently decreases, at least in regions, toward the axial end of the inner tube facing away from the dosing device.
- the decrease in the passage cross section formed by the access openings towards the axial end of the inner tube facing away from the dosing device can be implemented in a relatively simple manner. This ensures that the exhaust gas flowing into the inner tube is as homogeneous as possible along the entire section of the inner tube provided with access openings in the mixing area, particularly with exhaust gas flowing into the housing from the axial direction flows.
- the distance between two adjacent access openings increases in the axial direction and/or in the circumferential direction toward the axial end of the inner tube facing away from the dosing device.
- the number of access openings can steadily decrease towards the end facing away from the dosing device. However, the number of access openings can also decrease in areas towards the end facing away from the dosing device. In other words, the number of access openings in an area remote from the metering device is smaller than the number of access openings in an area closer to the metering device.
- the cross-sectional area of the access openings advantageously decreases at least in regions towards the axial end facing away from the dosing device.
- the cross-sectional area of the individual access openings can decrease steadily towards the end facing away from the dosing device.
- the cross-sectional area of the individual access openings can also decrease in some areas towards the end facing away from the dosing device. This means that the cross-sectional area of the individual access openings in an area remote from the dosing device is smaller than the cross-sectional area of the individual access openings in an area closer to the dosing device.
- an exhaust gas inlet pipe extends at least partially into the housing, with the longitudinal center axis of the exhaust gas inlet pipe and the longitudinal center axis of the inner pipe being aligned essentially parallel to one another.
- the exhaust gas can be supplied in a targeted manner to a specific area within the housing via such an exhaust gas inlet pipe.
- the exhaust gas inlet pipe extends over the inlet opening into the housing, which means that the exhaust gas inlet pipe is led through the inlet opening into the housing.
- the exhaust gas inlet pipe is designed in particular in the form of a circular cylinder or a cone. In the case of a circular inlet opening, the outside diameter of the exhaust gas inlet pipe in the area of the inlet opening essentially corresponds to the diameter of the inlet opening.
- the exhaust gas inlet pipe extends within the housing at least along the spiral housing section
- the Exhaust gas inlet pipe has outlet openings on the circumferential surface extending along the spiral-shaped housing section.
- An exhaust gas flow supplied to the exhaust gas inlet pipe can flow through these outlet openings, in particular into the spiral-shaped housing section.
- the outlet openings are in particular arranged over the entire circumference on the peripheral surface of the exhaust gas inlet pipe and have, for example, a circular or slit-shaped geometry.
- an exhaust gas flow fed in particular from an axial direction to the exhaust gas inlet pipe can be “deflected” into a radial direction when exiting the exhaust gas inlet pipe through the outlet openings, or it can be given at least a radial velocity component.
- this contributes to the fact that the exhaust gas flows as homogeneously as possible into the spiral-shaped housing section along the entire section of the exhaust gas inlet pipe provided with outlet openings.
- the number of outlet openings preferably decreases at least in regions towards the axial end of the exhaust gas inlet pipe facing away from the inlet opening.
- the distance between two adjacent outlet openings increases in the axial direction and/or in the circumferential direction towards the axial end of the exhaust gas inlet pipe facing away from the inlet opening.
- the number of outlet openings can steadily decrease towards the end facing away from the inlet opening.
- the number of outlet openings can also decrease in some areas towards the end facing away from the inlet opening.
- the number of outlet openings in an area remote from the metering device is smaller than the number of inlet openings in an area closer to the metering device.
- the individual areas are essentially the same size as each other.
- An area is formed by a defined peripheral surface of the exhaust gas inlet pipe, wherein this peripheral area results from the sum of the area of the solid material and the cross-sectional area of the outlet openings. This means that the ratio of the area of the solid material to the cross-sectional area of the outlet openings in an area close to the metering device is smaller than the ratio of the area of the solid material to the cross-sectional area of the outlet openings in an area further away from the metering device.
- the cross-sectional area of the individual outlet openings preferably decreases steadily towards the end remote from the dosing device.
- the cross-sectional area of the individual outlet openings can also decrease in some areas towards the end facing away from the dosing device. This means that the cross-sectional area of the individual outlet openings in an area remote from the metering device is smaller than the cross-sectional area of the individual outlet openings in an area closer to the metering device.
- the inner tube is expediently designed in the shape of a circular cylinder or cone. Depending on the dosing device used and the spread of the liquid and/or the liquid-gas mixture associated therewith, these shapes also have a positive effect on a homogeneous spread of the liquid and/or the liquid-gas mixture in the mixing area. In the case of a cone-shaped inner tube, the diameter of the inner tube widens towards the end facing away from the dosing device.
- the access openings are advantageously provided with exhaust gas guide elements which protrude from the main extension of the lateral surface.
- These exhaust-gas guide elements are used in particular to guide the flow of the exhaust gas and also to prevent the liquid and/or the liquid-gas mixture from escaping from the mixing area.
- the exhaust gas streams flowing through the access openings are imparted with a swirl by the exhaust gas guiding elements and/or the swirl movement generated by the spiral-shaped housing section is reinforced.
- the geometry of the exhaust gas guiding elements must be selected in accordance with the respective individual case and in particular depends on the propagation characteristics of the liquid introduced and/or the introduced liquid-gas mixture in the mixing area and the occurring exhaust gas volume flows.
- the exhaust gas guide elements expediently extend at least into the mixing area.
- an exhaust gas guide element can also be provided at an access opening, which extends into the intermediate space between the lateral surface of the inner pipe and the housing wall.
- the exhaust gas guide element or both exhaust gas guide elements are shaped in such a way that, seen from the longitudinal center axis of the inner pipe radially outwards, they opaquely "close” the access opening, i.e. that an (imaginary) jet going radially outwards from the longitudinal center axis and perpendicular to it can penetrate the access opening as much as possible.
- the exhaust gas guide elements are formed in one piece on the lateral surface of the inner pipe. This enables simple and inexpensive production.
- the projection of an opening axis of the exhaust gas guide element onto a central longitudinal plane of the inner pipe running through the access opening of the exhaust gas guide element closes an angle of inclination of 5° to 90°, preferably from 30° to 50°, particularly preferably from 35° to the longitudinal central axis of the inner pipe 40° in.
- the central longitudinal plane runs on the one hand through the center point of the respective access opening and on the other hand through the longitudinal central axis of the inner tube and extends along this longitudinal central axis.
- the angle of inclination is the angle by which the exhaust gas guide element protrudes from the base lateral surface of the inner pipe, ie from the lateral surface without taking the exhaust gas guide elements into account.
- an opening axis of the exhaust gas guide element encloses an orientation angle of 0° to 90°, preferably 10° to 90°, particularly preferably 20° to 90°, with a central longitudinal plane of the inner pipe running through the access opening of the exhaust gas guide element.
- the median longitudinal plane runs to one through the center of the respective access opening and the other through the longitudinal center axis of the inner tube and extends along this longitudinal center axis.
- the orientation angle indicates that angle by which the access opening is "twisted out" from a course aligned in the direction of the longitudinal central axis of the inner tube.
- the exhaust-gas guide elements are aligned at an angle of less than 90°, the exhaust-gas guide elements cause a partial deflection of the partial exhaust-gas flow toward the main injection direction. This ensures in particular that the exhaust gas flowing in from the spiral-shaped housing section is deflected through the access openings and the exhaust gas guide elements arranged thereon into partial exhaust gas flows, which have a certain velocity component running in the main injection direction of the metering device, which in turn leads to a homogeneous mixing of the liquid and/or the liquid Gas mixture with the exhaust gas contributes.
- the dosing device is arranged coaxially to the longitudinal central axis of the inner tube. This enables dosing in the middle into the mixing area, which has a further positive effect on the even spread of the liquid and/or the liquid-gas mixture and thus on the homogeneous mixing with the exhaust gas.
- the passage cross section formed by the access openings advantageously corresponds to 80% to 300% of the entry cross section of the entry opening, preferably 90% to 250%.
- Such a ratio of inlet cross section to passage cross section also has a positive effect on the homogeneous inflow of the exhaust gas into the mixing area.
- the lateral surface of the inner tube preferably has an at least partially circumferential annular gap, particularly in the area of an axial end of the spiral-shaped housing section, which serves as a kind of "bypass" for the exhaust gas.
- a guide element can optionally be arranged in the region of the annular gap, which guide element causes a partial flow of exhaust gas flowing through the annular gap to be deflected at least partially in the main injection direction of the metering device.
- the inner tube is preferably arranged in the spiral-shaped housing section in such a way that in the circumferential direction between the inner tube and the housing wall there is always a distance dependent on the progression of the spiral shape.
- the second object is achieved by a method for mixing an exhaust gas with a liquid and/or a liquid-gas mixture using a mixing device as described above.
- This method enables a liquid and/or a liquid-gas mixture to be mixed with the exhaust gas as homogeneously as possible independently or only with a slight influence of the inflowing exhaust gas volume flow. Because the exhaust gas flows in via a spiral-shaped housing section running along the access openings of the inner pipe, approximately the same flow and pressure conditions occur on the outer lateral surface of the inner pipe, so that, especially viewed in the circumferential direction, the exhaust gas is fed evenly via the access openings into the Mixing area takes place and rotationally symmetrical flow conditions can form in the mixing area.
- In 1 is shown in a schematic representation of a mixing device 2 for after-treatment of exhaust gases in an exhaust system of an internal combustion engine.
- the mixing device 2 is upstream of an SCR catalytic converter in terms of flow technology.
- the mixing device 2 comprises a housing 4 and a circular-cylindrical inner tube 6 arranged inside the housing 4. Inside the inner tube 6, a mixing region 8 is formed.
- FIG. 2 shows the mixing device 2 in a schematic longitudinal sectional view according to section line AA 1 .
- the inner tube 6 arranged in the housing 4 with the mixing area 8 formed in its interior can be seen.
- a dosing device 10 is attached to an end face of the housing 4 coaxially to the longitudinal center axis of the inner tube 6 .
- the metering device 10 serves to feed a liquid-gas mixture into the mixing area 8 via a nozzle 12 in the form of a spray 14.
- the liquid is a urea solution.
- the inner tube 6 has access openings 18 on its outer surface 16 through which exhaust gases can be introduced into the mixing area 8 .
- the access openings 18 are provided with exhaust gas guide elements 20 which protrude from the main extent of the lateral surface 16 .
- These exhaust gas guide elements 20 are used in particular to guide the flow of the exhaust gas and also to prevent the spray 14 from escaping from the mixing area 8.
- the exhaust gas guide elements 20 integrally formed on the lateral surface 16 of the inner tube 6, which enables simple and inexpensive production.
- the number of access openings 18 decreases steadily towards the axial end of the inner tube 6 facing away from the dosing device 10 .
- the distance between two adjacent access openings 18 increases in the axial direction and in the circumferential direction towards the axial end of the inner tube 6 facing away from the dosing device 10 .
- the passage cross section formed by the access openings 18 decreases towards the axial end of the inner tube 6 facing away from the dosing device 10 .
- the housing 4 includes a spiral housing section 20 which extends along all access openings 18 of the inner tube 6, that is, all access openings 18 of the inner tube 6 are arranged within this spiral housing section 20.
- An exhaust gas inlet pipe 26 embodied in the shape of a circular cylinder extends into the housing 4 via an inlet opening 24 .
- the outer diameter of the exhaust gas inlet pipe 26 essentially corresponds to the diameter of the inlet opening 24.
- the central longitudinal axis of the exhaust gas inlet pipe 26 and the central longitudinal axis of the inner pipe 6 are aligned parallel to one another and the exhaust gas inlet pipe 26 extends axially along the entire spiral-shaped housing section 22.
- the exhaust gas inlet pipe 26 also has outlet openings 28 .
- the outlet openings 28 are arranged all around on the peripheral surface 30 of the exhaust gas inlet pipe 26 and have a circular geometry.
- an inflow of exhaust gas 32 supplied to the mixing device 2 first flows via the exhaust gas inlet pipe 26 in the direction of the housing 4 and, in the process, flows through the outlet openings 28 into the spiral-shaped housing section 22.
- the inflow of exhaust gas 32 therefore flows through the outlet openings as it exits the exhaust gas inlet pipe 26 28 is "deflected" from an axial direction into a radial direction or at least one radial velocity component is imparted to it.
- the exhaust gas inflow 32 is fed relatively homogeneously to the spiral-shaped housing section 22 along the entire section of the exhaust gas inlet pipe 26 provided with outlet openings 28 .
- spiral-shaped housing section 22 extends along all outlet openings 28 and in particular along all access openings 18 ensures that approximately the same flow and pressure conditions prevail on the lateral surface 16 of the inner pipe 6 along the section provided with access openings 18.
- the exhaust gas inflow 32 flowing from the axial direction into the exhaust gas inlet pipe 26, which flows axially to the axial end facing away from the metering device 10 can accumulate at least temporarily in this end region of the exhaust gas inlet pipe 26, the exhaust gas volume flow that flows through the outlet openings 28, which are located in this area, at least at times greater than the exhaust gas volume flow which flows through the outlet openings 28 of an area closer to the metering device.
- the steady decrease in the number of access openings 18 towards the axial end of the inner pipe 6 facing away from the metering device 10 nevertheless ensures that the exhaust gas flowing into the inner pipe 6, also axially along the entire section provided with access openings 18, is extremely homogeneous in the mixing area 8 flows. This has a further positive effect on even flow and pressure conditions in the mixing area 8 and thus on the homogeneous mixing of the spray 14 with the exhaust gas.
- the illustrated alignment of the access openings 18 and thus in particular of the respective exhaust gas guiding elements 20 causes a partial deflection of the partial exhaust gas streams flowing through the access openings 18 towards the main injection direction of the spray 14 .
- the partial exhaust gas streams that are deflected in particular in the area close to the metering device thus receive a certain velocity component running in the main injection direction of the metering device 10 . This also contributes to homogeneous mixing of the spray 14 with the exhaust gas, since there is little or no deflection of the spray 14, particularly in the area close to the dosing device.
- a homogeneously mixed spray/exhaust gas mixture thus flows in the axial direction from the inner pipe 6 and finally from the housing 4 to the SCR catalytic converter.
- FIG 3 shows the mixing device in a schematic cross-sectional representation according to section line BB 2 .
- the arrangement of the inner tube 6 in the spiral-shaped housing section 22 can be seen here in particular. Due to the reduction in volume of the intermediate space between the inner pipe 6 and the housing wall caused by the spiral shape in the circumferential direction, this contributes to the pressure and flow conditions being approximately the same along the circumference on the outer lateral surface 8 of the inner pipe 6, which means that the exhaust gas is fed as evenly as possible into the mixing area 8 can take place.
- a spiral housing section 22 of an alternative embodiment is shown in a schematic representation. It can be seen here that the inner tube 6 is arranged in the spiral-shaped housing section 22 such that in the circumferential direction between the inner tube 6 and the housing wall there is always a distance s dependent on the progression of the spiral shape. As a result, there is always an intermediate space between the inner tube 6 and the housing wall, seen in the circumferential direction, and no “dead end” is formed at which inflowing exhaust gas could accumulate. This further contributes positively to a homogeneous flow pattern by the helical housing section 22.
- r is the radius of curvature
- D is the diameter of the inner tube 6
- s is the distance between the outer surface 8 of the inner tube 6 and the housing wall of the spiral housing 22
- A is the cross section of the inflow opening of the spiral housing.
- FIG 5 shows a schematic representation of an inner tube 6 in a further embodiment.
- the access openings 18 arranged on the lateral surface 16 of the inner pipe 6 and the exhaust gas guide elements 20 formed in one piece on the access openings 18 are shown.
- the access openings 18 and the exhaust-gas guiding elements 20 are "twisted" out of a course aligned in the direction of the longitudinal central axis of the inner tube 6 by an alignment angle ⁇ .
- the orientation angle ⁇ is enclosed between an opening axis 36 of an exhaust gas guiding element 20 and a central longitudinal plane 38 of the inner pipe 6 running through the access opening 18 of the exhaust gas guiding element 20 .
- the central longitudinal plane 38 runs on the one hand through the center point of the respective access opening 18 and on the other hand through the longitudinal central axis of the inner tube 6 and extends along this longitudinal central axis.
- the exhaust gas guide elements 20 are aligned according to an orientation angle ⁇ of less than 90°, the access openings 18 and in particular the exhaust gas guide elements 20 bring about a certain deflection of the partial exhaust gas flow flowing through the access openings 18 towards the main injection direction of a metering device 10.
- the orientation angle ⁇ increases axially to the right , that is, axially facing away from a dosing device 10 end to.
- the size of the alignment angle ⁇ and in particular the increase axially to the right is particularly dependent on the metering device 10 and nozzle 12 used in the individual case, as well as on the exhaust gas volume flows that flow through the access openings 18 into the mixing area 8 of the inner tube 6.
- FIG. 6 shows an enlarged section of the inner tube in a schematic longitudinal sectional view along section line EE figure 5 .
- the access openings 18 arranged on the lateral surface 16 of the inner pipe 6 and in particular the exhaust gas guide elements 20 formed in one piece on the access openings 18 can be seen.
- an exhaust gas guide element 20 extends into a mixing area 8 and another exhaust gas guide element 20 extends into an intermediate space between the lateral surface 16 of the inner pipe 6 and a housing wall of a housing 4 in which the inner pipe 6 is arranged.
- the two exhaust gas guide elements 20 of an access opening 18 are shaped in such a way that, viewed from a longitudinal center axis of the inner tube 6 , they “close” the access opening radially outwards as opaquely as possible.
- the exhaust gas guide elements 20 shown protrude from the base lateral surface of the inner pipe 6 at an angle of inclination ⁇ , ie from the lateral surface 8 without taking the exhaust gas guide elements 20 into account.
- an exhaust gas guide element 20 in a schematic longitudinal sectional representation, which are arranged on access openings 18 of a lateral surface 16 of an inner tube 6, which is installed in a housing 4.
- V1 only one exhaust gas guide element 20 is arranged at an access opening 18 which extends into an intermediate space between the lateral surface 16 and a housing wall of the housing 4 .
- V2 shows an access opening 18 on which an exhaust gas guiding element 20 is arranged, which extends into a mixing area 8 formed inside an inner pipe 6 .
- V3 corresponds to the in 6 illustrated embodiment.
- FIG. 8 shows a mixing device 2 in an alternative embodiment in a schematic longitudinal section.
- the mixing device 2 essentially corresponds to that in Figures 1 to 3 shown mixing device.
- the distance between two axially adjacent outlet openings 28 of the exhaust gas inlet pipe 26 increases in the axial direction toward the axial end of the exhaust gas inlet pipe 26 facing away from the inlet opening 24 . Consequently, the number of outlet openings 28 increases towards the end remote from the inlet opening 24 down This ensures that the exhaust gas inflow 32 flowing into the exhaust gas inlet pipe 26 flows as homogeneously as possible into the spiral-shaped housing section 22 along the entire section of the exhaust gas inlet pipe 26 provided with outlet openings 28 .
- the lateral surface 16 of the inner tube 6 has a circumferential annular gap in the area close to the metering device, which serves as a bypass channel 40 for the exhaust gas.
- a guide element 42 is arranged on and coaxially with the dosing device 10 and protrudes axially into the mixing area 8 of the inner tube 6 .
- the guide element 42 prevents the spray 14 from being acted upon by the exhaust gas partial flow passing through the bypass channel 40 in the area close to the dosing device.
- the guide element 42 also deflects this partial flow of exhaust gas into the axial main injection direction.
- the guide element 42 has a ring-like and preferably rotationally symmetrical design and is designed to taper in its cross section on its outer surface towards the end facing away from the dosing device 10 .
- Figures 9a - 9c 12 show various embodiments of a guide element 42 and an inner tube 6 of an enlarged section C in schematic longitudinal sectional representations 8 .
- the differently designed access openings 18 can be seen.
- the guide elements 42 are designed differently, in particular with regard to their axial and/or radial extent.
- the axial extent of the end region 44 of the in Figure 9b shown guide element 42 selected relatively large.
- contact or wetting of the radially inner end region 44 of the guide element 42 facing away from the dosing device 10 can be realized with the spray 14 .
- Slight and/or temporary wetting of the inner wall 46 of the guide element 42 is particularly advantageous when the exhaust gas is flowing through it. Due to the fact that a small part of the spray 14 attaches itself at least temporarily to the inner wall 46 of the guide element 42, a certain liquid reservoir is realized.
- the dosing device 10 usually works intermittently. A “breakdown” of the liquid located on the inner wall 46 of the guide element 42 can thus be achieved during the non-injection periods.
- the degree of temporary adhesion of the liquid can be adjusted in a constructively simple and effective manner by the design of the axial extension of the guide element 42 and in particular its end region 44 facing away from the dosing device 10 .
- the dosing device 10 and thus the spray angle and the density of the liquid are predetermined. These parameters affect the propagation properties of the spray 14 depending on the exhaust gas volume flow. If a liquid with a different density and/or a metering device 10 with a different spray angle is to be installed, it is sufficient if the mixing device 2 is adapted by changing the axial extension of the guide element 42 and in particular its end region 44 facing away from the metering device 10 in order to set the effect described above (secondary break-up). This enables a modular design and/or a retrofit system by appropriate selection of a guide element 42 of the preferred axial extent.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
Description
Die Erfindung betrifft eine Mischvorrichtung zur Nachbehandlung von Abgasen in einer Abgasanlage einer Brennkraftmaschine, die ein Gehäuse mit einer einen Eintrittsquerschnitt aufweisenden Eintrittsöffnung und ein innerhalb des Gehäuses angeordnetes Innenrohr mit einem im Inneren des Innenrohres ausgebildeten Mischbereich umfasst, wobei an einer Stirnseite des Gehäuses eine Dosiereinrichtung zur Zuführung einer Flüssigkeit und/oder eines Flüssigkeit-Gas-Gemisches angeordnet ist. Dabei weist das Innenrohr an seiner Mantelfläche Zutrittsöffnungen auf, durch welche die Abgase in den Mischbereich einleitbar sind. Die Erfindung betrifft weiter ein Verfahren zum Mischen eines Abgases mit einer Flüssigkeit und/oder einem Flüssigkeit-Gas-Gemisches unter Verwendung einer derartigen Mischvorrichtung.The invention relates to a mixing device for the aftertreatment of exhaust gases in an exhaust system of an internal combustion engine, which comprises a housing with an inlet opening having an inlet cross section and an inner tube arranged inside the housing with a mixing area formed inside the inner tube, with a metering device for Supply of a liquid and / or a liquid-gas mixture is arranged. The inner pipe has access openings on its outer surface, through which the exhaust gases can be introduced into the mixing area. The invention further relates to a method for mixing an exhaust gas with a liquid and/or a liquid-gas mixture using such a mixing device.
Der Einsatz eines Hydrolysekatalysators zur Reduzierung von Stickoxiden in einem Abgasstrom insbesondere eines Kraftfahrzeugs ist allgemein bekannt. Im Rahmen der beispielsweise mit einem SCR-Katalysator durchgeführten selektiven katalytischen Reduktion (SCR) wird dem Abgasstrom eine unmittelbar reduzierend wirkende Substanz, wie beispielsweise Ammoniak oder ein Vorprodukt, wie beispielsweise eine wässrige Harnstofflösung, das erst im Abgas reduzierende Substanzen freisetzt, zugeführt. Üblicherweise wird das Vorprodukt dabei vor dem SCR-Katalysator in den Abgasstrom eingesprüht.The use of a hydrolysis catalytic converter to reduce nitrogen oxides in an exhaust gas stream, in particular in a motor vehicle, is generally known. As part of the selective catalytic reduction (SCR) carried out, for example, with an SCR catalytic converter, a substance with a direct reducing effect, such as ammonia or a precursor, such as an aqueous urea solution, which only releases reducing substances in the exhaust gas, is fed to the exhaust gas stream. Usually, the precursor is sprayed into the exhaust gas stream before the SCR catalytic converter.
Darüber hinaus wird zur Minimierung des Ausstoßes von Feinstoffpartikeln in einem Kraftfahrzeug regelmäßig ein sogenannter Partikelfilter eingesetzt. Dabei strömt das Abgas üblicherweise durch das Filtermedium hindurch. Hierbei kann es zur "Verstopfung" des Partikelfilters und folglich zu einer Erhöhung des Abgasgegendrucks kommen. Dies wirkt sich wiederum negativ auf die Motorleistung und den Kraftstoffverbrauch der Brennkraftmaschine aus. Daher wird in der Regel eine Partikelfilterregeneration durchgeführt, welche insbesondere durch eine aktive Anhebung der Abgastemperatur eines Abgasstroms, welcher dann dem Partikelfilter zugeführt wird, realisiert wird. Üblicherweise werden hierbei zur Erwärmung des Abgasstroms stromauf des Partikelfilters dem Abgasstrom Kohlenwasserstoffe zugesetzt. Dieses Gemisch wird anschließend einem HC-Oxidationskatalysator zugeführt, dessen Aktivkomponente mit den Kohlenwasserstoffen durch exotherme Reaktion einen erhitzten Abgasstrom erzeugt. Dieser heiße Abgasstrom strömt zum Partikelfilter, wo die im Partikelfilter eingelagerten kohlenstoffhaltigen Russpartikel zu CO, CO2, N2 und NO umgesetzt werden, wodurch der Partikelfilter regeneriert wird.In addition, a so-called particle filter is regularly used to minimize the emission of fine particles in a motor vehicle. The exhaust gas usually flows through the filter medium. This can lead to a "clogging" of the particle filter and consequently to an increase in the exhaust back pressure. This in turn has a negative effect on engine performance and fuel consumption of the internal combustion engine. Therefore, as a rule, a particle filter regeneration is carried out, which is carried out in particular by an active increase in the exhaust gas temperature of an exhaust gas flow, which then the particle filter is supplied, is realized. In this case, hydrocarbons are usually added to the exhaust gas flow upstream of the particle filter in order to heat the exhaust gas flow. This mixture is then fed to an HC oxidation catalytic converter, the active component of which generates a heated exhaust gas stream with the hydrocarbons through an exothermic reaction. This hot flow of exhaust gas flows to the particle filter, where the carbonaceous soot particles stored in the particle filter are converted into CO, CO2, N2 and NO, which regenerates the particle filter.
Hierbei wird die jeweils in das Abgas einzubringende, in der Regel flüssig vorliegende Substanz, üblicherweise über eine Düse einer Dosiervorrichtung in den Abgasstrom eingesprüht. Zur Erzielung eines möglichst hohen Wirkungsgrads ist dabei insbesondere eine gleichmäßige Verteilung der in das Abgas eingebrachten Flüssigkeit von wesentlicher Bedeutung.In this case, the substance to be introduced into the exhaust gas, which is usually in liquid form, is usually sprayed into the exhaust gas flow via a nozzle of a metering device. In order to achieve the highest possible degree of efficiency, a uniform distribution of the liquid introduced into the exhaust gas is of particular importance.
Eine Mischvorrichtung der eingangs genannten Art ist beispielsweise in der
Die
Die
Die
Die
Der Erfindung liegt die erste Aufgabe zugrunde, eine Mischvorrichtung bereitzustellen, die ein möglichst homogenes Vermischen einer Flüssigkeit und/oder eines Flüssigkeit-Gas-Gemisches mit dem Abgas unabhängig oder nur unter geringem Einfluss eines zuströmenden zuströmenden Abgasvolumenstroms gewährleistet. Ferner liegt der Erfindung die zweite Aufgabe zugrunde, ein Verfahren zum möglichst homogenen Vermischen einer Flüssigkeit und/oder eines Flüssigkeit-Gas-Gemisches mit dem Abgas bereitzustellen.The invention is based on the first object of providing a mixing device which is as homogeneous as possible mixing a liquid and / or a liquid-gas mixture with the exhaust gas is ensured independently or only under the slight influence of an inflowing inflowing exhaust gas volume flow. Furthermore, the invention is based on the second object of providing a method for mixing a liquid and/or a liquid-gas mixture with the exhaust gas as homogeneously as possible.
Diese erste Aufgabe wird gelöst durch eine Mischvorrichtung zur Nachbehandlung von Abgasen in einer Abgasanlage einer Brennkraftmaschine, die ein Gehäuse mit einer einen Eintrittsquerschnitt aufweisenden Eintrittsöffnung und ein innerhalb des Gehäuses angeordnetes Innenrohr mit einem im Inneren des Innenrohres ausgebildeten Mischbereich umfasst, wobei an einer Stirnseite des Gehäuses eine Dosiereinrichtung zur Zuführung einer Flüssigkeit und/oder eines Flüssigkeit-Gas-Gemisches angeordnet ist, und wobei das Innenrohr an seiner Mantelfläche Zutrittsöffnungen aufweist, durch welche die Abgase in den Mischbereich einleitbar sind. Dabei weist das Gehäuse einen spiralförmigen Gehäuseabschnitt auf, wobei sich der spiralförmige Gehäuseabschnitt zumindest entlang sämtlicher Zutrittsöffnungen des Innenrohrs erstreckt.This first object is achieved by a mixing device for the after-treatment of exhaust gases in an exhaust system of an internal combustion engine, which comprises a housing with an inlet opening having an inlet cross section and an inner tube arranged inside the housing with a mixing area formed inside the inner tube, wherein on a front side of the housing a dosing device for supplying a liquid and/or a liquid-gas mixture is arranged, and wherein the inner tube has access openings on its outer surface, through which the exhaust gases can be introduced into the mixing area. The housing has a spiral-shaped housing section, with the spiral-shaped housing section extending at least along all access openings of the inner tube.
Die Erfindung geht dabei in einem ersten Schritt von der Überlegung aus, dass für ein homogenes Vermischen der insbesondere in Form eines Sprays eingebrachten Flüssigkeit und/oder des eingebrachten Flüssigkeit-Gas-Gemisches mit dem Abgas eine homogene Ausbreitung des Sprays in dem Mischbereich erforderlich ist. In einem zweiten Schritt geht die Erfindung von der Überlegung aus, dass für eine homogene Ausbreitung des Sprays auf dieses in Umfangsrichtung um die zentrale Hauptströmungsachse des Sprays gleichmäßige Strömungskräfte herrschen müssen. Mit anderen Worten müssen in Umfangsrichtung gleichmäßige Strömungs- und Druckverhältnisse vorliegen. Daher sieht die Erfindung vor, dass das Gehäuse einen spiralförmigen Gehäuseabschnitt aufweist, welcher sich zumindest entlang sämtlicher Zutrittsöffnungen des Innenrohrs erstreckt. Durch die Spiralform wird gewährleistet, dass an der außen liegenden Mantelfläche entlang des mit Zutrittsöffnungen versehenen Abschnitts des Innenrohrs annähernd gleiche Strömungs- und Druckverhältnisse herrschen, so dass insbesondere in Umfangsrichtung gesehen eine gleichmäßige Zuführung des Abgases über die Zutrittsöffnungen in den Mischbereich erfolgt und sich im Mischbereich rotationssymmetrische Strömungsverhältnisse ausbilden können.In a first step, the invention is based on the consideration that homogeneous spreading of the spray in the mixing area is necessary for homogeneous mixing of the liquid introduced in particular in the form of a spray and/or the liquid-gas mixture introduced with the exhaust gas. In a second step, the invention is based on the consideration that for a homogeneous spread of the spray onto it, uniform flow forces must prevail in the circumferential direction around the central main flow axis of the spray. In other words, there must be uniform flow and pressure conditions in the circumferential direction. The invention therefore provides that the housing has a spiral-shaped housing section which extends at least along all of the access openings of the inner tube. The spiral shape ensures that approximately the same flow and pressure conditions prevail on the outer lateral surface along the section of the inner tube provided with access openings, so that, especially seen in the circumferential direction, a uniform supply of the exhaust gas via the Access openings takes place in the mixing area and rotationally symmetrical flow conditions can form in the mixing area.
Die Eintrittsöffnung des Gehäuses dient insbesondere der Zufuhr von Abgas in das Gehäuse. Das Innenrohr weist als Grundkörper insbesondere einen länglichen Hohlkörper mit einem kreisrunden, ovalen, rechteckigen oder vieleckigen Querschnitt auf. Innerhalb des Innenrohres ist der Mischbereich ausgebildet, in dem das Abgas mit einer über die Dosiereinrichtung zugeführten Flüssigkeit und/oder einem Flüssigkeit-Gas-Gemisch vermischt wird. Die Flüssigkeit enthält insbesondere Harnstoff und/oder Kohlenwasserstoff.The inlet opening of the housing serves in particular to feed exhaust gas into the housing. The main body of the inner tube is, in particular, an elongate hollow body with a circular, oval, rectangular or polygonal cross section. The mixing area is formed inside the inner tube, in which the exhaust gas is mixed with a liquid and/or a liquid-gas mixture supplied via the metering device. In particular, the liquid contains urea and/or hydrocarbons.
Der spiralförmige Gehäuseabschnitt führt insbesondere das über die Eintrittsöffnung zuströmende Abgas zu dem Innenrohr hin und in Umfangsrichtung entlang des Innenrohrs. Durch die Spiralform tritt in diesem Gehäuseabschnitt in Umfangsrichtung eine Volumenverkleinerung zwischen der Mantelfläche des Innenrohrs und der Gehäusewand auf und einem den spiralförmige Gehäuseabschnitt durchströmenden Abgasstrom wird durch die Spiralform ein gewisser Drall eingeprägt. Dieser spiralförmige Gehäuseabschnitt erstreckt sich dabei zumindest entlang sämtlicher Zutrittsöffnungen, das heißt, sämtliche Zutrittsöffnungen des Innenrohres sind innerhalb dieses Gehäuseabschnitts angeordnet.In particular, the spiral-shaped housing section guides the exhaust gas flowing in via the inlet opening to the inner tube and in the circumferential direction along the inner tube. The spiral shape causes a volume reduction in the circumferential direction in this housing section between the outer surface of the inner tube and the housing wall, and the spiral shape imparts a certain twist to an exhaust gas flow flowing through the spiral housing section. This spiral-shaped housing section extends at least along all access openings, that is, all access openings of the inner tube are arranged within this housing section.
Die Erfindung hat den Vorteil, dass dadurch eine Mischvorrichtung bereitgestellt wird, die ein möglichst homogenes Vermischen einer Flüssigkeit und/oder eines Flüssigkeit-Gas-Gemisches mit dem Abgas unabhängig oder nur unter geringem Einfluss des zuströmenden Abgasvolumenstroms gewährleistet. Durch den entlang der Zutrittsöffnungen verlaufenden spiralförmigen Gehäuseabschnitt stellen sich an der außen liegenden Mantelfläche annähernd gleiche Strömungs- und Druckverhältnisse ein, so dass insbesondere in Umfangsrichtung gesehen eine gleichmäßige Zuführung des Abgases über die Zutrittsöffnungen in den Mischbereich erfolgt und sich im Mischbereich rotationssymmetrische Strömungsverhältnisse ausbilden können.The invention has the advantage that a mixing device is thereby provided which ensures the most homogeneous possible mixing of a liquid and/or a liquid-gas mixture with the exhaust gas independently of or only under the slight influence of the inflowing exhaust gas volume flow. Due to the spiral-shaped housing section running along the access openings, approximately the same flow and pressure conditions occur on the outer lateral surface, so that, particularly viewed in the circumferential direction, the exhaust gas is fed evenly via the access openings into the mixing area and rotationally symmetrical flow conditions can develop in the mixing area.
Ein aus axialer Richtung in das Gehäuse einströmendes Abgas, welches innerhalb des Gehäuses axial zu dem der Dosiereinrichtung abgewandten axialen Ende strömt, kann sich zumindest zeitweise in diesem Endbereich des Gehäuses anstauen, wodurch der Abgasvolumenstrom der durch die Zutrittsöffnungen, die sich in diesem Bereich befinden, größer wäre, als der Abgasvolumenstrom, welcher durch die Zutrittsöffnungen eines dosiereinrichtungsnäheren Bereichs strömt. Um dennoch möglichst gleich große Abgasvolumenströme zu erhalten, nimmt vorteilhafterweise ein durch die Zutrittsöffnungen gebildeter Durchtrittsquerschnitt zu dem der Dosiereinrichtung abgewandten axialen Ende des Innenrohrs hin ab. Dabei ist der Durchtrittsquerschnitt die Querschnittsfläche, die dem Abgas aufgrund der Zutrittsöffnungen zum Eintritt in den Mischbereich zur Verfügung steht. Dieser Durchtrittsquerschnitt kann zu dem der Dosiereinrichtung abgewandten Ende hin beispielsweise stetig abnehmen. Der Durchtrittsquerschnitt kann zu dem der Dosiereinrichtung abgewandten Ende hin aber auch insbesondere bereichsweise abnehmen. Mit anderen Worten ist der Durchtrittsquerschnitt in einem dosiereinrichtungsnahen Bereich größer, als der Durchtrittsquerschnitt in einem dosiereinrichtungsferneren Bereich. Dabei sind die einzelnen Bereiche untereinander im Wesentlichen gleich groß. Ein Bereich ist gebildet durch eine definierte Umfangsfläche des Innenrohrs, wobei sich diese Umfangsfläche aus der Summe von Fläche des Vollmaterials und der Querschnittsfläche der Zutrittsöffnungen ergibt. Das heißt, dass das Verhältnis der Fläche des Vollmaterials zur Querschnittsfläche der Zutrittsöffnungen in einem dosiereinrichtungsnahen Bereich kleiner ist, als das Verhältnis der Fläche des Vollmaterials zur Querschnittsfläche der Zutrittsöffnungen in einem dosiereinrichtungsferneren Bereich.An exhaust gas flowing into the housing from the axial direction, which flows axially within the housing to the axial end facing away from the metering device, can accumulate at least temporarily in this end area of the housing, as a result of which the exhaust gas volume flow through the access openings located in this area would be greater than the exhaust gas volume flow which flows through the access openings of an area closer to the dosing device. In order to nevertheless obtain exhaust gas volume flows that are as large as possible, a passage cross section formed by the access openings advantageously decreases towards the axial end of the inner tube facing away from the metering device. The passage cross-section is the cross-sectional area that is available for the exhaust gas to enter the mixing area due to the access openings. This passage cross section can, for example, steadily decrease towards the end facing away from the dosing device. However, the passage cross-section can also decrease, in particular in certain areas, towards the end facing away from the dosing device. In other words, the passage cross section in an area close to the metering device is larger than the passage cross section in an area further away from the metering device. The individual areas are essentially the same size as one another. One area is formed by a defined peripheral area of the inner tube, this peripheral area resulting from the sum of the area of the solid material and the cross-sectional area of the access openings. This means that the ratio of the area of the solid material to the cross-sectional area of the access openings in an area close to the dosing device is smaller than the ratio of the area of the solid material to the cross-sectional area of the access openings in an area further away from the dosing device.
Um eine Abnahme des Durchtrittsquerschnitts zu realisieren, nimmt die Anzahl der Zutrittsöffnungen zweckmäßigerweise zu dem der Dosiereinrichtung abgewandten axialen Ende des Innenrohrs hin zumindest bereichsweise ab. Dadurch kann auf verhältnismäßig einfache Weise die Abnahme des durch die Zutrittsöffnungen gebildeten Durchtrittsquerschnitts zu dem der Dosiereinrichtung abgewandten axialen Ende des Innenrohrs hin realisiert werden. Damit wird, insbesondere bei einem aus axialer Richtung in das Gehäuse einströmendem Abgas, erreicht, dass das in das Innenrohr strömende Abgas entlang des gesamten mit Zutrittsöffnungen versehenen Abschnitts des Innenrohrs möglichst homogen in den Mischbereich strömt. Hierfür nimmt der Abstand zweier benachbarter Zutrittsöffnungen in axialer Richtung und/oder in Umfangsrichtung zu dem der Dosiereinrichtung abgewandten axialen Ende des Innenrohrs hin zu. Die Anzahl der Zutrittsöffnungen kann dabei zu dem der Dosiereinrichtung abgewandten Ende hin stetig abnehmen. Die Anzahl der Zutrittsöffnungen kann zu dem der Dosiereinrichtung abgewandten Ende hin aber auch bereichsweise abnehmen. Mit anderen Worten ist dabei die Anzahl der Zutrittsöffnungen in einem dosiereinrichtungsfernen Bereich kleiner, als die Anzahl der Zutrittsöffnungen in einem dosiereinrichtungsnäheren Bereich.In order to achieve a decrease in the passage cross-section, the number of access openings expediently decreases, at least in regions, toward the axial end of the inner tube facing away from the dosing device. As a result, the decrease in the passage cross section formed by the access openings towards the axial end of the inner tube facing away from the dosing device can be implemented in a relatively simple manner. This ensures that the exhaust gas flowing into the inner tube is as homogeneous as possible along the entire section of the inner tube provided with access openings in the mixing area, particularly with exhaust gas flowing into the housing from the axial direction flows. For this purpose, the distance between two adjacent access openings increases in the axial direction and/or in the circumferential direction toward the axial end of the inner tube facing away from the dosing device. The number of access openings can steadily decrease towards the end facing away from the dosing device. However, the number of access openings can also decrease in areas towards the end facing away from the dosing device. In other words, the number of access openings in an area remote from the metering device is smaller than the number of access openings in an area closer to the metering device.
Um eine Abnahme des Durchtrittsquerschnitts zu realisieren, nimmt vorteilhafterweise die Querschnittsfläche der Zutrittsöffnungen zu dem der Dosiereinrichtung abgewandten axialen Ende hin zumindest bereichsweise ab. Die Querschnittsfläche der einzelnen Zutrittsöffnungen kann dabei zu dem der Dosiereinrichtung abgewandten Ende hin stetig abnehmen. Die Querschnittsfläche der einzelnen Zutrittsöffnungen kann zu dem der Dosiereinrichtung abgewandten Ende hin aber auch bereichsweise abnehmen. Das heißt, dass die Querschnittsfläche der einzelnen Zutrittsöffnungen in einem dosiereinrichtungsfernen Bereich kleiner ist, als die Querschnittsfläche der einzelnen Zutrittsöffnungen in einem dosiereinrichtungsnäheren Bereich.In order to realize a decrease in the passage cross-section, the cross-sectional area of the access openings advantageously decreases at least in regions towards the axial end facing away from the dosing device. The cross-sectional area of the individual access openings can decrease steadily towards the end facing away from the dosing device. However, the cross-sectional area of the individual access openings can also decrease in some areas towards the end facing away from the dosing device. This means that the cross-sectional area of the individual access openings in an area remote from the dosing device is smaller than the cross-sectional area of the individual access openings in an area closer to the dosing device.
In einer vorteilhaften Ausführungsform erstreckt sich ein Abgaseinlassrohr zumindest teilweise in das Gehäuse, wobei die Längsmittelsachse des Abgaseinlassrohres und die Längsmittelachse des Innenrohres im Wesentlichen parallel zueinander ausgerichtet sind. Über ein derartiges Abgaseinlassrohr kann das Abgas gezielt einem bestimmten Bereich innerhalb des Gehäuses zugeführt werden. Das Abgaseinlassrohr erstreckt sich hierbei über die Eintrittsöffnung in das Gehäuse, das heißt, dass das Abgaseinlassrohr durch die Eintrittsöffnung in das Gehäuse geführt ist. Dabei ist das Abgaseinlassrohr insbesondere kreiszylinderförmig oder konusförmig ausgebildet. Bei einer kreisrunden Eintrittsöffnung entspricht der Außendurchmesser des Abgaseinlassrohres im Bereich der Eintrittsöffnung im Wesentlichen dem Durchmesser der Eintrittsöffnung.In an advantageous embodiment, an exhaust gas inlet pipe extends at least partially into the housing, with the longitudinal center axis of the exhaust gas inlet pipe and the longitudinal center axis of the inner pipe being aligned essentially parallel to one another. The exhaust gas can be supplied in a targeted manner to a specific area within the housing via such an exhaust gas inlet pipe. In this case, the exhaust gas inlet pipe extends over the inlet opening into the housing, which means that the exhaust gas inlet pipe is led through the inlet opening into the housing. In this case, the exhaust gas inlet pipe is designed in particular in the form of a circular cylinder or a cone. In the case of a circular inlet opening, the outside diameter of the exhaust gas inlet pipe in the area of the inlet opening essentially corresponds to the diameter of the inlet opening.
Vorteilhafterweise erstreckt sich das Abgaseinlassrohr innerhalb des Gehäuses zumindest entlang des spiralförmigen Gehäuseabschnitts, wobei das Abgaseinlassrohr an der sich entlang des spiralförmigen Gehäuseabschnitts erstreckenden Umfangsfläche Austrittsöffnungen aufweist. Durch diese Austrittsöffnungen kann ein dem Abgaseinlassrohr zugeführter Abgasstrom insbesondere in den spiralförmigen Gehäuseabschnitt strömen. Die Austrittsöffnungen sind insbesondere vollumfänglich an der Umfangsfläche des Abgaseinlassrohrs angeordnet und weisen beispielsweise eine kreis- oder schlitzförmige Geometrie auf. Dadurch kann auch ein insbesondere aus einer axialen Richtung dem Abgaseinlassrohr zugeführter Abgasstrom beim Austritt aus dem Abgaseinlassrohr durch die Austrittsöffnungen in eine radiale Richtung "umgelenkt" oder ihm zumindest eine radiale Geschwindigkeitskomponente erteilt werden. Ferner wird dadurch dazu beigetragen, dass das Abgas entlang des gesamten mit Austrittsöffnungen versehenen Abschnitts des Abgaseinlassrohrs möglichst homogen in den spiralförmigen Gehäuseabschnitt strömt.Advantageously, the exhaust gas inlet pipe extends within the housing at least along the spiral housing section, the Exhaust gas inlet pipe has outlet openings on the circumferential surface extending along the spiral-shaped housing section. An exhaust gas flow supplied to the exhaust gas inlet pipe can flow through these outlet openings, in particular into the spiral-shaped housing section. The outlet openings are in particular arranged over the entire circumference on the peripheral surface of the exhaust gas inlet pipe and have, for example, a circular or slit-shaped geometry. As a result, an exhaust gas flow fed in particular from an axial direction to the exhaust gas inlet pipe can be “deflected” into a radial direction when exiting the exhaust gas inlet pipe through the outlet openings, or it can be given at least a radial velocity component. Furthermore, this contributes to the fact that the exhaust gas flows as homogeneously as possible into the spiral-shaped housing section along the entire section of the exhaust gas inlet pipe provided with outlet openings.
Da sich das in das Abgaseinlassrohr hineinströmende Abgas zumindest zeitweise an dem der Eintrittsöffnung abgewandten axialen Ende des Abgaseinlassrohrs anstauen kann und damit der Abgasvolumenstrom aus den Austrittsöffnungen, die sich in diesem Bereich befinden, größer sein kann, als der Abgasvolumenstrom aus den Austrittsöffnungen eines eintrittsöffnungsnäheren Bereichs, nimmt bevorzugt die Anzahl der Austrittsöffnungen zu dem der Eintrittsöffnung abgewandten axialen Ende des Abgaseinlassrohrs hin zumindest bereichsweise ab. Damit wird erreicht, dass das in das Abgaseinlassrohr einströmende Abgas entlang des gesamten mit Austrittsöffnungen versehenen Abschnitts des Abgaseinlassrohrs möglichst homogen in den spiralförmigen Gehäuseabschnitt strömt. Hierfür nimmt der Abstand zweier benachbarter Austrittsöffnungen in axialer Richtung und/oder in Umfangsrichtung zu dem der Eintrittsöffnung abgewandten axialen Ende des Abgaseinlassrohrs hin zu. Die Anzahl der Austrittsöffnungen kann dabei zu dem der Eintrittsöffnung abgewandten Ende hin stetig abnehmen. Die Anzahl der Austrittsöffnungen kann zu dem der Eintrittsöffnung abgewandten Ende hin aber auch bereichsweise abnehmen. Mit anderen Worten ist dabei die Anzahl der Austrittsöffnungen in einem dosiereinrichtungsfernen Bereich kleiner, als die Anzahl der Zutrittsöffnungen in einem dosiereinrichtungsnäheren Bereich. Dabei sind die einzelnen Bereiche untereinander im Wesentlichen gleich groß. Ein Bereich ist gebildet durch eine definierte Umfangsfläche des Abgaseinlassrohrs, wobei sich diese Umfangsfläche aus der Summe von Fläche des Vollmaterials und der Querschnittsfläche der Austrittsöffnungen ergibt. Das heißt, dass das Verhältnis der Fläche des Vollmaterials zur Querschnittsfläche der Austrittsöffnungen in einem dosiereinrichtungsnahen Bereich kleiner ist, als das Verhältnis der Fläche des Vollmaterials zur Querschnittsfläche der Austrittsöffnungen in einem dosiereinrichtungsferneren Bereich.Since the exhaust gas flowing into the exhaust gas inlet pipe can accumulate at least temporarily at the axial end of the exhaust gas inlet pipe facing away from the inlet opening, and the exhaust gas volume flow from the outlet openings located in this area can therefore be greater than the exhaust gas volume flow from the outlet openings in an area closer to the inlet opening, the number of outlet openings preferably decreases at least in regions towards the axial end of the exhaust gas inlet pipe facing away from the inlet opening. What is thereby achieved is that the exhaust gas flowing into the exhaust gas inlet pipe flows as homogeneously as possible into the spiral-shaped housing section along the entire section of the exhaust gas inlet pipe provided with outlet openings. For this purpose, the distance between two adjacent outlet openings increases in the axial direction and/or in the circumferential direction towards the axial end of the exhaust gas inlet pipe facing away from the inlet opening. The number of outlet openings can steadily decrease towards the end facing away from the inlet opening. However, the number of outlet openings can also decrease in some areas towards the end facing away from the inlet opening. In other words, the number of outlet openings in an area remote from the metering device is smaller than the number of inlet openings in an area closer to the metering device. The individual areas are essentially the same size as each other. An area is formed by a defined peripheral surface of the exhaust gas inlet pipe, wherein this peripheral area results from the sum of the area of the solid material and the cross-sectional area of the outlet openings. This means that the ratio of the area of the solid material to the cross-sectional area of the outlet openings in an area close to the metering device is smaller than the ratio of the area of the solid material to the cross-sectional area of the outlet openings in an area further away from the metering device.
Alternativ oder kumulativ zur Abnahme der Anzahl der Austrittsöffnungen nimmt bevorzugt die Querschnittsfläche der einzelnen Austrittsöffnungen zu dem der Dosiereinrichtung abgewandten Ende hin stetig ab. Die Querschnittsfläche der einzelnen Austrittsöffnungen kann zu dem der Dosiereinrichtung abgewandten Ende hin aber auch bereichsweise abnehmen. Das heißt, dass die Querschnittsfläche der einzelnen Austrittsöffnungen in einem dosiereinrichtungsfernen Bereich kleiner ist, als die Querschnittsfläche der einzelnen Austrittsöffnungen in einem dosiereinrichtungsnäheren Bereich.Alternatively or cumulatively to the decrease in the number of outlet openings, the cross-sectional area of the individual outlet openings preferably decreases steadily towards the end remote from the dosing device. However, the cross-sectional area of the individual outlet openings can also decrease in some areas towards the end facing away from the dosing device. This means that the cross-sectional area of the individual outlet openings in an area remote from the metering device is smaller than the cross-sectional area of the individual outlet openings in an area closer to the metering device.
Zweckmäßigerweise ist das Innenrohr kreiszylinderförmig oder konusförmig ausgebildet. Diese Formen wirken sich, je nach eingesetzter Dosiereinrichtung und damit verbundener Ausbreitung der Flüssigkeit und/oder des Flüssigkeit-Gas-Gemisches, weiter positiv auf eine homogene Ausbreitung der Flüssigkeit und/oder des Flüssigkeit-Gas-Gemisches in dem Mischbereich aus. Bei einem konusförmigen Innenrohr weitet sich der Durchmesser des Innenrohrs zu dem der Dosiereinrichtung abgewandten Ende.The inner tube is expediently designed in the shape of a circular cylinder or cone. Depending on the dosing device used and the spread of the liquid and/or the liquid-gas mixture associated therewith, these shapes also have a positive effect on a homogeneous spread of the liquid and/or the liquid-gas mixture in the mixing area. In the case of a cone-shaped inner tube, the diameter of the inner tube widens towards the end facing away from the dosing device.
Die Zutrittsöffnungen sind vorteilhafterweise mit Abgasleitelementen versehen, welche aus der Haupterstreckung der Mantelfläche abstehen. Diese Abgasleitelemente dienen insbesondere zum einen zur Strömungsführung des Abgases und zum anderen verhindern sie den Austritt der Flüssigkeit und/oder des Flüssigkeit-Gas-Gemisches aus dem Mischbereich. Ferner wird den durch die Zutrittsöffnungen strömenden Abgasteilströmen durch die Abgasleitelemente ein Drall eingeprägt und/oder die durch das spiralförmigen Gehäuseabschnitt erzeugte Drallbewegung verstärkt. Die Geometrie der Abgasleitelemente ist auf den jeweiligen Einzelfall abgestimmt zu wählen und insbesondere abhängig von der Ausbreitungscharakteristik der eingebrachten Flüssigkeit und/oder des eingebrachten Flüssigkeit-Gas-Gemisches im Mischbereich sowie den auftretenden Abgasvolumenströmen.The access openings are advantageously provided with exhaust gas guide elements which protrude from the main extension of the lateral surface. These exhaust-gas guide elements are used in particular to guide the flow of the exhaust gas and also to prevent the liquid and/or the liquid-gas mixture from escaping from the mixing area. Furthermore, the exhaust gas streams flowing through the access openings are imparted with a swirl by the exhaust gas guiding elements and/or the swirl movement generated by the spiral-shaped housing section is reinforced. The geometry of the exhaust gas guiding elements must be selected in accordance with the respective individual case and in particular depends on the propagation characteristics of the liquid introduced and/or the introduced liquid-gas mixture in the mixing area and the occurring exhaust gas volume flows.
Dabei erstrecken sich die Abgasleitelemente zweckmäßigerweise zumindest in den Mischbereich. Daneben kann an einer Zutrittsöffnung aber auch zusätzlich ein Abgasleitelement vorgesehen sein, das sich in den Zwischenraum zwischen Mantelfläche des Innenrohrs und Gehäusewand erstreckt. Bevorzugt ist das Abgasleitelement oder sind beide Abgasleitelemente derart geformt, dass sie, gesehen von der Längsmittelachse des Innenrohrs radial nach außen die Zutrittsöffnung blickdicht "verschließen", das heißt, dass ein von der Längsmittelachse und senkrecht zu dieser radial nach außen gehender (gedachter) Strahl die Zutrittsöffnung möglichst durchdringen kann.In this case, the exhaust gas guide elements expediently extend at least into the mixing area. In addition, an exhaust gas guide element can also be provided at an access opening, which extends into the intermediate space between the lateral surface of the inner pipe and the housing wall. Preferably, the exhaust gas guide element or both exhaust gas guide elements are shaped in such a way that, seen from the longitudinal center axis of the inner pipe radially outwards, they opaquely "close" the access opening, i.e. that an (imaginary) jet going radially outwards from the longitudinal center axis and perpendicular to it can penetrate the access opening as much as possible.
Vorteilhafterweise sind die Abgasleitelemente einstückig an der Mantelfläche des Innenrohrs ausgebildet. Dies ermöglicht eine einfache und kostengünstige Fertigung.Advantageously, the exhaust gas guide elements are formed in one piece on the lateral surface of the inner pipe. This enables simple and inexpensive production.
In einer vorteilhaften Ausführungsform schließt die Projektion einer Öffnungsachse des Abgasleitelements auf eine durch die Zutrittsöffnung des Abgasleitelements verlaufende Mittellängsebene des Innenrohres mit der Längsmittelachse des Innenrohres einen Neigungswinkel von 5° bis 90°, bevorzugt von 30° bis 50°, besonders bevorzugt von 35° bis 40° ein. Bei einer Neigung der Abgasleitelemente unter einem derartigen Winkel kann insbesondere der Austritt der Flüssigkeit und/oder des Flüssigkeit-Gas-Gemisches aus dem Mischbereich besonders effektiv unterbunden werden. Hierbei verläuft die Mittellängsebene zum einen durch den Mittelpunkt der jeweiligen Zutrittsöffnung und zum anderen durch die Längsmittelachse des Innenrohrs und erstreckt sich entlang dieser Längsmittelachse. Mit anderen Worten handelt es sich bei dem Neigungswinkel um den Winkel, um den das Abgasleitelement aus der Grundmantelfläche des Innenrohrs, also aus der Mantelfläche ohne Berücksichtigung der Abgasleitelemente, absteht.In an advantageous embodiment, the projection of an opening axis of the exhaust gas guide element onto a central longitudinal plane of the inner pipe running through the access opening of the exhaust gas guide element closes an angle of inclination of 5° to 90°, preferably from 30° to 50°, particularly preferably from 35° to the longitudinal central axis of the
Zweckmäßigerweise schließt eine Öffnungsachse des Abgasleitelements mit einer durch die Zutrittsöffnung des Abgasleitelements verlaufenden Mittellängsebene des Innenrohres einen Ausrichtungswinkel von 0° bis 90°, bevorzugt von 10° bis 90°, besonders bevorzugt von 20° bis 90° ein. Hierbei verläuft die Mittellängsebene zum einen durch den Mittelpunkt der jeweiligen Zutrittsöffnung und zum anderen durch die Längsmittelachse des Innenrohrs und erstreckt sich entlang dieser Längsmittelachse. Mit anderen Worten gibt der Ausrichtungswinkel denjenigen Winkel an, um den die Zutrittsöffnung aus einem in Richtung der Längsmittelachse des Innenrohrs ausgerichteten Verlauf "hinaus verdreht" ist. Bei einer Ausrichtung der Abgasleitelemente gemäß einem Ausrichtungswinkel von kleiner 90°, bewirken die Abgasleitelemente eine teilweise Umlenkung des Abgasteilstroms hin zur Hauptinjektionsrichtung. Dadurch wird insbesondere erreicht, dass das aus dem spiralförmigen Gehäuseabschnitt zuströmende Abgas durch die Zutrittsöffnungen und die daran angeordneten Abgasleitelemente in Abgasteilströme umgelenkt wird, welche eine gewisse in Hauptinjektionsrichtung der Dosiereinrichtung verlaufende Geschwindigkeitskomponente aufweisen, was wiederum zu einem homogenen Vermischen Flüssigkeit und/oder des Flüssigkeit-Gas-Gemiches mit dem Abgas beiträgt.Expediently, an opening axis of the exhaust gas guide element encloses an orientation angle of 0° to 90°, preferably 10° to 90°, particularly preferably 20° to 90°, with a central longitudinal plane of the inner pipe running through the access opening of the exhaust gas guide element. Here, the median longitudinal plane runs to one through the center of the respective access opening and the other through the longitudinal center axis of the inner tube and extends along this longitudinal center axis. In other words, the orientation angle indicates that angle by which the access opening is "twisted out" from a course aligned in the direction of the longitudinal central axis of the inner tube. If the exhaust-gas guide elements are aligned at an angle of less than 90°, the exhaust-gas guide elements cause a partial deflection of the partial exhaust-gas flow toward the main injection direction. This ensures in particular that the exhaust gas flowing in from the spiral-shaped housing section is deflected through the access openings and the exhaust gas guide elements arranged thereon into partial exhaust gas flows, which have a certain velocity component running in the main injection direction of the metering device, which in turn leads to a homogeneous mixing of the liquid and/or the liquid Gas mixture with the exhaust gas contributes.
In einer zweckmäßigen Ausführungsform ist die Dosiereinrichtung koaxial zu der Längsmittelachse des Innenrohrs angeordnet. Dadurch wird eine mittige Zudosierung in den Mischbereich hinein ermöglicht, was sich weiter positiv auf die gleichmäßige Ausbreitung der Flüssigkeit und/oder des Flüssigkeit-Gas-Gemiches uns somit auf das homogene Vermischen mit dem Abgas auswirkt.In an expedient embodiment, the dosing device is arranged coaxially to the longitudinal central axis of the inner tube. This enables dosing in the middle into the mixing area, which has a further positive effect on the even spread of the liquid and/or the liquid-gas mixture and thus on the homogeneous mixing with the exhaust gas.
Vorteilhafterweise entspricht der durch die Zutrittsöffnungen gebildete Durchtrittsquerschnitt 80% bis 300% des Eintrittsquerschnitts der Eintrittsöffnung, bevorzugt 90% bis 250%. Ein derartiges Verhältnis von Eintrittsquerschnitt zu Durchtrittsquerschnitt wirkt sich weiter positiv auf die homogene Zuströmung des Abgases in den Mischbereich aus.The passage cross section formed by the access openings advantageously corresponds to 80% to 300% of the entry cross section of the entry opening, preferably 90% to 250%. Such a ratio of inlet cross section to passage cross section also has a positive effect on the homogeneous inflow of the exhaust gas into the mixing area.
Bevorzugt weist die Mantelfläche des Innenrohrs zusätzlich zu den Zutrittsöffnungen, insbesondere im Bereich eines axialen Endes des spiralförmigen Gehäuseabschnitts, einen zumindest teilweise umlaufenden Ringspalt auf, der als eine Art "Bypass" für das Abgas dient. Dabei kann im Bereich des Ringspalts optional ein Leitelement angeordnet sein, das eine Umlenkung eines durch den Ringspalt strömenden Abgasteilstroms zumindest teilweise in Hauptinjektionsrichtung der Dosiereinrichtung bewirkt.In addition to the access openings, the lateral surface of the inner tube preferably has an at least partially circumferential annular gap, particularly in the area of an axial end of the spiral-shaped housing section, which serves as a kind of "bypass" for the exhaust gas. In this case, a guide element can optionally be arranged in the region of the annular gap, which guide element causes a partial flow of exhaust gas flowing through the annular gap to be deflected at least partially in the main injection direction of the metering device.
Bevorzugt ist das Innenrohr derart in dem spiralförmigen Gehäuseabschnitt angeordnet, dass in Umfangsrichtung zwischen dem Innenrohr und der Gehäusewand stets ein vom Verlauf der Spiralform abhängiger Abstand ausgebildet ist. Hierdurch ist zwischen Innenrohr und Gehäusewand in Umfangsrichtung gesehen stets ein Zwischenraum vorhanden und keine "Sackgasse" gebildet, an der sich das einströmende Abgas anstauen würde. Dies trägt weiter positiv zu einem homogenen Strömungsverlauf durch den spiralförmigen Gehäuseabschnitt bei.The inner tube is preferably arranged in the spiral-shaped housing section in such a way that in the circumferential direction between the inner tube and the housing wall there is always a distance dependent on the progression of the spiral shape. As a result, there is always an intermediate space between the inner tube and the housing wall, seen in the circumferential direction, and no “dead end” is formed at which the inflowing exhaust gas would accumulate. This further contributes positively to a homogeneous flow pattern through the spiral-shaped housing section.
Die zweite Aufgabe wird gelöst durch ein Verfahren zum Mischen eines Abgases mit einer Flüssigkeit und/oder einem Flüssigkeit-Gas-Gemisches unter Verwendung einer vorstehend beschriebenen Mischvorrichtung.The second object is achieved by a method for mixing an exhaust gas with a liquid and/or a liquid-gas mixture using a mixing device as described above.
Mit diesem Verfahren wird ein möglichst homogenes Vermischen einer Flüssigkeit und/oder eines Flüssigkeit-Gas-Gemisches mit dem Abgas unabhängig oder nur unter geringem Einfluss des zuströmenden Abgasvolumenstroms ermöglicht. Dadurch, dass das Abgas über einen entlang der Zutrittsöffnungen des Innenrohrs verlaufenden spiralförmigen Gehäuseabschnitt zuströmt, stellen sich an der außen liegenden Mantelfläche des Innenrohres annähernd gleiche Strömungs- und Druckverhältnisse ein, so dass insbesondere in Umfangsrichtung gesehen eine gleichmäßige Zuführung des Abgases über die Zutrittsöffnungen in den Mischbereich erfolgt und sich im Mischbereich rotationssymmetrische Strömungsverhältnisse ausbilden können.This method enables a liquid and/or a liquid-gas mixture to be mixed with the exhaust gas as homogeneously as possible independently or only with a slight influence of the inflowing exhaust gas volume flow. Because the exhaust gas flows in via a spiral-shaped housing section running along the access openings of the inner pipe, approximately the same flow and pressure conditions occur on the outer lateral surface of the inner pipe, so that, especially viewed in the circumferential direction, the exhaust gas is fed evenly via the access openings into the Mixing area takes place and rotationally symmetrical flow conditions can form in the mixing area.
Ausführungsbeispiele der Erfindung werden im Folgenden anhand einer Zeichnung näher erläutert. Darin zeigen:
-
Fig. 1 in einer schematischen Darstellung eine Mischvorrichtung, -
Fig. 2 in einer schematischen Längsschnittdarstellung gemäß Schnittlinie A-A die Mischvorrichtung ausFig. 1 , -
Fig. 3 in einer schematischen Querschnittdarstellung gemäß Schnittlinie B-B die Mischvorrichtung ausFig. 2 , -
Fig. 4 in einer schematischen Darstellung einen spiralförmigen Gehäuseabschnitt einer alternativen Ausführungsform, -
Fig. 5 in einer schematischen Darstellung ein Innenrohr in einer weiteren Ausführungsform, -
Fig. 6 in einer schematischen Längsschnittdarstellung gemäß Schnittlinie E-E einen vergrößerten Ausschnitt des Innenrohrs ausFig. 5 , -
Fig. 7 in einer schematischen Längsschnittdarstellung verschiedene Ausführungsformen eines Abgasleitelements, -
Fig. 8 in einer schematischen Längsschnittdarstellung eine Mischvorrichtung in einer alternativen Ausführungsform, -
Fig. 9a - 9c in schematischen Längsschnittdarstellungen eines vergrößerten Ausschnitts C verschiedene Ausführungsformen eines Leitelements und eines Innenrohrs ausFig. 8 .
-
1 a schematic representation of a mixing device, -
2 the mixing device in a schematic longitudinal sectional view according tosection line AA 1 , -
3 the mixing device in a schematic cross-sectional representation according tosection line BB 2 , -
4 in a schematic representation, a spiral housing section of an alternative embodiment, -
figure 5 in a schematic representation of an inner tube in a further embodiment, -
6 shows an enlarged detail of the inner tube in a schematic longitudinal sectional representation according to section line EEfigure 5 , -
7 in a schematic longitudinal sectional view, various embodiments of an exhaust gas guiding element, -
8 in a schematic longitudinal sectional view, a mixing device in an alternative embodiment, -
Figures 9a - 9c in schematic longitudinal sectional representations of an enlarged section C, various embodiments of a guide element and aninner tube 8 .
In
Das Innenrohr 6 weist an seiner Mantelfläche 16 Zutrittsöffnungen 18 auf, durch welche Abgase in den Mischbereich 8 einleitbar sind. Die Zutrittsöffnungen 18 sind mit Abgasleitelementen 20 versehen, welche aus der Haupterstreckung der Mantelfläche 16 abstehen. Diese Abgasleitelemente 20 dienen insbesondere zum einen zur Strömungsführung des Abgases und zum anderen verhindern sie den Austritt des Sprays 14 aus dem Mischbereich 8. Dabei sind die Abgasleitelemente 20 einstückig an der Mantelfläche 16 des Innenrohrs 6 ausgebildet, was eine einfache und kostengünstige Fertigung ermöglicht.The
Die Anzahl der Zutrittsöffnungen 18 nimmt hierbei zu dem der Dosiereinrichtung 10 abgewandten axialen Ende des Innenrohrs 6 hin stetig ab. Hierfür nimmt der Abstand zweier benachbarter Zutrittsöffnungen 18 in axialer Richtung und in Umfangsrichtung zu dem der Dosiereinrichtung 10 abgewandten axialen Ende des Innenrohrs 6 hin zu. Dadurch wird eine Abnahme des durch die Zutrittsöffnungen 18 gebildeten Durchtrittsquerschnitts zu dem der Dosiereinrichtung 10 abgewandten axialen Ende des Innenrohrs 6 hin realisiert. Weiter ist in
Ferner umfasst das Gehäuse 4 einen spiralförmigen Gehäuseabschnitt 20, der sich entlang sämtlicher Zutrittsöffnungen 18 des Innenrohrs 6 erstreckt, das heißt, sämtliche Zutrittsöffnungen 18 des Innenrohres 6 sind innerhalb dieses spiralförmigen Gehäuseabschnitts 20 angeordnet.Furthermore, the
Über eine Eintrittsöffnung 24 erstreckt sich ein kreiszylinderförmig ausgebildetes Abgaseinlassrohr 26 in das Gehäuse 4. Mit anderen Worten ist das Abgaseinlassrohr 26 durch die Eintrittsöffnung 24 in das Gehäuse 4 geführt. Hierzu entspricht der Außendurchmesser des Abgaseinlassrohres 26 im Wesentlichen dem Durchmesser der Eintrittsöffnung 24. Die Längsmittelsachse des Abgaseinlassrohres 26 und die Längsmittelachse des Innenrohres 6 sind parallel zueinander ausgerichtet und das Abgaseinlassrohr 26 erstreckt sich axial entlang des gesamten spiralförmigen Gehäuseabschnitts 22. Entlang des spiralförmigen Gehäuseabschnitts 22 weist das Abgaseinlassrohr 26 zudem Austrittsöffnungen 28 auf. Die Austrittsöffnungen 28 sind vollumfänglich an der Umfangsfläche 30 des Abgaseinlassrohrs 26 angeordnet und weisen eine kreisförmige Geometrie auf.An exhaust
Im Betrieb strömt ein der Mischvorrichtung 2 zugeführter Abgaszustrom 32 zunächst über das Abgaseinlassrohr 26 in Richtung Gehäuse 4 und strömt dabei über die Austrittsöffnungen 28 in den spiralförmigen Gehäuseabschnitt 22. Der Abgaszustrom 32 wird also beim Austritt aus dem Abgaseinlassrohr 26 durch die Austrittsöffnungen 28 aus einer axialen Richtung in eine radiale Richtung "umgelenkt" bzw. wird ihm zumindest eine radiale Geschwindigkeitskomponente erteilt. Ferner wird der Abgaszustrom 32 entlang des gesamten mit Austrittsöffnungen 28 versehenen Abschnitts des Abgaseinlassrohrs 26 relativ homogen dem spiralförmigen Gehäuseabschnitt 22 zugeführt.During operation, an inflow of
Dadurch, dass sich der spiralförmige Gehäuseabschnitt 22 entlang sämtlicher Austrittsöffnungen 28 und insbesondere entlang sämtlicher Zutrittsöffnungen 18 erstreckt, wird gewährleistet, dass an der Mantelfläche 16 des Innenrohrs 6, entlang des mit Zutrittsöffnungen 18 versehenen Abschnitts, annähernd gleiche Strömungs- und Druckverhältnisse herrschen. Dadurch erfolgt insbesondere in Umfangsrichtung gesehen eine gleichmäßige Zuführung von Abgasteilströmen über die Zutrittsöffnungen 18 in den Mischbereich 8 und es können sich im Mischbereich 8 rotationssymmetrische Strömungsverhältnisse ausbilden. Dadurch kann sich das Spray 14 in dem Mischbereich 8 homogen ausbreiten, da insbesondere in Umfangsrichtung um die zentrale Hauptströmungsachse des Sprays 14, welche bei einer derartigen Anordnung im Wesentlichen der Längsmittelachse des Innenrohrs 6 entspricht, annähernd gleichmäßige Strömungs- und Druckverhältnisse vorliegen. Dies sorgt für ein homogenes Vermischen des Sprays 14 mit dem über die Zutrittsöffnungen 18 in Form von Abgasteilströmen zugeführten Abgas.The fact that the spiral-shaped
Da der aus axialer Richtung in das Abgaseinlassrohr 26 einströmende Abgaszustrom 32, welcher axial zu dem der Dosiereinrichtung 10 abgewandten axialen Ende strömt, sich zumindest zeitweise in diesem Endbereich des Abgaseinlassrohres 26 anstauen kann, ist der Abgasvolumenstrom, der durch die Austrittsöffnungen 28 strömt, die sich in diesem Bereich befinden, zumindest zeitweise größer, als der Abgasvolumenstrom, welcher durch die Austrittsöffnungen 28 eines dosiereinrichtungsnäheren Bereichs strömt.Since the
Durch die stetige Abnahme der Anzahl der Zutrittsöffnungen 18 zu dem der Dosiereinrichtung 10 abgewandten axialen Ende des Innenrohrs 6 hin wird dennoch erreicht, dass das in das Innenrohr 6 strömende Abgas, auch axial entlang des gesamten mit Zutrittsöffnungen 18 versehenen Abschnitts, äußerst homogen in den Mischbereich 8 strömt. Dies wirkt sich weiter positiv auf gleichmäßige Strömungs- und Druckverhältnisse im Mischbereich 8 und somit auf das homogene Vermischen des Sprays 14 mit dem Abgas aus.The steady decrease in the number of
Weiterhin wird durch die dargestellte Ausrichtung der Zutrittsöffnungen 18 und damit insbesondere der jeweiligen Abgasleitelemente 20 teilweise eine Umlenkung der durch die Zutrittsöffnungen 18 strömenden Abgasteilströme hin zur Hauptinjektionsrichtung des Sprays 14 bewirkt. Die insbesondere im dosiereinrichtungsnahen Bereich abgelenkten Abgasteilströme erhalten also eine gewisse in Hauptinjektionsrichtung der Dosiereinrichtung 10 verlaufende Geschwindigkeitskomponente. Das trägt zusätzlich zu einem homogenen Vermischen des Sprays 14 mit dem Abgas bei, da insbesondere im dosiereinrichtungsnahen Bereich keine oder nur eine sehr geringe Ablenkung des Sprays 14 erfolgt.Furthermore, the illustrated alignment of the
Aus dem Innenrohr 6 und schließlich aus dem Gehäuse 4 strömt in axialer Richtung somit ein homogen vermischtes Spray-Abgas-Gemisch dem SCR-Katalysator zu.A homogeneously mixed spray/exhaust gas mixture thus flows in the axial direction from the
In
In dieser Gleichung bedeuten r der Krümmungsradius, D der Durchmesser des Innenrohrs 6, s der Abstand der Mantelfläche 8 des Innenrohrs 6 von der Gehäusewand des spiralförmigen Gehäuses 22 und A der Querschnitt der Zuströmöffnung des spiralförmigen Gehäuses.In this equation, r is the radius of curvature, D is the diameter of the
In
Zudem weist die Mantelfläche 16 des Innenrohrs 6 im dosiereinrichtungsnahen Bereich einen umlaufenden Ringspalt auf, der als Bypasskanal 40 für das Abgas dient. Ein Leitelement 42 ist an der und koaxial zu der Dosiereinrichtung 10 angeordnet und ragt axial in den Mischbereich 8 des Innenrohrs 6 hinein. Das Leitelement 42 verhindert eine Beaufschlagung des Sprays 14 mit dem den Bypasskanal 40 passierenden Abgasteilstrom im dosiereinrichtungsnahen Bereich. Das Leitelement 42 lenkt ferner diesen Abgasteilstrom in die axiale Hauptinjektionsrichtung um. Hierzu ist das Leitelement 42 ringartig und vorzugsweise rotationssymmetrisch ausgebildet und in seinem Querschnitt an seiner Außenfläche zu dem der Dosiereinrichtung 10 abgewandten Ende hin verjüngend ausgebildet.In addition, the
Dabei ist die axiale Erstreckung des der Dosiereinrichtung 10 abgewandten Endbereichs 44 des in
Über die Auslegung der axialen Erstreckung des Leitelements 42 und insbesondere dessen der Dosiereinrichtung 10 abgewandten Endbereichs 44 kann auf konstruktiv einfache und effektive Weise der Grad des temporären Anhaftens der Flüssigkeit eingestellt werden. In der Regel ist die Dosiereinrichtung 10 und damit der Spraywinkel sowie die Dichte der Flüssigkeit vorgegeben. Diese Parameter beeinflussen die Ausbreitungseigenschaften des Sprays 14 abhängig von dem Abgasvolumenstrom. Soll nun eine Flüssigkeit mit einer anderen Dichte und/oder eine Dosiereinrichtung 10 mit einem anderen Spraywinkel verbaut werden, so genügt es, wenn die Mischvorrichtung 2 durch Veränderung der axialen Erstreckung des Leitelements 42 und insbesondere dessen der Dosiereinrichtung 10 abgewandten Endbereichs 44 angepasst wird, um den oben beschriebenen Effekt (Sekundäraufbruch) einzustellen. Dies ermöglicht eine Modulbauweise und/oder ein Nachrüstsystem durch entsprechende Auswahl eines Leitelements 42 der bevorzugten axialen Erstreckung.The degree of temporary adhesion of the liquid can be adjusted in a constructively simple and effective manner by the design of the axial extension of the
- 22
- Mischvorrichtungmixing device
- 44
- GehäuseHousing
- 66
- Innenrohrinner tube
- 88th
- Mischbereichmixing area
- 1010
- Dosiereinrichtungdosing device
- 1212
- Düsejet
- 1414
- Sprayspray
- 1616
- Mantelflächelateral surface
- 1818
- Zutrittsöffnungaccess opening
- 2020
- Abgasleitelementexhaust guide element
- 2222
- spiralförmiger Gehäuseabschnittspiral casing section
- 2424
- Eintrittsöffnungentry opening
- 2626
- Abgaseinlassrohrexhaust gas inlet pipe
- 2828
- Austrittsöffnungexit port
- 3030
- Umfangsflächeperipheral surface
- 3232
- Abgaszustromexhaust flow
- 3434
- Spray-Gas-Gemischspray gas mixture
- 3636
- Öffnungsachseopening axis
- 3838
- Mittellängsebenemedian longitudinal plane
- 4040
- Bypasskanalbypass channel
- 4242
- Leitelementguiding element
- 4444
- Endbereichend area
- 4646
- Innenwandinner wall
- V1V1
-
Variante 1
version 1 - V2v2
-
Variante 2
Variant 2 - V3V3
-
Variante 3
Variant 3 - αa
- Ausrichtungswinkelorientation angle
- ββ
- Neigungswinkeltilt angle
- ss
- AbstandDistance
Claims (15)
- A mixing device (2) for the aftertreatment of exhaust gases in an exhaust system of an internal combustion engine, said mixing device comprising a housing (4) with an inlet opening (24) which has an inlet cross section, and comprising an inner pipe (6) which is arranged within the housing (4) and which has a mixing region (8) formed in the interior of the inner pipe (6), wherein on a face side of the housing (4) there is arranged a dosing device (10) for the supply of a liquid and/or of a liquid-gas mixture (14), and wherein the inner pipe (6) has, on its lateral surface (16), access openings (18) through which the exhaust gases can be introduced into the mixing region (8), characterized in that the housing (4) has a spiral-shaped housing portion (22), wherein the spiral-shaped housing portion (22) extends at least along all of the access openings (18) of the inner pipe (6).
- The mixing device (2) according to Claim 1, characterized in that a passage cross section formed by the access openings (18) decreases in the direction of that axial end of the inner pipe (6) which faces away from the dosing device (10).
- The mixing device (2) according to Claim 2, characterized in that the number of access openings (18) decreases at least in regions in the direction of that axial end of the inner pipe (6) which faces away from the dosing device (10).
- The mixing device (2) according to one of the preceding claims, characterized in that the cross-sectional area of the access openings (18) decreases at least in regions in the direction of that axial end which faces away from the dosing device (10).
- The mixing device (2) according to one of the preceding claims, characterized in that an exhaust-gas inlet pipe (26) extends at least partially into the housing (4), wherein the longitudinal central axis of the exhaust-gas inlet pipe (26) and the longitudinal central axis of the inner pipe (6) are oriented substantially parallel to one another.
- The mixing device (2) according to Claim 5, characterized in that the exhaust-gas inlet pipe (26) extends within the housing (4) at least along the spiral-shaped housing portion (22), wherein the exhaust-gas inlet pipe (26) has outlet openings (28) on its circumferential surface (30) extending along the spiral-shaped housing portion (22).
- The mixing device (2) according to one of the preceding claims, characterized in that the inner pipe (6) is of circular cylindrical form or conical form.
- The mixing device (2) according to one of the preceding claims, characterized in that the access openings (18) are provided with exhaust-gas guiding elements (20) which project out of the main extent of the lateral surface (16).
- The mixing device (2) according to Claim 8, characterized in that the exhaust-gas guiding elements (20) extend at least into the mixing region (8).
- The mixing device (2) according to Claim 8 or 9, characterized in that the exhaust-gas guiding elements (20) are formed integrally on the lateral surface (16) of the inner pipe (6).
- The mixing device (2) according to one of Claims 8 to 10, characterized in that the projection of an opening axis (36) of the exhaust-gas guiding element (20) onto a central longitudinal plane (38), which runs through the access opening (18) of the exhaust-gas guiding element (20), of the inner pipe (6) encloses an inclination angle (β) of 5° to 90°, preferably of 30° to 50°, particularly preferably of 35° to 40°, with the longitudinal central axis of the inner pipe (6).
- The mixing device (2) according to one of Claims 8 to 11, characterized in that an opening axis (36) of the exhaust-gas guiding element (20) encloses an orientation angle (α) of 0° to 90°, preferably of 10° to 90°, particularly preferably of 20° to 90°, with a central longitudinal plane (38), which runs through the access opening (18) of the exhaust-gas guiding element (20), of the inner pipe (6).
- The mixing device (2) according to one of the preceding claims, characterized in that the dosing device (10) is arranged coaxially with respect to the longitudinal central axis of the inner pipe (6).
- The mixing device (2) according to one of the preceding claims, characterized in that the passage cross section formed by the access openings (18) amounts to 80% to 300% of the inlet cross section of the inlet opening (24), preferably 90% to 250%.
- A method for mixing an exhaust gas with a liquid and/or with a liquid-gas mixture, using a mixing device (2) according to one of Claims 1 to 14.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012014334.6A DE102012014334A1 (en) | 2012-07-20 | 2012-07-20 | Mixing device for aftertreatment of exhaust gases |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2687697A2 EP2687697A2 (en) | 2014-01-22 |
EP2687697A3 EP2687697A3 (en) | 2017-06-28 |
EP2687697B1 true EP2687697B1 (en) | 2022-07-06 |
Family
ID=48444031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13002561.2A Active EP2687697B1 (en) | 2012-07-20 | 2013-05-16 | Mixing device for the aftertreatment of exhaust gases |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2687697B1 (en) |
CN (1) | CN103573351B (en) |
BR (1) | BR102013018004B1 (en) |
DE (1) | DE102012014334A1 (en) |
RU (1) | RU2628849C2 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013114111A1 (en) * | 2013-12-16 | 2015-06-18 | Tenneco Gmbh | Mixing tube arrangement with housing |
JP5802878B2 (en) * | 2014-03-06 | 2015-11-04 | 有限会社トリビオックス・ラボラトリーズ | Micro-nano bubble generator |
DE102014108809C5 (en) | 2014-06-10 | 2019-04-25 | Tenneco Gmbh | exhaust mixer |
US9718037B2 (en) | 2014-12-17 | 2017-08-01 | Caterpillar Inc. | Mixing system for aftertreatment system |
DE102015103303B3 (en) * | 2015-03-06 | 2016-09-01 | Tenneco Gmbh | Mix box |
DE102015002974A1 (en) * | 2015-03-10 | 2016-09-15 | Man Truck & Bus Ag | Device for the aftertreatment of exhaust gas of a motor vehicle |
DE102015005689B3 (en) * | 2015-05-06 | 2016-03-24 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | mixing device |
US10040028B2 (en) * | 2015-11-04 | 2018-08-07 | Ford Global Technologies, Llc | Methods and systems for a mixer |
DE102016224617A1 (en) * | 2016-12-09 | 2018-06-14 | Man Diesel & Turbo Se | Mixing device for an exhaust aftertreatment system, exhaust aftertreatment system and internal combustion engine |
GB2557651B (en) * | 2016-12-14 | 2019-08-21 | Perkins Engines Co Ltd | Pipe mixer for an aftertreatment system |
CN107165704A (en) * | 2017-07-27 | 2017-09-15 | 天纳克(苏州)排放系统有限公司 | Engine exhaust post-processes mixing arrangement and its after-treatment device and application |
CN111417771B (en) * | 2017-12-01 | 2022-02-01 | Avl李斯特有限公司 | Exhaust gas aftertreatment system |
CN107939488B (en) * | 2017-12-23 | 2020-03-17 | 无锡威孚力达催化净化器有限责任公司 | Urea mixing device for treating vehicle tail gas |
DE102018219851A1 (en) * | 2018-11-20 | 2020-05-20 | Robert Bosch Gmbh | Exhaust aftertreatment device |
JP6787606B1 (en) * | 2019-08-07 | 2020-11-18 | 日新工業株式会社 | Exhaust gas purification device, flow path forming member, and tubular member |
CN111672263A (en) * | 2020-05-23 | 2020-09-18 | 江西馨源香料有限公司 | Be applied to spices exhaust treatment device |
CN114367167B (en) * | 2022-01-27 | 2022-12-09 | 江苏希捷新能源工程技术有限公司 | Nuclear power station waste gas treatment system and treatment method thereof |
JPWO2024122245A1 (en) * | 2022-12-06 | 2024-06-13 | ||
FR3143667A1 (en) * | 2022-12-15 | 2024-06-21 | Faurecia Systemes D'echappement | Vortex mixer, intended to equip a heat engine exhaust line |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1323501A (en) * | 1956-10-17 | 1963-04-12 | Atomizer mixer device | |
DE4012411A1 (en) * | 1990-04-19 | 1991-10-24 | Webasto Ag Fahrzeugtechnik | Exhaust-operated filter-regenerating burner - divides gas into equal evenly-distributed currents before combustion chamber inlet |
DE4203807A1 (en) | 1990-11-29 | 1993-08-12 | Man Nutzfahrzeuge Ag | Catalytic nitrogen oxide(s) redn. appts. for vehicles - comprises flow mixer urea evaporator hydrolysis catalyst, for exhaust gas treatment |
DE19913462A1 (en) * | 1999-03-25 | 2000-09-28 | Man Nutzfahrzeuge Ag | Urea hydrolysis to generate ammonia for reducing nitrogen oxides in an exhaust gas catalytic converter comprises reacting urea with a side stream of exhaust gas |
US6722123B2 (en) * | 2001-10-17 | 2004-04-20 | Fleetguard, Inc. | Exhaust aftertreatment device, including chemical mixing and acoustic effects |
KR100927434B1 (en) * | 2005-04-13 | 2009-11-19 | 그런포스 노녹스 에이/에스 | Mixer for mixing urea and air |
DE102009053950A1 (en) * | 2009-11-19 | 2011-05-26 | Man Nutzfahrzeuge Aktiengesellschaft | Device for aftertreatment of exhaust gases of internal combustion engines |
ES2434865T3 (en) * | 2009-12-16 | 2013-12-17 | Iveco Motorenforschung Ag | Procedure for dosing a urea-based reducing agent in a gas exhaust stream. |
EP2524123B1 (en) * | 2010-01-12 | 2016-11-23 | Donaldson Company, Inc. | Flow device for exhaust treatment system |
EP3267005B2 (en) * | 2010-06-22 | 2023-12-27 | Donaldson Company, Inc. | Exhaust aftertreatment device |
DE102010056314A1 (en) * | 2010-12-27 | 2012-06-28 | Friedrich Boysen Gmbh & Co. Kg | Device for distributing fluids in exhaust systems |
CN202360191U (en) * | 2011-09-26 | 2012-08-01 | 杭州银轮科技有限公司 | Diesel engine tail gas processing SCR catalytic converter |
CN102671322A (en) * | 2012-06-06 | 2012-09-19 | 孟欣佳 | Air filter |
-
2012
- 2012-07-20 DE DE102012014334.6A patent/DE102012014334A1/en not_active Withdrawn
-
2013
- 2013-05-16 EP EP13002561.2A patent/EP2687697B1/en active Active
- 2013-07-15 BR BR102013018004-1A patent/BR102013018004B1/en active IP Right Grant
- 2013-07-19 RU RU2013133962A patent/RU2628849C2/en active
- 2013-07-22 CN CN201310307825.3A patent/CN103573351B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN103573351A (en) | 2014-02-12 |
CN103573351B (en) | 2019-08-06 |
EP2687697A2 (en) | 2014-01-22 |
DE102012014334A1 (en) | 2014-05-15 |
BR102013018004A2 (en) | 2015-06-30 |
BR102013018004B1 (en) | 2021-05-04 |
EP2687697A3 (en) | 2017-06-28 |
RU2628849C2 (en) | 2017-08-22 |
RU2013133962A (en) | 2015-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2687697B1 (en) | Mixing device for the aftertreatment of exhaust gases | |
EP3018311B1 (en) | Injection section for an exhaust gas aftertreatment device | |
EP3067529B1 (en) | Device for after-treatment of exhaust from a motor vehicle | |
EP2687286B1 (en) | Mixing device for the aftertreatment of exhaust gases | |
DE102010021438B4 (en) | exhaust aftertreatment device | |
DE102011077156B4 (en) | Exhaust system and injection module | |
DE102020124106A1 (en) | MOTOR VEHICLE EXHAUST AFTER-TREATMENT SYSTEM | |
WO2004047952A2 (en) | Exhaust gas system | |
WO2000032302A1 (en) | Device for introducing a reducing agent into a section of the exhaust pipe of an internal combustion engine | |
DE112017007124T5 (en) | INJEKTORSPRÜHSCHUTZ | |
EP3443209B1 (en) | Exhaust-gas aftertreatment device with catalytic converter and mixing device | |
DE112017007996T5 (en) | Injector cone like a Venturi nozzle | |
EP2570178B1 (en) | Mixing device | |
EP3478947A1 (en) | Mixer device for an exhaust-gas aftertreatment system of a motor vehicle, exhaust-gas aftertreatment system, and motor vehicle | |
DE102012019951A1 (en) | Device for introducing a liquid into an exhaust gas stream and exhaust aftertreatment system | |
EP2148053A2 (en) | Catalyst assembly for cleaning an exhaust gas flow | |
EP2334916B1 (en) | Device and method for exhaust gas purification using a reducing agent | |
DE112020004364T5 (en) | EXHAUST AND REDUCING AGENT MIXER FOR AN AFTERTREATMENT SYSTEM | |
WO2019029880A1 (en) | Device for mixture preparation, exhaust-gas aftertreatment system | |
WO2017137032A1 (en) | Mixer for mixing an exhaust gas flow of an internal combustion engine, and exhaust gas system | |
EP3752721B1 (en) | Exhaust aftertreatment device for dosing a liquid exhaust aftertreatment agent | |
WO2018015148A1 (en) | Mixer device for an exhaust gas aftertreatment system of a motor vehicle, exhaust gas aftertreatment system, and motor vehicle | |
WO2015185297A1 (en) | Injection module and exhaust system having an injection module | |
WO2006056499A1 (en) | Gas treatment device | |
DE102011114097A1 (en) | Arrangement for performing post-treatment of exhaust gas of diesel engine of e.g. truck, has injection apparatus which introduces source of ammonia into the exhaust stream, with respect to flow direction of the exhaust gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01N 3/28 20060101ALI20170522BHEP Ipc: F01N 3/20 20060101ALI20170522BHEP Ipc: F01N 3/025 20060101ALI20170522BHEP Ipc: F01N 3/24 20060101ALI20170522BHEP Ipc: B01F 5/04 20060101ALI20170522BHEP Ipc: F01N 3/36 20060101AFI20170522BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171011 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MAN TRUCK & BUS SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210223 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502013016178 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F01N0003360000 Ipc: B01F0025310000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01N 3/24 20060101ALI20220106BHEP Ipc: F01N 3/20 20060101ALI20220106BHEP Ipc: F01N 3/025 20060101ALI20220106BHEP Ipc: F01N 3/28 20060101ALI20220106BHEP Ipc: F01N 3/36 20060101ALI20220106BHEP Ipc: B01F 25/31 20220101AFI20220106BHEP |
|
INTG | Intention to grant announced |
Effective date: 20220120 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1502461 Country of ref document: AT Kind code of ref document: T Effective date: 20220715 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013016178 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221107 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221006 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221106 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221007 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013016178 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 |
|
26N | No opposition filed |
Effective date: 20230411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230516 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230516 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230516 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240527 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240529 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1502461 Country of ref document: AT Kind code of ref document: T Effective date: 20230516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230516 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240527 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240527 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240524 Year of fee payment: 12 |