[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2654125B1 - Ring slot antenna - Google Patents

Ring slot antenna Download PDF

Info

Publication number
EP2654125B1
EP2654125B1 EP12002714.9A EP12002714A EP2654125B1 EP 2654125 B1 EP2654125 B1 EP 2654125B1 EP 12002714 A EP12002714 A EP 12002714A EP 2654125 B1 EP2654125 B1 EP 2654125B1
Authority
EP
European Patent Office
Prior art keywords
inner conductor
annular slot
slot antenna
antenna
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12002714.9A
Other languages
German (de)
French (fr)
Other versions
EP2654125A1 (en
Inventor
Michael Dr. Sabielny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hensoldt Sensors GmbH
Original Assignee
Hensoldt Sensors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hensoldt Sensors GmbH filed Critical Hensoldt Sensors GmbH
Priority to EP12002714.9A priority Critical patent/EP2654125B1/en
Priority to ES12002714.9T priority patent/ES2668860T3/en
Priority to US13/865,346 priority patent/US9692137B2/en
Publication of EP2654125A1 publication Critical patent/EP2654125A1/en
Application granted granted Critical
Publication of EP2654125B1 publication Critical patent/EP2654125B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/286Adaptation for use in or on aircraft, missiles, satellites, or balloons substantially flush mounted with the skin of the craft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas

Definitions

  • the invention relates to a ring-slot antenna according to the preamble of patent claim 1.
  • the art of ring-slot antennas is well documented in a number of trade publications which illuminate various aspects of conventional loop-slot antennas. As an example, reference is made here to [1], [2], [3].
  • a classical ring-slot antenna (see eg [1]), can therefore by the representation in Fig. 1 to be discribed.
  • the metallic antenna body 1 forms a closed cavity filled with air or a dielectric 50 and comprises as main components the rod-shaped inner conductor I between the front plate V and the rear plate H and the jacket-like outer conductor A in the form of a jacket-shaped outer wall.
  • the radiating, circumferential annular slot 10 is located on the front plate V of the antenna 1.
  • Reference numeral 99 denotes holes for the passage of fasteners, for example, to attach the antenna to a support structure.
  • the entire arrangement is usually constructed substantially rotationally symmetrical (symmetry axis 91). However, this does not apply to the feeding of the antenna signal, which takes place laterally through a coaxial cable 20.
  • the outer conductor of the coaxial cable 20 is contacted with the outer conductor A of the antenna.
  • the inner conductor 21 of the coaxial cable 20 is guided through the outer wall A of the antenna to the inner conductor I of the antenna.
  • the antenna is in resonance. Without further measures (such as external matching circuits), the usable bandwidth is not particularly large, since the antenna has only a single resonance mechanism (single-tuned antenna).
  • the achievable with the antenna bandwidth depends on the ratio of the volume enclosed by the antenna to the respective wavelength at resonance: the lower the volume, the lower the achievable bandwidth.
  • the known, side-fed, ring-slot antennas according to Fig. 1 must suitably guide the inner conductor of the coaxial cable and secure it against mechanical stress. Furthermore, a lateral feed is generally not axially symmetric to the resonator of the antenna, so that considerable asymmetries in the radiation pattern is expected.
  • the US 2004/0150575 A1 describes a ring-slot antenna, in which the feed takes place centrally via the rear plate.
  • a conductive or surface-conductively coated disc-shaped matching element is provided on the inner conductor which covers approximately the entire circumference of the antenna cavity and forms an annular dielectric gap with the outer wall of the antenna.
  • the FR 1,113,796 A describes another annular slot antenna with a central feed on its rear plate. Different sections of the inner conductor form individual windows without interrupting the electrically conductive connection between these sections.
  • the invention has for its object to provide an alternative antenna design, which allows a high flexibility in the design of the antenna.
  • the inner conductor according to the invention is divided by a dielectric gap in a front and a rear portion, wherein the inner conductor of the coaxial feed line is contacted with the front portion of the inner conductor and the outer conductor of the coaxial feed line is contacted with the rear portion.
  • the dielectric gap provides an additional design parameter of the antenna that can be suitably used to advantage in the design of the antenna.
  • the series capacitance formed by this gap can be used as a compensation parameter for other components with reactances or susceptances.
  • the folded loop antenna according to the invention is suitable as a replacement for any form of monopole antenna, as it is electrodynamically complementary to these.
  • Monopole antennas and ring-slot antennas (in the present design) have nearly identical radiation patterns (complete coverage in azimuth and a zero at elevation of 90 °), but ring-slot antennas are better embedded in structures where conformal and surface-true incorporation must be ensured. This property provides e.g. for airplanes less drag and a lower radar signature.
  • Fig. 3 shows an inventive antenna 1 (same reference numerals designate identical drawing elements, this applies throughout to all Fig. 1 to 6 ).
  • the exemplary arrangement shown is rotationally symmetric with the central axis 91 as the axis of symmetry.
  • Front plate V, rear plate H and the jacket-like outer wall A with a constant diameter form as in the known antennas together a cavity which is filled with air or with a dielectric.
  • the dielectric can be selected to produce as few dielectric losses as possible.
  • the inner conductor I has a stepped structure, such that its diameter from the front plate V to the rear plate H of the antenna increases.
  • the stepped transition of the diameter formed thereby is located inside the front portion of the inner conductor I.
  • the dielectric gap is located in the region of the inner conductor I which has an increased diameter.
  • This grading is advantageous for the impedance transformation from the impedance level of the feed line 20 (usually 50 ohms) to the level of the radiation resistance of the annular slot 10.
  • the enlargement of the inner conductor cross section can alternatively also be continuous.
  • the goal of optimum impedance matching can also be achieved with a change in the diameter of the outer wall A ( Fig. 5 ).
  • the enlargement of the outer wall cross-section can, as in Fig. 5 Shown in the form of a step, so that two areas of the outer wall are formed with a higher or smaller diameter.
  • the portion of the outer wall of increased diameter is located near the front plate V of the antenna, while the portion of the outer wall of comparatively small diameter is located near the rear plate H.
  • the dielectric gap is in the volume enclosed by the outer wall region of smaller diameter.
  • an increase in diameter can also be continuous.
  • the dielectric gap as well as the described shape of the inner conductor I and / or outer wall A form additional parameters of the antenna, which can be suitably used advantageously in the design of the antenna.
  • an impedance transformation from the reference impedance of the input line (eg 50 ohms) to the radiation resistance of the ring slot can thus be achieved more easily and more flexibly even in situations in which the entire antenna becomes electrically small (eg diameter smaller than one-eighth of the respective wavelength).
  • an optional matching network 30 may be used, as in FIG Fig. 4 shown.
  • This matching network 30 is characterized by the in Fig. 4 shown design of the antenna body 1 integrated with the enclosed volume of the antenna.
  • the rear plate H of the antenna on a recess 31, in which the matching circuit 30 is arranged sunk.
  • the matching circuit is placed centrally about the axis of rotation, so that the symmetry of the overall arrangement is not disturbed. Also, this design achieves mechanical protection of the matching network.
  • the antenna according to the invention can be covered in an advantageous embodiment with a radome.
  • a radome This serves in particular for the mechanical protection of the antenna or for adapting the antenna structure to the surface of a mounting platform, for example of a vehicle, in particular an aircraft.
  • Fig. 6 shows a corresponding embodiment of the antenna, in which the front side V of the antenna is covered with a radome 60. It is a dielectric layer that is designed as neutral as possible with respect to the radiation of the antenna. In a specific embodiment, it may be a frequency selective radome.
  • the front plate V of the antenna does not necessarily have to be planar. In particular, for adaptation and conformity with the surrounding surface structure of a mounting platform, it can also be curved, in particular designed to be uniaxial or biaxially curved.
  • Fig. 7 shows such an embodiment. It can be seen that the surface of the front plate V of the antenna is curved. The curvature can be chosen so that the symmetry of the overall arrangement is not disturbed. Depending on the specification by the Surface structure of the mounting platform, but it is also possible to deviate in terms of the shape of the front panel of the antenna of a rotationally symmetrical structure. This is the case, for example, with a uniaxially curved design of the front plate of the antenna.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Description

Die Erfindung betrifft eine Ringschlitzantenne nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a ring-slot antenna according to the preamble of patent claim 1.

Der Stand der Technik bei Ringschlitzantennen ist gut in einer Reihe von Fachpublikationen dokumentiert, welche verschiedene Aspekte herkömmlicher Ringschlitzantennen beleuchten. Exemplarisch sei an dieser Stelle auf [1], [2], [3] verwiesen. Eine klassische Ringschlitzantenne (siehe z.B. [1]), kann demnach durch die Darstellung in Fig. 1 beschrieben werden. Der metallische Antennenkörper 1 bildet eine geschlossene, mit Luft oder einem Dielektrikum 50 gefüllte Kavität und umfasst als Hauptbestandteile den stabförmigen Innenleiter I zwischen Vorderplatte V und Hinterplatte H sowie den mantelartigen Außenleiter A in Form einer mantelförmigen Außenwand. Der strahlende, umlaufende Ringschlitz 10 befindet sich an der Vorderplatte V der Antenne 1. Bezugsziffer 99 bezeichnet Bohrungen zum Durchstecken von Befestigungsmitteln, um die Antenne z.B. an einer Trägerstruktur anzubringen. Die gesamte Anordnung ist üblicherweise im Wesentlichen rotationssymmetrisch aufgebaut (Symmetrieachse 91). Dies gilt jedoch nicht für die Einspeisung des Antennensignals, die seitlich durch ein Koaxialkabel 20 erfolgt. Der Außenleiter des Koaxialkabels 20 wird mit dem Außenleiter A der Antenne kontaktiert. Der Innenleiter 21 des Koaxialkabels 20 wird durch die Außenwand A der Antenne hindurch an den Innenleiter I der Antenne geführt.The art of ring-slot antennas is well documented in a number of trade publications which illuminate various aspects of conventional loop-slot antennas. As an example, reference is made here to [1], [2], [3]. A classical ring-slot antenna (see eg [1]), can therefore by the representation in Fig. 1 to be discribed. The metallic antenna body 1 forms a closed cavity filled with air or a dielectric 50 and comprises as main components the rod-shaped inner conductor I between the front plate V and the rear plate H and the jacket-like outer conductor A in the form of a jacket-shaped outer wall. The radiating, circumferential annular slot 10 is located on the front plate V of the antenna 1. Reference numeral 99 denotes holes for the passage of fasteners, for example, to attach the antenna to a support structure. The entire arrangement is usually constructed substantially rotationally symmetrical (symmetry axis 91). However, this does not apply to the feeding of the antenna signal, which takes place laterally through a coaxial cable 20. The outer conductor of the coaxial cable 20 is contacted with the outer conductor A of the antenna. The inner conductor 21 of the coaxial cable 20 is guided through the outer wall A of the antenna to the inner conductor I of the antenna.

Die Ringschlitzantenne 1 gemäß Fig. 1 kann verstanden werden als Kettenschaltung von mehreren koaxialen Leitungsstücken 2,3,4,5 mit jeweils unterschiedlichen Radien für Innenleiter und Außenwand sowie mit eigener dielektrischer Füllung, wie in Fig. 2 schematisch dargestellt. Man erhält bei dieser Betrachtung somit folgende Bestandteile:

  • 2: Koaxialleitung mit Kurzschluss
  • 3: Koaxialleitung mit T-Abzweig
  • 4: Koaxialleitung
  • 5: Koaxiale Apertur zur Abstrahlung in den freien Raum.
The ring slot antenna 1 according to Fig. 1 can be understood as a chain circuit of several coaxial line pieces 2,3,4,5 each having different Radii for inner conductor and outer wall as well as with own dielectric filling, as in Fig. 2 shown schematically. The following components are thus obtained in this consideration:
  • 2: coaxial cable with short circuit
  • 3: coaxial cable with T-branch
  • 4: coaxial line
  • 5: Coaxial aperture for radiation into free space.

Das generelle Funktionsprinzip einer Ringschlitzantenne beruht auf zwei Forderungen:

  1. 1. Gegenseitige Kompensation der Suszeptanz der kurzgeschlossenen Koaxialleitung 2 mit der Suszeptanz des strahlenden Ringschlitzes 10,
  2. 2. Impedanztransformation vom Impedanzniveau der Speiseleitung 20 (üblicherweise 50 Ohm) auf das Niveau des Strahlungswiderstandes des Ringschlitzes 10. Der Strahlungswiderstand ist üblicherweise sehr niederohmig, z.B. in der Größenordnung von 1 Ohm bis 5 Ohm.
The general operating principle of a ring-slot antenna is based on two requirements:
  1. 1. Mutual compensation of the susceptance of the short-circuited coaxial line 2 with the susceptance of the radiating annular slot 10,
  2. 2. Impedance transformation from the impedance level of the feed line 20 (usually 50 ohms) to the level of the radiation resistance of the ring slot 10. The radiation resistance is usually very low, for example of the order of 1 ohm to 5 ohms.

Wenn beide vorstehenden Bedingungen erfüllt sind, befindet sich die Antenne in Resonanz. Ohne weitere Maßnahmen (wie z.B. externe Anpass-Schaltungen) ist dabei die nutzbare Bandbreite nicht besonders groß, da die Antenne nur einen einzigen Resonanzmechanismus besitzt (single-tuned antenna). Die mit der Antenne erzielbare Bandbreite hängt vom Verhältnis des von der Antenne eingeschlossenen Volumens zur jeweiligen Wellenlänge bei Resonanz ab: je geringer das Volumen, desto geringer auch die erzielbare Bandbreite.If both the above conditions are met, the antenna is in resonance. Without further measures (such as external matching circuits), the usable bandwidth is not particularly large, since the antenna has only a single resonance mechanism (single-tuned antenna). The achievable with the antenna bandwidth depends on the ratio of the volume enclosed by the antenna to the respective wavelength at resonance: the lower the volume, the lower the achievable bandwidth.

Die bekannten, von der Seite gespeisten, Ringschlitzantennen gemäß Fig. 1 müssen in geeigneter Weise den Innenleiter des speisenden Koaxialkabels führen und gegen mechanische Belastung sichern. Ferner ist eine seitliche Speisung generell nicht axial-symmetrisch zum Resonanzkörper der Antenne, so dass mit erheblichen Asymmetrien im Strahlungsdiagramm zu rechnen ist.The known, side-fed, ring-slot antennas according to Fig. 1 must suitably guide the inner conductor of the coaxial cable and secure it against mechanical stress. Furthermore, a lateral feed is generally not axially symmetric to the resonator of the antenna, so that considerable asymmetries in the radiation pattern is expected.

Die US 2004/0150575 A1 beschreibt eine Ringschlitzantenne, bei der die Speisung zentral über die Hinterplatte erfolgt. Zur Erhöhung der Flexibilität bei der Auslegung der Antenne ist am Innenleiter ein leitfähiges oder an seiner Oberfläche leitfähig beschichtetes, scheibenförmiges Anpasselement vorhanden, das annähernd den gesamten Umfang der Antennenkavität überdeckt und mit der Außenwand der Antenne einen ringförmgien dielektrischen Zwischenraum bildet.The US 2004/0150575 A1 describes a ring-slot antenna, in which the feed takes place centrally via the rear plate. To increase the flexibility in the design of the antenna, a conductive or surface-conductively coated disc-shaped matching element is provided on the inner conductor which covers approximately the entire circumference of the antenna cavity and forms an annular dielectric gap with the outer wall of the antenna.

Die FR 1,113,796 A beschreibt eine weitere Ringschlitzantenne mit einer zentralen Speisung an ihrer Hinterplatte. Verschiedene Abschnitte des Innenleiters bilden einzelne Fenster aus ohne die elektrisch leitende Verbindung zwischen diesen Abschnitten zu unterbrechen.The FR 1,113,796 A describes another annular slot antenna with a central feed on its rear plate. Different sections of the inner conductor form individual windows without interrupting the electrically conductive connection between these sections.

Der Erfindung liegt die Aufgabe zugrunde, ein alternatives Antennendesign zu schaffen, das eine hohe Flexiblität bei der Auslegung der Antenne ermöglicht.The invention has for its object to provide an alternative antenna design, which allows a high flexibility in the design of the antenna.

Diese Aufgabe wird mit der Ringschlitzantenne nach Anspruch 1 gelöst. Vorteilhafte Ausführungen sind Gegenstände von Unteransprüchen.This object is achieved with the ring slot antenna according to claim 1. Advantageous embodiments are objects of dependent claims.

Durch die Positionierung der Speisestelle zentral an der Hinterplatte der Antenne kann ein weitgehender axial-symmetrischer Aufbau erreicht werden. Dadurch entfallen etwaige Asymmetrien in den Strahlungsdiagrammen von solchen Ringschlitzantennen, welche durch Speisung von der Seite her entstehen. Durch diese Anordnung wird auch die notwendige Länge der Speiseleitung - verglichen mit den bekannten Antennen mit seitlicher Speisung - deutlich geringer.By positioning the feed point centrally on the rear plate of the antenna, a largely axial-symmetrical structure can be achieved. This eliminates any asymmetries in the radiation patterns of such ring-slot antennas, which arise by feeding from the side. By this arrangement, the necessary length of the feed line - compared with the known antennas with side feed - significantly lower.

Durch die spezielle Gestaltung der inneren Komponenten, insbesondere des Innenleiters, kann darüber hinaus eine Impedanztransformation von der Referenzimpedanz der Eingangsleitung (z.B. 50 Ohm) auf den Strahlungswiderstand des Ringschlitzes auch bei Situationen, in denen die gesamte Antenne elektrisch klein wird (z.B. Durchmesser kleiner als ein Achtel der jeweiligen Wellenlänge) erreicht werden.Due to the special design of the inner components, in particular the inner conductor, moreover, an impedance transformation of the reference impedance of the input line (eg 50 ohms) on the radiation resistance of the ring slot even in situations where the entire antenna is electrically small (eg diameter smaller than one Eighths of the respective wavelength) can be achieved.

Der Innenleiter ist erfindungsgemäß durch eine dielektrische Lücke in einen vorderen und einen hinteren Abschnitt geteilt, wobei der Innenleiter der koaxialen Speiseleitung mit dem vorderen Abschnitt des Innenleiters kontaktiert ist und der Außenleiter der koaxialen Speiseleitung mit dem hinteren Abschnitt kontaktiert ist.The inner conductor according to the invention is divided by a dielectric gap in a front and a rear portion, wherein the inner conductor of the coaxial feed line is contacted with the front portion of the inner conductor and the outer conductor of the coaxial feed line is contacted with the rear portion.

Die dielektrische Lücke bildet einen zusätzlichen Entwurfsparameter der Antenne, der sich in geeigneter Weise vorteilhaft bei der Auslegung der Antenne verwenden lässt. Insbesondere kann die durch diese Lücke gebildete Serienkapazität als Kompensationsparameter für andere Komponenten mit Reaktanzen oder Suszeptanzen verwendet werden.The dielectric gap provides an additional design parameter of the antenna that can be suitably used to advantage in the design of the antenna. In particular, the series capacitance formed by this gap can be used as a compensation parameter for other components with reactances or susceptances.

Die erfindungsgemäße gefaltete Ringschlitzantenne eignet sich als Ersatz für jede Form von Monopolantenne, da sie zu diesen elektrodynamisch komplementär ist. Monopolantennen und Ringschlitzantennen (in der vorliegenden Bauform) haben nahezu identische Strahlungsdiagramme (komplette Abdeckung in Azimut und eine Nullstelle bei Elevation von 90°), jedoch lassen sich Ringschlitzantennen besser in Strukturen einbetten, bei denen ein konformer und oberflächentreuer Einbau gewährleistet sein muss. Diese Eigenschaft liefert z.B. bei Flugzeugen weniger Luftwiderstand und eine geringere Radarsignatur.The folded loop antenna according to the invention is suitable as a replacement for any form of monopole antenna, as it is electrodynamically complementary to these. Monopole antennas and ring-slot antennas (in the present design) have nearly identical radiation patterns (complete coverage in azimuth and a zero at elevation of 90 °), but ring-slot antennas are better embedded in structures where conformal and surface-true incorporation must be ensured. This property provides e.g. for airplanes less drag and a lower radar signature.

Die Erfindung wird anhand konkreter Ausführungsbeispielen unter Bezugnahme auf Figuren näher erläutert. Es zeigen:

Fig. 1
den Aufbau einer herkömmlichen Ringschlitzantenne in Draufsicht und in einer Schnittdarstellung, senkrecht dazu, wie in der Beschreibungseinleitung erläutert;
Fig. 2
die Bestandteile einer herkömmlichen Ringschlitzantenne als Kettenschaltung mehrerer Leiter im Sinne eines Ersatzschaltbildes, wie in der Beschreibungseinleitung erläutert;
Fig. 3
den Aufbau eine erfindungsgemäßen Antenne in Draufsicht und in einer Schnittdarstellung, senkrecht dazu;
Fig. 4
den Aufbau einer weiteren erfindungsgemäßen Ausführung einer Antenne mit integrierter Anpassschaltung (Schnittdarstellung);
Fig. 5
den Aufbau einer weiteren erfindungsgemäßen Ausführung einer Antenne mit veränderlichem Durchmesser der Außenwand (Schnittdarstellung);
Fig. 6
den Aufbau einer weiteren erfindungsgemäßen Ausführung einer Antenne mit einem Radom (Schnittdarstellung);
Fig. 7
den Aufbau einer weiteren erfindungsgemäßen Ausführung einer Antenne mit gekrümmter Vorderplatte (Schnittdarstellung).
The invention will be explained in more detail with reference to concrete embodiments with reference to figures. Show it:
Fig. 1
the structure of a conventional annular slot antenna in plan view and in a sectional view, perpendicular thereto, as explained in the introduction to the description;
Fig. 2
the components of a conventional ring-slot antenna as a chain circuit of several conductors in the sense of an equivalent circuit diagram, as explained in the introduction to the description;
Fig. 3
the structure of an antenna according to the invention in plan view and in a sectional view, perpendicular thereto;
Fig. 4
the construction of another embodiment of the invention an antenna with integrated matching circuit (sectional view);
Fig. 5
the construction of a further embodiment according to the invention of a variable diameter antenna of the outer wall (sectional view);
Fig. 6
the construction of a further embodiment according to the invention of an antenna with a radome (sectional view);
Fig. 7
the construction of another embodiment of the invention with a curved front plate antenna (sectional view).

Fig. 3 zeigt eine erfindungsgemäße Antenne 1 (gleiche Bezugszeichen bezeichnen identische Zeichnungselemente, dies gilt durchgehend für sämtliche Fig. 1 bis 6). Die gezeigte beispielhafte Anordnung ist rotationssymmetrisch mit der zentralen Achse 91 als Symmetrieachse. Vorderplatte V, Hinterplatte H sowie die mantelartige Außenwand A mit konstantem Durchmesser bilden wie bei den bekannten Antennen zusammen eine Kavität, die mit Luft oder mit einem Dielektrikum gefüllt ist. Das Dielektrikum kann so gewählt werden, dass es möglichst wenige dielektrische Verluste erzeugt. Fig. 3 shows an inventive antenna 1 (same reference numerals designate identical drawing elements, this applies throughout to all Fig. 1 to 6 ). The exemplary arrangement shown is rotationally symmetric with the central axis 91 as the axis of symmetry. Front plate V, rear plate H and the jacket-like outer wall A with a constant diameter form as in the known antennas together a cavity which is filled with air or with a dielectric. The dielectric can be selected to produce as few dielectric losses as possible.

Die Kontaktierung der Speiseleitung, ausgebildet als Koaxialleitung 20 mit Innenleiter 21, erfolgt durch die Hinterplatte H zentral an der Symmetrieachse 91 der Antenne 1. Mit diesem Aufbau sind Asymmetrien in unterschiedlichen radialen Richtungen im Strahlungsdiagramm ausgeschlossen. Der Innenleiter I wird durch eine dielektrische Lücke 15 in einen vorderen (in Fig. 3 der Abschnitt oberhalb der Lücke 15) und einen hinteren Abschnitt (in Fig. 3 der Abschnitt unterhalb der Lücke 15) geteilt. Diese Lücke kann entweder mit Luft oder einem festen Dielektrikum gefüllt sein. Die koaxiale Speiseleitung 20 wird dabei derart mit der Antenne verbunden, dass

  • der Innenleiter 21 der Speiseleitung 20 mit dem vorderen (oberen) Abschnitt des Innenleiters I und
  • die Außenwand der Speiseleitung 20 mit dem hinteren (unteren) Teil des Innenleiters I kontaktiert ist.
The contacting of the feed line, designed as a coaxial line 20 with inner conductor 21, takes place through the rear plate H centrally on the axis of symmetry 91 of the antenna 1. With this structure, asymmetries in different radial directions in the radiation pattern are excluded. The inner conductor I is inserted through a dielectric gap 15 into a front (in Fig. 3 the portion above the gap 15) and a rear portion (in Fig. 3 the section below the gap 15) divided. This gap can be filled with either air or a solid dielectric. The coaxial feed line 20 is connected to the antenna in such a way that
  • the inner conductor 21 of the feed line 20 with the front (upper) portion of the inner conductor I and
  • the outer wall of the feed line 20 is contacted with the rear (lower) part of the inner conductor I.

Wie man aus der Fig. 3 ebenfalls erkennt, weist der Innenleiter I einen gestuften Aufbau auf, derart, dass sein Durchmesser von der Vorderplatte V zur Hinterplatte H der Antenne zunimmt. Der dadurch gebildete stufenförmige Übergang des Durchmessers befindet sich innerhalb des vorderen Abschnitts des Innenleiters I. Die dielektrische Lücke befindet sich in demjenigen Bereich des Innenleiters I, der einen erhöhten Durchmesser aufweist.How to get out of Fig. 3 also recognizes, the inner conductor I has a stepped structure, such that its diameter from the front plate V to the rear plate H of the antenna increases. The stepped transition of the diameter formed thereby is located inside the front portion of the inner conductor I. The dielectric gap is located in the region of the inner conductor I which has an increased diameter.

Diese Abstufung ist für die Impedanztransformation vom Impedanzniveau der Speiseleitung 20 (üblicherweise 50 Ohm) auf das Niveau des Strahlungswiderstandes des Ringschlitzes 10 vorteilhaft. Die Vergrößerung des Innenleiter-Querschnitts kann alternativ auch kontinuierlich erfolgen.This grading is advantageous for the impedance transformation from the impedance level of the feed line 20 (usually 50 ohms) to the level of the radiation resistance of the annular slot 10. The enlargement of the inner conductor cross section can alternatively also be continuous.

Für den Fall, dass z.B. aus mechanischen Gründen eine Zunahme im Durchmesser des Innenleiters I nicht möglich ist, kann das Ziel der optimalen Impedanzanpassung auch mit einer Änderung des Durchmessers der Außenwand A erreicht werden (Fig. 5). Die Vergrößerung des Außenwand-Querschnitts kann, wie in Fig. 5 gezeigt, sprunghaft in der Form einer Stufe erfolgen, so dass zwei Bereiche der Außenwand mit höherem bzw. geringerem Durchmesser gebildet werden. Der Bereich der Außenwand mit erhöhtem Durchmesser befindet sich nahe der Vorderplatte V der Antenne, während der Bereich der Außenwand mit vergleichsweise geringem Durchmesser sich nahe der Hinterplatte H befindet. Die dielektrische Lücke befindet sich in dem von dem Außenwandbereich mit geringerem Durchmesser umschlossenen Volumen. Als Alternative zu einem sprunghaften Übergang kann eine Zunahme des Durchmessers auch kontinuierlich erfolgen.In the event that, for example, an increase in the diameter of the inner conductor I is not possible for mechanical reasons, the goal of optimum impedance matching can also be achieved with a change in the diameter of the outer wall A ( Fig. 5 ). The enlargement of the outer wall cross-section can, as in Fig. 5 Shown in the form of a step, so that two areas of the outer wall are formed with a higher or smaller diameter. The portion of the outer wall of increased diameter is located near the front plate V of the antenna, while the portion of the outer wall of comparatively small diameter is located near the rear plate H. The dielectric gap is in the volume enclosed by the outer wall region of smaller diameter. As an alternative to a sudden transition, an increase in diameter can also be continuous.

Die dielektrische Lücke sowie die beschriebene Form des Innenleiters I und/oder Außenwand A bilden zusätzliche Parameter der Antenne, die sich in geeigneter Weise vorteilhaft beim Entwurf der Antenne verwenden lassen. Insbesondere kann damit leichter und flexibler eine Impedanztransformation von der Referenzimpedanz der Eingangsleitung (z.B. 50 Ohm) auf den Strahlungswiderstand des Ringschlitzes auch bei Situationen, in denen die gesamte Antenne elektrisch klein wird (z.B. Durchmesser kleiner als ein Achtel der jeweiligen Wellenlänge), erreicht werden.The dielectric gap as well as the described shape of the inner conductor I and / or outer wall A form additional parameters of the antenna, which can be suitably used advantageously in the design of the antenna. In particular, an impedance transformation from the reference impedance of the input line (eg 50 ohms) to the radiation resistance of the ring slot can thus be achieved more easily and more flexibly even in situations in which the entire antenna becomes electrically small (eg diameter smaller than one-eighth of the respective wavelength).

Die Tatsache, dass die Kontaktierung der Speiseleitung im Innern des von der Antenne 1 umschlossenen Volumens erfolgt, spiegelt den in sich gefalteten Charakter der erfindungsgemäßen Antenne wieder. Diese Maßnahme sorgt insbesondere für einen besseren mechanischen Schutz für die Kontaktstelle der Speiseleitung.The fact that the contacting of the feed line takes place in the interior of the volume enclosed by the antenna 1, reflects the folded character of the antenna according to the invention again. This measure provides in particular for a better mechanical protection for the contact point of the feed line.

Um die Bandbreite der erfindungsgemäßen Antenne zu verbessern (auf Kosten des Niveaus der Impedanzanpassung) kann ein optionales Anpassnetzwerk 30 zur Anwendung kommen, wie in Fig. 4 gezeigt. Dieses Anpassnetzwerk 30 ist durch die in Fig. 4 gezeigte Gestaltung des Antennenkörpers 1 mit in das eingeschlossene Volumen der Antenne integriert. Dazu weist die Hinterplatte H der Antenne eine Einbuchtung 31 auf, in welcher die Anpassschaltung 30 versenkt angeordnet ist. Vorteilhaft ist die Anpassschaltung zentral um die Rotationsachse platziert, so dass die Symmetrie der Gesamtanordnung nicht gestört wird. Auch wird durch dieses Design ein mechanischer Schutz des Anpassnetzwerks erreicht.In order to improve the bandwidth of the inventive antenna (at the expense of the level of impedance matching), an optional matching network 30 may be used, as in FIG Fig. 4 shown. This matching network 30 is characterized by the in Fig. 4 shown design of the antenna body 1 integrated with the enclosed volume of the antenna. For this purpose, the rear plate H of the antenna on a recess 31, in which the matching circuit 30 is arranged sunk. Advantageously, the matching circuit is placed centrally about the axis of rotation, so that the symmetry of the overall arrangement is not disturbed. Also, this design achieves mechanical protection of the matching network.

Die erfindungsgemäße Antenne kann in einer vorteilhaften Ausführung mit einem Radom abgedeckt sein. Dieses dient insbesondere zum mechanischen Schutz der Antenne oder zur Anpassung der Antennenstruktur an die Oberfläche einer Einbauplattform, z.B. eines Fahrzeugs, insbesondere Luftfahrzeugs. Fig. 6 zeigt eine entsprechende Ausführung der Antenne, bei welcher die Vorderseite V der Antenne mit einem Radom 60 bedeckt ist. Es handelt sich um eine dielektrische Schicht, die möglichst neutral hinsichtlich der Abstrahlung der Antenne ausgelegt wird. In einer speziellen Ausführung kann es sich um ein frequenzselektives Radom handeln.The antenna according to the invention can be covered in an advantageous embodiment with a radome. This serves in particular for the mechanical protection of the antenna or for adapting the antenna structure to the surface of a mounting platform, for example of a vehicle, in particular an aircraft. Fig. 6 shows a corresponding embodiment of the antenna, in which the front side V of the antenna is covered with a radome 60. It is a dielectric layer that is designed as neutral as possible with respect to the radiation of the antenna. In a specific embodiment, it may be a frequency selective radome.

Die Vorderplatte V der Antenne muss nicht zwingend planar ausgebildet sein. Insbesondere zur Anpassung und Konformität mit der sie umgebenden Oberflächenstruktur einer Einbauplattform kann sie auch gekrümmt, insbesondere einachsig oder zweiachsig gekrümmt ausgelegt sein. Fig. 7 zeigt eine solche Ausführung. Man erkennt, dass die Oberfläche der Vorderplatte V der Antenne gekrümmt ausgeführt ist. Die Krümmung kann so gewählt werden, dass die Symmetrie der Gesamtanordnung nicht gestört wird. Je nach Vorgabe durch die Oberflächenstruktur der Einbauplattform ist es aber auch möglich, hinsichtlich der Form der Vorderplatte der Antenne von einem rotationssymmetrischen Aufbau abzuweichen. Dies ist z.B. der Fall bei einer einachsig gekrümmten Ausbildung der Vorderplatte der Antenne.The front plate V of the antenna does not necessarily have to be planar. In particular, for adaptation and conformity with the surrounding surface structure of a mounting platform, it can also be curved, in particular designed to be uniaxial or biaxially curved. Fig. 7 shows such an embodiment. It can be seen that the surface of the front plate V of the antenna is curved. The curvature can be chosen so that the symmetry of the overall arrangement is not disturbed. Depending on the specification by the Surface structure of the mounting platform, but it is also possible to deviate in terms of the shape of the front panel of the antenna of a rotationally symmetrical structure. This is the case, for example, with a uniaxially curved design of the front plate of the antenna.

In der Beschreibungseinleitung erwähnte Literatur zum Stand der Technik:Prior art literature mentioned in the introduction to the specification:

  1. [1] W. Cumming und M. Cormier, "Design data for small annular slot antennas", Antennas and Propagation, IRE Transactions on, Bd. 6, Nr. 2, S. 210-211, 1958 .[1] W. Cumming and M. Cormier, "Design data for small annular slot antennas", Antennas and Propagation, IRE Transactions on, Vol. 6, No. 2, pp. 210-211, 1958 ,
  2. [2] S. A. Clavijo, R. E. Diaz, und E. Caswell, "Low-profile mounting-tolerant folded-out annular slot antenna for VHF applications", in Antennas and Propagation Society International Symposium, 2007 IEEE, 2007, S. 13-16 .[2] SA Clavijo, RE Diaz, and E. Caswell, "Low-profile mounting-tolerant folded-out annular slot antenna for VHF applications", in the Antennas and Propagation Society International Symposium, 2007 IEEE, 2007, pp. 13-16 ,
  3. [3] T. J. Yuan u. a., "A compact broadband omnidirectional vertically polarized VHF antenna for aircraft", in Microwave Conference (EuMC), 2010 European, 2010, S. 1480-1483 .[3] TJ Yuan et al., "A compact broadband omnidirectional vertically polarized VHF antenna for aircraft", in Microwave Conference (EuMC), 2010 European, 2010, pp. 1480-1483 ,

Claims (11)

  1. Annular slot antenna (1), comprising
    - an inner conductor (I),
    - a jacket-like outer wall (A), which surrounds the inner conductor (I),
    - a front plate (V) having a circumferential annular slot (10), and
    - a rear plate (H), which is opposite to the front plate (V), wherein front plate (V) and rear plate (H) are connected by the inner conductor (I), and wherein front plate (V), rear plate (H), and the outer wall (A) form a cavity,
    - a coaxial feed line (20), wherein
    the contacting of the feed line (20) occurs centrally via the rear plate (H) of the annular slot antenna (1), characterized in that the inner conductor (I) is divided by a dielectric gap (15) into a rear section and a front section, wherein the inner conductor (21) of the coaxial feed line (20) is contacted with the front section of the inner conductor (I) and the outer conductor of the coaxial feed line (20) is contacted with the rear section.
  2. Annular slot antenna according to Claim 1, characterized in that the contacting of the feed line (20) is completely enclosed by the cavity formed by the antenna.
  3. Annular slot antenna according to Claim 1 or 2, characterized in that the diameter of its inner conductor (I) increases in the direction towards the rear side (H), at constant diameter of the outer wall (A).
  4. Annular slot antenna according to Claim 1 or 2, characterized in that the diameter of its outer wall (A) increases in the direction towards the front plate (H), at constant diameter of the inner conductor (I).
  5. Annular slot antenna according to Claim 3 or 4, characterized in that the increase of the diameter of the inner conductor (I) or the diameter of the outer wall (A) occurs in steps or continuously.
  6. Annular slot antenna according to Claim 3, characterized in that the increase of the diameter of the inner conductor (I) occurs in steps, wherein the dielectric gap (15) is located in the region of the inner conductor (I) which has a greater diameter.
  7. Annular slot antenna according to Claim 4, characterized in that the increase of the diameter of the outer wall (A) occurs in steps, wherein the dielectric gap (15) is located in the region of the volume enclosed by the outer wall (I) which has a smaller diameter.
  8. Annular slot antenna according to any one of the preceding claims, characterized in that its rear plate (H) has an indentation (31), within which an adaptation network (30) is housed.
  9. Annular slot antenna according to any one of the preceding claims, characterized in that the outer surface of its front plate (V) is formed to be either planar or curved.
  10. Annular slot antenna according to any one of the preceding claims, characterized in that it is formed to be completely rotationally-symmetrical.
  11. Annular slot antenna according to any one of the preceding claims, characterized in that the surface of its front plate (V) is covered using a radome (60).
EP12002714.9A 2012-04-19 2012-04-19 Ring slot antenna Active EP2654125B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12002714.9A EP2654125B1 (en) 2012-04-19 2012-04-19 Ring slot antenna
ES12002714.9T ES2668860T3 (en) 2012-04-19 2012-04-19 Annular groove antenna
US13/865,346 US9692137B2 (en) 2012-04-19 2013-04-18 Annular slot antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12002714.9A EP2654125B1 (en) 2012-04-19 2012-04-19 Ring slot antenna

Publications (2)

Publication Number Publication Date
EP2654125A1 EP2654125A1 (en) 2013-10-23
EP2654125B1 true EP2654125B1 (en) 2018-03-14

Family

ID=46085317

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12002714.9A Active EP2654125B1 (en) 2012-04-19 2012-04-19 Ring slot antenna

Country Status (3)

Country Link
US (1) US9692137B2 (en)
EP (1) EP2654125B1 (en)
ES (1) ES2668860T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2715811C1 (en) * 2019-08-28 2020-03-03 Дмитрий Алексеевич Антропов Annular slot antenna

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847571B2 (en) 2013-11-06 2017-12-19 Symbol Technologies, Llc Compact, multi-port, MIMO antenna with high port isolation and low pattern correlation and method of making same
US10158178B2 (en) 2013-11-06 2018-12-18 Symbol Technologies, Llc Low profile, antenna array for an RFID reader and method of making same
US9509060B2 (en) 2014-08-19 2016-11-29 Symbol Technologies, Llc Open waveguide beamforming antenna for radio frequency identification reader
US10756814B2 (en) * 2015-08-31 2020-08-25 The Boeing Company Conformal load bearing distributed sensing arrays
GB2552921A (en) * 2016-04-04 2018-02-21 Creo Medical Ltd Electrosurgical probe for delivering RF and microwave energy
CN107785659A (en) * 2017-10-16 2018-03-09 广东曼克维通信科技有限公司 Aircraft and its airborne ultra-wideband omni-directional antenna
RU2680110C1 (en) * 2018-05-25 2019-02-15 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Elliptical polarization antenna
US10923810B2 (en) * 2018-06-29 2021-02-16 Deere & Company Supplemental device for an antenna system
RU2720048C1 (en) * 2019-05-17 2020-04-23 Акционерное общество "Особое конструкторское бюро Московского энергетического института" Annular resonant small-size circularly polarized antenna
RU2761412C1 (en) * 2020-12-21 2021-12-08 Акционерное общество "Особое конструкторское бюро Московского энергетического института" Monopulse annular resonant antenna

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2644090A (en) * 1948-03-05 1953-06-30 Dorne Arthur Recessed slot antenna
US2746040A (en) * 1950-05-20 1956-05-15 Rca Corp Annular element antenna systems
FR1113796A (en) * 1954-09-13 1956-04-04 Applic Rech Electronique Radio antenna
US2834959A (en) * 1956-05-01 1958-05-13 Dorne And Margolin Inc Antennas
US3718869A (en) * 1971-03-29 1973-02-27 Us Army Microwave oscillator with coaxial leakage output coupling
GB2005922B (en) * 1977-10-01 1982-05-19 Secr Defence Radio antennae
US4443802A (en) * 1981-04-22 1984-04-17 University Of Illinois Foundation Stripline fed hybrid slot antenna
US4682180A (en) * 1985-09-23 1987-07-21 American Telephone And Telegraph Company At&T Bell Laboratories Multidirectional feed and flush-mounted surface wave antenna
US4821040A (en) * 1986-12-23 1989-04-11 Ball Corporation Circular microstrip vehicular rf antenna
US4994817A (en) * 1989-07-24 1991-02-19 Ball Corporation Annular slot antenna
US5194876A (en) * 1989-07-24 1993-03-16 Ball Corporation Dual polarization slotted antenna
DE4002899A1 (en) * 1990-02-01 1991-08-08 Bosch Gmbh Robert Roof incorporated vehicle aerial - has coaxial cable passing through base of cup-shaped element below ring shaped gap in roof
US5202697A (en) * 1991-01-18 1993-04-13 Cubic Defense Systems, Inc. Low-profile steerable cardioid antenna
US6288685B1 (en) * 1998-09-09 2001-09-11 Schlumberger Resource Management Services, Inc. Serrated slot antenna
US6859186B2 (en) * 2003-02-03 2005-02-22 Silver Spring Networks, Inc. Flush-mounted antenna and transmission system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2715811C1 (en) * 2019-08-28 2020-03-03 Дмитрий Алексеевич Антропов Annular slot antenna

Also Published As

Publication number Publication date
US9692137B2 (en) 2017-06-27
US20130278475A1 (en) 2013-10-24
EP2654125A1 (en) 2013-10-23
ES2668860T3 (en) 2018-05-22

Similar Documents

Publication Publication Date Title
EP2654125B1 (en) Ring slot antenna
DE102017103161B4 (en) Antenna device and antenna array
EP1239543B1 (en) Flat antenna for the mobil satellite communication
DE69608132T2 (en) SLOT SPIRAL ANTENNA WITH INTEGRATED SYMMETRICAL DEVICE AND INTEGRATED LEAD
DE102009054526B4 (en) Dielectric loaded antenna with inner cavity section
DE69732975T2 (en) SMALL ANTENNA FOR PORTABLE RADIO
DE69008116T2 (en) Plane antenna.
DE69835540T2 (en) ANTENNA SYSTEM FOR CIRCULAR POLARIZED RADIO WAVES WITH ANTENNA MILTTLES AND INTERFACENETZWERK
DE102010011867B4 (en) Broadband omnidirectional antenna
DE60034042T2 (en) FRAME ANTENNA WITH FOUR RESONANCE FREQUENCIES
EP3411921B1 (en) Dual-polarized antenna
EP2830156B1 (en) Waveguide radiator, group antenna radiator and synthetic aperture radar radiator
DE112017001710T5 (en) Microwave antenna device, packaging and manufacturing process
EP0965152A1 (en) Resonant antenna
DE10297569T5 (en) Tuned slot antenna with high-frequency MEMS and method for their production
EP1503449A1 (en) Phased array antenna for data transmission between movable devices, in particular aircrafts
WO2006000116A1 (en) Broadband patch antenna
DE19729664C2 (en) Planar broadband antenna
DE102010014916B4 (en) Phased array antenna
DE102004045707A1 (en) antenna
DE102007037614B4 (en) Multipart antenna with circular polarization
DE60314751T2 (en) WIRE ANTENNA
DE69731861T2 (en) Radio transmission device with an extendable antenna and an antenna for such a device
DE19603803C2 (en) Quad antenna, on an insulating material and process for its manufacture
DE69108155T2 (en) Directional network with neighboring radiator elements for radio transmission system and unit with such a directional network.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DEFENCE AND SPACE GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DS ELECTRONICS AND BORDER SECURITY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HENSOLDT SENSORS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 13/18 20060101AFI20170922BHEP

Ipc: H01Q 1/28 20060101ALI20170922BHEP

Ipc: H01Q 13/10 20060101ALI20170922BHEP

INTG Intention to grant announced

Effective date: 20171012

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 979714

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012012322

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2668860

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180522

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180314

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180614

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180615

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180614

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012012322

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180716

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180419

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

26N No opposition filed

Effective date: 20181217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180419

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 979714

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240423

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240517

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240430

Year of fee payment: 13

Ref country code: FR

Payment date: 20240422

Year of fee payment: 13