[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2643582B1 - Method for operating a fuel system of an internal combustion engine - Google Patents

Method for operating a fuel system of an internal combustion engine Download PDF

Info

Publication number
EP2643582B1
EP2643582B1 EP11758210.6A EP11758210A EP2643582B1 EP 2643582 B1 EP2643582 B1 EP 2643582B1 EP 11758210 A EP11758210 A EP 11758210A EP 2643582 B1 EP2643582 B1 EP 2643582B1
Authority
EP
European Patent Office
Prior art keywords
fuel
internal combustion
combustion engine
operating
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11758210.6A
Other languages
German (de)
French (fr)
Other versions
EP2643582A1 (en
Inventor
Joerg Kuempel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2643582A1 publication Critical patent/EP2643582A1/en
Application granted granted Critical
Publication of EP2643582B1 publication Critical patent/EP2643582B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • F02M59/368Pump inlet valves being closed when actuated

Definitions

  • the invention relates to a method according to the preamble of claim 1, and a computer program and a control and / or regulating device according to the independent claims.
  • the required high-pressure piston pump (HDP) is occasionally operated temporarily depending on an operating condition of a motor vehicle without promotion. This is done in conventional systems, especially in the phases with overrun fuel cutoff, in which the internal combustion engine requires no fuel and therefore no fuel must be promoted. Since these phases are often relatively short (for example, less than five minutes), the HDP can sustain these phases without damage.
  • a possible damage mechanism of a piston pump used as HDP can be described as follows: If the HDP usually upstream quantity control valve for controlling the amount of fuel supplied for a longer period is not driven, so is due to the lack of pressure difference (between a high-pressure delivery chamber to a pre-pressurized so no significant fuel exchange in the gap between the piston and the piston sleeve of the HDP instead. However, the replacement of fuel is important for the lubrication of the piston as well as for a centering of the piston in the piston sleeve. Additionally, as a result of the lack of or low pressure, the fuel may be at the comparatively high temperature in the HDP if necessary, evaporate already. Due to the lack of lubrication at the contact points between the piston and the piston bushing, the HDP can be permanently damaged ("piston seizure").
  • Particularly critical in this regard may be bivalent propulsion systems in which the internal combustion engine is operated for longer intervals instead of with liquid fuel (gasoline or diesel) with gas (CNG).
  • CNG liquid fuel
  • HDP high-pressure pump
  • the invention has the advantage that in an operating case of a fuel system in which a fuel pump does not deliver fuel into a pressure range of the fuel system, fuel may flow into a delivery space of the fuel pump, with movable elements of the fuel pump, such as a piston, from the flowing fuel be lubricated. As a result, the fatigue strength of the fuel pump can be increased.
  • the method according to the invention can be carried out solely by means of a modified actuation of a valve device of the fuel pump, that is to say by means of software.
  • the invention is based on the consideration that during operation of an internal combustion engine operating cases occur in which no fuel is burned in combustion chambers of the internal combustion engine and accordingly no fuel is conveyed by the fuel pump.
  • This can be the case, for example, in so-called "fuel cut-off" phases, or in such internal combustion engines, which are alternatively operated with liquid fuel or with gas, as well as in motor vehicles with hybrid drive.
  • a first operating case of the fuel system may be defined in which a normal delivery of fuel into the pressure range takes place, and a second operating case in which no fuel is to be conveyed into the pressure range.
  • a valve device which meters an amount of fuel supplied to the fuel pump is at least temporarily actuated in the second operating mode such that fuel is drawn in from the upstream low-pressure region in a first phase of the working movement of the fuel pump, almost completely back into the low-pressure region in a second phase is conveyed, and in a third phase, a residual amount of fuel between movable elements of the fuel pump and the guide or storage is pressed to lubricate this.
  • the three phases are controlled according to the invention by means of the valve device.
  • a controllable inlet valve is the Valve device opened during the first two phases, and closed during the third phase.
  • the third phase begins shortly before reaching the top dead center of the piston and ends with the reaching of the top dead center.
  • the three phases can be repeated cyclically with the movement of the piston.
  • An embodiment of the method provides that the activation of the valve device takes place in the second operating case periodically with each stroke of the fuel pump.
  • This maximum lubrication, for example, the piston can be achieved, whereby the fatigue strength of the fuel pump can be significantly increased.
  • a further embodiment of the method provides that the control of the valve device takes place occasionally or periodically in the second operating case, and that no activation takes place in intervening intervals. This can - depending on a specific embodiment of the fuel pump - a sufficient lubrication are made possible, at the same time an unwanted promotion of fuel in the pressure range of the fuel system - and thus a possible exceeding of a limit pressure - is unlikely.
  • a further embodiment of the method provides that the control of the valve device in the second operating case is carried out continuously over in each case a first number of strokes of the fuel pump, and thereafter no activation of the valve device takes place over a second number of strokes of the fuel pump.
  • the inventive method can be carried out alternately over several strokes of the fuel pump and then not performed over several strokes. In this way, a large number of possibilities for carrying out the method are given, which can be flexibly adapted to operating states or operating variables of the fuel pump and / or the internal combustion engine.
  • the method works better when the angle of a drive shaft of the fuel pump, in which a compression by a corresponding adjustment of the valve device starts without fuel in the pressure range is promoted (zero conveying angle), taking into account at least one operating variable of the internal combustion engine is determined. This can be achieved depending on the at least one operating variable, on the one hand sufficiently lubricated the fuel pump and on the other hand, an unwanted promotion of fuel is avoided.
  • the method can be performed more precisely if the zero-feed angle is determined taking into account a plurality of operating variables using at least one characteristic map.
  • a large number of operating variables can be used to control the valve device, with further information being available without the additional computational outlay of a control and / or regulating device of the internal combustion engine or of the motor vehicle through the use of one or more characteristic maps. This generally improves the performance of the method, saves computing time and reduces costs.
  • the first operating case can be distinguished from the second operating case by means of these variables, and thus a "switch-on condition" for the method can be derived.
  • these quantities are used to precisely determine the time for the transition from the second to the third phase, so that a sufficient lubrication of the fuel pump can be achieved and at the same time the unwanted promotion of fuel in the pressure range can be prevented.
  • the zero-feed angle is changed so far that the rate remains below the limit value. So that can so to speak "anticipatory" the zero conveying angle can be adjusted, so that the security against an unwanted delivery of fuel can be reduced and the probability of exceeding a limit pressure in the pressure range can be minimized.
  • the control of the valve device for carrying out the method is further improved if a pressure increase due to heating of the fuel in the pressure range with increasing operating time is taken into account. This makes it easier to distinguish whether the pressure increase has arisen or arises as a result of an unwanted delivery of fuel or as a result of the heating of the fuel. As far as the pressure increase is due to the heating of the fuel, the zero feed angle need not be further reduced, whereby an optimal lubrication of the fuel pump can be maintained.
  • FIG. 1 shows a fuel system 1 of an internal combustion engine in a highly simplified schematic representation.
  • a fuel tank 9 is connected via a suction line 4, a prefeed pump 5 and a low pressure line 7 with a Fuel pump 3 connected.
  • a high-pressure accumulator 13 (“common rail") is connected to the fuel pump 3, a high-pressure accumulator 13 ("common rail") is connected via a high-pressure line 11.
  • An electromagnetically operated switching valve 14 - hereinafter referred to as valve means 14 - with an electromagnetic actuator 15 - hereinafter referred to as solenoid 15 - is hydraulically in the course of the low pressure line 7 between the prefeed pump 5 and the fuel pump 3 is arranged.
  • the electromagnet 15 is controlled by a computer program 8 of a control and / or regulating device 19 using maps 6.
  • the fuel pump 3 comprises a cam 17 arranged on a drive shaft 10, which can vertically move a piston 18 in the drawing.
  • Other elements, such as an exhaust valve of the fuel pump 3, are in the FIG. 1 not drawn.
  • the valve device 14 may be formed as a unit with the fuel pump 3.
  • the valve device 14 may be designed as a forcibly openable inlet valve of the fuel pump 3 in the sense of a so-called "quantity control valve".
  • the prefeed pump 5 conveys fuel from the fuel tank 9 into the low-pressure line 7.
  • the valve device 14 determines the fuel quantity supplied to a delivery chamber 36 of the fuel pump 3.
  • FIG. 2 shows the fuel pump 3 of the FIG. 1 in a somewhat more detailed, but also schematic representation.
  • the fuel pump 3 has a housing 20, in whose left portion in the drawing, the electromagnet 15 with a coil 22, an armature 24 and an armature spring 26 is arranged. Furthermore, the fuel pump 3 comprises an inlet 28 connected to the low-pressure line 7 with an inlet valve 30, and an outlet 32 connected to the high-pressure line 11 with an outlet valve 34.
  • the inlet valve 30 comprises a valve spring 31 and a valve body 33. The valve body 33 can by means of a in the drawing horizontally displaceable and coupled to the armature 24 valve needle 35 are moved. If the electromagnet 15 is energized, the inlet valve 30 can be closed by the force of the valve spring 31.
  • the inlet valve 30 can be forced by the force of the armature spring 26 be opened.
  • the piston 18 is arranged vertically movable in the drawing.
  • the piston 18 can be moved by means of a roller 40 of the - in this case elliptical - cam 17 in a cylinder 37.
  • the cylinder 37 is formed in a portion of the housing 20.
  • the inlet valve 30 is hydraulically connected via an opening 38 with the delivery chamber 36.
  • the fuel pump 3 delivers fuel from the inlet 28 to the outlet 32, wherein the outlet valve 34 opens or closes according to a respective pressure difference between the delivery chamber 36 and the outlet 32.
  • the inlet valve 30 is acted upon by full delivery of a respective pressure difference between the inlet 28 and the delivery chamber 36, but also through the valve needle 35 and the electromagnet 15.
  • a desired partial delivery of the electromagnet 15 is energized during a delivery stroke from a certain time, whereby the intake valve 30 can close and the fuel still present in the delivery chamber 36 is not conveyed back into the low-pressure line 7, but into the high-pressure accumulator 13 ("rail").
  • the arranged within the housing 20 volumes of the fuel pump 3 are substantially filled with fuel.
  • FIG. 3 shows a second case of operation of the fuel system 1, in which the fuel pump 3 does not promote or promote fuel in the pressure range 16.
  • the lower part of the drawing shows a time diagram with two coordinate systems.
  • a current I flowing in the coil 22 is plotted against the ordinate over a time t.
  • a stroke 44 of the piston 18 between a bottom dead center UT and a top dead center OT is plotted on the ordinate in the same time scale over the time t.
  • phase PH3 corresponds to a delivery angle 46 of the drive shaft 10, which is defined starting from the upper right in the drawing top dead center OT in time negative direction.
  • the transition from the remindströmphase PH2 in the delivery phase PH3 is too a time t1.
  • Phases PH1 to PH3 between the two illustrated top dead centers OT corresponds to a period of the working movement of the piston 18, which in this case corresponds to half a rotation of the cam 17 and the drive shaft 10.
  • a hatched area 48 additionally illustrates the delivery phase PH3.
  • the suction phase PH1 In the second operating case of the fuel system 1 starts from the left in the drawing top dead center OT, the suction phase PH1.
  • the coil 22 of the electromagnet 15 is not energized.
  • the inlet valve 30 is opened under pressure control and the outlet valve 34 is closed.
  • fuel may flow from the inlet 28 through the opened inlet valve 30 and through the opening 38 into the delivery chamber 36.
  • the delivery chamber 36 By the downward movement of the piston 18 in the direction of arrow 52, the delivery chamber 36 is simultaneously increased.
  • the arranged within the housing 20 volumes of the fuel pump 3 are also filled in the second operating case substantially with fuel.
  • the suction phase PH1 ends at bottom dead center UT.
  • the inlet valve 30 remain open and the exhaust valve 34 is closed.
  • the coil 22 is still not energized.
  • the piston 18 By the upward movement of the piston 18 in the direction of arrow 54, the volume of the delivery chamber 36 is reduced.
  • the fuel located in the delivery chamber 36 is at least partially pushed out through the opening 38 and the inlet valve 30 along an arrow 56 and into the low-pressure line 7.
  • the remindströmphase PH2 ends at time t1.
  • the transition from the remindströmphase PH2 in the subsequent delivery phase PH3 is triggered by the coil 22 is energized.
  • the current I has, for example, in the FIG. 3 History displayed in the lower coordinate system.
  • the piston 18 is located shortly before the top dead center OT continues in the upward movement.
  • the armature 24 and the valve needle 35 are moved in the drawing by magnetic force to the left.
  • Valve spring 31 By the power of Valve spring 31, the valve body 33 - possibly supported by flow forces - also moves to the left and the inlet valve 30 thus closed.
  • the outlet valve 34 remains closed.
  • the closed intake valve 30 and the closed exhaust valve 34 the fuel is compressed in the delivery chamber 36 and a hydraulic pressure is built up in the delivery chamber 36 due to the remaining stroke movement of the piston 18 up to the top dead center OT.
  • the delivery angle 46 is so dimensioned that the exhaust valve 34 remains closed in all phases PH1 to PH3 and thus just no fuel is conveyed into the pressure region 16, provided that the pressure prevailing in the pressure chamber 16 hydraulic pressure is not exceeded in the delivery chamber 36.
  • This conveying angle 46 is also referred to as "zero conveying angle", below which there is no delivery of fuel. This is achieved by a suitable control of the electromagnet 15 by the control and / or regulating device 19. As a result, on the one hand, maximum lubrication of the fuel pump 3 can be effected and, on the other hand, an undesired delivery of fuel into the pressure region 16 can be avoided.
  • the zero-feed angle may be based on the angle of the drive shaft 10 of the fuel pump 3.
  • the control of the electromagnet 15 can be done for example with each stroke 44 of the fuel pump 3.
  • the drive may only be occasional or periodic, with no drive at intervening intervals.
  • Yet another alternative is to perform the control of the valve device 14 over a first limited number of strokes 44 with each stroke 44, and thereafter to make no activation over a second limited number of strokes 44.
  • FIG. 4 shows a flowchart for processing the method in the computer program 8 of the control and / or regulating device 19.
  • a query block 72 it is decided in a query block 72 whether a switch-on condition for carrying out the method is present.
  • the first operating case is distinguished from the second operating case by means of the above-mentioned operating variables. This is in the FIG. 4 but not shown in detail. If the engine is currently in the first operating condition, there is no power-on condition and the program branches back to the start block 70.
  • the delivery angle 46 (zero-conveying angle) is determined in a subsequent block 74 from a characteristic diagram 6 and also taking into account the above-mentioned operating variables. According to the thus determined conveying angle 46 of the solenoid 15 is driven in the second operating case and the fuel pump 3 thus in a to the FIG. 3 operated in a comparable manner.
  • a pressure in the pressure region 16 is detected, from which a rate or a gradient of the pressure is determined.
  • a possible pressure increase due to heating of the fuel in the pressure region 16 can be taken into account in addition with increasing duration of the second operating case.
  • a query block 78 it is checked in a query block 78, whether the determined rate is greater than a threshold value 80. If this is not the case, then in turn is branched to the start block 70 and the program continues there.
  • the conveying angle 46 is reduced stepwise by first one step.
  • This safety function causes the delivery phase PH3 or the delivery angle 46 (zero conveying angle) to be shortened, whereby correspondingly less pressure is built up in the delivery chamber 36 and the outlet valve 34 is thus acted upon more strongly in the closed position. The risk that unintentionally fuel is conveyed into the pressure region 16, thus becomes smaller. Thereafter, the program branches back to the start block 70 and the program continues there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren nach dem Oberbegriff des Anspruchs 1, sowie ein Computerprogramm und eine Steuer- und/oder Regeleinrichtung nach den nebengeordneten Patentansprüchen.The invention relates to a method according to the preamble of claim 1, and a computer program and a control and / or regulating device according to the independent claims.

Bei modernen direkteinspritzenden Brennkraftmaschinen mit bedarfsgeregelter Kraftstoffförderung wird die dafür erforderliche Kolben-Hochdruckpumpe (HDP) abhängig von einem Betriebszustand eines Kraftfahrzeuges gelegentlich vorübergehend ohne Förderung betrieben. Dies erfolgt bei herkömmlichen Systemen vor allem in den Phasen mit Schubabschaltung, in denen die Brennkraftmaschine keinen Kraftstoff benötigt und deshalb auch kein Kraftstoff gefördert werden muss. Da diese Phasen häufig vergleichsweise kurz sind (beispielsweise weniger als fünf Minuten) verkraftet die HDP diese Phasen ohne Schädigung.In modern direct-injection internal combustion engines with demand-controlled fuel delivery, the required high-pressure piston pump (HDP) is occasionally operated temporarily depending on an operating condition of a motor vehicle without promotion. This is done in conventional systems, especially in the phases with overrun fuel cutoff, in which the internal combustion engine requires no fuel and therefore no fuel must be promoted. Since these phases are often relatively short (for example, less than five minutes), the HDP can sustain these phases without damage.

Ein möglicher Schädigungsmechanismus einer als HDP verwendeten Kolbenpumpe kann folgendermaßen beschrieben werden: Wird das der HDP üblicherweise vorgeschaltete Mengensteuerventil zur Steuerung der zugeführten Kraftstoffmenge für eine längere Zeitspanne nicht angesteuert, so findet aufgrund des fehlenden Druckunterschieds (zwischen einem Hochdruck-Förderraum zu einem mit Vordruck beaufschlagten so genannten "Stufenraum") kein nennenswerter Kraftstoffaustausch im Spalt zwischen dem Kolben und der Kolbenbuchse der HDP statt. Der Austausch von Kraftstoff ist jedoch für die Schmierung des Kolbens sowie für eine Zentrierung des Kolbens in der Kolbenbuchse wichtig. Außerdem kann als Folge des fehlenden oder geringen Drucks der Kraftstoff bei den vergleichsweise hohen Temperatur in der HDP gegebenenfalls schon verdampfen. Durch die fehlende Schmierung an den Kontaktstellen zwischen Kolben und Kolbenbuchse kann auf Dauer die HDP beschädigt werden ("Kolbenfresser").A possible damage mechanism of a piston pump used as HDP can be described as follows: If the HDP usually upstream quantity control valve for controlling the amount of fuel supplied for a longer period is not driven, so is due to the lack of pressure difference (between a high-pressure delivery chamber to a pre-pressurized so no significant fuel exchange in the gap between the piston and the piston sleeve of the HDP instead. However, the replacement of fuel is important for the lubrication of the piston as well as for a centering of the piston in the piston sleeve. Additionally, as a result of the lack of or low pressure, the fuel may be at the comparatively high temperature in the HDP if necessary, evaporate already. Due to the lack of lubrication at the contact points between the piston and the piston bushing, the HDP can be permanently damaged ("piston seizure").

Besonders kritisch können in dieser Hinsicht bivalente Antriebssysteme sein, bei denen die Brennkraftmaschine für längere Intervalle statt mit flüssigem Kraftstoff (Benzin oder Diesel) mit Gas (CNG) betrieben wird. Während dessen läuft die Hochdruckpumpe (HDP) in der Regel ohne Förderung mit, wobei sie vergleichsweise heiß werden kann. Daraus ergibt sich der oben genannte Schädigungsmechanismus.Particularly critical in this regard may be bivalent propulsion systems in which the internal combustion engine is operated for longer intervals instead of with liquid fuel (gasoline or diesel) with gas (CNG). During this time, the high-pressure pump (HDP) usually runs without promotion, whereby it can become comparatively hot. This results in the above-mentioned damage mechanism.

Ebenfalls können in dieser Hinsicht Hybridsysteme kritisch sein, bei denen im Elektrobetrieb die HDP ähnlichen Bedingungen ausgesetzt ist, wie im kombinierten Kraftstoff-Gas-Betrieb.Also critical in this regard are hybrid systems where the HDP is subjected to similar conditions during electrical operation as in combined fuel-gas operation.

Beide oben beschrieben Fälle können lange Phasen ohne Förderbetrieb der HDP bei zugleich hohen Kraftstofftemperaturen aufweisen. Insbesondere entfällt im normalem Betrieb die über den Kraftstoffdurchfluss sich ergebende Kühlung der HDP.Both cases described above can have long phases without HDP production at high fuel temperatures. In particular, during normal operation, the cooling of the HDP resulting from the fuel flow is eliminated.

Fachveröffentlichungen aus diesem Gebiet sind beispielsweise die DE 198 34 121 A1 , die US 20080208439 A1 , die US 20070163536 A1 , die US 20060037583 A1 , die US 20060196475 A1 , die US 20060102149 A1 und die US 20050098155 A1 .Specialist publications from this area are, for example, the DE 198 34 121 A1 , the US 20080208439 A1 , the US 20070163536 A1 , the US 20060037583 A1 , the US 20060196475 A1 , the US 20060102149 A1 and the US 20050098155 Al ,

Offenbarung der ErfindungDisclosure of the invention

Das der Erfindung zugrunde liegende Problem wird durch ein Verfahren nach Anspruch 1 sowie durch ein Computerprogramm und eine Steuer- und/oder Regeleinrichtung nach den nebengeordneten Ansprüchen gelöst. Vorteilhafte Weiterbildungen sind in Unteransprüchen angegeben. Für die Erfindung wichtige Merkmale finden sich ferner in der nachfolgenden Beschreibung und in den Zeichnungen, wobei die Merkmale sowohl in Alleinstellung als auch in unterschiedlichen Kombinationen für die Erfindung wichtig sein können, ohne dass hierauf nochmals explizit hingewiesen wird.The problem underlying the invention is achieved by a method according to claim 1 and by a computer program and a control and / or regulating device according to the independent claims. Advantageous developments are specified in subclaims. Features which are important for the invention can also be found in the following description and in the drawings, wherein the features, both alone and in different combinations, can be important for the invention, without being explicitly referred to again.

Die Erfindung weist den Vorteil auf, dass in einem Betriebsfall eines Kraftstoffsystems, in welchem eine Kraftstoffpumpe keinen Kraftstoff in einen Druckbereich des Kraftstoffsystems fördert, Kraftstoff in einen Förderraum der Kraftstoffpumpe fließen kann, wobei bewegbare Elemente der Kraftstoffpumpe, beispielsweise ein Kolben, von dem fließenden Kraftstoff geschmiert werden. Dadurch kann die Dauerfestigkeit der Kraftstoffpumpe erhöht werden. Insbesondere kann das erfindungsgemäße Verfahren allein durch eine veränderte Ansteuerung einer Ventileinrichtung der Kraftstoffpumpe, also mittels Software durchgeführt werden.The invention has the advantage that in an operating case of a fuel system in which a fuel pump does not deliver fuel into a pressure range of the fuel system, fuel may flow into a delivery space of the fuel pump, with movable elements of the fuel pump, such as a piston, from the flowing fuel be lubricated. As a result, the fatigue strength of the fuel pump can be increased. In particular, the method according to the invention can be carried out solely by means of a modified actuation of a valve device of the fuel pump, that is to say by means of software.

Die Erfindung geht von der Überlegung aus, dass im Betrieb einer Brennkraftmaschine Betriebsfälle vorkommen, in denen kein Kraftstoff in Brennräumen der Brennkraftmaschine verbrannt wird und entsprechend kein Kraftstoff von der Kraftstoffpumpe gefördert wird. Dies kann beispielsweise in Phasen der so genannten "Schubabschaltung" der Fall sein, oder bei solchen Brennkraftmaschinen, die alternativ mit flüssigem Kraftstoff oder mit Gas betrieben werden, sowie bei Kraftfahrzeugen mit Hybridantrieb. Es kann ein erster Betriebsfall des Kraftstoffsystems definiert werden, in welchem eine normale Förderung von Kraftstoff in den Druckbereich stattfindet, und ein zweiter Betriebsfall, in welchem kein Kraftstoff in den Druckbereich gefördert wird bzw. gefördert werden soll.The invention is based on the consideration that during operation of an internal combustion engine operating cases occur in which no fuel is burned in combustion chambers of the internal combustion engine and accordingly no fuel is conveyed by the fuel pump. This can be the case, for example, in so-called "fuel cut-off" phases, or in such internal combustion engines, which are alternatively operated with liquid fuel or with gas, as well as in motor vehicles with hybrid drive. A first operating case of the fuel system may be defined in which a normal delivery of fuel into the pressure range takes place, and a second operating case in which no fuel is to be conveyed into the pressure range.

Erfindungsgemäß wird eine Ventileinrichtung, welche eine der Kraftstoffpumpe zugeführte Kraftstoffmenge zumisst, in dem zweiten Betriebsfall wenigstens zeitweise derart angesteuert, dass in einer ersten Phase der Arbeitsbewegung der Kraftstoffpumpe Kraftstoff aus dem stromaufwärts gelegenen Niederdruckbereich angesaugt wird, in einer zweiten Phase fast vollständig in den Niederdruckbereich zurück gefördert wird, und in einer dritten Phase eine Restmenge des Kraftstoffs zwischen bewegbare Elemente der Kraftstoffpumpe und deren Führung bzw. Lagerung gedrückt wird, um diese zu schmieren.According to the invention, a valve device which meters an amount of fuel supplied to the fuel pump is at least temporarily actuated in the second operating mode such that fuel is drawn in from the upstream low-pressure region in a first phase of the working movement of the fuel pump, almost completely back into the low-pressure region in a second phase is conveyed, and in a third phase, a residual amount of fuel between movable elements of the fuel pump and the guide or storage is pressed to lubricate this.

Die drei Phasen, insbesondere der Übergang von der zweiten zur dritten oder der dritten zur zweiten Phase, werden erfindungsgemäß mittels der Ventileinrichtung gesteuert. Beispielsweise ist ein steuerbares Einlassventil der Ventileinrichtung während der beiden ersten Phasen geöffnet, und während der dritten Phase geschlossen. Vorzugsweise beginnt die dritte Phase kurz vor dem Erreichen des oberen Totpunktes des Kolbens und endet mit dem Erreichen des oberen Totpunktes. Die drei Phasen können zyklisch mit der Bewegung des Kolbens wiederholt werden.The three phases, in particular the transition from the second to the third or the third to the second phase, are controlled according to the invention by means of the valve device. For example, a controllable inlet valve is the Valve device opened during the first two phases, and closed during the third phase. Preferably, the third phase begins shortly before reaching the top dead center of the piston and ends with the reaching of the top dead center. The three phases can be repeated cyclically with the movement of the piston.

Eine Ausgestaltung des Verfahren sieht vor, dass die Ansteuerung der Ventileinrichtung in dem zweiten Betriebsfall periodisch mit jedem Hub der Kraftstoffpumpe erfolgt. Damit kann eine maximale Schmierung beispielsweise des Kolbens erreicht werden, wodurch die Dauerfestigkeit der Kraftstoffpumpe deutlich erhöht werden kann.An embodiment of the method provides that the activation of the valve device takes place in the second operating case periodically with each stroke of the fuel pump. This maximum lubrication, for example, the piston can be achieved, whereby the fatigue strength of the fuel pump can be significantly increased.

Eine weitere Ausgestaltung des Verfahrens sieht vor, dass die Ansteuerung der Ventileinrichtung in dem zweiten Betriebsfall gelegentlich oder periodisch erfolgt, und dass in dazwischen liegenden Intervallen keine Ansteuerung erfolgt. Damit kann - abhängig von einer konkreten Ausführung der Kraftstoffpumpe - eine ausreichende Schmierung ermöglicht werden, wobei zugleich eine ungewollte Förderung von Kraftstoff in den Druckbereich des Kraftstoffsystems - und damit eine mögliche Überschreitung eines Grenzdrucks - unwahrscheinlicher wird.A further embodiment of the method provides that the control of the valve device takes place occasionally or periodically in the second operating case, and that no activation takes place in intervening intervals. This can - depending on a specific embodiment of the fuel pump - a sufficient lubrication are made possible, at the same time an unwanted promotion of fuel in the pressure range of the fuel system - and thus a possible exceeding of a limit pressure - is unlikely.

Eine nochmals weitere Ausgestaltung des Verfahrens sieht vor, dass die Ansteuerung der Ventileinrichtung in dem zweiten Betriebsfall fortlaufend über jeweils eine erste Anzahl von Hüben der Kraftstoffpumpe erfolgt, und danach jeweils über eine zweite Anzahl von Hüben der Kraftstoffpumpe keine Ansteuerung der Ventileinrichtung erfolgt. Damit kann das erfindungsgemäße Verfahren abwechselnd über mehrere Arbeitshübe der Kraftstoffpumpe durchgeführt und anschließend über mehrere Arbeitshübe nicht durchgeführt werden. Auf diese Weise sind eine Vielzahl von Möglichkeiten zur Durchführung des Verfahrens gegeben, welche flexibel an Betriebszustände oder Betriebsgrößen der Kraftstoffpumpe und/oder der Brennkraftmaschine angepasst werden können.A further embodiment of the method provides that the control of the valve device in the second operating case is carried out continuously over in each case a first number of strokes of the fuel pump, and thereafter no activation of the valve device takes place over a second number of strokes of the fuel pump. Thus, the inventive method can be carried out alternately over several strokes of the fuel pump and then not performed over several strokes. In this way, a large number of possibilities for carrying out the method are given, which can be flexibly adapted to operating states or operating variables of the fuel pump and / or the internal combustion engine.

Das Verfahren arbeitet besser, wenn der Winkel einer Antriebswelle der Kraftstoffpumpe, bei dem eine Kompression durch eine entsprechende Einstellung der Ventileinrichtung beginnt, ohne dass Kraftstoff in den Druckbereich gefördert wird (Nullförderwinkel), unter Berücksichtigung von mindestens einer Betriebsgröße der Brennkraftmaschine ermittelt wird. Damit kann abhängig von der mindestens einen Betriebsgröße erreicht werden, dass einerseits die Kraftstoffpumpe ausreichend geschmiert und andererseits eine ungewollte Förderung von Kraftstoff vermieden wird.The method works better when the angle of a drive shaft of the fuel pump, in which a compression by a corresponding adjustment of the valve device starts without fuel in the pressure range is promoted (zero conveying angle), taking into account at least one operating variable of the internal combustion engine is determined. This can be achieved depending on the at least one operating variable, on the one hand sufficiently lubricated the fuel pump and on the other hand, an unwanted promotion of fuel is avoided.

Das Verfahren kann präziser durchgeführt werden, wenn der Nullförderwinkel unter Berücksichtigung von mehreren Betriebsgrößen unter Verwendung mindestens eines Kennfelds ermittelt wird. Dadurch können eine Vielzahl von Betriebsgrößen zur Ansteuerung der Ventileinrichtung genutzt werden, wobei durch die Verwendung eines oder mehrerer Kennfelder weitere Informationen ohne zusätzlichen Rechenaufwand einer Steuer- und/oder Regeleinrichtung der Brennkraftmaschine bzw. des Kraftfahrzeugs zur Verfügung stehen. Damit kann die Durchführung des Verfahrens allgemein verbessert, Rechenzeit gespart und Kosten gesenkt werden.The method can be performed more precisely if the zero-feed angle is determined taking into account a plurality of operating variables using at least one characteristic map. As a result, a large number of operating variables can be used to control the valve device, with further information being available without the additional computational outlay of a control and / or regulating device of the internal combustion engine or of the motor vehicle through the use of one or more characteristic maps. This generally improves the performance of the method, saves computing time and reduces costs.

Insbesondere ist vorgesehen, dass der Nullförderwinkel unter Berücksichtigung von mindestens einer der folgenden Größen ermittelt wird:

  • Drehzahl der Brennkraftmaschine;
  • Drehmoment der Brennkraftmaschine;
  • Temperatur der Brennkraftmaschine;
  • Temperatur des Kraftstoffs;
  • Kraftstoffdruck im Druckbereich; und/oder
  • Betriebszustand der Brennkraftmaschine, insbesondere eine Schubabschaltung.
In particular, it is provided that the zero-feed angle is determined taking into account at least one of the following variables:
  • Speed of the internal combustion engine;
  • Torque of the internal combustion engine;
  • Temperature of the internal combustion engine;
  • Temperature of the fuel;
  • Fuel pressure in the pressure range; and or
  • Operating state of the internal combustion engine, in particular a fuel cut-off.

Mittels dieser Größen kann unter anderem der erste Betriebsfall von dem zweiten Betriebsfall unterschieden und somit eine "Einschaltbedingung" für das Verfahren abgeleitet werden. Insbesondere werden diese Größen dazu verwendet, um den Zeitpunkt für den Übergang von der zweiten in die dritte Phase präzise zu ermitteln, so dass eine ausreichende Schmierung der Kraftstoffpumpe erreicht und zugleich die ungewollte Förderung von Kraftstoff in den Druckbereich verhindert werden kann.Among other things, the first operating case can be distinguished from the second operating case by means of these variables, and thus a "switch-on condition" for the method can be derived. In particular, these quantities are used to precisely determine the time for the transition from the second to the third phase, so that a sufficient lubrication of the fuel pump can be achieved and at the same time the unwanted promotion of fuel in the pressure range can be prevented.

Weiterhin ist vorgesehen, dass dann, wenn der Druck im Druckbereich mit einer Rate ansteigt, welche größer ist als ein Grenzwert, der Nullförderwinkel soweit verändert wird, dass die Rate unterhalb des Grenzwerts bleibt. Damit kann sozusagen "vorausschauend" der Nullförderwinkel eingestellt werden, so dass die Sicherheit gegen eine ungewollte Förderung von Kraftstoff verringert und die Wahrscheinlichkeit für ein Überscheiten eines Grenzdrucks in dem Druckbereich minimiert werden kann.It is further provided that, when the pressure in the pressure range increases at a rate which is greater than a limit value, the zero-feed angle is changed so far that the rate remains below the limit value. So that can so to speak "anticipatory" the zero conveying angle can be adjusted, so that the security against an unwanted delivery of fuel can be reduced and the probability of exceeding a limit pressure in the pressure range can be minimized.

Die Ansteuerung der Ventileinrichtung zur Durchführung des Verfahrens wird weiter verbessert, wenn eine Druckerhöhung infolge Erwärmung des Kraftstoffs im Druckbereich mit ansteigender Betriebsdauer berücksichtigt wird. Dadurch kann besser unterschieden werden, ob die Druckerhöhung als Folge einer ungewollten Förderung von Kraftstoff oder als Folge der Erwärmung des Kraftstoffs entstanden ist bzw. entsteht. Soweit die Druckerhöhung durch die Erwärmung des Kraftstoffs erfolgt, braucht der Nullförderwinkel nicht zusätzlich vermindert werden, wodurch eine optimale Schmierung der Kraftstoffpumpe aufrecht erhalten werden kann.The control of the valve device for carrying out the method is further improved if a pressure increase due to heating of the fuel in the pressure range with increasing operating time is taken into account. This makes it easier to distinguish whether the pressure increase has arisen or arises as a result of an unwanted delivery of fuel or as a result of the heating of the fuel. As far as the pressure increase is due to the heating of the fuel, the zero feed angle need not be further reduced, whereby an optimal lubrication of the fuel pump can be maintained.

Nachfolgend werden beispielhafte Ausführungsformen der Erfindung unter Bezugnahme auf die Zeichnung erläutert. In der Zeichnung zeigen:

Figur 1
ein vereinfachtes Schema eines Kraftstoffsystems einer Brennkraftmaschine;
Figur 2
ein Schema einer Kraftstoffpumpe des Kraftstoffsystems von Figur 1;
Figur 3
ein Zeitdiagramm mit verschiedenen Phasen der Arbeitsbewegung der Kraftstoffpumpe; und
Figur 4
ein Flussdiagramm für ein Computerprogramm zur Abarbeitung in einer Steuer- und/oder Regeleinrichtung der Brennkraftmaschine.
Hereinafter, exemplary embodiments of the invention will be explained with reference to the drawings. In the drawing show:
FIG. 1
a simplified diagram of a fuel system of an internal combustion engine;
FIG. 2
a schematic of a fuel pump of the fuel system of FIG. 1 ;
FIG. 3
a time chart with different phases of the working movement of the fuel pump; and
FIG. 4
a flowchart for a computer program for processing in a control and / or regulating device of the internal combustion engine.

Es werden für funktionsäquivalente Elemente und Größen in allen Figuren auch bei unterschiedlichen Ausführungsformen die gleichen Bezugszeichen verwendet.The same reference numerals are used for functionally equivalent elements and sizes in all figures, even in different embodiments.

Figur 1 zeigt ein Kraftstoffsystem 1 einer Brennkraftmaschine in einer stark vereinfachten schematischen Darstellung. Ein Kraftstofftank 9 ist über eine Saugleitung 4, eine Vorförderpumpe 5 und eine Niederdruckleitung 7 mit einer Kraftstoffpumpe 3 verbunden. An die Kraftstoffpumpe 3 ist über eine Hochdruckleitung 11 ein Hochdruckspeicher 13 ("Common Rail") angeschlossen. Die Hochdruckleitung 11 und der Hochdruckspeicher 13 bilden zusammen einen Druckbereich 16 des Kraftstoffsystems 1. Ein elektromagnetisch betätigtes Schaltventil 14 - im Folgenden als Ventileinrichtung 14 bezeichnet - mit einer elektromagnetischen Betätigungseinrichtung 15 - im Folgenden als Elektromagnet 15 bezeichnet - ist hydraulisch im Verlauf der Niederdruckleitung 7 zwischen der Vorförderpumpe 5 und der Kraftstoffpumpe 3 angeordnet. Der Elektromagnet 15 wird von einem Computerprogramm 8 einer Steuer- und/oder Regeleinrichtung 19 unter Verwendung von Kennfeldern 6 angesteuert. Weiterhin umfasst die Kraftstoffpumpe 3 einen auf einer Antriebswelle 10 angeordneten Nocken 17, welcher einen Kolben 18 in der Zeichnung vertikal bewegen kann. Sonstige Elemente, wie beispielsweise ein Auslassventil der Kraftstoffpumpe 3, sind in der Figur 1 nicht gezeichnet. Es versteht sich, dass die Ventileinrichtung 14 als Baueinheit mit der Kraftstoffpumpe 3 ausgebildet sein kann. Beispielsweise kann die Ventileinrichtung 14 als zwangsweise zu öffnendes Einlassventil der Kraftstoffpumpe 3 im Sinne eines so genannten "Mengensteuerventils" ausgebildet sein. FIG. 1 shows a fuel system 1 of an internal combustion engine in a highly simplified schematic representation. A fuel tank 9 is connected via a suction line 4, a prefeed pump 5 and a low pressure line 7 with a Fuel pump 3 connected. To the fuel pump 3, a high-pressure accumulator 13 ("common rail") is connected via a high-pressure line 11. An electromagnetically operated switching valve 14 - hereinafter referred to as valve means 14 - with an electromagnetic actuator 15 - hereinafter referred to as solenoid 15 - is hydraulically in the course of the low pressure line 7 between the prefeed pump 5 and the fuel pump 3 is arranged. The electromagnet 15 is controlled by a computer program 8 of a control and / or regulating device 19 using maps 6. Furthermore, the fuel pump 3 comprises a cam 17 arranged on a drive shaft 10, which can vertically move a piston 18 in the drawing. Other elements, such as an exhaust valve of the fuel pump 3, are in the FIG. 1 not drawn. It is understood that the valve device 14 may be formed as a unit with the fuel pump 3. For example, the valve device 14 may be designed as a forcibly openable inlet valve of the fuel pump 3 in the sense of a so-called "quantity control valve".

Beim Betrieb des Kraftstoffsystems 1 fördert die Vorförderpumpe 5 Kraftstoff vom Kraftstofftank 9 in die Niederdruckleitung 7. Dabei bestimmt die Ventileinrichtung 14 die einem Förderraum 36 der Kraftstoffpumpe 3 zugeführte Kraftstoffmenge.During operation of the fuel system 1, the prefeed pump 5 conveys fuel from the fuel tank 9 into the low-pressure line 7. The valve device 14 determines the fuel quantity supplied to a delivery chamber 36 of the fuel pump 3.

Figur 2 zeigt die Kraftstoffpumpe 3 der Figur 1 in einer etwas detaillierteren, jedoch ebenfalls schematischen Darstellung. Die Kraftstoffpumpe 3 weist ein Gehäuse 20 auf, in dessen in der Zeichnung linken Abschnitt der Elektromagnet 15 mit einer Spule 22, einem Anker 24 und einer Ankerfeder 26 angeordnet ist. Weiterhin umfasst die Kraftstoffpumpe 3 einen mit der Niederdruckleitung 7 verbundenen Einlass 28 mit einem Einlassventil 30, und einen mit der Hochdruckleitung 11 verbundenen Auslass 32 mit einem Auslassventil 34. Das Einlassventil 30 umfasst eine Ventilfeder 31 sowie einen Ventilkörper 33. Der Ventilkörper 33 kann mittels einer in der Zeichnung horizontal verschiebbaren und mit dem Anker 24 gekoppelten Ventilnadel 35 bewegt werden. Ist der Elektromagnet 15 bestromt, so kann das Einlassventil 30 durch die Kraft der Ventilfeder 31 geschlossen werden. Ist der Elektromagnet 15 nicht bestromt, so kann das Einlassventil 30 durch die Kraft der Ankerfeder 26 zwangsweise geöffnet werden. In dem Förderraum 36 ist der Kolben 18 in der Zeichnung vertikal bewegbar angeordnet. Der Kolben 18 kann mittels einer Rolle 40 von dem - vorliegend elliptischen - Nocken 17 in einem Zylinder 37 bewegt werden. Der Zylinder 37 ist in einem Abschnitt des Gehäuses 20 gebildet. Das Einlassventil 30 ist über eine Öffnung 38 mit dem Förderraum 36 hydraulisch verbunden. FIG. 2 shows the fuel pump 3 of the FIG. 1 in a somewhat more detailed, but also schematic representation. The fuel pump 3 has a housing 20, in whose left portion in the drawing, the electromagnet 15 with a coil 22, an armature 24 and an armature spring 26 is arranged. Furthermore, the fuel pump 3 comprises an inlet 28 connected to the low-pressure line 7 with an inlet valve 30, and an outlet 32 connected to the high-pressure line 11 with an outlet valve 34. The inlet valve 30 comprises a valve spring 31 and a valve body 33. The valve body 33 can by means of a in the drawing horizontally displaceable and coupled to the armature 24 valve needle 35 are moved. If the electromagnet 15 is energized, the inlet valve 30 can be closed by the force of the valve spring 31. If the electromagnet 15 is not energized, the inlet valve 30 can be forced by the force of the armature spring 26 be opened. In the delivery chamber 36, the piston 18 is arranged vertically movable in the drawing. The piston 18 can be moved by means of a roller 40 of the - in this case elliptical - cam 17 in a cylinder 37. The cylinder 37 is formed in a portion of the housing 20. The inlet valve 30 is hydraulically connected via an opening 38 with the delivery chamber 36.

In einem ersten Betriebsfall des Kraftstoffsystems 1 fördert die Kraftstoffpumpe 3 Kraftstoff von dem Einlass 28 zu dem Auslass 32, wobei das Auslassventil 34 entsprechend einem jeweiligen Druckunterschied zwischen dem Förderraum 36 und dem Auslass 32 öffnet oder schließt. Das Einlassventil 30 wird bei Vollförderung von einem jeweiligen Druckunterschied zwischen dem Einlass 28 und dem Förderraum 36 beaufschlagt, jedoch außerdem durch die Ventilnadel 35 bzw. den Elektromagneten 15. Bei einer gewünschten Teilförderung wird der Elektromagnet 15 während eines Förderhubs ab einem bestimmten Zeitpunkt bestromt, wodurch das Einlassventil 30 schließen kann und der dann noch im Förderraum 36 vorhandene Kraftstoff nicht zurück in die Niederdruckleitung 7, sondern in den Hochdruckspeicher 13 ("Rail") gefördert wird. Die innerhalb des Gehäuses 20 angeordneten Volumina der Kraftstoffpumpe 3 sind im Wesentlichen mit Kraftstoff gefüllt.In a first operating case of the fuel system 1, the fuel pump 3 delivers fuel from the inlet 28 to the outlet 32, wherein the outlet valve 34 opens or closes according to a respective pressure difference between the delivery chamber 36 and the outlet 32. The inlet valve 30 is acted upon by full delivery of a respective pressure difference between the inlet 28 and the delivery chamber 36, but also through the valve needle 35 and the electromagnet 15. In a desired partial delivery of the electromagnet 15 is energized during a delivery stroke from a certain time, whereby the intake valve 30 can close and the fuel still present in the delivery chamber 36 is not conveyed back into the low-pressure line 7, but into the high-pressure accumulator 13 ("rail"). The arranged within the housing 20 volumes of the fuel pump 3 are substantially filled with fuel.

Figur 3 zeigt einen zweiten Betriebsfall des Kraftstoffsystems 1, in welchem die Kraftstoffpumpe 3 keinen Kraftstoff in den Druckbereich 16 fördert bzw. fördern soll. Im unteren Bereich der Zeichnung ist ein Zeitdiagramm mit zwei Koordinatensystemen dargestellt. Im unteren Koordinatensystem ist über einer Zeit t ein in der Spule 22 fließender Strom I an der Ordinate aufgetragen. Im oberen Koordinatensystem ist im selben zeitlichen Maßstab über der Zeit t ein Hub 44 des Kolbens 18 zwischen einem unteren Totpunkt UT und einem oberen Totpunkt OT an der Ordinate aufgetragen. FIG. 3 shows a second case of operation of the fuel system 1, in which the fuel pump 3 does not promote or promote fuel in the pressure range 16. The lower part of the drawing shows a time diagram with two coordinate systems. In the lower coordinate system, a current I flowing in the coil 22 is plotted against the ordinate over a time t. In the upper coordinate system, a stroke 44 of the piston 18 between a bottom dead center UT and a top dead center OT is plotted on the ordinate in the same time scale over the time t.

Weiterhin sind mittels gestrichelter Linien drei Phasen der Arbeitsbewegung des Kolbens 18 abgegrenzt, nämlich eine Saugphase PH1, eine Rückströmphase PH2 und eine Förderphase PH3. Die Förderphase PH3 entspricht einem Förderwinkel 46 der Antriebswelle 10, welcher ausgehend von dem in der Zeichnung rechten oberen Totpunkt OT in zeitlich negativer Richtung definiert ist. Der Übergang von der Rückströmphase PH2 in die Förderphase PH3 erfolgt zu einem Zeitpunkt t1. Die Summe der in der Figur 3 dargestellten Phasen PH1 bis PH3 zwischen den beiden dargestellten oberen Totpunkten OT entspricht einer Periode der Arbeitsbewegung des Kolbens 18, welche vorliegend einer halben Umdrehung des Nockens 17 bzw. der Antriebswelle 10 entspricht. Ein schraffierter Bereich 48 veranschaulicht die Förderphase PH3 zusätzlich.Furthermore, three phases of the working movement of the piston 18 are delimited by dashed lines, namely a suction phase PH1, a Rückströmphase PH2 and a delivery phase PH3. The delivery phase PH3 corresponds to a delivery angle 46 of the drive shaft 10, which is defined starting from the upper right in the drawing top dead center OT in time negative direction. The transition from the Rückströmphase PH2 in the delivery phase PH3 is too a time t1. The sum of in the FIG. 3 Phases PH1 to PH3 between the two illustrated top dead centers OT corresponds to a period of the working movement of the piston 18, which in this case corresponds to half a rotation of the cam 17 and the drive shaft 10. A hatched area 48 additionally illustrates the delivery phase PH3.

Im oberen Bereich der Zeichnung von Figur 3 sind den drei Phasen PH1 bis PH3 entsprechende Zustände der Kraftstoffpumpe 3 - gemäß der Darstellung von Figur 2 - symbolisch zugeordnet.In the upper part of the drawing of FIG. 3 are the three phases PH1 to PH3 corresponding states of the fuel pump 3 - as shown in FIG FIG. 2 - symbolically assigned.

In dem zweiten Betriebsfall des Kraftstoffsystems 1 beginnt ab dem in der Zeichnung linken oberen Totpunkt OT die Saugphase PH1. Die Spule 22 des Elektromagneten 15 ist nicht bestromt. Das Einlassventil 30 ist druckgesteuert geöffnet und das Auslassventil 34 geschlossen. Entlang eines Pfeils 50 kann Kraftstoff von dem Einlass 28 durch das geöffnete Einlassventil 30 und durch die Öffnung 38 in den Förderraum 36 fließen. Durch die Abwärtsbewegung des Kolbens 18 in Richtung eines Pfeils 52 wird der Förderraum 36 zugleich vergrößert. Die innerhalb des Gehäuses 20 angeordneten Volumina der Kraftstoffpumpe 3 sind auch im zweiten Betriebsfall im Wesentlichen mit Kraftstoff gefüllt. Die Saugphase PH1 endet am unteren Totpunkt UT.In the second operating case of the fuel system 1 starts from the left in the drawing top dead center OT, the suction phase PH1. The coil 22 of the electromagnet 15 is not energized. The inlet valve 30 is opened under pressure control and the outlet valve 34 is closed. Along an arrow 50, fuel may flow from the inlet 28 through the opened inlet valve 30 and through the opening 38 into the delivery chamber 36. By the downward movement of the piston 18 in the direction of arrow 52, the delivery chamber 36 is simultaneously increased. The arranged within the housing 20 volumes of the fuel pump 3 are also filled in the second operating case substantially with fuel. The suction phase PH1 ends at bottom dead center UT.

In der Rückströmphase PH2, welche am unteren Totpunkt UT beginnt, bleiben das Einlassventil 30 geöffnet und das Auslassventil 34 geschlossen. Die Spule 22 ist weiterhin nicht bestromt. Durch die Aufwärtsbewegung des Kolbens 18 in Richtung eines Pfeils 54 wird das Volumen des Förderraums 36 verkleinert. Dabei wird der in dem Förderraum 36 befindliche Kraftstoff wenigstens teilweise durch die Öffnung 38 und das Einlassventil 30 entlang eines Pfeils 56 wieder heraus und in die Niederdruckleitung 7 gedrückt. Die Rückströmphase PH2 endet zum Zeitpunkt t1.In the Rückströmphase PH2, which begins at bottom dead center UT, the inlet valve 30 remain open and the exhaust valve 34 is closed. The coil 22 is still not energized. By the upward movement of the piston 18 in the direction of arrow 54, the volume of the delivery chamber 36 is reduced. In this case, the fuel located in the delivery chamber 36 is at least partially pushed out through the opening 38 and the inlet valve 30 along an arrow 56 and into the low-pressure line 7. The Rückströmphase PH2 ends at time t1.

Der Übergang von der Rückströmphase PH2 in die nachfolgende Förderphase PH3 wird ausgelöst, indem die Spule 22 bestromt wird. Der Strom I hat dazu beispielsweise den in der Figur 3 im unteren Koordinatensystem dargestellten Verlauf. Der Kolben 18 befindet sich kurz vor dem oberen Totpunkt OT weiterhin in der Aufwärtsbewegung. Der Anker 24 und die Ventilnadel 35 werden in der Zeichnung durch magnetische Kraft nach links bewegt. Durch die Kraft der Ventilfeder 31 wird der Ventilkörper 33 - gegebenenfalls unterstützt durch Strömungskräfte - ebenfalls nach links bewegt und das Einlassventil 30 somit geschlossen. Das Auslassventil 34 bleibt geschlossen. Durch die restliche Hubbewegung des Kolbens 18 bis zum oberen Totpunkt OT wird als Folge des geschlossenen Einlassventils 30 und des geschlossenen Auslassventils 34 der Kraftstoff im Förderraum 36 komprimiert und ein hydraulischer Druck in dem Förderraum 36 aufgebaut. Als Folge des hydraulischen Drucks bzw. eines Druckunterschieds zu Bereichen außerhalb des Gehäuses 20 wird eine geringe Kraftstoffmenge in Richtung von Pfeilen 58 in der Zeichnung nach unten zwischen die Umfangsfläche des Kolbens 18 und den Zylinder 37 gepresst. Durch die sich derart ergebende Leckageströmung wird der Kolben 18 geschmiert.The transition from the Rückströmphase PH2 in the subsequent delivery phase PH3 is triggered by the coil 22 is energized. The current I has, for example, in the FIG. 3 History displayed in the lower coordinate system. The piston 18 is located shortly before the top dead center OT continues in the upward movement. The armature 24 and the valve needle 35 are moved in the drawing by magnetic force to the left. By the power of Valve spring 31, the valve body 33 - possibly supported by flow forces - also moves to the left and the inlet valve 30 thus closed. The outlet valve 34 remains closed. As a result of the closed intake valve 30 and the closed exhaust valve 34, the fuel is compressed in the delivery chamber 36 and a hydraulic pressure is built up in the delivery chamber 36 due to the remaining stroke movement of the piston 18 up to the top dead center OT. As a result of the hydraulic pressure or a pressure difference to areas outside the housing 20, a small amount of fuel in the direction of arrows 58 in the drawing is pressed down between the peripheral surface of the piston 18 and the cylinder 37. By thus resulting leakage flow of the piston 18 is lubricated.

Der Förderwinkel 46 ist so bemessen, dass das Auslassventil 34 in allen Phasen PH1 bis PH3 geschlossen bleibt und somit gerade noch kein Kraftstoff in den Druckbereich 16 gefördert wird, sofern im Förderraum 36 der in dem Druckraum 16 herrschende hydraulische Druck nicht überschritten wird. Dieser Förderwinkel 46 wird auch als "Nullförderwinkel" bezeichnet, unterhalb dessen keine Förderung von Kraftstoff stattfindet. Dies wird durch eine geeignete Ansteuerung des Elektromagneten 15 durch die Steuer- und/oder Regeleinrichtung 19 erreicht. Dadurch kann einerseits eine maximale Schmierung der Kraftstoffpumpe 3 bewirkt werden, und andererseits eine ungewollte Förderung von Kraftstoff in den Druckbereich 16 vermieden werden. Der Nullförderwinkel kann auf den Winkel der Antriebswelle 10 der Kraftstoffpumpe 3 bezogen sein.The delivery angle 46 is so dimensioned that the exhaust valve 34 remains closed in all phases PH1 to PH3 and thus just no fuel is conveyed into the pressure region 16, provided that the pressure prevailing in the pressure chamber 16 hydraulic pressure is not exceeded in the delivery chamber 36. This conveying angle 46 is also referred to as "zero conveying angle", below which there is no delivery of fuel. This is achieved by a suitable control of the electromagnet 15 by the control and / or regulating device 19. As a result, on the one hand, maximum lubrication of the fuel pump 3 can be effected and, on the other hand, an undesired delivery of fuel into the pressure region 16 can be avoided. The zero-feed angle may be based on the angle of the drive shaft 10 of the fuel pump 3.

Die Ansteuerung des Elektromagneten 15 kann beispielsweise mit jedem Hub 44 der Kraftstoffpumpe 3 erfolgen. Alternativ kann die Ansteuerung nur gelegentlich oder periodisch erfolgen, wobei in dazwischen liegenden Intervallen keine Ansteuerung stattfindet. Eine nochmals andere Alternative besteht darin, die Ansteuerung der Ventileinrichtung 14 über eine erste begrenzte Anzahl von Hüben 44 mit jedem Hub 44 durchzuführen, und danach über eine zweite begrenzte Anzahl von Hüben 44 keine Ansteuerung vorzunehmen.The control of the electromagnet 15 can be done for example with each stroke 44 of the fuel pump 3. Alternatively, the drive may only be occasional or periodic, with no drive at intervening intervals. Yet another alternative is to perform the control of the valve device 14 over a first limited number of strokes 44 with each stroke 44, and thereafter to make no activation over a second limited number of strokes 44.

Zur optimalen Steuerung des Elektromagneten 15 berücksichtigt die Steuer- und/oder Regeleinrichtung 19 - unter Verwendung mindestens eines Kennfelds 6 - bei der Ermittlung des Nullförderwinkels mindestens eine der folgenden Größen, welche Betriebsgrößen der Brennkraftmaschine darstellen:

  • eine Drehzahl der Brennkraftmaschine;
  • ein Drehmoment der Brennkraftmaschine;
  • eine Temperatur der Brennkraftmaschine;
  • eine Temperatur des Kraftstoffs;
  • einen Kraftstoffdruck im Druckbereich 16; und/oder
  • einen Betriebszustand der Brennkraftmaschine, insbesondere eine Schubabschaltung.
For optimal control of the electromagnet 15 takes into account the control and / or regulating device 19 - using at least one map 6 - When determining the zero feed angle at least one of the following variables, which represent operating variables of the internal combustion engine:
  • a rotational speed of the internal combustion engine;
  • a torque of the internal combustion engine;
  • a temperature of the internal combustion engine;
  • a temperature of the fuel;
  • a fuel pressure in the pressure region 16; and or
  • an operating state of the internal combustion engine, in particular a fuel cut.

Figur 4 zeigt ein Flussdiagramm zur Abarbeitung des Verfahrens in dem Computerprogramm 8 der Steuer- und/oder Regeleinrichtung 19. Ausgehend von einem Start-Block 70 wird in einem Abfrage-Block 72 entschieden, ob eine Einschaltbedingung zur Durchführung des Verfahrens vorliegt. Dazu wird mittels der oben genannten Betriebsgrößen der erste Betriebsfall von dem zweiten Betriebsfall unterschieden. Dies ist in der Figur 4 jedoch nicht näher dargestellt. Wenn sich die Brennkraftmaschine aktuell in dem ersten Betriebsfall befindet, so liegt keine Einschaltbedingung vor und das Programm verzweigt zurück zu dem Start-Block 70. FIG. 4 shows a flowchart for processing the method in the computer program 8 of the control and / or regulating device 19. Starting from a start block 70, it is decided in a query block 72 whether a switch-on condition for carrying out the method is present. For this purpose, the first operating case is distinguished from the second operating case by means of the above-mentioned operating variables. This is in the FIG. 4 but not shown in detail. If the engine is currently in the first operating condition, there is no power-on condition and the program branches back to the start block 70.

Liegt dagegen eine Einschaltbedingung vor, so wird in einem nachfolgenden Block 74 aus einem Kennfeld 6 und ebenfalls unter Berücksichtigung der oben genannten Betriebsgrößen der Förderwinkel 46 (Nullförderwinkel) ermittelt. Entsprechend dem so ermittelten Förderwinkel 46 wird der Elektromagnet 15 in dem zweiten Betriebsfall angesteuert und die Kraftstoffpumpe 3 somit in einer zu der Figur 3 vergleichbaren Weise betrieben.On the other hand, if there is a switch-on condition, the delivery angle 46 (zero-conveying angle) is determined in a subsequent block 74 from a characteristic diagram 6 and also taking into account the above-mentioned operating variables. According to the thus determined conveying angle 46 of the solenoid 15 is driven in the second operating case and the fuel pump 3 thus in a to the FIG. 3 operated in a comparable manner.

Nachfolgend wird in einem Block 76 ein Druck in dem Druckbereich 16 erfasst, woraus eine Rate bzw. ein Gradient des Drucks ermittelt wird. Dabei kann ergänzend eine mögliche Druckerhöhung infolge Erwärmung des Kraftstoffs im Druckbereich 16 mit steigender Dauer des zweiten Betriebsfalls berücksichtigt werden.Subsequently, in a block 76, a pressure in the pressure region 16 is detected, from which a rate or a gradient of the pressure is determined. In this case, a possible pressure increase due to heating of the fuel in the pressure region 16 can be taken into account in addition with increasing duration of the second operating case.

Danach wird in einem Abfrage-Block 78 geprüft, ob die ermittelte Rate größer ist als ein Grenzwert 80. Ist dies nicht der Fall, so wird wiederum zu dem Start-Block 70 verzweigt und das Programm dort fortgesetzt.Thereafter, it is checked in a query block 78, whether the determined rate is greater than a threshold value 80. If this is not the case, then in turn is branched to the start block 70 and the program continues there.

Ist die ermittelte Rate jedoch größer als der Grenzwert 80, so wird in einem folgenden Block 82 der Förderwinkel 46 schrittweise um zunächst eine Stufe verkleinert. Durch diese Sicherheitsfunktion wird bewirkt, dass die Förderphase PH3 bzw. der Förderwinkel 46 (Nullförderwinkel) verkürzt wird, wobei entsprechend weniger Druck in dem Förderraum 36 aufgebaut und das Auslassventil 34 somit stärker in Schließstellung beaufschlagt wird. Die Gefahr, dass ungewollt Kraftstoff in den Druckbereich 16 gefördert wird, wird also geringer. Danach wird ebenfalls zum Start-Block 70 zurück verzweigt und das Programm dort fortgesetzt.If, however, the determined rate is greater than the limit value 80, then in a following block 82 the conveying angle 46 is reduced stepwise by first one step. This safety function causes the delivery phase PH3 or the delivery angle 46 (zero conveying angle) to be shortened, whereby correspondingly less pressure is built up in the delivery chamber 36 and the outlet valve 34 is thus acted upon more strongly in the closed position. The risk that unintentionally fuel is conveyed into the pressure region 16, thus becomes smaller. Thereafter, the program branches back to the start block 70 and the program continues there.

Claims (8)

  1. Method for operating a fuel system (1) of an internal combustion engine, in which method, in at least a first operating situation, by means of a corresponding setting of a valve device (14), a fuel pump (3) compresses fuel in a delivery chamber (36) and delivers said fuel into a pressure region (16), and in which method, in at least a second operating situation, by means of a corresponding setting of the valve device (14), the fuel pump (3) delivers no fuel into the pressure region (16), characterized in that, in the second operating situation, the valve device (14) is occasionally or periodically activated with a zero-delivery angle such that, in a first phase of the working movement of the fuel pump, the fuel is drawn in from a low-pressure region, in a second phase, said fuel is delivered almost entirely back into the low-pressure region, and in a third phase, a residual quantity of the fuel is forced between movable elements of the fuel pump and the guide or bearing arrangement thereof, and in that no activation occurs in intervening intervals.
  2. Method according to at least one of the preceding claims, characterized in that the zero-delivery angle of a drive shaft (10) of the fuel pump (3), at which a compression begins by means of a corresponding setting of the valve device (14) without fuel being delivered into the pressure region (16), is determined taking into consideration at least one operating variable of the internal combustion engine.
  3. Method according to Claim 1, characterized in that the zero-delivery angle is determined taking into consideration multiple operating variables using at least one characteristic map (6).
  4. Method according to Claim 2 or 3, characterized in that the zero-delivery angle is determined taking into consideration at least one of the following variables:
    - rotational speed of the internal combustion engine;
    - torque of the internal combustion engine;
    - temperature of the internal combustion engine;
    - temperature of the fuel;
    - fuel pressure in the pressure region (16); and/or
    - operating state of the internal combustion engine, in particular an overrun cut-off state.
  5. Method according to any of Claims 2 to 4, characterized in that, if the pressure in the pressure region (16) rises at a rate greater than a threshold value (80), the zero-delivery angle is changed to such an extent that the rate remains below the threshold value (80).
  6. Method according to Claim 5, characterized in that a pressure increase as a result of warming of the fuel in the pressure region (16) with progressive operating duration is taken into consideration.
  7. Computer program (8), characterized in that it is programmed to carry out a method according to at least one of the preceding claims.
  8. Open-loop and/or closed-loop control device (19) of an internal combustion engine, characterized in that it comprises a memory on which a computer program (8) according to Claim 7 is stored.
EP11758210.6A 2010-11-23 2011-09-21 Method for operating a fuel system of an internal combustion engine Active EP2643582B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010061810A DE102010061810A1 (en) 2010-11-23 2010-11-23 Method for operating a fuel system of an internal combustion engine
PCT/EP2011/066416 WO2012069230A1 (en) 2010-11-23 2011-09-21 Method for operating a fuel system of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2643582A1 EP2643582A1 (en) 2013-10-02
EP2643582B1 true EP2643582B1 (en) 2019-02-27

Family

ID=44654122

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11758210.6A Active EP2643582B1 (en) 2010-11-23 2011-09-21 Method for operating a fuel system of an internal combustion engine

Country Status (5)

Country Link
EP (1) EP2643582B1 (en)
KR (1) KR101835301B1 (en)
CN (1) CN103221678B (en)
DE (1) DE102010061810A1 (en)
WO (1) WO2012069230A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206266A (en) * 2014-04-17 2015-11-19 株式会社デンソー fuel supply control device
DE102014221674A1 (en) * 2014-10-24 2016-04-28 Robert Bosch Gmbh Method for controlling an electrically controllable suction valve
DE102015219153B4 (en) * 2015-10-05 2017-12-21 Continental Automotive Gmbh High-pressure fuel pump and method for reducing nonuniformities in the driving force of a high-pressure fuel pump
EP3346121B1 (en) * 2017-01-10 2019-09-11 Continental Automotive GmbH Magnetic valve for a fuel injection system and high pressure fuel pump
DE102018200715A1 (en) * 2018-01-17 2019-07-18 Robert Bosch Gmbh Fuel delivery device for cryogenic fuels
DE102018211338A1 (en) * 2018-07-10 2020-01-16 Robert Bosch Gmbh Fuel delivery device for cryogenic fuels and method for operating a fuel delivery device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19834121A1 (en) 1998-07-29 2000-02-03 Bosch Gmbh Robert Fuel supply system of an internal combustion engine
JP4123729B2 (en) * 2001-03-15 2008-07-23 株式会社日立製作所 Control method of fuel supply device
JP2005146882A (en) 2003-11-11 2005-06-09 Toyota Motor Corp Fuel injection device for internal combustion engine
DE102004019152B4 (en) * 2004-04-21 2007-05-31 Robert Bosch Gmbh Method for operating a solenoid valve for quantity control
EP1781917B1 (en) 2004-06-15 2012-11-28 Toyota Jidosha Kabushiki Kaisha A control device for a purge system of a dual injector fuel system for an internal combustion engine
JP4375164B2 (en) 2004-08-23 2009-12-02 トヨタ自動車株式会社 Ignition timing control method for internal combustion engine
JP4466340B2 (en) 2004-11-18 2010-05-26 トヨタ自動車株式会社 Fuel supply device
DE102004056665A1 (en) * 2004-11-24 2006-06-01 Robert Bosch Gmbh Method, computer program and control and / or regulating device for operating an internal combustion engine, and internal combustion engine
JP4603867B2 (en) * 2004-12-07 2010-12-22 日立オートモティブシステムズ株式会社 Control device and fuel supply system for variable displacement fuel pump
JP4492351B2 (en) 2005-01-04 2010-06-30 トヨタ自動車株式会社 Dual injection type internal combustion engine
JP4552694B2 (en) 2005-03-02 2010-09-29 トヨタ自動車株式会社 Vehicle fuel supply device
DE102005033638A1 (en) * 2005-07-19 2007-01-25 Robert Bosch Gmbh Fuel conveyor, in particular for an internal combustion engine
JP4455470B2 (en) * 2005-10-19 2010-04-21 日立オートモティブシステムズ株式会社 Controller for high pressure fuel pump and normally closed solenoid valve of high pressure fuel pump
JP4572950B2 (en) * 2008-04-10 2010-11-04 株式会社デンソー Common rail pressure control device and fuel injection system using the same
US8033268B2 (en) * 2009-01-21 2011-10-11 GM Global Technology Operations LLC Asynchronous control of high-pressure pump for direct injection engines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2012069230A1 (en) 2012-05-31
DE102010061810A1 (en) 2012-05-24
KR20140004085A (en) 2014-01-10
CN103221678B (en) 2016-06-15
KR101835301B1 (en) 2018-03-08
CN103221678A (en) 2013-07-24
EP2643582A1 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
DE102007043565B4 (en) High pressure fuel pump control device for an internal combustion engine
DE112014002349T9 (en) Fuel injection control device and fuel injection system
DE10064055B4 (en) Control device for high pressure fuel pump and for direct injection engine
DE3885689T2 (en) High pressure variable pump.
DE102009026517B4 (en) fuel supply device
EP2643582B1 (en) Method for operating a fuel system of an internal combustion engine
DE112015004236B4 (en) Control device for a high-pressure pump
DE102013213506B4 (en) Method for operating a fuel injection system with a fuel filter heater and fuel injection system
EP1741912A2 (en) Method and device for controlling a fuel injection system for an internal combustion engine of a vehicle
DE112015002295T5 (en) Device for controlling a high-pressure pump
DE102012103139B4 (en) Fuel injection control device for an internal combustion engine
EP1327766B1 (en) Method, computer programme and control and/or regulation device for operating an internal combustion engine, and internal combustion engine
DE112014000612B4 (en) Control device for a high pressure pump
DE102013215909A1 (en) Method for controlling and regulating a high-pressure fuel pump of an internal combustion engine provided with an inlet valve with an electromagnetic actuator
DE102013100687B4 (en) Fuel injection controller
EP3209879B1 (en) Method for controlling an electrically controllable suction valve
DE102021108557A1 (en) SYSTEM AND METHOD OF CONTROLLING A DIRECT INJECTION FUEL PUMP
WO2004018867A1 (en) Fuel injection device for an internal combustion engine
DE102016204408A1 (en) Method for determining a setpoint for a manipulated variable for controlling a low-pressure pump
DE102007024129A1 (en) Method and apparatus for oil circulation management in an internal combustion engine
DE19738502A1 (en) High pressure generation system
WO2017157750A1 (en) Method for ascertaining a target value for a regulating variable in order to actuate a low-pressure pump
EP2594770A1 (en) Method for operating a direct injection internal combustion engine
DE102011002475B4 (en) Fuel injection control device of an internal combustion engine
DE10352005A1 (en) Method for operating an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130624

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161122

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181115

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1101707

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011015413

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190528

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011015413

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190921

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190921

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190921

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1101707

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502011015413

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231124

Year of fee payment: 13