[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2536811B1 - Équipement de gazéification et procédé de gazéification - Google Patents

Équipement de gazéification et procédé de gazéification Download PDF

Info

Publication number
EP2536811B1
EP2536811B1 EP10705847.1A EP10705847A EP2536811B1 EP 2536811 B1 EP2536811 B1 EP 2536811B1 EP 10705847 A EP10705847 A EP 10705847A EP 2536811 B1 EP2536811 B1 EP 2536811B1
Authority
EP
European Patent Office
Prior art keywords
gasification
zone
oxidation
air
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10705847.1A
Other languages
German (de)
English (en)
Other versions
EP2536811A1 (fr
Inventor
Armin Schwarz
Mario Urra Saco
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Big Dutchman International GmbH
Original Assignee
Big Dutchman International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Big Dutchman International GmbH filed Critical Big Dutchman International GmbH
Publication of EP2536811A1 publication Critical patent/EP2536811A1/fr
Application granted granted Critical
Publication of EP2536811B1 publication Critical patent/EP2536811B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • C10J3/26Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/32Devices for distributing fuel evenly over the bed or for stirring up the fuel bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • C10J3/40Movable grates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1606Combustion processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1609Post-reduction, e.g. on a red-white-hot coke or coal bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1846Partial oxidation, i.e. injection of air or oxygen only

Definitions

  • Another aspect of the invention is a gasification process for producing a flammable gas from a solid.
  • Gasification facilities or carburetor or gas generators of the aforementioned type and gasification processes are used to gas solid substances such as organic or inorganic carbonaceous materials, in particular wood, plants or plant residues, especially in pelletized form as completely as possible in a controlled process, to thereby to produce an ignitable, in particular combustible gas.
  • this gas thus produced is burned in a process downstream of the gasification to thereby perform work and, for example, operate a power generator.
  • EP 1 865 046 A1 are known a gasifier and a gasification process, which in a shaft gasifier in a three-stage process by gasification of the solid, partial oxidation and thermal decomposition of the gas and reduction generates an ignitable gas.
  • the disclosure of this patent application is incorporated by reference in its entirety EP 1 865 046 A1 included.
  • a disadvantage of the prior art disclosed in this patent application is that gasification often succeeds only incompletely and that the amount of energy lying in the solid is thereby not completely exhausted.
  • Another disadvantage of such prior art method or carburetor is that the carburetor tends to contamination during normal operation and thus relatively short maintenance intervals for its regular cleaning are required.
  • US 2009/0282738 For example, there is known an apparatus and method for producing biofuel having generally concentric chambers including a combustion chamber and at least one pyrolysis chamber.
  • US 2007/0006528 shows a method and apparatus for producing a fuel gas from biomass.
  • the apparatus includes a plurality of levels, each level including a plurality of radially extending air supply tubes.
  • the air supply pipes are distributed over the circumference.
  • Each level is supplied with variable air volumes.
  • a gasification zone is provided, which is functionally divided with respect to the temperature control and air supply in at least two, preferably more than two gasification sectors.
  • a functional division can be achieved, for example, in that the gasification sectors are not separated from one another by structural elements, but instead a separate air supply is provided for each gasification sector and the gasification sector essentially or at least in a temperature-relevant proportion from the air supply provided to it is supplied with air.
  • a total of contiguous and non-constructively divided gasification zone can be provided, which is virtually divided functionally due to the separate air supply in defined gasification sectors.
  • the gasification zone may also be divided by partitions such as partitions or the like such that transfer of solid and gas from one gasification sector to another gasification sector is not immediately possible, especially not directly, so that the gasification process in each gasification sector is largely isolated Process takes place.
  • the prevailing temperature is detected in each gasification sector.
  • a corresponding temperature measuring device which measures, for example, by means of a single temperature measuring instrument in successive measuring cycles, the temperature of the individual gasification sectors or which comprises a plurality of temperature measuring devices and a respective temperature measuring device is associated with a gasification sector.
  • the temperature measuring device is signal-wise coupled to a control unit which serves to set the temperature in each gasification sector in an optimal range for the gasification. It is to be understood that the control device can in particular regulate a closed control process in a control loop.
  • the control device is in turn signal-technically coupled to an air supply unit which is designed to supply air to each gasification sector.
  • each gasification sector can be supplied with an ideal air volume for the conditions prevailing in this gasification sector or, in certain situations, no air can be supplied.
  • a gasification sector too low a temperature, ie a temperature below the ideal process temperature in the reverse case, that is, too high a temperature above the ideal process temperature in a gasification sector, to reduce the supply of air to this gasification sector.
  • another detection device can also be used, which allows a direct or indirect conclusion on the efficiency of the gasification process in the respective sector, for example an analysis device for determining the composition of the pyrolysis gas or parts thereof.
  • the gasification zone in at least two, preferably several sectors, for example, four each over a peripheral portion of 90 ° extending gasification sectors is divided and the gasification based on the prevailing temperature and their regulation or control by air supply in each gasification sector separately is controlled or regulated.
  • the gasification sectors may be evenly or non-uniformly distributed around the circumference and be provided with two, three, four, five or more sectors.
  • the oxidation zone is, based on its cross-section, at least partially, preferably completely surrounded by the gasification zone. Accordingly, the oxidation zone is arranged centrally within the gasification device by being surrounded by the gasification zone in relation to a cross section through the gasification device at least in a region, but preferably completely. As a result, in particular, an annular gasification zone is formed around the oxidation zone and consequently enables effective heat transfer from the gasification zone into the oxidation zone and vice versa.
  • this embodiment can be realized such that the gasification device is designed as a shaft carburetor and the oxidation zone is designed as centrally disposed within the Schachtvergasers oxidation chamber, which is surrounded by an annular gasification zone.
  • an air supply tube connected at its first end to the oxidation zone, in particular protruding into the oxidation zone, and connected at its other end to a source of oxygen-containing air.
  • This training is executable or independently and without such a divided gasification zone, temperature measuring unit, control unit and / or air supply both in connection with the above-described, divided into several adjacent gasification sectors gasification zone and related temperature measuring unit, control unit and air supply.
  • the air supply tube preferably extends from an upper end of the gasification device in the longitudinal direction, in particular along the central axis of the gasification device, downwards in the direction of the oxidation zone.
  • the air supply tube is at least partially disposed in a cover tube and an annular space between the air supply tube and the cover tube is formed, which is connected at its first end to the gasification zone and connected at its other end to a source of oxygen-containing air is.
  • the gasification zone as described in the prior art, can be supplied with the air required for the gasification from the outside, for example via a plurality of air inlet pipes or nozzles projecting from the outside into the gasification zone.
  • this cross-sectional components should also achieve an efficient gasification, which are spaced from the outside of this air supply, it is advantageous to provide a further, in the vicinity of these cross-sectional areas opening air supply. This can be done effectively by the sheath tube.
  • the sheath tube may in principle be arranged so that it runs in the interior of the gasification device, in particular, if the gasification device is designed as a shaft carburetor, along and parallel, preferably coaxially to the longitudinal axis of the shaft gasifier. In this way, an introduction of air into a central region of the gasification zone, in particular in that region of the gasification zone which directly adjoins the oxidation zone, is made possible.
  • the casing pipe may also be configured to have separate air ducts, in particular the same number as the number of gasification sectors, around the duct between the duct and the air duct To be able to adapt air individually to the needs of the respective gasification sector. This can be achieved for example by radially extending partitions, through which the annulus is divided into several annulus sectors and these annulus sectors are subjected to an individual air mass flow.
  • air in particular ambient air can be understood, but this gas or gas mixtures are to be understood, which differ from the composition of the ambient air, especially for example gas mixtures containing an increased proportion of oxygen or Gas mixtures to which are admixed components which act as a catalyst or which contain particular gasification or oxidation-promoting components or components which prevent deposits within the gasification apparatus.
  • these proportions may be gaseous fractions.
  • the proportions can also be added in liquid form, for example in the form of an aerosol or in solid form, for example in the form of a powder.
  • the supplied air can be enriched in certain process situations with water or steam in order to favorably influence the pyrolysis or gasification or oxidation or, as explained below, reduction.
  • the oxidation zone is arranged in an oxidation chamber bounded by one or more walls, in particular limited to the gasification zone, and that at least segments of these walls, preferably all walls, are movable with respect to the gasification zone are guided, in particular are guided rotatably.
  • this training may be practiced in combination with the previously discussed partitioning of the gasification zone in gasification sectors and the temperature measuring unit and the control unit and / or the air supply means or without this division and units or devices, i. insofar represents an independent training a gasification of the initially described construction.
  • the walls at least partially, but in particular to move a total, a relative movement between the stored in the gasification solids and the moving walls is achieved, whereby the structure of adhering to these walls solid layer, for example by precipitation from the pyrolysis gases , can be effectively prevented.
  • this build-up of precipitates or deposits can reduce the efficiency of the gasification, on the other hand impair or disturb the above-mentioned functioning of the gasification device.
  • the movement can be carried out as a rotational movement, for example about the longitudinal axis of the gasification device, in particular if the gasification device is designed as a shaft gasifier.
  • other forms of movement are conceivable, for example translational movements.
  • the mode of movement may be a continuous movement in one direction, but in certain applications, reciprocal, that is to say reciprocal, are also involved. reciprocating motion forms with a regular direction of motion reversal advantageous.
  • an air supply pipe is provided, be provided in particular that the walls or wall segments are mechanically coupled to the air supply pipe for transmitting a movement, in particular a rotational movement and preferably an actuator is provided, which is coupled to the air supply pipe for introducing the movement, or the rotational movement.
  • a movement in particular a rotational movement and preferably an actuator is provided, which is coupled to the air supply pipe for introducing the movement, or the rotational movement.
  • an effective and structurally reliable transmission of the movement to the wall or walls is achieved, which define or limit the oxidation zone.
  • both a translational movement direction for example in the longitudinal direction of a gasification device designed as a shaft carburetor or a rotational movement, can be provided via the air supply tube, be realized, for example, about the longitudinal axis of a gasification device designed as a shaft carburetor or a motion form composed thereof.
  • one or more blade elements are arranged on one or more walls of the oxidation chamber, which extend from the walls into the gasification zone and are designed to move by movement of the wall or of the wall segment to which it is attached are to cause a conveying, crushing or mixing movement in the solid in the gasification zone.
  • Such blade elements which may be embodied, for example, in the form of paddles, rods, blades with or without twisting, cause mixing and optionally comminution and / or promotion in the solids region into which they extend when they extend relative to this move.
  • the blade elements may be arranged on a plane or staggered with respect to one another, for example along a helical line on the outer surface of the walls delimiting the oxidation zone, and in particular arranged circumferentially about a longitudinal axis of a gasification device designed as a shaft carburetor.
  • Such blade elements can contribute to a more homogeneous composition of the solids in the region of the gasification zone both in a translatory, but in particular in a rotating movement of the wall element or the wall / walls to which they are attached and thereby achieve a more efficient gasification.
  • a reduction zone which is connected to the oxidation zone for supplying the raw gas formed in the oxidation zone and is designed to reduce the raw gas supplied to it.
  • a fuel gas can be generated from the pyrolysis gas processed in the oxidation zone.
  • filtering of solid constituents by the coke in the reduction zone can furthermore be achieved.
  • other methods for filtering for example by means of filter candles or the like may be provided.
  • the gasification apparatus of the invention by comprising: an arrangement of the gasification zone and the oxidation zone in a shaft carburetor having a top opening for filling with the solid to be gasified, in which the gasification zone is arranged below the filling opening and the gasification zone is at least partially annular and surrounds the oxidation zone, wherein the oxidation zone is preferably arranged centrally with respect to the cross section of the shaft gasifier and one or the air supply pipe extending from the oxidation zone along the longitudinal axis of the shaft gasifier and is rotatably mounted for transmitting a rotary motion to a limiting the oxidation zone wall or more oxidation zone bounding walls.
  • a pit gasifier in which a gasification zone and an oxidation zone are arranged adjacent to each other in such a manner that the oxidation zone is formed as a central oxidation chamber and surrounded by the gasification zone and thus spaced from a serving as a housing outer wall of the pit gasifier ,
  • the shaft carburetor may in particular be cylindrical, i. be round in cross-section, whereby an annular gasification zone bounded by round side walls can be formed therein.
  • the annular gasification zone is defined by correspondingly formed contiguous gap sections between the outer wall of the shaft gasifier forming the housing and the walls delimiting the oxidation zone.
  • gravity-induced especially exclusively by gravity generated transport of solids from an upper filling opening for fresh, un-gassed material and a lower export opening for degassed material (coke) is effected, one by blade elements, such as previously described, local mixing or conveying of the solid in or against the direction of gravity is hereby included in the invention and is also understood as a general gravity-induced transport of the solid.
  • the embodiment as a shaft carburettor according to this further development can in particular with the above-described features, such as the air supply pipe, the arranged thereon Umhüllungsrohr for supplying air into the inner region of the gasification zone and / or the division of the gasification zone into several gasification sectors with a corresponding temperature measuring unit, control unit and air supply means are trained.
  • the formation of a shaft gasifier is particularly suitable to with the in the characterizing part of claims 1 and / or 3 and / or 5 defined in insulated manner or combined manner can be developed and this case also appropriate training can be provided according to the further subclaims.
  • a shaft carburetor it is particularly preferred in the embodiment described above as a shaft carburetor to provide a reduction zone which is arranged below the gasification zone and the direct transfer of solids from the gasification zone into the reduction zone allows and preferably a portion of the oxidation zone is arranged so that it the gasification zone separates in the flow direction of the generated gas from the reduction zone.
  • a fuel gas can be produced to produce an additional filtering effect.
  • the reduction zone for receiving pyrolyzed solid from the gasification zone is formed and arranged so that the pyrolyzed solid passes by gravity from the gasification zone in the reduction zone and at the lower end of the reduction zone, a movable grate is arranged for screening the ash falling down in the reduction zone.
  • a particularly effective reduction in the reduction zone is achieved.
  • the grate on the one hand, is translationally reciprocal or continuously rotatable in order to promote a fall of small coke and ash fractions into an underlying chamber, on the other hand, the grate may also be vertically movable, thereby altering the height of the reduction zone and to adapt to the process flow or the supplied solids.
  • the gasification device can be further developed by a pressure measuring device which is designed to measure a pressure difference over at least part of the flow path of the gas generated inside the gasification device and is signal-coupled to a control device which is signal-technically coupled to an actuator for moving a grate upon movement, discharges fines from the packed bed of solids within the reduction zone into a plenum, wherein the controller is configured to actuate the actuator when a predetermined pressure differential is exceeded and is preferably configured to terminate the actuator actuation when a lower, predetermined pressure differential is undershot , With this training, a pressure-dependent removal of fines within the solids bed is effected, thus achieving an efficient operation.
  • the pressure difference can in particular over the entire flow path starting from the ambient air, which enters the gasifier as fresh air, up to the outlet for the finished fuel gas from the gasifier.
  • an operation method in which a pressure difference is measured over at least part of the flow path of the generated gas and a grate is moved by means of an actuator to remove fines from the reduction zone when the measured pressure difference exceeds a predetermined value, and preferably Movement of the grate is stopped when the pressure difference falls below a smaller, predetermined value.
  • this embodiment as a device or method can also be carried out independently of the division of the degassing zone into a plurality of sectors and the corresponding separate air supply devices and temperature measuring devices and the process control corresponding thereto.
  • a further aspect of the invention is a gasification process according to claim 11.
  • the gasification process according to the invention can be carried out in particular with the above-described gasification device and is characterized by a particularly effective process control in the gasification zone by dividing these into individual process chambers in the form of the gasification sectors and in these gasification sectors, a separate temperature monitoring and control or regulation takes place, a particularly efficient gasification is achieved.
  • the gasification process may alternatively or in addition to this division of the gasification zone into gasification sectors be formed by the oxidation zone is arranged in a chamber which is bounded by one or more walls which are moved, in particular rotated. By this movement, in particular rotation, the formation of deposits on the walls or the wall of the oxidation chamber is prevented or at least reduced.
  • blade elements are arranged, which extend into the gasification zone and comminuted by the blade elements of the solid mechanically mixed and / or stirred.
  • air is supplied to the oxidation zone via an air supply pipe and the gasification zone via a gasification zone Air is supplied to the air supply tube surrounding the cover tube and that the wall or walls of the oxidation zone are preferably rotated by means of the air supply tube.
  • the casing tube and the annulus formed thereby between the casing tube and the air supply tube can also be divided into a plurality of peripheral sectors, thereby individually controlling the air in the individual gasification sectors independently of one another be able to supply and connects the individual peripheral portions of the annular space for this purpose to a corresponding individually regulating air supply device.
  • a shaft gasifier is shown, which is bounded by a substantially cylindrical housing 10 with a circumferential housing wall to the environment. At the upper end, a cover 11 is arranged and closes the top of the housing with the exception of a central passage opening 12. Through the passage opening 12, an air supply pipe 20 and a surrounding this air supply pipe surrounding pipe 30 is guided. The air supply tube 20 and the sheath tube 30 extend centrally longitudinally along the central longitudinal axis 13 of the carburetor.
  • a filling opening 40 which is closable by means of a cover 41 and adjoins a sloping from top to bottom, with respect to the central longitudinal axis 13 obliquely extending channel 42 is disposed in the upper region of the carburetor and serves to supply solid.
  • the channel 42 opens into a gasification zone 50, in which solid is placed and subjected to pyrolysis.
  • the gasification zone 50 is disposed between the outer wall 10 of the gasifier and a central oxidation chamber 60 and is separated from the oxidation zone 60 by a cylindrical wall 61.
  • the gasification zone 50 is of annular design and surrounds the oxidation zone 60 on all sides in a horizontal cross section.
  • air inlet nozzles 71a, c 72a, c which extend in the radial direction to the central longitudinal axis 13 and are introduced in a circumferential row in the housing wall 10, air with an oxygen content.
  • the air supply pipes 71a, c 72a, c are arranged in a total of two planes and distributed uniformly over the circumference of the carburetor.
  • the air inlet nozzles 71a, c are surrounded by an externally attached to the housing 10 annular channel 75a, c, through which the air is circumferentially distributed to all air inlet nozzles. Air is introduced from outside into the annular channel 75a, c via openings 76a, c. In the same way, the air inlet nozzles 72a, c are surrounded by an annular channel 77a, c arranged externally on the housing 10, can enter the air via openings 78a, c and via which the air is distributed circumferentially to all the air inlet nozzles 71a, c 72a, c.
  • annular space 31 is formed through which also air is passed, which is supplied via an air inlet pipe 32 to the annular space 31 from an air source.
  • air inlet pipe 32 For this annular space 31, the air enters a total of four circumferentially distributed and offset by 90 ° to each other air pipes 33, 34, which extend radially from the annular space 31, starting outwards. From the air pipes 33, 34, the air exits at the outer end and is deflected obliquely downward into the annular gasification zone 50.
  • the gasification zone 50 is supplied with air from outside via the air inlet nozzles 71a, c, 72a, c, and air is supplied from the inside via the air pipes 33, 34, resulting in a uniform penetration of the solids in the gasification zone 50 with air.
  • the oxidation zone 60 is covered by a conical housing section 62 sloping downwardly from above, thereby facilitating the supply of solids from the feed channel 42 into the gasification zone 50 solely by gravity.
  • the pyrolysis gas obtained in the gasification zone 50 by pyrolysis passes through openings 63 a-d, which are distributed on a horizontal plane circumferentially on a cylindrical housing 61 in the oxidation zone.
  • the raw gas is substoichiometrically converted by partial oxidation and thermal cracking into short carbon chains at a temperature of about 1000 ° C or more.
  • air is supplied via the air supply tube 20 of the oxidation zone via an air inlet channel 21 as an oxidizing agent, which exits from a plurality of circumferentially distributed at the lower end of the air supply pipe 20 openings 22.
  • an end-side axial opening 23 is arranged, which serves to receive an upper temperature sensor.
  • the solids pyrolyzed in the gasification zone 50 continue to slide downwards due to gravity and are conveyed through obliquely outwardly downwardly arranged conical baffles into an inner, cylindrically delimited reduction zone 80. This promotion is also solely due to the influence of gravity.
  • the partially oxidized in the oxidation zone and thermally cracked raw gas is withdrawn via a discharge channel 90, which is inserted into the housing wall 10 at the lower end of the carburetor.
  • the entire gas flow guide within the carburettor is effected solely by a vacuum applied to the exhaust duct 90, with which the fuel gas is withdrawn from the carburetor.
  • the temperature in the gasification zone is measured by means of temperature sensors inserted in openings 51a, c.
  • four openings 51a-d offset by 90 ° are provided (the openings 51b, d are outside the cutting plane and are not visible or hidden by the oxidation zone).
  • the temperature in the degassing sectors can be measured separately, as follows Fig. 3 described in more detail.
  • the temperature in the oxidation zone can be measured by means of a temperature probe.
  • the temperature thus measured represents a reliable value for the process temperature in the oxidation zone and is used to control the supply of the oxidizing agent, in this case the air, by means of a control device in the oxidation zone as an input variable.
  • the partially oxidized and thermally cracked raw gas flows through the coke located above a grate 100, which is produced from the solid gasified in the gasification zone 50 and falls downwards.
  • the raw gas is passed through the stored on the grid 100, fully degassed coke and thereby filtered and chemically reduced.
  • the raw gas then ultimately withdrawn through the opening 90 is therefore of high quality and extremely low in tar.
  • the grate 100 is guided by means of rollers 101 for a translational reciprocal movement and can be coupled by means of a rod 102 to a corresponding actuator.
  • the movement of the grate causes fine ashes and particles to fall through into a collecting space 103.
  • the rust movement is controlled as a function of a pressure difference.
  • the pressure difference is calculated from the negative pressure at the outlet duct 90 and the ambient pressure. When a predetermined pressure difference is exceeded, a rust movement is performed until the pressure difference has dropped below a lower, predetermined value.
  • Fig. 2 shows a section of a second embodiment.
  • an oxidation zone 160 which is delimited by a cylindrical wall 161.
  • the oxidation zone 160 is bounded at its upper end by a conical housing wall 162, in which an air supply pipe 120 and a sheath tube 130 enclosing it is inserted.
  • the air supply pipe and the sheath tube is rotatably supported and can rotate about the longitudinal axis 113 of the carburetor. This will both the housing wall 162 as well as the housing wall 161 set in rotation about the central longitudinal axis 113, which prevents deposition of pyrolysis gas constituents and the formation of constituent layers on these walls.
  • a plurality of blades 164 a-f are attached to the cylindrical housing wall 161.
  • Each blade 164 a-f extends from the housing wall 161! radially outward and thus penetrates the gasification zone.
  • the blades 164 a-f are vertically staggered to each other along a helical line on the housing wall 161. As the housing 161 rotates, the blades 164a-f effect mixing and loosening by means of upward transport of the particulate matter disposed in their zone in the gasification zone thereby producing a homogeneous and efficient gasification of this solid.
  • the air inlet nozzles 171a, c, 172a, c are arranged above the plane in which the uppermost blades 164 a-f are located, where they introduce air into the gasification zone from the outside.
  • air is supplied from the inside via the annular space between the sheath tube 130 and the air supply tube 120.
  • Fig. 3 For example, a horizontal cross section through the carburetor is shown at the level of the openings in the oxidation chamber wall 61 and 161 and the air inlet nozzles 171a, c, respectively. How out Fig. 3 can be seen, enters from an annular channel 175 ad through a plurality of radially formed in the housing 110 openings 171a-d air in the gasification zone 150a-d.
  • the annular channel is subdivided into four annular channel sectors 175a-d by means of radially extending partition walls 179a-d, which are spaced apart by 90 ° in the circumferential direction. Air may enter each annular channel sector 175a-d via one air inlet port 176a-d, respectively, and this air supply may be individually controlled in amount for each annular channel sector 175a-d.
  • the air enters the gasification zone via respective air inlet nozzles 171a-d respectively associated with each ring channel sector.
  • This effects a functional separation of the gasification zone into four gasification sectors 150a-d with regard to the air supply and consequently the temperature control.
  • the temperature is measured individually and the air supply is controlled or regulated accordingly.
  • the air supply to each gasification sector is controlled individually via a corresponding throttle by means of a control device 155.
  • the air supply is increased, at too high a temperature for optimum pyrolysis, the air supply is throttled.
  • a separate temperature measuring probe and an air supply device to be controlled separately are provided for each gasification sector to be controlled separately.
  • the control / reboiling can be done via a single or a common electronic control unit.
  • the pyrolysis gas enters the central oxidation zone 160 via openings 163 where it is converted by partial oxidation and thermal cracking. From there, the raw gas enters down into the reduction zone and is withdrawn via the exhaust pipe from the carburetor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Claims (15)

  1. Equipement de gazéification pour la production d'un gaz inflammable à partir d'un solide, comprenant :
    - une zone de gazéification (50), dans laquelle le solide peut être introduit par une unité de remplissage (40),
    - une zone d'oxydation (60), pour l'oxydation du gaz produit, qui est reliée à la zone de gazéification pour envoyer dans la zone d'oxydation le gaz produit dans la zone de gazéification,
    dans lequel la zone de gazéification est subdivisée en plusieurs secteurs de gazéification voisins (150a-d), une unité de mesure de la température (51a.c) est présente, qui est conçue pour mesurer la température régnant dans chaque secteur de gazéification, et l'unité de mesure de la température est couplée, par les techniques de signalisation, à une unité de commande (155), qui est couplée par des techniques de signalisation à un dispositif d'amenée d'air (171a-d, 175a-d, 176a-d), qui est conçu pour amener de l'air individuellement à chaque secteur de gazéification, la quantité d'air amenée à chaque secteur de gazéification par unité de temps dépendant de la température qui y est mesurée,
    caractérisé par une zone de réduction, qui est disposée pour le transport par gravité du solide pyrolysé de la zone de gazéification à la zone de réduction, et est reliée à la zone d'oxydation pour amener le gaz brut formé dans la zone d'oxydation, et est conçue pour réduire le gaz brut qui y est amené,
    caractérisé en ce que la zone d'oxydation (60, 160) est, par rapport à sa section transversale, entourée au moins partiellement, et de préférence complètement, par la zone de gazéification (50, 150).
  2. Equipement de gazéification selon la revendication 1, caractérisé par un tube d'amenée d'air (20 ; 120), qui en sa première extrémité est relié à la zone d'oxydation, en particulier pénètre dans la zone d'oxydation, et en son autre extrémité est relié à une source d'air oxygéné.
  3. Equipement de gazéification selon la revendication 2, caractérisé en ce que le tube d'amenée d'air est au moins par segments disposé dans une enveloppe tubulaire (30, 130), et un espace annulaire est réalisé entre le tube d'amenée d'air et l'enveloppe tubulaire, qui en sa première extrémité est relié à la zone de gazéification et en son autre extrémité est relié à une source d'air oxygéné.
  4. Equipement de gazéification selon l'une des revendications précédentes, caractérisé en ce que la zone d'oxydation est disposée dans une chambre d'oxydation, qui est délimitée par une ou plusieurs parois (61, 62 ; 161, 162), en particulier est délimitée par rapport à la zone de gazéification, et en ce qu'au moins des segments de ces parois, de préférence la totalité des parois, sont guidés de façon à pouvoir se déplacer par rapport à la zone de gazéification, et en particulier sont guidés en rotation.
  5. Equipement de gazéification selon la revendication 2 ou 3 et la revendication 4, caractérisé en ce que les parois (61, 62) ou les segments de paroi sont mécaniquement couplés au tube d'amenée d'air (20), pour transmission d'un mouvement, en particulier d'un mouvement de rotation, et de préférence un actionneur est mis à disposition, qui est couplé au tube d'amenée d'air pour déclencher le mouvement ou le mouvement de rotation, selon le cas.
  6. Equipement de gazéification selon la revendication 4 ou 5, caractérisé en ce qu'un ou plusieurs éléments formant ailette (164a-d) sont disposés contre une ou plusieurs parois de la chambre d'oxydation, éléments qui s'étendent à partir des parois en pénétrant dans la zone de gazéification et sont conçus pour provoquer, sous l'effet du mouvement de la paroi ou du segment de paroi auquel ils sont fixés, un mouvement de transport ou de mélange dans le solide se trouvant dans la zone de gazéification.
  7. Equipement de gazéification selon l'une des revendications précédentes, caractérisé par une disposition de la zone de gazéification et de la zone d'oxydation dans un gazéificateur à cuve, qui présente une ouverture de remplissage, disposée en son extrémité supérieure, pour introduction d'un solide à gazéifier, dans lequel la zone de gazéification est disposée en-dessous de l'ouverture de remplissage, et la zone de gazéification est au moins par secteurs conçue sous une forme annulaire et entoure la zone d'oxydation, la zone d'oxydation étant de préférence disposée en position centrale par rapport à la section transversale du gazéificateur à cuve, le tube d'amenée d'air s'étendant, à partir de la zone d'oxydation, le long de l'axe longitudinal du gazéificateur à cuve et y étant logé en rotation pour la transmission d'un mouvement de rotation à une paroi délimitant la zone d'oxydation ou à plusieurs parois délimitant la zone d'oxydation.
  8. Equipement de gazéification selon la revendication 7, caractérisé en ce qu'une zone de réduction est disposée en-dessous de la zone de gazéification et est reliée à cette dernière pour le débordement direct du solide de la zone de gazéification à la zone de réduction, et de préférence un secteur de la zone d'oxydation étant disposé de façon à séparer de la zone de réduction la zone de gazéification dans le sens de l'écoulement du gaz produit.
  9. Equipement de gazéification selon la revendication 8, caractérisé en ce que la zone de réduction est conçue pour recevoir le solide pyrolysé provenant de la zone de gazéification et est disposée de telle sorte que le solide pyrolysé arrive, sous l'effet de la force de gravité, dans la zone de réduction en provenant de la zone de gazéification, et une grille mobile étant disposée à l'extrémité inférieure de la zone de réduction pour tamiser les cendres tombant de haut en bas dans la zone de réduction.
  10. Equipement de gazéification selon l'une des revendications précédentes, caractérisé par un dispositif de mesure de la pression, qui est conçu pour mesurer une différence de pression sur au moins une partie de la trajectoire d'écoulement du gaz produit à l'intérieur de l'équipement de gazéification et est couplé par des techniques de signalisation à un dispositif de commande, qui est couplé à un actionneur pour assurer le mouvement d'une grille, qui, lors de son mouvement, évacue les fines de la masse solide en vrac, à l'intérieur de la zone de réduction, dans un compartiment collecteur, le dispositif de commande étant conçu pour manoeuvrer l'actionneur quand la différence de pression dépasse une valeur prédéfinie, et de préférence est conçu de façon à mettre fin à la manoeuvre de l'actionneur quand la pression différentielle passe en-dessous d'une pression différentielle prédéfinie plus faible.
  11. Procédé de gazéification pour la production d'un gaz inflammable à partir d'un solide, comportant les étapes suivantes :
    - amenée du solide dans une zone de gazéification,
    - gazéification du solide dans la zone de gazéification par pyrolyse ou gazéification,
    - amenée du gaz de pyrolyse produit dans la zone de gazéification dans une zone d'oxydation, qui, sur la base de sa section transversale, est au moins partiellement et de préférence complètement entouré par la zone de gazéification,
    - amenée d'air dans la zone d'oxydation et conversion du gaz de pyrolyse en un gaz brut, dans une opération dans des conditions inférieures aux conditions stoechiométrique par oxydation partielle et dissociation dans la zone d'oxydation,
    - amenée du gaz de pyrolyse oxydé de la zone d'oxydation à une zone de réduction,
    - amenée, dans la zone de réduction, du solide partiellement ou entièrement pyrolysé,
    - réduction, en un gaz combustible, du gaz de pyrolyse oxydé dans la zone de réduction à l'aide du solide pyrolysé,
    caractérisé en ce que la gazéification a lieu dans plusieurs secteurs de gazéification de la zone de gazéification, la mesure de chaque secteur de gazéification est mesurée, et de l'air est envoyé dans chaque secteur de gazéification en une quantité qui dépend de la température mesurée dans chacun d'eux.
  12. Procédé de gazéification selon la revendication 11, caractérisé en ce que la zone d'oxydation est disposée dans un compartiment qui est délimité par une ou plusieurs parois, qui subissent un déplacement, en particulier une rotation.
  13. Procédé de gazéification selon la revendication 12, caractérisé en ce que des éléments formant ailettes sont disposés contre la ou les parois mobiles, ailettes qui s'étendent en pénétrant dans la zone de gazéification, le solide étant mécaniquement agité ou mélangé à l'aide des éléments formant ailettes.
  14. Procédé de gazéification selon l'une des revendications précédentes 11 à 13, caractérisé en ce que de l'air est amené à la zone d'oxydation par un tube d'amenée d'air, et de l'air est amené à la zone de gazéification par une enveloppe tubulaire entourant le tube d'amenée d'air, et en ce que la ou les parois de la zone d'oxydation sont de préférence mises en rotation à l'aide du tube d'amenée d'air.
  15. Procédé de gazéification selon l'une des revendications précédentes 11 à 14, caractérisé en ce qu'une différence de pression est mesurée sur au moins une partie de la trajectoire d'écoulement du gaz produit, et une grille est soumise à un mouvement à l'aide d'un actionneur, pour évacuer les fines de la zone de réduction quand la différence de pression mesurée dépasse une valeur prédéfinie, et de préférence il est mis fin au mouvement de la grille quand la différence de pression passe en-dessous d'une valeur prédéfinie plus petite.
EP10705847.1A 2010-02-16 2010-02-16 Équipement de gazéification et procédé de gazéification Not-in-force EP2536811B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/051947 WO2011101022A1 (fr) 2010-02-16 2010-02-16 Équipement de gazéification et procédé de gazéification

Publications (2)

Publication Number Publication Date
EP2536811A1 EP2536811A1 (fr) 2012-12-26
EP2536811B1 true EP2536811B1 (fr) 2015-10-14

Family

ID=43617895

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10705847.1A Not-in-force EP2536811B1 (fr) 2010-02-16 2010-02-16 Équipement de gazéification et procédé de gazéification

Country Status (6)

Country Link
US (1) US9115321B2 (fr)
EP (1) EP2536811B1 (fr)
JP (1) JP5627711B2 (fr)
CN (1) CN102844409B (fr)
RU (1) RU2542319C2 (fr)
WO (1) WO2011101022A1 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2536811B1 (fr) 2010-02-16 2015-10-14 Big Dutchman International GmbH Équipement de gazéification et procédé de gazéification
FR2965816B1 (fr) * 2010-10-12 2014-04-25 S3D Dispositif pour la transformation d'un combustible
DE202011004328U1 (de) * 2011-03-22 2012-06-25 Big Dutchman International Gmbh Schachtvergaser zum Betrieb bei einer unterstöchiometrischen Oxidation
CN102504869B (zh) * 2011-09-27 2014-07-16 中国科学院广州能源研究所 组合式垃圾气化炉
FR2985265B1 (fr) * 2011-12-29 2013-12-27 Cogebio Procede et equipement de gazeification en lit fixe
DE202012008777U1 (de) * 2012-09-13 2015-10-06 Big Dutchman International Gmbh Vorrichtung zur Erzeugung von Brenngas aus einem festen Brennstoff
SE536795C2 (sv) * 2012-09-28 2014-08-19 Cassandra Oil Technology Ab Reaktor, metod för att öka verkningsgraden i en reaktor ochanvändning av reaktorn
AT513811B1 (de) * 2013-01-04 2016-06-15 Fritsche Andreas Vergaservorrichtung
AT514524B1 (de) * 2013-07-01 2016-05-15 Gelhart Josef Reaktor zum Vergasen von Biomasse, insbesondere Holz
DE102013015920B4 (de) * 2013-09-20 2015-12-17 Recom Patent & License Gmbh Vorrichtung in Form eines 3-Zonen-Vergasers und Verfahren zum Betreiben eines solchen Vergasers zur thermischen Umwandlung von Abprodukten und Abfällen
DE102013017856A1 (de) * 2013-10-26 2015-04-30 Bernhard Böcker-Riese Festbettreaktor zur Vergasung von Brennstoffen
CZ26592U1 (cs) * 2013-12-18 2014-03-10 Tarpo Spol.S R.O. Zařízení pro vícestupňové zplyňování uhlíkatých paliv
DE102014004465B3 (de) * 2014-03-28 2015-04-09 Ettenberger Gmbh & Co. Kg Vergasungsreaktor
DE102014106901A1 (de) * 2014-05-16 2015-11-19 Steenova UG (haftungsbeschränkt) & Co. KG Vergaser und Verfahren zur Erzeugung eines brennbaren Gases aus kohlenstoffhaltigen Einsatzstoffen
JP6280484B2 (ja) * 2014-10-05 2018-02-14 株式会社 森のエネルギー研究所 木質バイオマスのガス化装置
DE202015100844U1 (de) * 2015-02-20 2016-05-27 Mike Antoniewski Holzvergasungsanlage
JP6762715B2 (ja) * 2015-12-28 2020-09-30 松下 靖治 ガス化炉
AT518221A1 (de) * 2016-02-04 2017-08-15 Gs Gruber-Schmidt Verfahren zur Sauerstoffzuführung bei Festbettreaktoren zur Erzeugung eines Schwachgases aus biogenen Stoffen
FR3067038B1 (fr) * 2017-05-31 2020-02-14 Raymond Guyomarc'h Dispositif et installation de conversion de matieres premieres carbonees et/ou hydrocarbonees seches en gaz de synthese
WO2019227162A1 (fr) * 2018-05-30 2019-12-05 Royal Melbourne Institute Of Technology Système de réaction de pyrolyse et procédé de pyrolyse d'une charge organique
RU199112U1 (ru) * 2020-03-27 2020-08-17 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" (ФГАОУ ВО СФУ) Газификатор углеродсодержащего сырья
CN115305119B (zh) * 2021-05-06 2024-05-14 卢玉升 径向气化炉
DE102022124762A1 (de) * 2022-09-27 2024-03-28 Blue Energy Group AG Gaserzeuger
EP4455251A1 (fr) * 2023-04-25 2024-10-30 Bioreactor OÜ Réacteur de gazéification de biomasse, système de fonctionnement à distance de celui-ci et procédé associé
DE102023112516A1 (de) 2023-05-11 2024-11-14 Andreas Fritsche Vorrichtung und Verfahren zur thermochemischen Herstellung von Synthesegas aus kohlenstoffhaltigen synthetischen Substanzen und/oder Biomassen

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1037051B (de) 1944-07-31 1958-08-21 Metallgesellschaft Ag Verfahren zum Schwelen und Vergasen fester Brennstoffe in Schachtgaserzeugern
DE3335544A1 (de) * 1983-09-28 1985-04-04 Herwig 1000 Berlin Michel-Kim Reaktorvorrichtung zur erzeugung von generatorgas aus brennbaren abfallprodukten
US5157176A (en) * 1990-07-26 1992-10-20 Munger Joseph H Recycling process, apparatus and product produced by such process for producing a rubber extender/plasticizing agent from used automobile rubber tires
JP3377630B2 (ja) * 1994-12-01 2003-02-17 三菱重工業株式会社 固定床ガス化炉及び有機系廃棄物のガス化方法
JP3426749B2 (ja) * 1994-12-01 2003-07-14 三菱重工業株式会社 固定床ガス化炉及び有機系廃棄物のガス化法
DE69535239T2 (de) 1994-07-20 2007-01-11 Mitsubishi Jukogyo K.K. Verbrennung von organischen Abfällen
ES2236115T3 (es) 1994-12-01 2005-07-16 Mitsubishi Jukogyo Kabushiki Kaisha Hornos de gasificacion de lecho fijo y procedimiento para gasificar residuos organicos.
DE19608826C2 (de) 1996-03-07 1998-03-26 Walter Kuntschar Gleichstrom-Vergasungsreaktor
CN1286749A (zh) * 1997-11-04 2001-03-07 株式会社荏原制作所 流动层气化燃烧炉
WO1999023431A1 (fr) 1997-11-04 1999-05-14 Ebara Corporation Four de gazeification et de chauffage a lit fluidise
EP0918236A1 (fr) 1997-11-19 1999-05-26 Alusuisse Technology & Management AG Réflecteur avec surface résistante
DE19846805A1 (de) 1998-10-10 2000-04-13 Clemens Kiefer Verfahren und Vorrichtung zur Vergasung und Verbrennung
WO2001051591A1 (fr) 2000-01-10 2001-07-19 Fuerst Adrian Dispositif et procede pour produire des gaz combustibles
EP1349907A4 (fr) 2000-11-17 2006-03-08 Jaw Entpr Llc Systeme et procede de gazeification de la biomasse a echelle reduite et fort debit
AU2028802A (en) 2000-12-08 2002-06-18 Janusz Franciszek Luterek Process and gas generator for generating fuel gas
DE10258640A1 (de) 2002-12-13 2004-06-24 Björn Dipl.-Ing. Kuntze Verfahren und Vorrichtung zur Erzeugung von Brenngas aus festen Brennstoffen
CA2610806C (fr) 2005-06-03 2013-09-17 Plasco Energy Group Inc. Systeme de conversion de charges d'alimentation carbonees en un gaz d'une composition specifique
AU2006263659B2 (en) 2005-06-28 2010-09-30 Community Power Corporation Method and apparatus for automated, modular, biomass power generation
US7819070B2 (en) * 2005-07-15 2010-10-26 Jc Enviro Enterprises Corp. Method and apparatus for generating combustible synthesis gas
JP4790412B2 (ja) * 2005-12-28 2011-10-12 中外炉工業株式会社 バイオマスガス化装置
DE202006009174U1 (de) 2006-06-08 2007-10-11 Rudolf Hörmann GmbH & Co. KG Vorrichtung zur Erzeugung von Brenngas aus einem festen Brennstoff
FI122109B (fi) * 2006-11-17 2011-08-31 Leo Ruokamo Menetelmä polttoaineen kaasuttamiseksi ja kaasutusgeneraattori
FI122860B (fi) * 2007-05-25 2012-08-15 Gasek Oy Menetelmä kiinteän polttoaineen kaasuttamiseksi ja myötävirtakaasutin
TR200705430A2 (tr) 2007-08-03 2008-12-22 Detes Maden Enerji̇ Ve Çevre Teknoloji̇si̇ Si̇stemleri̇ Li̇mi̇ted Şi̇rketi̇ Katı yakıt gazlaştırma ve gaz temizleme sistemi.
RU2359011C1 (ru) * 2008-02-27 2009-06-20 Валерий Григорьевич Лурий Способ конверсии твердого топлива и установка для его осуществления (варианты)
US8353973B2 (en) * 2008-05-15 2013-01-15 Tharpe Jr Johnny M Apparatus, system, and method for producing bio-fuel utilizing concentric-chambered pyrolysis
CN201339959Y (zh) * 2008-10-17 2009-11-04 兰凌电力能源(紫金)有限公司 立式旋转生物质气化炉
DK2281864T3 (en) 2009-08-07 2017-06-19 Walter Sailer Solid fuel gasification process and apparatus
DE102010033646B4 (de) 2010-02-05 2012-05-24 Pyrox Gmbh Verfahren und Schachtvergaser zur Erzeugung von Brenngas aus einem festen Brennstoff
EP2536811B1 (fr) 2010-02-16 2015-10-14 Big Dutchman International GmbH Équipement de gazéification et procédé de gazéification
FR2965816B1 (fr) 2010-10-12 2014-04-25 S3D Dispositif pour la transformation d'un combustible

Also Published As

Publication number Publication date
EP2536811A1 (fr) 2012-12-26
US20130097928A1 (en) 2013-04-25
RU2542319C2 (ru) 2015-02-20
CN102844409B (zh) 2014-12-03
CN102844409A (zh) 2012-12-26
JP5627711B2 (ja) 2014-11-19
US9115321B2 (en) 2015-08-25
RU2012139452A (ru) 2014-03-27
WO2011101022A1 (fr) 2011-08-25
JP2013519761A (ja) 2013-05-30

Similar Documents

Publication Publication Date Title
EP2536811B1 (fr) Équipement de gazéification et procédé de gazéification
AT511684B1 (de) Vorrichtung und verfahren zum vergasen von biomasse
EP2377911B1 (fr) Procédé et dispositif destinés à la production de gaz combustible à partir d'un combustible solide
EP3294461B1 (fr) Gazogène de lit solides avec une grille rotative pour produire un gaz à partir d'un matériau carboné
DE3732867A1 (de) Verfahren und vorrichtung zum erzeugen von generatorgas und aktivierter kohle aus festen brennstoffen
EP2563881B1 (fr) Procédé pour la gazéification de la biomasse
EP2358847B1 (fr) Dispositif en forme de gazéificateur à lit mobile et procédé pour faire fonctionner celui-ci dans un système de décomposition thermique de résidus et de déchets
EP2641958B1 (fr) Gazéificateur de biomasse
EP1248828B1 (fr) Dispositif et procede pour produire des gaz combustibles
WO2010046222A2 (fr) Procédé et dispositif pour la gazéification thermochimique de combustibles solides
WO2015058864A1 (fr) Réacteur et procédé de gazéification de combustibles
DE102005000768A1 (de) Vorrichtung und Verfahren zur Erzeugung von Pyrolysegas
DE102005028377A1 (de) Vorrichtung zur Erzeugung eines brennbaren Gasgemisches
DE102009020033B4 (de) Vorrichtung zur Erzeugung eines brennbaren Gasgemisches
DE102008028241A1 (de) Vorrichtung zur thermochemischen Umwandlung von Biomasse
DE102013015920B4 (de) Vorrichtung in Form eines 3-Zonen-Vergasers und Verfahren zum Betreiben eines solchen Vergasers zur thermischen Umwandlung von Abprodukten und Abfällen
EP3485956A1 (fr) Générateur de gaz pyrolytique
DE2926034A1 (de) Erzeugung von gas aus festen brennstoffen
DE202008016199U1 (de) Vorrichtung zum Vergasen kohlenstoffhaltiger Stoffe
AT513407B1 (de) Verfahren zum Reinigen eines Produktgases sowie Feinfilter hierfür
DE102023112516A1 (de) Vorrichtung und Verfahren zur thermochemischen Herstellung von Synthesegas aus kohlenstoffhaltigen synthetischen Substanzen und/oder Biomassen
DE202022105034U1 (de) Schneckenvergaser
WO2024079335A1 (fr) Ensemble réacteur conçu pour produire un produit de pyrolyse
WO2021087542A1 (fr) Procédé de traitement thermochimique d'une matière utilisée pour la gazéification
DE202008007924U1 (de) Vorrichtung zur thermochemischen Umwandlung von Biomasse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120917

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010010456

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C10J0003600000

Ipc: C10J0003060000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150601

RIC1 Information provided on ipc code assigned before grant

Ipc: C10J 3/72 20060101ALI20150518BHEP

Ipc: C10J 3/26 20060101ALI20150518BHEP

Ipc: C10J 3/40 20060101ALI20150518BHEP

Ipc: C10J 3/06 20060101AFI20150518BHEP

Ipc: C10J 3/32 20060101ALI20150518BHEP

Ipc: C10J 3/64 20060101ALI20150518BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 755083

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010010456

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151014

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160214

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160114

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160115

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010010456

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

26N No opposition filed

Effective date: 20160715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160216

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160216

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 755083

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190222

Year of fee payment: 10

Ref country code: DE

Payment date: 20190305

Year of fee payment: 10

Ref country code: GB

Payment date: 20190221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LV

Payment date: 20190221

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010010456

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200216