EP2528693A1 - Spray nozzle and method for atmospheric spraying, device for coating, and coated component - Google Patents
Spray nozzle and method for atmospheric spraying, device for coating, and coated componentInfo
- Publication number
- EP2528693A1 EP2528693A1 EP10732954A EP10732954A EP2528693A1 EP 2528693 A1 EP2528693 A1 EP 2528693A1 EP 10732954 A EP10732954 A EP 10732954A EP 10732954 A EP10732954 A EP 10732954A EP 2528693 A1 EP2528693 A1 EP 2528693A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- spray nozzle
- nozzle
- coating
- attachment
- protective gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 39
- 239000007921 spray Substances 0.000 title claims abstract description 24
- 239000011248 coating agent Substances 0.000 title claims description 32
- 238000000034 method Methods 0.000 title claims description 19
- 238000005507 spraying Methods 0.000 title claims description 4
- 230000001681 protective effect Effects 0.000 claims abstract description 21
- 238000007750 plasma spraying Methods 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 11
- 239000000843 powder Substances 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 238000007749 high velocity oxygen fuel spraying Methods 0.000 claims 4
- 230000003647 oxidation Effects 0.000 abstract description 5
- 238000007254 oxidation reaction Methods 0.000 abstract description 5
- 239000002184 metal Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 25
- 239000010410 layer Substances 0.000 description 19
- 238000002485 combustion reaction Methods 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000013078 crystal Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229910000601 superalloy Inorganic materials 0.000 description 5
- 239000012720 thermal barrier coating Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 238000005524 ceramic coating Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 235000019592 roughness Nutrition 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 2
- YPFNIPKMNMDDDB-UHFFFAOYSA-K 2-[2-[bis(carboxylatomethyl)amino]ethyl-(2-hydroxyethyl)amino]acetate;iron(3+) Chemical compound [Fe+3].OCCN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O YPFNIPKMNMDDDB-UHFFFAOYSA-K 0.000 description 1
- 241000191291 Abies alba Species 0.000 description 1
- 241000251131 Sphyrna Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 238000009419 refurbishment Methods 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/02—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
- B05B1/04—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in flat form, e.g. fan-like, sheet-like
- B05B1/046—Outlets formed, e.g. cut, in the circumference of tubular or spherical elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B12/00—Arrangements for controlling delivery; Arrangements for controlling the spray area
- B05B12/16—Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area
- B05B12/18—Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area using fluids, e.g. gas streams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/08—Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/16—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
- B05B7/20—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3405—Arrangements for stabilising or constricting the arc, e.g. by an additional gas flow
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/42—Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder or liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/16—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
- B05B7/20—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
- B05B7/201—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
- B05B7/205—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle the material to be sprayed being originally a particulate material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the invention relates to a method for atmospheric
- Plasma spraying Plasma spraying, a coating device and a component.
- Atmospheric plasma spraying is an economical alternative of plasma spraying, there can be dispensed with here a vacuum ⁇ system. However, this is not possible with each ⁇ the powder. In other coating methods, certain properties of the metallic layer are often not achieved.
- HVS oxidation protection and adhesion promoter layer
- the object is achieved by a plasma spray nozzle according to claim 1, by a method according to claim 10, 13, by a device according to claim 15 and a component according to claim 17 An ⁇ .
- FIG. 4 in perspective a gas turbine
- FIG. 5 shows in perspective a turbine blade
- a spray nozzle 1 is shown.
- the spray nozzle 1 has a conventional nozzle 4 known from the prior art for plasma spray nozzles (APS, ...) and an attachment 19. Parallel to a longitudinal direction 26 of an inner channel 22 of the nozzle 4 flows through a plasma heated, at least partially melted coating material from the nozzle 4 in a discharge direction 25. The plasma is generated in the inner channel 22 of the nozzle 4.
- the shielding gas 28 can also ausströ ⁇ slits 14 ', 14''men, which are arranged in a circle (Fig. 3). At least two, in particular four slots 14 ', 14'', ... are preferential ⁇ be present.
- the holes 13, 13 ', 13'', ... and / or slots 14', 14 '', ... are aligned in the longitudinal direction 26 so that the protective gas 28 flows out in an outflow direction 25, wherein the out ⁇ flow direction 25 runs parallel to the longitudinal direction 26.
- the attachment 19 on the nozzle 4 has on its end face 31 preferably circularly arranged holes 13 ', 13' '(FIG. 2).
- the holes 13 ', 13' ', ... and / or the slots 14', 14 '', ... are preferably evenly distributed in the radial circumferential direction on the end face 31.
- a portion of the protective gas 28 also flows through at least one opening 16 in the proportion of the inner channel 22 of the attachment 19. This serves to cool the attachment 19th
- the attachment 19 is preferably not made of a porous solid material.
- a coating can be carried out by means of the HVOF process, which is inexpensive.
- an APS nozzle atmospheric plasma ⁇ squirt
- Both coating options HVOF, APS are now preferably realized in one device.
- the coating material is melted in the plasma jet at least ⁇ and applied to a substrate.
- the protective gas 28 is conducted in such a way through the attachment 19, that after the exit of the molten particles from the
- Spray nozzle 1 forms a protective gas sheath around the particle beam. This is particularly important for metallic coating material, which would oxidize too much in plasma spraying, but not so strong in HVOF.
- the protective gas jacket can be influenced. Different geometries and arrangements of the exit holes 13, 13 ', 13' 'or slots 14',
- Layers have much higher roughness and better layer morphology at hard-to-reach locations compared to HVOF sprayed layers. Due to the variability of the easily replaceable attachment 19 each application can be covered.
- the main body 4 remains on Plasma torch, which eliminates a complex assembly and disassembly.
- FIG. 4 shows by way of example a gas turbine 100 in a longitudinal partial section.
- the gas turbine 100 has a rotatably mounted about a rotational axis 102 ⁇ rotor 103 with a shaft, which is also referred to as the turbine rotor.
- the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
- annular annular hot gas channel 111 for example.
- turbine stages 112 connected in series form the turbine 108.
- Each turbine stage 112 is formed, for example, from two blade rings. In the flow direction of a working medium
- a row 125 formed of rotor blades 120 follows.
- the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
- air 135 is sucked by the compressor 105 through the intake housing and ver ⁇ seals.
- the 105 ⁇ be compressed air provided at the turbine end of the compressor is supplied to the burners 107, where it is mixed with a fuel.
- the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
- the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the blades 120.
- the working medium 113 expands in a pulse-transmitting manner, so that the blades 120 drive the rotor 103 and this drives the working machine coupled to it.
- the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
- the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
- substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
- the components in particular for the turbine blade ⁇ 120, 130 and components of the combustion chamber 110, for example, iron-, nickel- or cobalt-based superalloys are used.
- the guide vane 130 has an inner housing 138 of the turbine 108 facing guide vane root (not Darge here provides ⁇ ) and a side opposite the guide-blade root vane root.
- the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
- FIG. 5 shows a perspective view of a rotor blade or guide vane 130 of a turbomachine that extends along a longitudinal axis 121.
- the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
- the blade 120, 130 has along the longitudinal axis 121 to each other, a securing region 400, an adjoining blade or vane platform 403 and a blade 406 and a blade tip 415.
- the vane 130 may be pointed on its shovel 415 have a further platform (not Darge ⁇ asserted).
- a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
- the blade 120, 130 has a medium felblatt to the Schau- 406 flows past, a leading edge 409 and a trailing edge 412th
- Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
- the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
- Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
- the production of such monocrystalline workpieces for example, by directed solidification from the melt.
- These are casting methods in which the liquid metallic alloy solidifies into a monocrystalline structure, ie a single-crystal workpiece, or directionally.
- dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, for general language use, referred to as directionally solidified) or a monocrystalline structure, ie the entire workpiece ⁇ is of a single crystal.
- a columnar grain structure columnar, ie grains that run the entire length of the workpiece and here, for general language use, referred to as directionally solidified
- a monocrystalline structure ie the entire workpiece ⁇ is of a single crystal.
- Stem-crystal structures which probably have longitudinally extending grain boundaries, but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
- the blades 120, 130 may have coatings against corrosion or oxidation, e.g. B. (MCrAlX, M is at least one element of the group iron (Fe), cobalt (Co),
- Nickel (Ni) is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf)).
- Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
- the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y.
- nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10A1-0, 4Y-1 are also preferably used , 5Re.
- thermal barrier coating which is preferably the outermost layer, and consists for example of Zr0 2 , Y2Ü3-Zr02, ie it is not, partially or completely stabilized by yttria
- the thermal barrier coating covers the entire MCrAlX layer.
- the heat insulation layer may have ⁇ porous, micro- or macro-cracked compatible grains for better thermal shock resistance.
- the thermal barrier coating is therefore preferably more porous than the
- the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and also has, if necessary, film cooling holes 418 (indicated by dashed lines) on.
- FIG 6 shows a combustion chamber 110 of the gas turbine 100.
- the combustion chamber 110 is configured, for example as so-called an annular combustion chamber, in which a plurality of in the circumferential direction about an axis of rotation 102 arranged burners 107 open into a common combustion chamber space 154, create the flames 156.
- the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
- the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
- a relatively long service life loan to enable the combustion chamber wall 153 is provided on its side facing the working medium M facing side with a formed from heat shield elements 155. liner.
- the heat shield elements 155 are then, for example, hollow and possibly still have cooling holes (not shown) which open into the combustion chamber space 154.
- Each heat shield element 155 made of an alloy is equipped on the working fluid side with a particularly heat-resistant protective layer (MCrAlX layer and / or ceramic coating) or is made of high-temperature-resistant material (solid ceramic blocks).
- M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
- MCrAlX means: M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
- Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
- ceramic Wär ⁇ medämm harsh may be present and consists for example of ZrO 2, Y203 ⁇ Zr02, ie it is not, partially or vollsten- stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
- Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
- the heat insulation layer may have ⁇ porous, micro- or macro-cracked compatible grains for better thermal shock resistance.
- Reprocessing means that turbines ⁇ blades 120, 130, heat shield elements have to be removed from 155, after ⁇ A set of protective layers (for example by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products.
- cracks in the turbine blade 120, 130 or the heat shield element 155 are also repaired. This is followed by a re-coating of the turbine blades 120, 130, heat shield elements 155 and a renewed use of the turbine blades 120, 130 or the heat shield elements 155.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Coating By Spraying Or Casting (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Nozzles (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
SPRITZDÜSE UND VERFAHREN ZUM ATMOSPHÄRISCHEN SPRITZEN, VORRICHTUNG ZUM BESCHICHTEN UND BESCHICHTETES BAUTEIL SPRAY NOZZLE AND METHOD FOR ATMOSPHERIC SPRAYING, COATING AND COATED COMPONENT DEVICE
Die Erfindung betrifft ein Verfahren zum atmosphärischenThe invention relates to a method for atmospheric
Plasmaspritzen, eine Vorrichtung zum Beschichten und ein Bauteil. Plasma spraying, a coating device and a component.
Atmosphärisches Plasmaspritzen stellt eine kostengünstige Alternative des Plasmaspritzens dar, da hier auf eine Vakuum¬ anlage verzichtet werden kann. Dies ist jedoch nicht mit je¬ dem Pulver möglich. Bei anderen Beschichtungsverfahren werden oft bestimmte Eigenschaften der metallischen Schicht nicht erreicht . Atmospheric plasma spraying is an economical alternative of plasma spraying, there can be dispensed with here a vacuum ¬ system. However, this is not possible with each ¬ the powder. In other coating methods, certain properties of the metallic layer are often not achieved.
Um dem Wirkungsgrad einer Turbine zu erhöhen, muss die Turbi- neneinlasstemperatur des Gases erhöht werden. Damit die Turbinenschaufeln bei diesen hohen Temperaturen von >800°C keinen Schaden nehmen, wird eine metallische Beschichtung als Oxidationsschutz und Haftvermittlerschicht (HVS) und darauf eine keramische Beschichtung zur Wärmedämmung aufgebracht. Damit die keramische Beschichtung auf der HVS hält, ist eine sehr raue Oberfläche erforderlich. Aktuell wird diese HVS meist mit Vakuumverfahren der Spritztechnologie aufgebracht, die sehr aufwändig und teuer sind. Des Weiteren fehlt ihnen die Flexibilität, auch andere Beschichtungsmaterialien als MCrAlY für HVS zu nutzen. Aus diesen Gründen wird aktuell damit begonnen, die Vakuumverfahren durch andere zu ersetzen. Eines dieser Verfahren ist das Hochgeschwindigkeitsflamm- spritzen (HVOF) . Die geforderte raue Beschichtung mit einem HVOF Prozess zu erzeugen, ist technologisch bedingt recht schwierig. Besonders bei flachen Beschichtungswinkeln, d.h. <90° zur Oberfläche, kann keine ausreichend raue Oberfläche erzeugt werden. Eine Beschichtung mittels atmosphärischen Plasmaspritzen ist nicht möglich, da die MCrAlY Legierung unter Einwirkung des Luftsauerstoffs oxidiert. Es ist daher Aufgabe der Erfindung oben genanntes Problem zu lösen . In order to increase the efficiency of a turbine, the turbine inlet temperature of the gas must be increased. So that the turbine blades are not damaged at these high temperatures of> 800 ° C, a metallic coating is applied as oxidation protection and adhesion promoter layer (HVS) and then a ceramic coating for thermal insulation. Keeping the ceramic coating on the HVS requires a very rough surface. Currently, this HVS is usually applied with vacuum technology spray technology, which are very complex and expensive. Furthermore, they lack the flexibility to use other coating materials than MCrAlY for HVS. For these reasons, it is currently being started to replace the vacuum methods with others. One of these methods is high velocity flame spraying (HVOF). Producing the required rough coating with a HVOF process is technologically quite difficult. Especially with flat coating angles, ie <90 ° to the surface, a sufficiently rough surface can not be created. A coating by means of atmospheric plasma spraying is not possible because the MCrAlY alloy oxidizes under the action of atmospheric oxygen. It is therefore an object of the invention to solve the above-mentioned problem.
Die Aufgabe wird gelöst durch eine Plasmaspritzdüse gemäß An spruch 1, durch ein Verfahren gemäß Anspruch 10, 13, durch eine Vorrichtung gemäß Anspruch 15 und ein Bauteil gemäß An¬ spruch 17. The object is achieved by a plasma spray nozzle according to claim 1, by a method according to claim 10, 13, by a device according to claim 15 and a component according to claim 17 An ¬ .
In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig miteinander kombiniert werden kön¬ nen, um weitere Vorteile zu erzielen. In the dependent claims further advantageous measures are listed, which are combined with each other Kings ¬ nen to obtain further advantages.
Es zeigen Figur 1 einen Aufsatz für eine Plasmaspritzdüse, 1 shows an attachment for a plasma spray nozzle,
Figur 2, 3 verschiedene Aufsätze für die Plasmaspritzdüse, Figur 4 perspektivisch eine Gasturbine, 2, 3 different attachments for the plasma spraying nozzle, FIG. 4 in perspective a gas turbine,
Figur 5 perspektivisch eine Turbinenschaufel, FIG. 5 shows in perspective a turbine blade,
Figur 6 perspektivisch eine Brennkammer, FIG. 6 shows in perspective a combustion chamber,
Figur 7 eine Liste von Superlegierungen . Figure 7 is a list of superalloys.
Die Beschreibung und die Figuren stellen nur Ausführungsbeispiele der Erfindung dar. The description and the figures represent only embodiments of the invention.
In der Figur 1 ist eine Spritzdüse 1 gezeigt. In the figure 1, a spray nozzle 1 is shown.
Die Spritzdüse 1 weist eine konventionelle Düse 4 bekannt aus dem Stand der Technik zu Plasmaspritzdüsen (APS, ...) und ein Aufsatz 19 auf. Parallel zu einer Längsrichtung 26 eines Innenkanals 22 der Düse 4 strömt durch ein Plasma erwärmtes, zumindest teilweise aufgeschmolzenes Beschichtungsmaterial aus der Düse 4 in einer Ausströmrichtung 25. Das Plasma wird im Innenkanal 22 der Düse 4 erzeugt. The spray nozzle 1 has a conventional nozzle 4 known from the prior art for plasma spray nozzles (APS, ...) and an attachment 19. Parallel to a longitudinal direction 26 of an inner channel 22 of the nozzle 4 flows through a plasma heated, at least partially melted coating material from the nozzle 4 in a discharge direction 25. The plasma is generated in the inner channel 22 of the nozzle 4.
Die Düse 4 ist nur dahingehend modifiziert, dass an ihr ein Aufsatz 19 befestigbar ist. Der Aufsatz 19 verlängert den inneren Kanal der Düse 4. Durch Löcher 13, 13', 13'' auf der Stirnfläche 31 des Aufsatzes 19, die vorzugsweise düsen- förmig ausgebildet sind, (s. a. Fig. 2, 3) strömt ein Schutz- gas 28 aus und erzeugt eine gewünschte Geometrie eines The nozzle 4 is only modified so that an attachment 19 can be attached to it. The top 19 extends the inner channel of the nozzle 4. Through holes 13, 13 ', 13''on the end face 31 of the cap 19, which are preferably nozzle-shaped, (see also Fig. 2, 3) flows a protective gas 28 and generates a desired geometry of a
Schutzgasmantels um das ausströmende Beschichtungsmaterial. Das Schutzgas 28 kann auch aus Schlitzen 14', 14'' ausströ¬ men, die kreisförmig angeordnet sind (Fig. 3) . Zumindest zwei, insbesondere vier Schlitze 14', 14'', ... sind vorzugs¬ weise vorhanden. Protective gas mantle around the outflowing coating material. The shielding gas 28 can also ausströ ¬ slits 14 ', 14''men, which are arranged in a circle (Fig. 3). At least two, in particular four slots 14 ', 14'', ... are preferential ¬ be present.
Das Schutzgas 28 kann vorzugsweise Argon, Helium, Stickstoff oder ein Gemisch daraus sein. The shielding gas 28 may preferably be argon, helium, nitrogen or a mixture thereof.
Die Löcher 13, 13', 13'', ... und/oder Schlitze 14', 14'', ... sind in Längsrichtung 26 so ausgerichtet, dass das Schutzgas 28 in einer Ausströmrichtung 25 ausströmt, wobei die Aus¬ strömrichtung 25 parallel zur Längsrichtung 26 verläuft. The holes 13, 13 ', 13'', ... and / or slots 14', 14 '', ... are aligned in the longitudinal direction 26 so that the protective gas 28 flows out in an outflow direction 25, wherein the out ¬ flow direction 25 runs parallel to the longitudinal direction 26.
Der Aufsatz 19 auf der Düse 4 weist auf seiner Stirnfläche 31 vorzugsweise kreisförmig angeordnete Löcher 13', 13'' (Fig. 2) auf. Die Löcher 13', 13'', ... und/oder die Schlitze 14', 14'', ... sind in radialer Umfangsrichtung auf der Stirnfläche 31 vorzugsweise gleichmäßig verteilt. The attachment 19 on the nozzle 4 has on its end face 31 preferably circularly arranged holes 13 ', 13' '(FIG. 2). The holes 13 ', 13' ', ... and / or the slots 14', 14 '', ... are preferably evenly distributed in the radial circumferential direction on the end face 31.
Vorzugsweise strömt ein Teil des Schutzgases 28 auch durch zumindest eine Öffnung 16 in den Anteil des inneren Kanals 22 des Aufsatzes 19. Dies dient zur Kühlung des Aufsatzes 19. Preferably, a portion of the protective gas 28 also flows through at least one opening 16 in the proportion of the inner channel 22 of the attachment 19. This serves to cool the attachment 19th
Eine Pulverzufuhr 7 ist auch vorhanden und vorzugsweise vor dem Aufsatz 19 angeordnet. A powder feed 7 is also present and preferably arranged in front of the attachment 19.
Die Pulverzufuhr 7 kann auch an jeder anderen Stelle der Düse 4 vorhanden sein. The powder feed 7 can also be present at any other point of the nozzle 4.
Der Aufsatz 19 weist vorzugsweise eine äußere feste Hülle auf, so dass sich nur einige wenige diskrete Löcher 13, 13' , ... oder Schlitze 14', 14'', ... vorhanden sind. Ebenso ist die Verlängerung des Kanals 22 im Bereich des Aufsatzes durch eine feste innere Hülle des Aufsatzes The attachment 19 preferably has an outer solid shell, so that only a few discrete holes 13, 13 ', ... or slots 14', 14 '', ... are present. Similarly, the extension of the channel 22 in the area of the essay by a solid inner shell of the essay
gebildet . educated .
Der Aufsatz 19 ist vorzugsweise nicht aus einem porösen massiven Material. The attachment 19 is preferably not made of a porous solid material.
In einer entsprechenden Beschichtungsvorrichtung kann eine Beschichtung mittels des HVOF-Prozesses durchgeführt werden, die kostengünstig ist. Jedoch um bestimmte Rauhigkeiten oder unter einem Winkel von bis zu 45° zur Beschichtungsoberflache zu beschichten, muss eine APS-Düse (atmosphärisches Plasma¬ spritzen) verwendet werden, die einen entsprechenden Aufsatz 19 gemäß Figur 1 aufweist. Beide Beschichtungsmöglichkeiten HVOF, APS sind nun vorzugsweise in einer Vorrichtung reali- siert. In a corresponding coating device, a coating can be carried out by means of the HVOF process, which is inexpensive. However, in order to coat certain roughnesses or at an angle of up to 45 ° to the coating surface, an APS nozzle (atmospheric plasma ¬ squirt) must be used, which has a corresponding attachment 19 according to FIG. Both coating options HVOF, APS are now preferably realized in one device.
Auf eine vorhandene Beschichtung, die mittels eines HVOF Pro¬ zesses aufgetragen wurde, wird mit einem APS Brenner eine rauere Beschichtung aufgetragen. Nach der HVOF-Beschichtung wird die HVOF-Düse abgebaut und eine APS-Düse 1 in derselben Vorrichtung eingebaut. On an existing coating, which was applied by means of a HVOF Pro ¬ zesses, a rougher coating is applied with an APS torch. After the HVOF coating, the HVOF nozzle is dismantled and an APS nozzle 1 installed in the same device.
Dabei wird an einen APS-Brenner (Düse 4) ein Aufsatz 19 montiert. Durch diesen Aufsatz 19 wird ein Schutzgas 28, wie z. B. Stickstoff, geleitet. Dieses kühlt auch gleichzeitig den Aufsatz 19. Durch das Innere des Aufsatzes 19 strömt das durch das Plasma erwärmte, vorzugsweise metallische Beschich- tungsmaterial . Auch kann die gesamte Schicht mit dem Aufsatz 19 hergestellt werden . In this case, an attachment 19 is mounted on an APS burner (nozzle 4). By this essay 19 is a protective gas 28, such. As nitrogen, passed. This also simultaneously cools the attachment 19. Through the interior of the attachment 19 flows through the plasma heated, preferably metallic coating material. Also, the entire layer can be made with the article 19.
Das Beschichtungsmaterial wird im Plasmastrahl zumindest an¬ geschmolzen und auf ein Substrat aufgetragen. Das Schutzgas 28 wird derartig durch den Aufsatz 19 geleitet, dass sich nach dem Austritt der aufgeschmolzenen Partikel aus der The coating material is melted in the plasma jet at least ¬ and applied to a substrate. The protective gas 28 is conducted in such a way through the attachment 19, that after the exit of the molten particles from the
Spritzdüse 1 eine Schutzgasummantelung um den Partikelstrahl bildet . Dies ist insbesondere wichtig bei metallischem Beschichtungs- material, das beim Plasmaspritzen zu stark oxidieren würde, hingegen beim HVOF nicht so stark. Spray nozzle 1 forms a protective gas sheath around the particle beam. This is particularly important for metallic coating material, which would oxidize too much in plasma spraying, but not so strong in HVOF.
Durch diese Ummantelung wird eine Oxidation der Partikel verhindert. Da die Partikelgeschwindigkeit beim APS wesentlich geringer als beim HVOF ist, bleiben die Partikel besser an der Substratoberfläche haften. Dadurch wird ein Beschichten mit einem Winkel bis zu 45° zur Oberfläche möglich. Die im Vergleich zum HVOF größere Rauheit ist bei diesem Prozess immer gegeben. This coating prevents oxidation of the particles. Since the particle velocity in the APS is much lower than in the HVOF, the particles adhere better to the substrate surface. This makes it possible to coat at an angle of up to 45 ° to the surface. The greater roughness compared to HVOF is always present in this process.
Durch die Gestaltung des Aufsatzes 19 kann der Schutzgasmantel beeinflusst werden. Verschiedene Geometrien und Anordnun- gen der Austrittslöcher 13, 13', 13'' oder Schlitze 14', Due to the design of the attachment 19, the protective gas jacket can be influenced. Different geometries and arrangements of the exit holes 13, 13 ', 13' 'or slots 14',
14'', 14, ... beeinflussen wiederum die Ausbildung und die Geometrie des Schutzgasmantels. 14 '', 14, ... in turn influence the design and the geometry of the protective gas mantle.
Für die verschiedensten Anwendungsfälle muss nur der Aufsatz 19 getauscht werden. Man kann somit mit einer Düse 4 ver¬ schiedenste Aufsatzkonfigurationen 19 und somit Schutzgasmantelkonfiguration testen und bewerten. Wenn der Schutzgasmantel anwendungsbedingt mehr oder weniger verdrallt sein muss, wird nur die Geometrie der Schutzgasaustrittsbohrungen ange- passt. For the most varied applications, only the attachment 19 must be exchanged. It is thus possible to test and evaluate with a nozzle 4 ver ¬ most different attachment configurations 19 and thus protective gas jacket configuration. If the protective gas mantle must be more or less twisted due to the application, only the geometry of the protective gas outlet holes is adjusted.
Bei Turbinenschaufeln 120, 130 mit einer komplizierten Geometrie und schlechter Zugänglichkeit zu den zu beschichtenden Bereichen ist diese Art der Beschichtung eine gute und einfa- che Lösung. Teure Niederdruck- und Vakuum-Anlagen werden überflüssig, da die gleichen Anlagen wie bei der Wärmedämmbe- schichtung verwendet werden können. Die so entstehenden For turbine blades 120, 130 with a complicated geometry and poor accessibility to the areas to be coated, this type of coating is a good and simple solution. Expensive low-pressure and vacuum systems become superfluous because the same systems can be used as with the thermal insulation coating. The resulting
Schichten weisen, im Vergleich zu HVOF gespritzten Schichten, eine wesentlich höhere Rauheit und bessere Schichtmorphologie an schwierig erreichbaren Stellen auf. Durch die Variabilität des einfach austauschbaren Aufsatzes 19 kann jeder Anwendungsfall abgedeckt werden. Der Grundkörper 4 verbleibt am Plasmabrenner, wodurch eine aufwändige Montage und Demontage entfällt . Layers have much higher roughness and better layer morphology at hard-to-reach locations compared to HVOF sprayed layers. Due to the variability of the easily replaceable attachment 19 each application can be covered. The main body 4 remains on Plasma torch, which eliminates a complex assembly and disassembly.
Die Figur 4 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt . FIG. 4 shows by way of example a gas turbine 100 in a longitudinal partial section.
Die Gasturbine 100 weist im Inneren einen um eine Rotations¬ achse 102 drehgelagerten Rotor 103 mit einer Welle auf, der auch als Turbinenläufer bezeichnet wird. The gas turbine 100 has a rotatably mounted about a rotational axis 102 ¬ rotor 103 with a shaft, which is also referred to as the turbine rotor.
Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109. Along the rotor 103 follow one another an intake housing 104, a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
Die Ringbrennkammer 110 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Turbine 108. The annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example. There, for example, four turbine stages 112 connected in series form the turbine 108.
Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufel- ringen gebildet. In Strömungsrichtung eines Arbeitsmediums Each turbine stage 112 is formed, for example, from two blade rings. In the flow direction of a working medium
113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125. As can be seen in the hot gas duct 111 of a guide blade row 115, a row 125 formed of rotor blades 120 follows.
Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind. The guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt) . Coupled to the rotor 103 is a generator or work machine (not shown).
Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und ver¬ dichtet. Die am turbinenseitigen Ende des Verdichters 105 be¬ reitgestellte verdichtete Luft wird zu den Brennern 107 ge- führt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine. During operation of the gas turbine 100 104 air 135 is sucked by the compressor 105 through the intake housing and ver ¬ seals. The 105 ¬ be compressed air provided at the turbine end of the compressor is supplied to the burners 107, where it is mixed with a fuel. The mixture is then burned to form the working fluid 113 in the combustion chamber 110. From there, the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the blades 120. On the blades 120, the working medium 113 expands in a pulse-transmitting manner, so that the blades 120 drive the rotor 103 and this drives the working machine coupled to it.
Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 110 auskleidenden Hitzeschildelementen am meisten thermisch belastet . The components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100. The guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden. To withstand the prevailing temperatures, they can be cooled by means of a coolant.
Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin ( SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur) . Likewise, substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
Als Material für die Bauteile, insbesondere für die Turbinen¬ schaufel 120, 130 und Bauteile der Brennkammer 110 werden beispielsweise eisen-, nickel- oder kobaltbasierte Super- legierungen verwendet. As a material for the components, in particular for the turbine blade ¬ 120, 130 and components of the combustion chamber 110, for example, iron-, nickel- or cobalt-based superalloys are used.
Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 Bl, EP 1 306 454, EP 1 319 729 AI, WO 99/67435 oder WO 00/44949 bekannt. Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht darge¬ stellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt . The guide vane 130 has an inner housing 138 of the turbine 108 facing guide vane root (not Darge here provides ¬) and a side opposite the guide-blade root vane root. The vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
Die Figur 5 zeigt in perspektivischer Ansicht eine Laufschau- fei 120 oder Leitschaufel 130 einer Strömungsmaschine, die sich entlang einer Längsachse 121 erstreckt. Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein. Die Schaufel 120, 130 weist entlang der Längsachse 121 auf¬ einander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 und eine Schaufelspitze 415 auf. FIG. 5 shows a perspective view of a rotor blade or guide vane 130 of a turbomachine that extends along a longitudinal axis 121. The turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor. The blade 120, 130 has along the longitudinal axis 121 to each other, a securing region 400, an adjoining blade or vane platform 403 and a blade 406 and a blade tip 415.
Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufel- spitze 415 eine weitere Plattform aufweisen (nicht darge¬ stellt) . As a guide vane 130, the vane 130 may be pointed on its shovel 415 have a further platform (not Darge ¬ asserted).
Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt) . In the mounting region 400, a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausge¬ staltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich. The blade root 183 is, for example, as a hammerhead out staltet ¬. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
Die Schaufel 120, 130 weist für ein Medium, das an dem Schau- felblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Ab¬ strömkante 412 auf. The blade 120, 130 has a medium felblatt to the Schau- 406 flows past, a leading edge 409 and a trailing edge 412th
Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise mas- sive metallische Werkstoffe, insbesondere Superlegierungen verwendet . In conventional blades 120, 130, in all regions 400, 403, 406 of the blade 120, 130, for example, massive metallic materials, in particular superalloys, are used.
Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 Bl, EP 1 306 454, EP 1 319 729 AI, WO 99/67435 oder WO 00/44949 bekannt. Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein. Werkstücke mit einkristalliner Struktur oder Strukturen werden als Bauteile für Maschinen eingesetzt, die im Betrieb hohen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind. Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt. The blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof. Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation. The production of such monocrystalline workpieces, for example, by directed solidification from the melt. These are casting methods in which the liquid metallic alloy solidifies into a monocrystalline structure, ie a single-crystal workpiece, or directionally.
Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprach- gebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück be¬ steht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwen- digerweise transversale und longitudinale Korngrenzen ausbil¬ den, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen. Here, dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, for general language use, referred to as directionally solidified) or a monocrystalline structure, ie the entire workpiece ¬ is of a single crystal. In these methods, you have to transition to globular (polycrystalline) solidification avoided, since non-directional growth inevitably forms transverse and longitudinal grain boundaries ¬ which solidified the directionally the good qualities or monocrystalline component nullify.
Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auchIs generally speaking of directionally solidified structures speech, so are both single crystals meant that have no grain boundaries or at most small angle grain boundaries, as well
Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures) . Stem-crystal structures, which probably have longitudinally extending grain boundaries, but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
Solche Verfahren sind aus der US-PS 6,024,792 und der EP 0 892 090 AI bekannt. Such methods are known from US Pat. No. 6,024,792 and EP 0 892 090 A1.
Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion oder Oxidation aufweisen, z. B. (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe) , Kobalt (Co) , Likewise, the blades 120, 130 may have coatings against corrosion or oxidation, e.g. B. (MCrAlX, M is at least one element of the group iron (Fe), cobalt (Co),
Nickel (Ni) , X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf) ) . Solche Legierungen sind bekannt aus der EP 0 486 489 Bl, EP 0 786 017 Bl, EP 0 412 397 Bl oder EP 1 306 454 AI. Nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf)). Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
Die Dichte liegt vorzugsweise bei 95% der theoretischen The density is preferably 95% of the theoretical
Dichte . Auf der MCrAlX-Schicht (als Zwischenschicht oder als äußerste Schicht) bildet sich eine schützende Aluminiumoxidschicht (TGO = thermal grown oxide layer) . Vorzugsweise weist die SchichtZusammensetzung Co-30Ni-28Cr- 8A1-0, 6Y-0, 7Si oder Co-28Ni-24Cr-10Al-0, 6Y auf. Neben diesen kobaltbasierten Schutzbeschichtungen werden auch vorzugsweise nickelbasierte Schutzschichten verwendet wie Ni-10Cr-12Al- 0,6Y-3Re oder Ni-12Co-21Cr-llAl-0, 4Y-2Re oder Ni-25Co-17Cr- 10A1-0, 4Y-1, 5Re . Density. A protective aluminum oxide layer (TGO = thermal grown oxide layer) is formed on the MCrAlX layer (as an intermediate layer or as the outermost layer). Preferably, the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y. Besides these cobalt-based protective coatings, nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10A1-0, 4Y-1 are also preferably used , 5Re.
Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, die vorzugsweise die äußerste Schicht ist, und besteht beispielsweise aus Zr02, Y2Ü3-Zr02, d.h. sie ist nicht, teil- weise oder vollständig stabilisiert durch Yttriumoxid On the MCrAlX may still be present a thermal barrier coating, which is preferably the outermost layer, and consists for example of Zr0 2 , Y2Ü3-Zr02, ie it is not, partially or completely stabilized by yttria
und/oder Kalziumoxid und/oder Magnesiumoxid. and / or calcium oxide and / or magnesium oxide.
Die Wärmedämmschicht bedeckt die gesamte MCrAlX-Schicht. The thermal barrier coating covers the entire MCrAlX layer.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronen- strahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt. By suitable coating methods, e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.
Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärme¬ dämmschicht kann poröse, mikro- oder makrorissbehaftete Kör¬ ner zur besseren Thermoschockbeständigkeit aufweisen. Die Wärmedämmschicht ist also vorzugsweise poröser als die Other coating methods are conceivable, for example atmospheric plasma spraying (APS), LPPS, VPS or CVD. The heat insulation layer may have ¬ porous, micro- or macro-cracked compatible grains for better thermal shock resistance. The thermal barrier coating is therefore preferably more porous than the
MCrAlX-Schicht . MCrAlX layer.
Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeu¬ tet) auf. The blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and also has, if necessary, film cooling holes 418 (indicated by dashed lines) on.
Die Figur 6 zeigt eine Brennkammer 110 der Gasturbine 100. Die Brennkammer 110 ist beispielsweise als so genannte Ring¬ brennkammer ausgestaltet, bei der eine Vielzahl von in Um- fangsrichtung um eine Rotationsachse 102 herum angeordneten Brennern 107 in einen gemeinsamen Brennkammerraum 154 münden, die Flammen 156 erzeugen. Dazu ist die Brennkammer 110 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Rotationsachse 102 herum positioniert ist. Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1000°C bis 1600°C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermög- liehen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsme¬ dium M zugewandten Seite mit einer aus Hitzeschildelementen 155 gebildeten Innenauskleidung versehen. Figure 6 shows a combustion chamber 110 of the gas turbine 100. The combustion chamber 110 is configured, for example as so-called an annular combustion chamber, in which a plurality of in the circumferential direction about an axis of rotation 102 arranged burners 107 open into a common combustion chamber space 154, create the flames 156. For this purpose, the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around. To achieve a comparatively high efficiency, the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C. To even under these unfavorable for the materials operating parameters, a relatively long service life loan to enable the combustion chamber wall 153 is provided on its side facing the working medium M facing side with a formed from heat shield elements 155. liner.
Aufgrund der hohen Temperaturen im Inneren der Brennkammer 110 kann zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen sein. Die Hitzeschildelemente 155 sind dann beispielsweise hohl und weisen ggf. noch in den Brennkammerraum 154 mündende Kühllöcher (nicht dargestellt) auf. Due to the high temperatures inside the combustion chamber 110 may also be provided for the heat shield elements 155 and for their holding elements, a cooling system. The heat shield elements 155 are then, for example, hollow and possibly still have cooling holes (not shown) which open into the combustion chamber space 154.
Jedes Hitzeschildelement 155 aus einer Legierung ist arbeits- mediumsseitig mit einer besonders hitzebeständigen Schutzschicht (MCrAlX-Schicht und/oder keramische Beschichtung) ausgestattet oder ist aus hochtemperaturbeständigem Material (massive keramische Steine) gefertigt. Each heat shield element 155 made of an alloy is equipped on the working fluid side with a particularly heat-resistant protective layer (MCrAlX layer and / or ceramic coating) or is made of high-temperature-resistant material (solid ceramic blocks).
Diese Schutzschichten können ähnlich der Turbinenschaufeln sein, also bedeutet beispielsweise MCrAlX: M ist zumindest ein Element der Gruppe Eisen (Fe) , Kobalt (Co) , Nickel (Ni) , X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf) . Solche Legierungen sind bekannt aus der EP 0 486 489 Bl, EP 0 786 017 Bl, EP 0 412 397 Bl oder EP 1 306 454 AI. Auf der MCrAlX kann noch eine beispielsweise keramische Wär¬ medämmschicht vorhanden sein und besteht beispielsweise aus ZrÜ2, Y203~Zr02, d.h. sie ist nicht, teilweise oder vollsten- dig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid. These protective layers may be similar to the turbine blades, so for example MCrAlX means: M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf). Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1. On the MCrAlX an example, ceramic Wär ¬ medämmschicht may be present and consists for example of ZrO 2, Y203 ~ Zr02, ie it is not, partially or vollsten- stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronen- strahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt. By suitable coating methods, e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.
Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärme¬ dämmschicht kann poröse, mikro- oder makrorissbehaftete Kör¬ ner zur besseren Thermoschockbeständigkeit aufweisen. Other coating methods are conceivable, for example atmospheric plasma spraying (APS), LPPS, VPS or CVD. The heat insulation layer may have ¬ porous, micro- or macro-cracked compatible grains for better thermal shock resistance.
Wiederaufarbeitung (Refurbishment ) bedeutet, dass Turbinen¬ schaufeln 120, 130, Hitzeschildelemente 155 nach ihrem Ein¬ satz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Reprocessing (Refurbishment) means that turbines ¬ blades 120, 130, heat shield elements have to be removed from 155, after ¬ A set of protective layers (for example by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products.
Gegebenenfalls werden auch noch Risse in der Turbinenschaufel 120, 130 oder dem Hitzeschildelement 155 repariert. Danach erfolgt eine Wiederbeschichtung der Turbinenschaufeln 120, 130, Hitzeschildelemente 155 und ein erneuter Einsatz der Turbinenschaufeln 120, 130 oder der Hitzeschildelemente 155. Optionally, cracks in the turbine blade 120, 130 or the heat shield element 155 are also repaired. This is followed by a re-coating of the turbine blades 120, 130, heat shield elements 155 and a renewed use of the turbine blades 120, 130 or the heat shield elements 155.
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10732954A EP2528693A1 (en) | 2010-01-28 | 2010-07-13 | Spray nozzle and method for atmospheric spraying, device for coating, and coated component |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10000895A EP2353725A1 (en) | 2010-01-28 | 2010-01-28 | Spray nozzle and method for atmospheric spraying, device for coating and coated component |
EP10732954A EP2528693A1 (en) | 2010-01-28 | 2010-07-13 | Spray nozzle and method for atmospheric spraying, device for coating, and coated component |
PCT/EP2010/060051 WO2011091866A1 (en) | 2010-01-28 | 2010-07-13 | Spray nozzle and method for atmospheric spraying, device for coating, and coated component |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2528693A1 true EP2528693A1 (en) | 2012-12-05 |
Family
ID=42192232
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10000895A Withdrawn EP2353725A1 (en) | 2010-01-28 | 2010-01-28 | Spray nozzle and method for atmospheric spraying, device for coating and coated component |
EP10732954A Withdrawn EP2528693A1 (en) | 2010-01-28 | 2010-07-13 | Spray nozzle and method for atmospheric spraying, device for coating, and coated component |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10000895A Withdrawn EP2353725A1 (en) | 2010-01-28 | 2010-01-28 | Spray nozzle and method for atmospheric spraying, device for coating and coated component |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120301624A1 (en) |
EP (2) | EP2353725A1 (en) |
CN (1) | CN102725071A (en) |
RU (1) | RU2519415C2 (en) |
WO (1) | WO2011091866A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015219055A1 (en) * | 2015-10-01 | 2017-04-06 | Volkswagen Aktiengesellschaft | Method and coating for protecting a component against corrosion |
CN105624604B (en) * | 2016-04-05 | 2017-12-26 | 大连理工大学 | In the densification preparation method of the controllable composition of accessory inner surface thermal spraying and structure coating |
CN106191754B (en) * | 2016-08-31 | 2018-06-15 | 中国人民解放军装甲兵工程学院 | A kind of air Supersonic Plasma Spraying device for forming protection gas hood |
CN106222601B (en) * | 2016-08-31 | 2018-07-17 | 中国人民解放军装甲兵工程学院 | A kind of air Supersonic Plasma Spraying device with two-part protection stomata |
US11339671B2 (en) | 2019-12-20 | 2022-05-24 | Honeywell International Inc. | Methods for manufacturing porous barrier coatings using air plasma spray techniques |
US11365470B2 (en) * | 2020-01-08 | 2022-06-21 | General Electric Company | Ceramic coating formation using temperature controlled gas flow to smooth surface |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3114826A (en) * | 1962-06-06 | 1963-12-17 | Plasmadyne Corp | High-temperature spray apparatus |
EP0486489B1 (en) | 1989-08-10 | 1994-11-02 | Siemens Aktiengesellschaft | High-temperature-resistant, corrosion-resistant coating, in particular for components of gas turbines |
DE3926479A1 (en) | 1989-08-10 | 1991-02-14 | Siemens Ag | RHENIUM-PROTECTIVE COATING, WITH GREAT CORROSION AND / OR OXIDATION RESISTANCE |
DE59505454D1 (en) | 1994-10-14 | 1999-04-29 | Siemens Ag | PROTECTIVE LAYER FOR PROTECTING A COMPONENT AGAINST CORROSION, OXIDATION AND THERMAL OVERLOAD AND METHOD FOR THEIR PRODUCTION |
US5662266A (en) * | 1995-01-04 | 1997-09-02 | Zurecki; Zbigniew | Process and apparatus for shrouding a turbulent gas jet |
EP0892090B1 (en) | 1997-02-24 | 2008-04-23 | Sulzer Innotec Ag | Method for manufacturing single crystal structures |
EP0861927A1 (en) | 1997-02-24 | 1998-09-02 | Sulzer Innotec Ag | Method for manufacturing single crystal structures |
EP1306454B1 (en) | 2001-10-24 | 2004-10-06 | Siemens Aktiengesellschaft | Rhenium containing protective coating protecting a product against corrosion and oxidation at high temperatures |
WO1999067435A1 (en) | 1998-06-23 | 1999-12-29 | Siemens Aktiengesellschaft | Directionally solidified casting with improved transverse stress rupture strength |
US6231692B1 (en) | 1999-01-28 | 2001-05-15 | Howmet Research Corporation | Nickel base superalloy with improved machinability and method of making thereof |
DE50006694D1 (en) | 1999-07-29 | 2004-07-08 | Siemens Ag | HIGH-TEMPERATURE-RESISTANT COMPONENT AND METHOD FOR PRODUCING THE HIGH-TEMPERATURE-RESISTANT COMPONENT |
RU2213802C2 (en) * | 2001-09-28 | 2003-10-10 | Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" | Method of applying coating on alloys |
EP1319729B1 (en) | 2001-12-13 | 2007-04-11 | Siemens Aktiengesellschaft | High temperature resistant part, made of single-crystal or polycrystalline nickel-base superalloy |
RU2212473C1 (en) * | 2002-01-24 | 2003-09-20 | Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" | Method for depositing of coatings on alloys |
AT413197B (en) * | 2002-08-12 | 2005-12-15 | Arc Seibersdorf Res Gmbh | NOZZLE HEAD FOR THE APPLICATION OF POWDERED MATERIALS ON SUBSTRATES |
CN2568314Y (en) * | 2002-08-13 | 2003-08-27 | 高阳 | Nozzle for plasma blast gun |
CA2527764C (en) * | 2005-02-11 | 2014-03-25 | Suelzer Metco Ag | An apparatus for thermal spraying |
JP2008238242A (en) * | 2007-03-28 | 2008-10-09 | Daihatsu Motor Co Ltd | Joining method and plasma torch usable for this method |
EP2128300A1 (en) * | 2008-05-29 | 2009-12-02 | Siemens Aktiengesellschaft | Method for high-speed flame spraying |
-
2010
- 2010-01-28 EP EP10000895A patent/EP2353725A1/en not_active Withdrawn
- 2010-07-13 US US13/574,819 patent/US20120301624A1/en not_active Abandoned
- 2010-07-13 EP EP10732954A patent/EP2528693A1/en not_active Withdrawn
- 2010-07-13 RU RU2012136642/05A patent/RU2519415C2/en not_active IP Right Cessation
- 2010-07-13 WO PCT/EP2010/060051 patent/WO2011091866A1/en active Application Filing
- 2010-07-13 CN CN2010800626049A patent/CN102725071A/en active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO2011091866A1 * |
Also Published As
Publication number | Publication date |
---|---|
EP2353725A1 (en) | 2011-08-10 |
RU2519415C2 (en) | 2014-06-10 |
RU2012136642A (en) | 2014-03-10 |
CN102725071A (en) | 2012-10-10 |
US20120301624A1 (en) | 2012-11-29 |
WO2011091866A1 (en) | 2011-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1845171B1 (en) | Use of metallic powders having different particle sizes for forming a coating system | |
EP2436798B1 (en) | Masking material, masking device and method for masking a substrate | |
EP2593582B1 (en) | Porous ceramic coating system | |
EP1952931A1 (en) | Mechtrode with powder feed and method for utilising such mechtrode | |
WO2014075947A1 (en) | Modified surface around a hole | |
EP2907888A1 (en) | Compressor blade with erosion resistant hard material coating | |
WO2011113833A1 (en) | Method for reprocessing a turbine blade having at least one platform | |
WO2012062546A1 (en) | Porous layer system having a porous inner layer | |
WO2011091866A1 (en) | Spray nozzle and method for atmospheric spraying, device for coating, and coated component | |
EP2373824B1 (en) | Method for coating a component with film cooling holes and component | |
WO2011047890A1 (en) | Method for measuring layer thickness by means of laser triangulation, and device | |
EP2216509A1 (en) | Turbine component with easily removable protective layer, turbine component set, a turbine and method for protecting a turbine component | |
EP2391744B1 (en) | Coating using thermal and non-thermal coating method | |
WO2009087189A2 (en) | Small solder rod | |
EP2365106A1 (en) | Ceramic thermal insulating layer system with modified adhesive layer | |
EP2584067A1 (en) | Component with graphene and method for producing components with graphene | |
WO2013075858A1 (en) | Modified interface around a hole | |
EP2196555A1 (en) | Powder mixture made from ceramic and glass, component with masking and method for application | |
WO2013060499A1 (en) | Surface having specially formed recesses and component | |
WO2007085512A1 (en) | Method for producing a component with holes | |
WO2011128239A1 (en) | Germanium-containing solder, a component with a solder and a process for soldering | |
EP1867749A1 (en) | Method to deposit a material on to a workpiece | |
EP1918063A1 (en) | Composite brazing powder comprising core and metallic coating, for brazing turbine parts | |
WO2012065851A1 (en) | Shortened method of drilling a hole | |
EP2589681A1 (en) | Combination of columnar and globular structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120618 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20150216 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150627 |