[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2524014B1 - Surface modification system for coating substrate surfaces - Google Patents

Surface modification system for coating substrate surfaces Download PDF

Info

Publication number
EP2524014B1
EP2524014B1 EP11723859.2A EP11723859A EP2524014B1 EP 2524014 B1 EP2524014 B1 EP 2524014B1 EP 11723859 A EP11723859 A EP 11723859A EP 2524014 B1 EP2524014 B1 EP 2524014B1
Authority
EP
European Patent Office
Prior art keywords
particles
metal
polymer
coating
stabilizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11723859.2A
Other languages
German (de)
French (fr)
Other versions
EP2524014A2 (en
Inventor
Ringo Grombe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibniz Institut fuer Polymerforschung Dresden eV
Original Assignee
Leibniz Institut fuer Polymerforschung Dresden eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz Institut fuer Polymerforschung Dresden eV filed Critical Leibniz Institut fuer Polymerforschung Dresden eV
Publication of EP2524014A2 publication Critical patent/EP2524014A2/en
Application granted granted Critical
Publication of EP2524014B1 publication Critical patent/EP2524014B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/16Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies using synthetic lacquers or varnishes

Definitions

  • the invention relates to a surface modification system for the coating of substrate surfaces with a metallic character, wherein a dispersion of polymer-protected particles is used.
  • a dispersion of polymer-protected particles is used.
  • the interaction of the particles with the substrate surface and the anchoring of the polymer chains result in an adhesion promoter layer to which further target molecules can be bound by charge interaction.
  • biocompatible polymers are particularly useful for e.g. Medical devices.
  • nanoparticles for coating electrodes is in WO2009046382 A2 described.
  • the preparation of a primary and secondary nanoparticle layer on metal surfaces is described, wherein the primary nanoparticle layer has better adhesion properties to the metal surface of the electrode than the secondary nanoparticle layer, which in turn forms a compound with the primary nanoparticle layer.
  • the US2009087644 A1 discloses a method for coating substrates with a layer of functionalized nanoparticles, wherein the substrate is coated in a solution with a polymeric binder containing the functionalized nanoparticles by immersion. Subsequently, a further coating operation is carried out with a second layer of functionalized nanoparticles, whereby a gradient with respect to a desired material property is formed.
  • the US2007036510 A1 discloses methods of making a plastic packaging material for microelectronic products wherein a layer containing nanoparticles is in contact with the substrate. By using nanoparticles, various properties of the packaging material can be adjusted for the respective application.
  • US20040055420 describes the adsorption of dispersed polymer-stabilized nanoparticles on electrodes.
  • the deposition methods include electrophoretic as well as thermal processes.
  • a subsequent etching process increases the surface roughness of the electrode and thus its efficiency.
  • Further stabilizing substances for metallic nanoparticles are electron donor compounds in which the electron-rich groups are arranged in a manner favorable for the stabilization of nanoparticles.
  • the derivatives of polyacrylic acid Falletta et al J. Phys. Chem. C, 112 2008, 11758-11766
  • Poly (meth) acrylic acid Dubas et al Talanta 76 2008 29-33
  • polyacrylamide Bonini et al Langmuir 24 2008 12644-12650
  • Mainly paints, dip, flow and roller coating or vapor deposition strategies e.g., thermal spray, cold vapor deposition, ultrasonic technique, Parylene coating, PTFE coating, etc. are used.
  • metals or colloidal substances eg water-soluble dyes
  • electrophoretic effects-based method of electroplating S. Paul, Surface Coating, Science and Technology, J. Wiley Ltd, 1996, p. 497 .
  • this metal components of different and complex geometry can be processed with low material losses.
  • the use of water-soluble inks reduces solvent emissions.
  • the stability and homogeneity of the coating is determined to a large extent by the purity of the metal surface. Therefore, washing or etching steps are usually integrated into the coating method. In this case, chlorine-containing solvents, (chromium-phosphorus, hydrochloric and sulfuric) acids or alkaline media are used.
  • the metal surface is often provided with a phosphate coating. A large number of methods are available for this, but only a few result in a homogeneous, extremely thin and microcrystalline coating ( G. Reinhard, Prog. Org. Coat., 15, 1987, p. 125 ).
  • the metal surfaces must be treated prior to application of coating reagents.
  • etchants or detergents are used, which increase the disposal costs of the respective processes.
  • the object of the present invention is therefore to provide an improvement in the adhesion promotion on a surface with a metallic character by coating reagents and the further functionalization of the adhesion promoter layer. Due to the chemical and physical properties of metal surfaces, the wetting and adhesion by adhesion promoters and thus the homogeneous and stable coating is problematic. In addition, the environmental compatibility and the health protection is a challenge.
  • the object is achieved by a method according to the main claim. Advantageous embodiments are given in the appended claims. The object is further achieved by a coated metal surface according to claim 15.
  • the object is achieved by a method for coating a substrate surface by means of dispersed particles.
  • the particles are first dispersed in a solvent with the aid of a stabilizing polymer.
  • the substrate surface to be coated is wetted with the stabilized particle solution, wherein a fixation of the polymer chains takes place in the spaces between the metal surface and particles by a clamping mechanism.
  • this substrate particle binding can be formed by penetration / diffusion processes of the particles into the surface.
  • collapsing and aggregating the colloidal system a stable particle layer is formed on the substrate surface.
  • the unbonded particles are removed by washing with a solvent. If a further stabilization of the surface modification system is desired, then stabilizing reactions can be carried out. For this purpose, additives such as free-radical initiators and / or crosslinkers and / or complexing agents and / or surfactants can be helpful. Furthermore, stabilization can be brought about by the formation of interpenetrating networks (IPN).
  • IPN interpenetrating networks
  • ionic charges now takes place on the coated substrate surface.
  • These can be prepared by means of chemical reactions known to those skilled in the art from organic or polymer analog chemistry.
  • particle systems with ionically charged stabilizing polymers can also be used.
  • Another possibility for the immobilization of target molecules is the application of stereo-complexation. Such complexes arise from the interaction of (D, L) stereoisomers.
  • Another possibility for the immobilization of target molecules is the application of hydrogen bonds.
  • thermo-reversible hydrogels Due to the system collapse upon temperature increase, adhesion promoter layers can be produced using thermoreversible hydrogels, on-demand.
  • the final step is the drying of the coated substrate surface.
  • a substrate surface with a metallic character is understood to mean an electrically conductive surface.
  • the substrate surface may be part of a metallic article of various geometries (e.g., cable, plate, rod, tube, ball, tissue, stent-like constructs), a porous wafer, a fiber composite, or the like.
  • the substrate surface may have a flat or structured surface, which allows the adhesion of the surface modification system.
  • the substrate surface may comprise one or more elements selected from groups 3 to 16 and the lanthanides of the Periodic Table of the Elements, their isotopes, salts, as well as mixtures, alloys, etc. thereof.
  • the adhesion promoter layer can be stabilized by initiating crosslinking steps.
  • crosslinking agents and polymerization initiators are added to the adhesion promoter system. Addition of radical initiators and / or crosslinkers may be helpful in initiating polymerization reactions (eg, radical or condensation reaction) as well as polymer-analogous reactions (e.g., nucleophilic or electrophilic reactions). Additional options for such stabilization are provided by beta and gamma ray crosslinking steps.
  • technologies such as lithographic process etching techniques may be employed to provide more or less targeted structural properties to affect surface roughness.
  • Such a structuring method can bring about an influence on the surface wetting.
  • stabilization of the primer layer may be enforced by rinsing the particle destabilizing LSM.
  • the rinse causes a collapse of the particles and thus increases the interaction in the clamping complex substrate-particle polymer.
  • the particles used are metal particles / metal alloy particles / metal oxide particles.
  • the particles may contain one or more elements selected from groups 3 to 16 and the lanthanides of the Periodic Table of the Elements, their isotopes, salts, as well as mixtures, alloys, etc. thereof.
  • the particles can have a wide variety of shapes and structured surfaces.
  • the dimensions of the particles used are in the micron / submicron or nanometer range. Particles of this size can be used for surface penetration / diffusion processes and are more easily dispersed and stabilized by stabilizing reagents such as e.g. Protect polymers from premature coagulation.
  • electrophoretic deposition eg EPD
  • chemical in situ deposition eg in situ nano-particle deposition system (NPDS)
  • salts of reducible metals eg Au, Ag or Fe
  • reducing agents z eg Au, Ag or Fe
  • poly-8-hydroxyquinolines eg Au, Ag or Fe
  • NPDS nano-particle deposition system
  • the particles are at least partially coated with one or more colloid-stabilizing polymers.
  • a differentiated modification e.g. be made possible on the uncoated particle sections.
  • the particles have a functionalization by the colloid-stabilizing polymers used. These functionalities can also be generated by a subsequent reaction step. The functionalization is necessary for a stable and homogeneous Represent coating with target molecules.
  • the dispersion of inorganic particles with organic particles e.g. Isobutylcyanoacrylaten or gelatin, added.
  • organic particles e.g. Isobutylcyanoacrylaten or gelatin
  • the polymer used is a biocompatible polymer or hydrogel-forming polymer.
  • This is of particular interest for biomedical and biotechnological applications.
  • such hydrophilic or bio-functional surfaces can be displayed on medical devices.
  • a further embodiment of the invention takes place after the coating of the substrate surface with the functionalized particles, a loading of target molecules, wherein the interaction between the primer layer and target molecule can be ionic, complex, chelate nature. Further interactions may be due to interpenetrating networks (IPN), hydrogen bonds, or other electrostatic effects.
  • IPN interpenetrating networks
  • a combination of collapsed particles and interpenetrating networks is used, thereby reducing the susceptibility to stress / cracking of the subsequently applied coating with target molecules.
  • interpenetrating networks IPNs
  • the collapsed particles act as centers of stress relaxation and thereby reduce the susceptibility to stress / cracking of the subsequently applied coating with target molecules.
  • so-called 'Pfropff reactions are used for the coupling of target molecules US2010087343A1 .
  • functional layers such as sliding films can be produced on the polymer materials.
  • the coated substrate surface is functionalized with biologically active molecules, e.g. Antibodies and nucleotides used.
  • biologically active molecules e.g. Antibodies and nucleotides used.
  • antiseptic monomers such as e.g. Isobutylcyanoacrylate, be reacted on the surface. Further polymer-analogous reactions can be used to show additional surface properties.
  • the coated substrate surface is used for functionalization with organic (nano) particles. If e.g. like the isobutylcyanoacrylate particles used in the pharmaceutical industry, their high specific surface area can produce antiseptic coatings with significantly reduced material consumption. At the resulting surface further target molecules can be reacted.
  • the coated substrate surface is used for functionalization with glucan-like oligomers / polymers such as cellulose, starch, heparin, chitosan, hyaluronic acid, etc.
  • glucan-like oligomers / polymers such as cellulose, starch, heparin, chitosan, hyaluronic acid, etc.
  • Such coatings have a high degree of biocompatibility.
  • the coated substrate surface is used to immobilize functional coatings (eg non-reflective, antifouling, lubricating film, etc); synthetic / natural target molecules, hydrogel polymers; Drugs; peptides; antimicrobial agents; lipids; polysaccharides; biologically active molecules such as antibodies, nucleotides, enzymes, signal peptides, fluorescent / phosphorescent dyes, minerals, nanoparticles; Clay minerals or activated carbon eg for water treatment; clathrates; Cyclodextrin and other supramolecules, such as for detoxification or endotoxin clearance; electrically conductive metal surfaces, photoelectrically active surfaces, etc. used.
  • functional coatings eg non-reflective, antifouling, lubricating film, etc
  • synthetic / natural target molecules e.g., hydrogel polymers
  • Drugs e.g non-reflective, antifouling, lubricating film, etc
  • lipids e.g., lipo
  • the substrate to be coated is immersed in a stabilized dispersion of metal particles.
  • the temperature of the dispersion may be room temperature.
  • the dispersion can also be heated.
  • the reaction time can vary over a period of 180 minutes.
  • colloidal polymer-stabilized metal particles Fig. 1 , 104
  • Fig. 1 , 100 colloidal polymer-stabilized metal particles
  • Fig. 1 , Step 101 colloidal polymer-stabilized metal particles
  • Fig. 1 , Step 101 By aggregation and collapse ( Fig. 1 , Step 101) of the metal structures results in an additional metal layer with polymer chains immobilized by clamping complexes ( Fig. 1 , 105).
  • This step results in a coating acting as a primer, which serves as a basis for further functional coatings.
  • a modification of the primer layer is performed. If the metal particle dispersion is stabilized with an amidic polymer such as, for example, polyvinylpyrrolidone or polyacrylamide, amino or carboxylate functions (in the alkaline medium) can be obtained by hydrolysis ( Fig. 1 , 106) are generated. By pH Variation can also change the charge of the surface. Finally, oppositely charged target molecules can be immobilized ( Fig. 1 , Step 103). Subsequently, the drying of the applied coating ( Fig. 1 , 107).
  • an amidic polymer such as, for example, polyvinylpyrrolidone or polyacrylamide
  • amino or carboxylate functions in the alkaline medium
  • hydrolysis Fig. 1 , 106
  • pH Variation can also change the charge of the surface.
  • oppositely charged target molecules can be immobilized ( Fig. 1 , Step 103). Subsequently, the drying of the applied coating ( Fig. 1 , 107).
  • the substrate to be coated is immersed in a stabilized dispersion of metal particles.
  • the temperature of the dispersion may be room temperature.
  • the dispersion can also be heated.
  • the reaction time can vary over a period of 180 minutes.
  • adsorb ionically charged colloidal polymer-stabilized metal particles Fig. 2 , 203 to the metal substrate surface ( Fig. 2 , 200).
  • aggregation and collapse ( Fig. 2 , Step 201) of the metal structures results in an additional metal layer with polymer chains immobilized by clamping complexes ( Fig. 2 , 204).
  • This step results in an ionically charged coating acting as an adhesion promoter, which serves as the basis for further functional coatings.
  • the metal particle dispersion is stabilized with a polymer such as, for example, polyacrylic acid (PAA), negatively charged functions such as carboxylate functions can be generated in the sufficiently alkaline medium and charged target molecules can be immobilized ( Fig. 2 , Step 202). Subsequently, the drying of the applied coating ( Fig. 2 , 205).
  • PAA polyacrylic acid
  • the surface modifications according to the invention represent the possibility of incorporation of drug systems or coupling of specific ligands. In this way, biocompatible surfaces can be created.
  • the surface modification system of the invention is used for therapeutic and analytical applications. Immobilization of hydrophilic / lubricious / antimicrobial / abrasion-resistant / heat-resistant / corrosion-stable / fracture-resistant substances takes place and / or other functional coatings. Immobilization may be followed by the goal of altering the physical properties of the support material, such as waterproofness, mechanical strength, chemical resistance, light fastness, abrasion resistance, gas and moisture permeability, design, appearance, feel, surface design, and bulk. The method is therefore also suitable for solving technical problems through biologically inspired solutions (bionics).
  • the surface modification system of the present invention is used to decorate the substrate surface with charge carriers such as ionic biomolecules (e.g., glycosaminoglycans). So biocompatible or antifouling surfaces can be produced.
  • charge carriers such as ionic biomolecules (e.g., glycosaminoglycans). So biocompatible or antifouling surfaces can be produced.
  • the surface modification system of the present invention is useful for functionalizing the substrate surface with biologically active molecules, e.g. Antibodies and nucleotides used. This is of particular interest in analytical medical technology.
  • the surface modification system according to the invention is used to functionalize the substrate surface with fluorescence / phosphorus molecules for fluorescence / phosphorus determination systems.
  • the magnetic particle surface modification system of the present invention is used for medical imaging systems for malignant tissue examination.
  • the surface modification system according to the invention is used for the immobilization of lipid membrane viscoses (liposomes) or polymeromas as biocompatible / biodegradable active substance carrier or biological membrane on the substrate surface.
  • the surface modification system of the present invention is used to immobilize surfactant oligomers together with lecithin to solubilize cholesterol on the substrate surface.
  • the surface modification system of the invention is used to apply a drug-release coating on the substrate surface at a defined rate of release.
  • the surface modification system of the present invention is used to immobilize superparamagnetic iron oxide particles for metastasis elimination on the substrate surface.
  • the surface modification system according to the invention is used for decoration of water pipes with antimicrobial agents for outdoor use for the disinfection of water.
  • the surface modification system according to the invention is used for decoration of water pipes with antimicrobial agents for outdoor use for the disinfection of water.
  • the surface modification system according to the invention is used to prepare metal / polymer systems with defined structures by laser-chemical treatment of immobilized metal chelates.
  • the surface modification system according to the invention is used for embedding clay minerals or activated carbon for water treatment (detoxification).
  • the surface modification system according to the invention is used for further industrial painting or decorative design.
  • novel or conventional paint systems may be considered.
  • the surface modification system according to the invention is used for embedding fuel cell components.
  • the surface modification system according to the invention is used for embedding functional (nano) particles (magnetic, light-emitting, etc.); solid-state hosts (eg polyurethane / silica ORMOSILs) used to store LASER dyes, etc.
  • functional particles magnetic, light-emitting, etc.
  • solid-state hosts eg polyurethane / silica ORMOSILs
  • redox-capable systems eg iron particles
  • the incorporation of redox-capable systems can enable redox polymerization on the surface.
  • the stabilization of the iron oxide particles is achieved so far by a coating with polymers such as dextran (Ferridex ®), carboxydextran (Resovist ®), albumin and starch or a liposomal envelope.
  • polymers such as dextran (Ferridex ®), carboxydextran (Resovist ®), albumin and starch or a liposomal envelope.
  • IPN interpenetrating networks
  • the surface modification system according to the invention is used as a lubricant substitute in ball bearings.
  • the surface modification system according to the invention is used for coating composite materials with sufficient conductivity, such as, for example, carbon black-reinforced plastics (CFRP), short-fiber reinforced metals, so-called metal matrix composites (MMC).
  • CFRP carbon black-reinforced plastics
  • MMC metal matrix composites
  • the surface modification system of the invention is used to coat analytical equipment such as e.g. Chromatography columns used.
  • analytical equipment such as e.g. Chromatography columns used.
  • the surface modification system according to the invention is used for the adhesion mediation between components of the same or different material / surface properties.
  • the surface modification system according to the invention is used for coating materials which are used in concrete constructions similar to the irons.
  • the surface modification system of the present invention is used to coat materials used in the testing of plastics materials (e.g., metal strips in natural rubber)
  • the surface modification system according to the invention is used for the production of carbide / nitride or similar abrasion-resistant / oxidation-stable / protective Layers (as shown, for example, by physical vapor phase deposition).
  • the stabilizing polymer by (partial) decomposition for example, serve as a carbon / nitrogen or other elementary source.
  • Strength-enhancing substances could also be obtained by additional additives, such as after in the document DE102004014076B3
  • the polymer phase may be used as an intermediate layer for stress absorption.
  • the abrasion-resistant systems can be used for example on metallic cutting tools, which have ceramic-like properties on the surface after the appropriate treatment.
  • Abrasion resistant layers are also interesting in terms of computer drives. An ever-increasing data density on hard disks requires better resolution and better mechanical stability of the surfaces. Abrasion-resistant surfaces are therefore of great interest in order to avoid damage to the drive.
  • the surface modification system of the invention is used in combination with stimuli-responsive adhesion mediators (with stimuli such as temperature, electromagnetic radiation, etc.) for on-demand adhesions.
  • stimuli-responsive adhesion mediators with stimuli such as temperature, electromagnetic radiation, etc.
  • Such may e.g. as adhesive joints on a car body replace the welds etc. and thus facilitate the recycle process.
  • Hot-melt adhesives such as polyamides and Micropearl F30 should be mentioned here as stimuli-responsive adhesion promoters.
  • the surface modification system according to the invention itself can act as a stimuli-responsive adhesion mediators. In this way, the adhesive strength and thus the adhesion can be influenced.
  • the surface modification system of the invention is used to coat semiconductor surfaces (such as silicon wafer surfaces).
  • semiconductor surfaces such as silicon wafer surfaces.
  • an increase in the efficiency of the solar cells can be achieved by the plasmon resonance of immobilized metal nanoparticles.
  • the surface modification system according to the invention is used for the production of circuits.
  • defined structures with a small space requirement can be realized by the use of (laser) optical methods, electron bombardment, ion bombardment or other etching methods.
  • the surface modification system according to the invention is used in dental or orthopedic applications.
  • a coating of e.g. Titanium components thus an improved compatibility with the body tissue can be achieved.
  • the surface modification system according to the invention is used in electrical applications. Strongly adherent, elastic, homogeneous and defect-free insulation can be achieved, for example, by coating with paper fibers. Similar applications are conceivable for capacitors or transformers.
  • the surface modification system according to the invention is used for the homogeneous coating of metal foam.
  • Bioresorbable components made of ferrous metal foams are very interesting for osteosurgical application.
  • the integration of these components is enhanced by pre-immobilized apatites.
  • due to different material properties between metal and mineral, such systems are mechanically and thermally unstable.
  • the surface modification system of the present invention can stabilize such systems by compensating for any shear forces due to the combination of surface roughness and polymer chain mobility.
  • the surface modification system according to the invention is used for the production of protective coatings on e.g. Used steels.
  • immobilized powder filled pastes e.g. Aluminide protective coatings which reduce hot air corrosion resistance in e.g. Increase automotive catalytic converters.
  • inventive Surface modification system with water glass such as in DE4040153A1 described, coated.
  • water- and fire-stable surfaces can be produced, which are break-stabilized by the stress-absorbing effect of the particle-protecting polymers.
  • the surface modification system according to the invention is used to display analytical surfaces. Possible applications are in screening analysis such as e.g. To find SPR spectroscopy.
  • the immobilized by means of the clamping mechanism polymers completely novel surface functionalities can be displayed, which corresponds to a wider range of applications.
  • the surface modification system according to the invention for the diamond coating is used and so abrasion-stable, corrosion-resistant layers combined with lubricious surfaces.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Materials For Medical Uses (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemically Coating (AREA)

Description

Die Erfindung betrifft ein Oberflächenmodifizierungssystem für die Beschichtung von Substratoberflächen mit metallischem Charakter, wobei eine Dispersion polymergeschützter Partikel verwendet wird. Die Wechselwirkung der Partikel mit der Substratoberfläche und die Verankerung der Polymerketten ergeben eine Haftvermittlerschicht, an welche weitere Targetmoleküle durch Ladungswechselwirkung angebunden werden können. Von besonderem Interesse für z.B. Medizinprodukte ist die Verwendung von biokompatiblen Polymeren.The invention relates to a surface modification system for the coating of substrate surfaces with a metallic character, wherein a dispersion of polymer-protected particles is used. The interaction of the particles with the substrate surface and the anchoring of the polymer chains result in an adhesion promoter layer to which further target molecules can be bound by charge interaction. Of particular interest for e.g. Medical devices is the use of biocompatible polymers.

Stand der TechnikState of the art

Die Benutzung von Nanopartikeln zur Beschichtung von Elektroden ist in WO2009046382 A2 beschrieben. Hier wird die Herstellung einer primären und sekundären Nanopartikelschicht auf Metalloberflächen beschrieben, wobei die primäre Nanopartikelschicht bessere Adhäsionseigenschaften gegenüber der Metalloberfläche der Elektrode aufweist als die sekundäre Nanopartikelschicht, welche wiederum eine Verbindung mit der primären Nanopartikelschicht eingeht.The use of nanoparticles for coating electrodes is in WO2009046382 A2 described. Here, the preparation of a primary and secondary nanoparticle layer on metal surfaces is described, wherein the primary nanoparticle layer has better adhesion properties to the metal surface of the electrode than the secondary nanoparticle layer, which in turn forms a compound with the primary nanoparticle layer.

Die US2009087644 A1 offenbart ein Verfahren zur Beschichtung von Substraten mit einer Schicht mit funktionalisierten Nanopartikeln, wobei das Substrat in eine Lösung mit einem Polymerbindemittel enthaltend die funktionalisierten Nanopartikeln durch Untertauchen beschichtet wird. Anschließend erfolgt ein weiterer Beschichtungsvorgang mit einer zweiten Lage funktionalisierter Nanopartikel, wodurch ein Gradient hinsichtlich einer gewünschten Materialeigenschaft ausgebildet wird.The US2009087644 A1 discloses a method for coating substrates with a layer of functionalized nanoparticles, wherein the substrate is coated in a solution with a polymeric binder containing the functionalized nanoparticles by immersion. Subsequently, a further coating operation is carried out with a second layer of functionalized nanoparticles, whereby a gradient with respect to a desired material property is formed.

Die US2007036510 A1 offenbart Verfahren zur Herstellung eines Plastikverpackungsmaterials für Mikroelektronikerzeugnisse, wobei eine Schicht, welche Nanopartikel enthält, im Kontakt zum Substrat steht. Über die Verwendung von Nanopartikeln lassen sich hierbei verschiedene Eigenschaften des Verpackungsmaterials für den jeweiligen Anwendungszweck einstellen.The US2007036510 A1 discloses methods of making a plastic packaging material for microelectronic products wherein a layer containing nanoparticles is in contact with the substrate. By using nanoparticles, various properties of the packaging material can be adjusted for the respective application.

In US20040055420 wird die Adsorption von dispergierten polymerstabilisierten Nanopartikeln an Elektroden beschrieben. Die Depositionsmethoden umfassen elektrophoretische als auch thermische Vorgänge. Ein anschließender Ätzprozess erhöht die Oberflächenrauhigkeit der Elektrode und damit deren Effizienz.In US20040055420 describes the adsorption of dispersed polymer-stabilized nanoparticles on electrodes. The deposition methods include electrophoretic as well as thermal processes. A subsequent etching process increases the surface roughness of the electrode and thus its efficiency.

Prinzipielle Mechanismen der elektrophoretischen Partikelablagerung an Substratoberflächen werden in dem Buch von Aldo R. Boccaccini, Jan B. Talbot et al (Electrophoretic deposition, fundamentals and applications , Electrochemical Society. Electrodeposition Division, United Engineering Foundation U.S., 2002 ) beschrieben.Principal mechanisms of electrophoretic particle deposition on substrate surfaces are described in the book of Aldo R. Boccaccini, Jan B. Talbot et al (Electrophoretic deposition, fundamental and applications, Electrochemical Society, Electrodeposition Division, United Engineering Foundation US, 2002 ).

Das Gebiet der Silbernanopartikel wird schon über mehr als ein Jahrhundert ( M. Faraday, Philos. Trans. R. Soc. London 1857, 147, 145 ) bearbeitet.The field of silver nanoparticles has been around for more than a century ( M. Faraday, Philos. Trans. R. Soc. London 1857, 147, 145 ) processed.

Die Stabilisierung von Silbernanopartikeln durch Poly(vinylpyrrolidon), PVP, wird weiterhin durch Xia et al. (Angew Chem 2009, 121, 62 - 108 ) beschrieben. Außerdem werden die chemische und physikalische Formkontrolle bei der Synthese von Metallnanokristallen diskutiert. Zudem wird die Wechselwirkung von Nanopartikeln aus Platin oder Silber mit Eisen, einem Hauptbestandteil von rostfreiem Stahl beschrieben.The stabilization of silver nanoparticles by poly (vinylpyrrolidone), PVP, continues through Xia et al. (Angew Chem 2009, 121, 62 - 108 ). In addition, chemical and physical shape control in the synthesis of metal nanocrystals will be discussed. In addition, the interaction of nanoparticles of platinum or silver with iron, a major constituent of stainless steel, is described.

Weitere Stabilisierungssubstanzen für metallische Nanopartikel sind Elektronendonor-verbindungen in welchen die elektronenreichen Gruppen in für die Stabilisierung von Nanopartikeln günstigen Weise angeordnet sind. Beispielhaft seien die Derivate der Polyacrylsäure ( Falletta et al J. Phys. Chem. C, 112 2008, 11758-11766 ), Poly(meth-)acrylsäure ( Dubas et al Talanta 76 2008 29-33 ) oder Polyacrylamid ( Bonini et al Langmuir 24 2008 12644-12650 ) genannt.Further stabilizing substances for metallic nanoparticles are electron donor compounds in which the electron-rich groups are arranged in a manner favorable for the stabilization of nanoparticles. By way of example, the derivatives of polyacrylic acid ( Falletta et al J. Phys. Chem. C, 112 2008, 11758-11766 ), Poly (meth) acrylic acid ( Dubas et al Talanta 76 2008 29-33 ) or polyacrylamide ( Bonini et al Langmuir 24 2008 12644-12650 ) called.

In einer Arbeit von Charlot et al (J Mater Chem, 19, 2009, S. 4117 ) wird der Einsatz von 3,4-dihydroxyphenylalanine (DOPA) stabilisierten Silbernanopartikeln zur Beschichtung von rostfreiem Stahl beschrieben.In a work of Charlot et al (J Mater Chem, 19, 2009, p. 4117 ) describes the use of 3,4-dihydroxyphenylalanine (DOPA) stabilized silver nanoparticles for coating stainless steel.

Aus der oben genannten Literatur geht ebenfalls hervor, dass eine Dispersion von Metallpartikeln in verschiedensten Medien (wässrig oder organisch) vorliegen kann.From the above literature it is also clear that a dispersion of metal particles in various media (aqueous or organic) may be present.

Um Metallwerkstoffe für industrielle Anwendungen oder für die Medizintechnik zu funktionalisieren werden verschiedenste Methoden angewandt. Hauptsächlich kommen Anstriche, dip-, flow- und Rollercoating oder Bedampfungsstrategien (z.B. thermal spray, Kaltdampfablagerung, Ultraschalltechnik, Parylene-Beschichtung, PTFE-Beschichtung, etc.) zum Einsatz.To functionalize metal materials for industrial applications or for medical technology a variety of methods are used. Mainly paints, dip, flow and roller coating or vapor deposition strategies (e.g., thermal spray, cold vapor deposition, ultrasonic technique, Parylene coating, PTFE coating, etc.) are used.

Zur Abscheidung von Metallen oder kolloidalen Stoffen (z.B. wasserlöslichen Farbstoffen) an Metallsubstraten wird die auf elektrophoretischen Effekten basierende Methode der Galvanisierung eingesetzt ( S. Paul, Surface Coating, Science and Technology, J. Wiley Ltd, 1996, S. 497 ). Mit dieser können Metallbausteine unterschiedlichster und komplexester Geometrie unter geringen Materialverlusten bearbeitet werden. Weiterhin reduziert der Einsatz von wasserlöslichen Farben den Lösungsmittelausstoß.For the deposition of metals or colloidal substances (eg water-soluble dyes) on metal substrates, the electrophoretic effects-based method of electroplating is used ( S. Paul, Surface Coating, Science and Technology, J. Wiley Ltd, 1996, p. 497 ). With this metal components of different and complex geometry can be processed with low material losses. Furthermore, the use of water-soluble inks reduces solvent emissions.

Die Stabilität und Homogenität der Beschichtung wird im hohen Maße durch die Reinheit der Metalloberfläche bestimmt. Daher werden meist Wasch- oder Ätzschritte in die Beschichtungsmethode integriert. Dabei kommen chlorhaltige Lösungsmittel, (Chrom-Phosphor-, Salz- und Schwefel-)Säuren oder alkalische Medien zum Einsatz. Zur Vorbereitung von Methoden der Elektroablagerung wird die Metalloberfläche oft mit einer Phosphatschicht versehen. Eine Vielzahl von Methoden steht hierfür zur Verfügung, wobei jedoch nur wenige zu einer homogenen, extrem dünnen und mikrokristallienen Beschichtung führen ( G. Reinhard, Prog. Org. Coat., 15, 1987, S. 125 ).The stability and homogeneity of the coating is determined to a large extent by the purity of the metal surface. Therefore, washing or etching steps are usually integrated into the coating method. In this case, chlorine-containing solvents, (chromium-phosphorus, hydrochloric and sulfuric) acids or alkaline media are used. To prepare methods of electrodeposition, the metal surface is often provided with a phosphate coating. A large number of methods are available for this, but only a few result in a homogeneous, extremely thin and microcrystalline coating ( G. Reinhard, Prog. Org. Coat., 15, 1987, p. 125 ).

Die Herstellung der primären und sekundären Nanopartikelschicht auf Metalloberflächen wie in WO2009046382 A2 beschrieben, erfolgt ohne die Herbeiführung einer stabilen Haftvermittlerschicht durch einen Einklemmenmechanismus zwischen Substrat, Partikelschicht und Stabilisierungspolymeren.The preparation of the primary and secondary nanoparticle layers on metal surfaces as in WO2009046382 A2 described without the formation of a stable adhesion promoter layer by a pinching mechanism between the substrate, particle layer and stabilizing polymers.

Von den in den Druckschriften US2009087644 A1 und US2007036510 A1 beschriebenen Verfahren kann keine direkte Schlussfolgerung zu der hier beschriebenen Erfindung gezogen werden. Keine der Dokumente enthält Angaben oder Hinweise, welche eine mögliche Verbesserung der Haftvermittlung zu Targetmolekülschichten mittels Nanopartikelpräsenz aufzeigen.Of the in the pamphlets US2009087644 A1 and US2007036510 A1 no direct conclusion can be drawn on the invention described herein. None of the documents contain information or hints which indicate a possible improvement of the adhesion mediation to target molecule layers by nanoparticle presence.

Die in US20040055420 beschriebenen Verfahren dienen ausschließlich der Vergrößerung der Oberflächenrauhigkeit von Elektroden. Eine Verwendung der Oberflächenmodifizierung zur Immobilisierung von Targetmolekülen wird in der Druckschrift nicht beansprucht.In the US20040055420 described methods are used only to increase the surface roughness of electrodes. Use of surface modification to immobilize target molecules is not claimed in the reference.

Bei Anstrichen oder Bedampfungsstrategien kommen Substanzen zum Einsatz, welche vom ökologischen Standpunkt her fraglich oder komplizierter Darstellungsart sind. Der Einsatz von Acrylaten, Epoxiden, Ethylenen, Vinylenen ist zwar weit verbreitet, bringt aber die Frage der Immobilisierung/Abreaktion der funktionellen Gruppen und der Sensibilisierung von Anwendern mit sich. Zudem sind Bedampfungsmethoden mit einem komplexen Instrumentenaufbau verbunden.For paints or vaporization strategies, substances are used that are questionable or complicated from an ecological point of view. Although the use of acrylates, epoxides, ethylenes, and vinylenes is widespread, it involves the question of immobilization / reaction of the functional groups and sensitization of users. In addition, vaporization methods are associated with a complex instrument design.

Weiterhin müssen die Metalloberflächen bei herkömmlichen Methoden vor dem Auftragen von Beschichtungsreagenzien behandelt werden. Hierfür werden entweder Ätzmittel oder Detergentien eingesetzt, die die Entsorgungskosten der jeweiligen Prozesse erhöhen.Furthermore, in conventional methods, the metal surfaces must be treated prior to application of coating reagents. For this purpose, either etchants or detergents are used, which increase the disposal costs of the respective processes.

Der Nachteil der Galvanisierung ist, dass bei der anodischen Reaktion erhebliche Mengen Basen benötigt werden, um die notwendigen negativen Ladungen an den verwendeten Makromolekülen zu erzeugen ( C.A.May JPT 43, 1971, S.43 ). Ebenfalls hat die Entstehung von Sauerstoff einen nachteiligen Effekt auf die Leistungsfähigkeit des entstehenden Coatings (M.R. Sullivan 38, 1966, S.424). Zusammen mit der Gasentstehung stellen Entladungsphänomene Probleme bei der kathodischen Galvanisierung dar ( J.R.Smith, D.W.Boyed JCT 60, 1988, S.77 ).The disadvantage of electroplating is that in the anodic reaction considerable amounts of bases are needed to generate the necessary negative charges on the macromolecules used ( CAMay JPT 43, 1971, p. 43 ). Also, the generation of oxygen has a detrimental effect on the performance of the resulting coating (MR Sullivan 38, 1966, p.424). Discharge phenomena, together with gas generation, present problems with cathodic galvanization ( JRSmith, DWBoyed JCT 60, 1988, p.77 ).

Die von Charlot et al beschriebene Methode basiert auf der Erklärung, dass die Haftvermittlung dem eingesetztem DOPA-Copolymer zugeschrieben wird. Wobei die Silbernanopartikel lediglich als Herbizidquelle genutzt werden.The method described by Charlot et al. Is based on the statement that the adhesion promoter is attributed to the DOPA copolymer used. The silver nanoparticles are only used as a source of herbicides.

Die Aufgabe der vorliegenden Erfindung besteht daher darin eine Verbesserung der Haftvermittlung an einer Oberfläche mit metallischen Charakter durch Beschichtungsreagenzien und die weitere Funktionalisierung der Haftvermittlerschicht anzugeben. Durch die chemische und physikalische Beschaffenheit von Metalloberflächen ist die Benetzung und Adhäsion durch Haftvermittler und damit die homogene und stabile Beschichtung problembehaftet. Außerdem stellt die Umweltverträglichkeit und der gesundheitliche Schutz eine Herausforderung dar.The object of the present invention is therefore to provide an improvement in the adhesion promotion on a surface with a metallic character by coating reagents and the further functionalization of the adhesion promoter layer. Due to the chemical and physical properties of metal surfaces, the wetting and adhesion by adhesion promoters and thus the homogeneous and stable coating is problematic. In addition, the environmental compatibility and the health protection is a challenge.

Die Aufgabe wird durch ein Verfahren gemäß dem Hauptanspruch gelöst. Vorteilhafte Ausgestaltungen sind in den anhängigen Ansprüchen angegeben. Die Aufgabe wird weiterhin durch eine beschichtete Metalloberfläche gemäß Anspruch 15 gelöst.The object is achieved by a method according to the main claim. Advantageous embodiments are given in the appended claims. The object is further achieved by a coated metal surface according to claim 15.

Erfindungsgemäß erfolgt die Lösung der Aufgabe durch ein Verfahren zur Beschichtung einer Substratoberfläche mittels dispergierter Partikel. Die Partikel werden zuerst in einem Lösungsmittel mit Hilfe eines stabilisierenden Polymer dispergiert. Danach wird die zu beschichtende Substratoberfläche mit der stabilisierten Partikellösung benetzt, wobei eine Fixierung der Polymerketten in den Zwischenräumen zwischen Metalloberfläche und Partikel durch einen Klemmmechanismus erfolgt. Theoretisch kann diese Substrat-Partikelbindung durch Penetrierungs-/Diffusionprozesse der Partikel in die Oberfläche ausgebildet werden. Durch Kollabieren und Aggregieren des kolloidalen Systems wird eine stabile Partikelschicht auf der Substratoberfläche ausgebildet.According to the invention, the object is achieved by a method for coating a substrate surface by means of dispersed particles. The particles are first dispersed in a solvent with the aid of a stabilizing polymer. Thereafter, the substrate surface to be coated is wetted with the stabilized particle solution, wherein a fixation of the polymer chains takes place in the spaces between the metal surface and particles by a clamping mechanism. Theoretically, this substrate particle binding can be formed by penetration / diffusion processes of the particles into the surface. By collapsing and aggregating the colloidal system, a stable particle layer is formed on the substrate surface.

In einem Folgeschritt werden nach Beendigung des Beschichtungsvorganges die nicht gebundenen Partikel durch Waschen mit einem Lösungsmittel entfernt. Ist eine weitere Stabilisierung des Oberflächenmodifikationsystems gewünscht, so können stabilisierende Reaktionen durchgeführt werden. Hierfür können Additive wie Radikalstarter und/oder Vernetzern und/oder Komplexbildnern und/oder Tenside hilfreich sein. Weiterhin kann eine Stabilisierung durch die Ausbildung von interpenetrierenden Netzwerken (IPN) herbeigeführt werden.In a subsequent step, after completion of the coating process, the unbonded particles are removed by washing with a solvent. If a further stabilization of the surface modification system is desired, then stabilizing reactions can be carried out. For this purpose, additives such as free-radical initiators and / or crosslinkers and / or complexing agents and / or surfactants can be helpful. Furthermore, stabilization can be brought about by the formation of interpenetrating networks (IPN).

Um Wechselwirkungszentren für die nachfolgende Beschichtung mit Targetmolekülen zu schaffen, erfolgt nun eine Generation von ionischen Ladungen an der beschichteten Substratoberfläche. Diese können mittels chemischer Reaktionen, die dem Fachmann aus der organischen oder polymeranalogen Chemie bekannt sind, dargestellt werden. Alternativ können auch Partikelsysteme mit ionisch geladenen Stabilisierungspolymeren verwendet werden.In order to create interaction centers for the subsequent coating with target molecules, a generation of ionic charges now takes place on the coated substrate surface. These can be prepared by means of chemical reactions known to those skilled in the art from organic or polymer analog chemistry. Alternatively, particle systems with ionically charged stabilizing polymers can also be used.

Eine weitere Möglichkeit zur Immobilisierung von Targetmolekülen ist die Anwendung der Stereo-Komplexierung. Derartige Komplexe entstehen aus der Wechselwirkung von (D,L) Stereoisomeren. Eine weitere Möglichkeit zur Immobilisierung von Targetmolekülen ist die Anwendung von Wasserstoffbrückenbindungen.Another possibility for the immobilization of target molecules is the application of stereo-complexation. Such complexes arise from the interaction of (D, L) stereoisomers. Another possibility for the immobilization of target molecules is the application of hydrogen bonds.

Wasserstoffbrückenbindungen spielen auch in thermoreversiblen Hydrogelen eine große Rollen. Durch die Systemkollabierung bei Temperaturerhöhung können unter Verwendung von thermoreversiblen Hydrogelen, 'on-demand' Haftvermittlerschichten erzeugt werden. Der abschließende Schritt ist die Trocknung der beschichteten Substratoberfläche.Hydrogen bonds also play a major role in thermo-reversible hydrogels. Due to the system collapse upon temperature increase, adhesion promoter layers can be produced using thermoreversible hydrogels, on-demand. The final step is the drying of the coated substrate surface.

Unter einer Substratoberfläche mit metallischem Charakter wird im Sinne der Erfindung eine elektrisch leitfähige Oberfläche verstanden. Die Substratoberfläche kann dabei Bestandteil eines metallischen Gegenstandes unterschiedlichster Geometrie (z.B. Kabel, Platte, Stab, Rohr, Kugel, Gewebe, stent-ähnliche Konstrukte), eines porösen Wafers, eines Faserverbundwerkstoff oder ähnlichem bestehen. Die Substratoberfläche kann dabei eine ebene oder strukturierte Oberfläche aufweisen, welche die Adhäsion des Oberflächenmodifizierungssystems ermöglicht. Die Substratoberfläche kann dabei ein oder mehrere Elemente ausgewählt aus den Gruppen 3 bis 16 und der Lanthanaide des Periodensystems der Elemente, deren Isotopen, Salzen, als auch Mischungen, Legierungen, etc. davon aufweisen.In the context of the invention, a substrate surface with a metallic character is understood to mean an electrically conductive surface. The substrate surface may be part of a metallic article of various geometries (e.g., cable, plate, rod, tube, ball, tissue, stent-like constructs), a porous wafer, a fiber composite, or the like. The substrate surface may have a flat or structured surface, which allows the adhesion of the surface modification system. The substrate surface may comprise one or more elements selected from groups 3 to 16 and the lanthanides of the Periodic Table of the Elements, their isotopes, salts, as well as mixtures, alloys, etc. thereof.

In einer weiteren Ausführungsform der Erfindung kann eine Stabilisierung der Haftvermittlerschicht durch Initiierung von Vernetzungsschritten erfolgen. Hierzu werden dem Haftvermittlersystem Vernetzer und Polymerisationsinitiatoren zugesetzt. Zur Initiierung von Polymerisationsreaktionen (z. B. Radikal- oder Kondensationsreaktion) als auch polymeranalogen Reaktionen (z.B. nukleophile oder elektrophile Reaktionen) können Zusätze von Radikalstartern und/oder Vernetzern hilfreich sein. Zusätzliche Möglichkeiten für eine solche Stabilisierung bieten Vernetzungsschritte mittels Beta- und Gammastrahlen.In a further embodiment of the invention, the adhesion promoter layer can be stabilized by initiating crosslinking steps. For this purpose, crosslinking agents and polymerization initiators are added to the adhesion promoter system. Addition of radical initiators and / or crosslinkers may be helpful in initiating polymerization reactions (eg, radical or condensation reaction) as well as polymer-analogous reactions (e.g., nucleophilic or electrophilic reactions). Additional options for such stabilization are provided by beta and gamma ray crosslinking steps.

In einer weiteren Ausführungsform der Erfindung können Technologien (wie z.B. Ätztechniken aus litographischen Prozessen) eingesetzt werden, um mehr oder weniger gezielte Struktureigenschaften zur Beeinflussung der Oberflächenrauhigkeit herbei zuführen. Eine solche Strukturierungsmethode kann eine Beeinflussung der Oberflächenbenetzung mit sich bringen.In another embodiment of the invention, technologies (such as lithographic process etching techniques) may be employed to provide more or less targeted structural properties to affect surface roughness. Such a structuring method can bring about an influence on the surface wetting.

In einer weiteren Ausführungsform der Erfindung kann eine Stabilisierung der Haftvermittlerschicht durch Spülen des mit einem Partikel destabilisierenden LSM erzwungen werden. Das Spülen bewirkt ein Kollabieren der Partikel und verstärkt damit die Wechselwirkung im Klemmkomplex Substrat-Partikel-Polymer.In another embodiment of the invention, stabilization of the primer layer may be enforced by rinsing the particle destabilizing LSM. The rinse causes a collapse of the particles and thus increases the interaction in the clamping complex substrate-particle polymer.

Erfindungsgemäß sind die verwendeten Partikel Metallpartikel/Metalllegierungspartikel/Metalloxidpartikel. Die Partikel können dabei ein oder mehrere Elemente ausgewählt aus den Gruppen 3 bis 16 und der Lanthanaide des Periodensystems der Elemente, deren Isotopen, Salzen, als auch Mischungen, Legierungen, etc. davon aufweisen. Die Partikel können verschiedenste Formen und strukturierte Oberflächen aufweisen. Um die nötigen Prozesse zur Darstellung eines gewünschten Oberflächenmodifikationsystems und eine genügende Stabilität der Dispersion zu ermöglichen, bewegt sich erfindungsgemäß die Dimensionen der verwendeten Partikel im Mikron-/Submikron- oder Nanometerbereich. Partikel dieser Größe lassen sich für Oberflächenpenetrierungs-/diffusionprozesse einsetzten und lassen sich leichter dispergieren und durch Stabilisierungsreagenzien wie z.B. Polymere vor vorzeitiger Koagulation schützen.According to the invention, the particles used are metal particles / metal alloy particles / metal oxide particles. The particles may contain one or more elements selected from groups 3 to 16 and the lanthanides of the Periodic Table of the Elements, their isotopes, salts, as well as mixtures, alloys, etc. thereof. The particles can have a wide variety of shapes and structured surfaces. In order to enable the necessary processes for the preparation of a desired surface modification system and a sufficient stability of the dispersion, according to the invention the dimensions of the particles used are in the micron / submicron or nanometer range. Particles of this size can be used for surface penetration / diffusion processes and are more easily dispersed and stabilized by stabilizing reagents such as e.g. Protect polymers from premature coagulation.

In einer weiteren Ausführungsform der Erfindung können neben der elektrophoretischen Ablagerung (z.B. EPD) auch chemische in situ Ablagerung (z.B. in situ nano-particle deposition system (NPDS), Kombinationen von Salzen reduzierbarer Metalle (z.B. Au, Ag oder Fe) und Reduktionsmitteln z. B. Poly-8-Hydroxyquinoline (Mahmoud et al 2009, Deraeve et al 2007) oder Brunox Epoxy mit Polymerisationsstartern) zum Einsatz kommen.In a further embodiment of the invention, in addition to the electrophoretic deposition (eg EPD) also chemical in situ deposition (eg in situ nano-particle deposition system (NPDS), combinations of salts of reducible metals (eg Au, Ag or Fe) and reducing agents z. For example, poly-8-hydroxyquinolines (Mahmoud et al 2009, Deraeve et al 2007) or Brunox epoxy with polymerization initiators) are used.

In einer weiteren Ausführungsform der Erfindung sind die Partikel zumindest teilweise mit einem oder mehreren kolloidstabilisierenden Polymeren beschichtet. So kann eine differenzierte Modifikation z.B. an den nicht beschichteten Partikelabschnitten ermöglicht werden.In a further embodiment of the invention, the particles are at least partially coated with one or more colloid-stabilizing polymers. Thus, a differentiated modification e.g. be made possible on the uncoated particle sections.

In einer weiteren Ausführungsform der Erfindung weisen die Partikel durch die verwendeten kolloidstabilisierenden Polymere eine Funktionalisierung auf. Diese Funktionalitäten können auch durch einen nachgeschalteten Reaktionsschritt erzeugt werden. Die Funktionalisierung ist notwendig um eine stabile und homogene Beschichtung mit Targetmolekülen darzustellen.In a further embodiment of the invention, the particles have a functionalization by the colloid-stabilizing polymers used. These functionalities can also be generated by a subsequent reaction step. The functionalization is necessary for a stable and homogeneous Represent coating with target molecules.

In einer weiteren Ausführungsform der Erfindung ist die Dispersion der anorganischen Partikel mit organischen Partikeln, aus z.B. Isobutylcyanoacrylaten oder Gelatine, versetzt. Durch eine derartige Formulierungszusammensetzung kann eine Coimmobilisierung von Partikeln unterschiedlichster chemischer Eigenschaften ermöglicht und verschiedenste funktionale Schichten kreiert werden.In another embodiment of the invention, the dispersion of inorganic particles with organic particles, e.g. Isobutylcyanoacrylaten or gelatin, added. By means of such a formulation composition, it is possible to coimmobilize particles of very different chemical properties and to create a wide variety of functional layers.

Erfindungsgemäß ist das verwendete Polymer ein biokompatibles Polymer oder hydrogel-bildendes Polymer. Dies ist insbesondere für die Anwendung im biomedizinischen und biotechnologischen Bereich von Interesse. Beispielsweise können so hydrophile oder biologisch-funktionale Oberflächen auf Medizingeräten dargestellt werden. In einer weiteren Ausführungsform der Erfindung erfolgt nach der Beschichtung der Substratoberfläche mit den funktionalisierten Partikel eine Beladung mit Targetmolekülen, wobei die Wechselwirkung zwischen Haftvermittlerschicht und Targetmolekül ionischer, komplexartiger, chelatischer Natur sein kann. Weitere Wechselwirkungen können auf interpenetrierenden Netzwerken (IPN), Wasserstoffbrückenbindungen oder anderen elektrostatischen Effekten beruhen.According to the invention, the polymer used is a biocompatible polymer or hydrogel-forming polymer. This is of particular interest for biomedical and biotechnological applications. For example, such hydrophilic or bio-functional surfaces can be displayed on medical devices. In a further embodiment of the invention takes place after the coating of the substrate surface with the functionalized particles, a loading of target molecules, wherein the interaction between the primer layer and target molecule can be ionic, complex, chelate nature. Further interactions may be due to interpenetrating networks (IPN), hydrogen bonds, or other electrostatic effects.

In einer weiteren Ausführungsform der Erfindung wird eine Kombination von kollabierten Partikeln und Interpenetrierenden Netzwerken verwendet, wodurch die Stressanfälligkeit/Cracking der nachfolgend aufgebrachten Beschichtung mit Targetmolekülen verringert wird. Zusätzlich zu den Ladung-Ladung-Wechselwirkungen können interpenetrierende Netzwerke (IPN) zu einer höheren Flexibilität an der Phasengrenze Haftvermittler/Targetmolekül führen. Zudem wirken die kollabierten Partikel als Zentren der Stressrelaxation und verringern dadurch die Stressanfälligkeit/Cracking der nachfolgend aufgebrachten Beschichtung mit Targetmolekülen.In another embodiment of the invention, a combination of collapsed particles and interpenetrating networks is used, thereby reducing the susceptibility to stress / cracking of the subsequently applied coating with target molecules. In addition to the charge-charge interactions, interpenetrating networks (IPNs) can lead to greater flexibility at the phase boundary adhesion promoter / target molecule. In addition, the collapsed particles act as centers of stress relaxation and thereby reduce the susceptibility to stress / cracking of the subsequently applied coating with target molecules.

In einer weiteren Ausführungsform der Erfindung werden zur Ankopplung von Targetmolekülen so genannte 'Pfropff-Reaktionen, wie beispielhaft in den Druckschriften US2010087343A1 , US2009123772A1 oder US6369168B1 beschrieben genutzt. Dadurch können an den Polymerwerkstoffen z.B. funktionale Schichten wie Gleitfilme erzeugt werden.In a further embodiment of the invention, so-called 'Pfropff reactions, as exemplified in the documents, are used for the coupling of target molecules US2010087343A1 . US2009123772A1 or US6369168B1 described used. Thereby For example, functional layers such as sliding films can be produced on the polymer materials.

In einer weiteren Ausführungsform der Erfindung wird die beschichtete Substratoberfläche zur Funktionalisierung mit biologisch aktiven Molekülen wie z.B. Antikörpern und Nukleotiden verwendet. Weiterhin können antiseptische Monomere, wie z.B. Isobutylcyanoacrylat, an der Oberfläche abreagiert werden. Durch weiterführende polymeranaloge Reaktionen können zusätzliche Oberflächeneigenschaften dargestellt werden.In a further embodiment of the invention, the coated substrate surface is functionalized with biologically active molecules, e.g. Antibodies and nucleotides used. Furthermore, antiseptic monomers, such as e.g. Isobutylcyanoacrylate, be reacted on the surface. Further polymer-analogous reactions can be used to show additional surface properties.

In einer weiteren Ausführungsform der Erfindung wird die beschichtete Substratoberfläche zur Funktionalisierung mit organischen (Nano-)partikeln verwendet. Werden z.B. wie die in der pharmazeutischen Industrie eingesetzten Isobutylcyanoacrylatpartikel verwendeten, können durch deren große spezifische Oberfläche, antiseptische Beschichtungen bei einem erheblich reduziertem Materialverbrauch produziert werden. An der entstehenden Oberfläche können weiter Targetmoleküle abreagiert werden.In a further embodiment of the invention, the coated substrate surface is used for functionalization with organic (nano) particles. If e.g. like the isobutylcyanoacrylate particles used in the pharmaceutical industry, their high specific surface area can produce antiseptic coatings with significantly reduced material consumption. At the resulting surface further target molecules can be reacted.

In einer weiteren Ausführungsform der Erfindung wird die beschichtete Substratoberfläche zur Funktionalisierung mit glukanähnlichen Oligomeren/Polymeren wie Zellulose, Stärke, Heparin, Chitosan, Hyaluronsäure, etc verwendet. Derartige Beschichtungen weisen einen hohen Grad an Biokompatibilität auf.In a further embodiment of the invention, the coated substrate surface is used for functionalization with glucan-like oligomers / polymers such as cellulose, starch, heparin, chitosan, hyaluronic acid, etc. Such coatings have a high degree of biocompatibility.

In einer weiteren Ausführungsform der Erfindung wird die beschichtete Substratoberfläche zur Immobilisierung von funktionalen Beschichtungen (z.B. nicht-reflektierend, antifouling, Gleitfilm, etc); synthetischen/natürlichen Targetmolekülen, Hydrogelpolymeren; Arzneistoffen; Peptiden; antimikrobiellen Agentien; Lipiden; Polysacchariden; biologisch aktiven Molekülen wie Antikörper, Nukleotiden, Enzymen, Signalpeptiden, Fluoreszenz/Phosphoreszenz-Farbstoffen, Mineralstoffen, Nanopartikeln; Tonmineralen oder Aktivkohle z.B. zur Wasseraufbereitung; Clathraten; Cyclodextrin und anderen Supramolekülen, wie etwa zur Entgiftung oder Endotoxinbefreiung; elektrisch leitenden Metalloberflächen, photoelektrisch aktiven Oberflächen etc. verwendet.In a further embodiment of the invention, the coated substrate surface is used to immobilize functional coatings (eg non-reflective, antifouling, lubricating film, etc); synthetic / natural target molecules, hydrogel polymers; Drugs; peptides; antimicrobial agents; lipids; polysaccharides; biologically active molecules such as antibodies, nucleotides, enzymes, signal peptides, fluorescent / phosphorescent dyes, minerals, nanoparticles; Clay minerals or activated carbon eg for water treatment; clathrates; Cyclodextrin and other supramolecules, such as for detoxification or endotoxin clearance; electrically conductive metal surfaces, photoelectrically active surfaces, etc. used.

Nachfolgend soll die Erfindung anhand einiger Ausführungsbeispiele eingehender erläutert werden. Es zeigen in:

  • Fig. 1 eine beispielhafte Strategie zur Beschichtung von Oberflächen mit metallischem Charakter mit Hilfe einer nanopartikulären Metalldispersion zur Darstellung einer Haftvermittlerschicht. Durch die Erzeugung ionischer Eigenschaften können in nachfolgenden Applikationsschritten (bio)-aktive Substanzen durch ionische Wechselwirkung immobilisiert werden.
  • Fig. 2 eine beispielhafte Strategie zur Beschichtung von Metalloberflächen mit Hilfe einer nanopartikulären Metalldispersion zur Darstellung einer ionisch geladenen Haftvermittlerschicht, wobei durch nachfolgende Applikationsschritte (bio)-aktive Substanzen durch ionische Wechselwirkung immobilisiert werden.
The invention will be explained in more detail with reference to some embodiments. Show in:
  • Fig. 1 an exemplary strategy for coating surfaces with a metallic character with the aid of a nanoparticulate metal dispersion for the preparation of a primer layer. By generating ionic properties (bio) -active substances can be immobilized by ionic interaction in subsequent application steps.
  • Fig. 2 an exemplary strategy for coating metal surfaces with the aid of a nanoparticulate metal dispersion for the preparation of an ionically charged adhesion promoter layer, wherein (bio) -active substances are immobilized by ionic interaction by subsequent application steps.

Ausführungsbeispiel 1:Embodiment 1

Das zu beschichtende Substrat wird in eine stabilisierte Dispersion von Metallpartikeln getaucht. Die Temperatur der Dispersion kann Raumtemperatur betragen. Die Dispersion kann aber auch erhitzt werden. Die Reaktionszeit kann im Zeitraum von 180 min variieren. Wie in Fig. 1 gezeigt, adsorbieren bei eben beschriebener Vorgehensweise kolloidale polymerstabilisierte Metallpartikel (Fig. 1, 104) an die Metallsubstratoberfläche (Fig. 1, 100). Durch Aggregation und Kollabieren (Fig. 1, Schritt 101) der Metallstrukturen resultiert eine zusätzliche Metallschicht mit durch Klemmkomplexe immobilisierten Polymerketten (Fig. 1, 105). Dieser Schritt resultiert in eine als Haftvermittler fungierende Beschichtung, welche als Basis für weitere funktionelle Beschichtungen dient.The substrate to be coated is immersed in a stabilized dispersion of metal particles. The temperature of the dispersion may be room temperature. The dispersion can also be heated. The reaction time can vary over a period of 180 minutes. As in Fig. 1 show, in the manner just described, colloidal polymer-stabilized metal particles ( Fig. 1 , 104) to the metal substrate surface ( Fig. 1 , 100). By aggregation and collapse ( Fig. 1 , Step 101) of the metal structures results in an additional metal layer with polymer chains immobilized by clamping complexes ( Fig. 1 , 105). This step results in a coating acting as a primer, which serves as a basis for further functional coatings.

Nach der Entnahme des Substrates aus der Dispersion und vor der Verankerung verschiedener Targetmoleküle auf dem modifizierten Substrat, wird mit einem geeigneten Lösungsmittel gewaschen. Wie in Fig. 1, Schritt 102 dargestellt, wird eine Modifizierung der Haftvermittlerschicht durchgeführt. Ist die Metallpartikeldispersion mit einem amidischen Polymer wie z.B. Polyvinylpyrrolidon, Polyacrylamid stabilisiert, so können im alkalischem Medium durch Hydrolyse Amino- oder Carboxylatfunktionen (Fig. 1, 106) erzeugt werden. Durch pH Variation kann auch die Ladung der Oberfläche geändert werden. Letztendlich können entgegengesetzt geladene Targetmoleküle immobilisiert werden (Fig. 1, Schritt 103). Anschließend erfolgt die Trocknung der aufgebrachten Beschichtung (Fig. 1, 107).After removal of the substrate from the dispersion and prior to anchoring various target molecules on the modified substrate, washing is carried out with a suitable solvent. As in Fig. 1 Step 102, a modification of the primer layer is performed. If the metal particle dispersion is stabilized with an amidic polymer such as, for example, polyvinylpyrrolidone or polyacrylamide, amino or carboxylate functions (in the alkaline medium) can be obtained by hydrolysis ( Fig. 1 , 106) are generated. By pH Variation can also change the charge of the surface. Finally, oppositely charged target molecules can be immobilized ( Fig. 1 , Step 103). Subsequently, the drying of the applied coating ( Fig. 1 , 107).

Ausführungsbeispiel 2:Embodiment 2:

Das zu beschichtende Substrat wird in eine stabilisierte Dispersion von Metallpartikeln getaucht. Die Temperatur der Dispersion kann Raumtemperatur betragen. Die Dispersion kann aber auch erhitzt werden. Die Reaktionszeit kann im Zeitraum von 180 min variieren. Wie in Fig. 2 dargestellt, adsorbieren bei eben beschriebener Vorgehensweise ionisch geladene kolloidale polymerstabilisierte Metallpartikel (Fig. 2, 203) an die Metallsubstratoberfläche (Fig. 2, 200). Durch Aggregation und Kollabieren (Fig. 2, Schritt 201) der Metallstrukturen resultiert eine zusätzliche Metallschicht mit durch Klemmkomplexe immobilisierten Polymerketten (Fig. 2, 204). Dieser Schritt resultiert in eine als Haftvermittler fungierende ionisch geladene Beschichtung, welche als Basis für weitere funktionelle Beschichtungen dient.The substrate to be coated is immersed in a stabilized dispersion of metal particles. The temperature of the dispersion may be room temperature. The dispersion can also be heated. The reaction time can vary over a period of 180 minutes. As in Fig. 2 in the manner just described adsorb ionically charged colloidal polymer-stabilized metal particles ( Fig. 2 , 203) to the metal substrate surface ( Fig. 2 , 200). By aggregation and collapse ( Fig. 2 , Step 201) of the metal structures results in an additional metal layer with polymer chains immobilized by clamping complexes ( Fig. 2 , 204). This step results in an ionically charged coating acting as an adhesion promoter, which serves as the basis for further functional coatings.

Nach der Entnahme des Substrates aus der Dispersion und vor der Verankerung verschiedener Targetmoleküle auf dem modifizierten Substrat, wird mit einem geeigneten Lösungsmittel gewaschen. Ist die Metallpartikeldispersion mit einem Polymer wie z.B. Polyacrylsäure (PAA) stabilisiert, so können im genügend alkalischem Medium negativ geladene Funktionen wie Carboxylatfunktionen erzeugt und geladene Targetmoleküle immobilisiert werden (Fig. 2, Schritt 202). Anschließend erfolgt die Trocknung der aufgebrachten Beschichtung (Fig. 2, 205).After removal of the substrate from the dispersion and prior to anchoring various target molecules on the modified substrate, washing is carried out with a suitable solvent. If the metal particle dispersion is stabilized with a polymer such as, for example, polyacrylic acid (PAA), negatively charged functions such as carboxylate functions can be generated in the sufficiently alkaline medium and charged target molecules can be immobilized ( Fig. 2 , Step 202). Subsequently, the drying of the applied coating ( Fig. 2 , 205).

In einem weiteren Ausführungsbeispiel stellen die erfindungsgemäßen Oberflächenmodifizierungen die Möglichkeit der Einbindung von Arzneistoffssystemen oder Kopplung spezifischer Liganden dar. Auf diesem Weg lassen sich biokompatible Oberflächen kreieren.In a further embodiment, the surface modifications according to the invention represent the possibility of incorporation of drug systems or coupling of specific ligands. In this way, biocompatible surfaces can be created.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem für therapeutische und analytische Anwendungen verwendet. Dabei erfolgt eine Immobilisierung von hydrophilen/gleitfähigen/antimikrobiellen/abriebfesten/hitzebeständigen/korrosionsstabilen/bruchstabilen und/oder anderer funktionaler Beschichtungen. Die Immobilisierung kann dem Ziel der Veränderung der physikalischen Eigenschaften des Trägermaterials, wie beispielsweise die Wasserdichtheit, mechanische Festigkeit, Chemikalienbeständigkeit, Lichtechtheit, Abriebfestigkeit, Gas- und Feuchtigkeitsdurchlässigkeit, Design, Aussehen, Haptik, Oberflächengestaltung und Volumengebung folgen. Die Methode eignet sich daher auch zur Lösung technischer Probleme durch biologisch inspirierte Lösungen (Bionik).In a further embodiment, the surface modification system of the invention is used for therapeutic and analytical applications. Immobilization of hydrophilic / lubricious / antimicrobial / abrasion-resistant / heat-resistant / corrosion-stable / fracture-resistant substances takes place and / or other functional coatings. Immobilization may be followed by the goal of altering the physical properties of the support material, such as waterproofness, mechanical strength, chemical resistance, light fastness, abrasion resistance, gas and moisture permeability, design, appearance, feel, surface design, and bulk. The method is therefore also suitable for solving technical problems through biologically inspired solutions (bionics).

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zur Dekoration der Substratoberfläche mit Ladungsträgern wie ionischer Biomoleküle (z.B. Glycosaminoglycane) verwendet. So können biokompatible oder antifouling Oberflächen erzeugt werden.In another embodiment, the surface modification system of the present invention is used to decorate the substrate surface with charge carriers such as ionic biomolecules (e.g., glycosaminoglycans). So biocompatible or antifouling surfaces can be produced.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zur Funktionalisierung der Substratoberfläche mit biologisch aktiven Molekülen wie z.B. Antikörpern und Nukleotiden verwendet. Dies ist insbesondere in der analytischen Medizintechnik von Interesse.In a further embodiment, the surface modification system of the present invention is useful for functionalizing the substrate surface with biologically active molecules, e.g. Antibodies and nucleotides used. This is of particular interest in analytical medical technology.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zur Funktionalisierung der Substratoberfläche mit Fluoreszenz/Phophoreszenz-Molekülen für Fluoreszenz-/Phophoreszenz-bestimmungssysteme verwendet.In a further embodiment, the surface modification system according to the invention is used to functionalize the substrate surface with fluorescence / phosphorus molecules for fluorescence / phosphorus determination systems.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem für magnetische Partikel für medizinische imaging-Systeme zur Untersuchung auf malignantes Gewebe verwendet.In another embodiment, the magnetic particle surface modification system of the present invention is used for medical imaging systems for malignant tissue examination.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zur Immobilisierung von Lipid-Membranvisikeln (Liposomen) oder Polymersomen als biokompatile/bioabbaubare Wirkstoffträger oder biologische Membran auf der Substratoberfläche verwendet.In a further embodiment, the surface modification system according to the invention is used for the immobilization of lipid membrane viscoses (liposomes) or polymeromas as biocompatible / biodegradable active substance carrier or biological membrane on the substrate surface.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zur Immobilisierung von Tensidoligomeren zusammen mit Lecithin, zur Solubilisierung von Cholesterol auf der Substratoberfläche verwendet.In another embodiment, the surface modification system of the present invention is used to immobilize surfactant oligomers together with lecithin to solubilize cholesterol on the substrate surface.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zum Aufbringen eines drug-release coatings auf der Substratoberfläche mit einer definierten Freisetzungsgeschwindigkeit verwendet.In a further embodiment, the surface modification system of the invention is used to apply a drug-release coating on the substrate surface at a defined rate of release.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zur Immobilisierung von superparamagnetische Eisenoxid-Partikel zur Metastasen-Eliminierung auf der Substratoberfläche verwendet.In another embodiment, the surface modification system of the present invention is used to immobilize superparamagnetic iron oxide particles for metastasis elimination on the substrate surface.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zur Dekoration von Wasserleitungen mit antimikrobiellen Agentien für den Einsatz im Außenbereich zur Desinfektion von Wasser verwendet. Im Vergleich zum Stand der Technik, z.B. Auflösung von Ag-Salz Tabletten im zu trinkenden Wasser, wird so eine erhebliche Vereinfachung der Wasseraufbereitung erreicht.In a further embodiment, the surface modification system according to the invention is used for decoration of water pipes with antimicrobial agents for outdoor use for the disinfection of water. Compared to the prior art, e.g. Dissolution of Ag salt tablets in the drinking water, thus a considerable simplification of the water treatment is achieved.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zur Darstellung von Metall/Polymer-Systemen mit defininierten Strukturen durch laserchemische Behandlung von immobilisierten Metallchelaten verwendet.In a further embodiment, the surface modification system according to the invention is used to prepare metal / polymer systems with defined structures by laser-chemical treatment of immobilized metal chelates.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zum Einbetten von Tonmineralen oder Aktivkohle zur Wasseraufbereitung (Entgiftung) verwendet.In a further embodiment, the surface modification system according to the invention is used for embedding clay minerals or activated carbon for water treatment (detoxification).

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zur weiteren industriellen Lackierung oder dekorativen Gestaltung verwendet. Hierzu können neuartige oder konventionelle Anstrichsysteme in Betracht kommen.In a further embodiment, the surface modification system according to the invention is used for further industrial painting or decorative design. For this novel or conventional paint systems may be considered.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zum Einbetten von Brennstoffzellen-Komponenten verwendet.In a further embodiment, the surface modification system according to the invention is used for embedding fuel cell components.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zum Einbetten von funktionalen (Nano)partikeln (magnetisch, light emitting, etc.); solid-state Hosts (z.B. Polyurethan/Silica ORMOSILs) zur Einlagerung von LASER-Farbstoffen, etc. verwendet.In a further embodiment, the surface modification system according to the invention is used for embedding functional (nano) particles (magnetic, light-emitting, etc.); solid-state hosts (eg polyurethane / silica ORMOSILs) used to store LASER dyes, etc.

Die Einarbeitung von Redox-befähigten Systemen (z.B. EisenPartikel) kann zu Redoxpolymerisation an der Oberfläche befähigen. Die Stabilisierung der Eisenoxid-Partikel wird bisher durch eine Beschichtung mit Polymeren wie Dextran (Ferridex®), Carboxydextran (Resovist®), Albumin und Stärke oder eine liposomale Umhüllung erreicht. Diese stellen eine Möglichkeit zur Ausbildung von Wechselwirkungen wie z.B. interpenetrierende Netzwerke (IPN) mit einem potentiellem Beschichtungssystem dar.The incorporation of redox-capable systems (eg iron particles) can enable redox polymerization on the surface. The stabilization of the iron oxide particles is achieved so far by a coating with polymers such as dextran (Ferridex ®), carboxydextran (Resovist ®), albumin and starch or a liposomal envelope. These represent a possibility for forming interactions such as interpenetrating networks (IPN) with a potential coating system.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem als Gleitmittelersatz in Kugellagern verwendet.In a further embodiment, the surface modification system according to the invention is used as a lubricant substitute in ball bearings.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zur Beschichtung von Kompositwerkstoffen mit einer hinreichenden Leitfähigkeit, wie beispielsweise rußverstärkte Polymersubstrate, kohlenstofffaserverstärkter Kunststoff (CFK), kurzfaserverstärkte Metalle, sog. Metall Matrix Composites (MMC) verwendet.In a further exemplary embodiment, the surface modification system according to the invention is used for coating composite materials with sufficient conductivity, such as, for example, carbon black-reinforced plastics (CFRP), short-fiber reinforced metals, so-called metal matrix composites (MMC).

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zur Beschichtung von analytischen Gerätschaften wie z.B. Chromatographiesäulen verwendet. Hierdurch können neuartige Füllsysteme kreiert werden.In a further embodiment, the surface modification system of the invention is used to coat analytical equipment such as e.g. Chromatography columns used. As a result, novel filling systems can be created.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zur Haftvermittlung zwischen Bauteilen gleicher oder unterschiedlicher Stoff-/Oberflächeneigenschaften eingesetzt.In a further embodiment, the surface modification system according to the invention is used for the adhesion mediation between components of the same or different material / surface properties.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zur Beschichtung von Werkstoffen verwendet, welche ähnlich dem Moniereisen in Betonkonstruktionen eingesetzt werden.In a further embodiment, the surface modification system according to the invention is used for coating materials which are used in concrete constructions similar to the irons.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zur Beschichtung von Werkstoffen verwendet, welche in der Bewährung von Plastikwerkstoffen (z.B. Metallstreifen in Naturkautschuk) eingesetzt werdenIn another embodiment, the surface modification system of the present invention is used to coat materials used in the testing of plastics materials (e.g., metal strips in natural rubber)

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zur Herstellung von Carbid-/Nitrid- oder ähnlichen abriebfesten/oxidationsstabilen/schützenden Schichten (wie der Zeit z.B. durch physikalischen Dampfphasenablagerung dargestellt) eingesetzt. Hierbei kann das stabilisierende Polymer durch (Teil-)Zersetzung z.B. als Kohlenstoff-/Stickstoff- oder anderer Elementarquelle dienen. Festigkeitsverstärkende Stoffe könne aber auch durch zusätzliche Additive erhalten werden, so etwa nach der in der Druckschrift DE102004014076B3 beschriebenen Art. Weiterhin kann die Polymerphase als eine Zwischenschicht zur Stressabsorption verwendet werden. Die abriebfesten Systeme können z.B. an metallischen Schneidewerkzeugen eingesetzt werden, welche nach der entsprechenden Behandlung keramikähnliche Eigenschaften an der Oberfläche aufweisen. Abriebfeste Schichten sind auch in Hinblick auf Rechnerlaufwerke interessant. Eine immer weiter steigende Datendichte auf Festplatten erfordert eine bessere Auflösung und bessere mechanische Stabilität der Oberflächen. Abrasionsstabile Oberflächen sind daher von hohem Interesse, um Laufwerkschäden zu vermeiden.In a further embodiment, the surface modification system according to the invention is used for the production of carbide / nitride or similar abrasion-resistant / oxidation-stable / protective Layers (as shown, for example, by physical vapor phase deposition). Here, the stabilizing polymer by (partial) decomposition, for example, serve as a carbon / nitrogen or other elementary source. Strength-enhancing substances could also be obtained by additional additives, such as after in the document DE102004014076B3 Further, the polymer phase may be used as an intermediate layer for stress absorption. The abrasion-resistant systems can be used for example on metallic cutting tools, which have ceramic-like properties on the surface after the appropriate treatment. Abrasion resistant layers are also interesting in terms of computer drives. An ever-increasing data density on hard disks requires better resolution and better mechanical stability of the surfaces. Abrasion-resistant surfaces are therefore of great interest in order to avoid damage to the drive.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem in Kombination mit stimuli-responsive Adhäsionvermittlern (mit stimuli wie z.B. Temperatur, elektromagnetische Strahlung, etc) für so genannte 'on-demand' Haftungen eingesetzt. Solche können z.B. als Klebeverbindungen an einer Autokarosse die Schweißstellen etc ersetzen und so den recycle-Vorgang erleichtern. Als stimuli-responsive Adhäsionvermittlern sollen hier beispielsweise Heissschmelzkleber wie Polyamide and Micropearl F30 genannt werden. Reagieren z.B. an der Substratoberfläche aggregierte Siblerpartikel mit einem Komplexbildner wie z.B. Kochsalzlösung oder schwefelhaltigen Verbindungen, so kann das erfindungsgemäße Oberflächenmodifizierungssystem selbst als stimuli-responsive Adhäsionvermittlern wirken. Auf diesem Weg lässt sich die Haftstärke und damit die Haftvermittlung beeinflussen.In another embodiment, the surface modification system of the invention is used in combination with stimuli-responsive adhesion mediators (with stimuli such as temperature, electromagnetic radiation, etc.) for on-demand adhesions. Such may e.g. as adhesive joints on a car body replace the welds etc. and thus facilitate the recycle process. Hot-melt adhesives such as polyamides and Micropearl F30 should be mentioned here as stimuli-responsive adhesion promoters. React e.g. Sibler particles aggregated at the substrate surface with a complexing agent, e.g. Saline or sulfur-containing compounds, the surface modification system according to the invention itself can act as a stimuli-responsive adhesion mediators. In this way, the adhesive strength and thus the adhesion can be influenced.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zur Beschichtung von Halbleiteroberflächen (wie z.B. Siliziumwaferoberflächen) verwendet. So kann beispielsweise durch die Plasmonresonanz von immobilisierten Metallnanopartikeln eine Erhöhung des Wirkungsgrades der Solarzellen erreicht werden.In a further embodiment, the surface modification system of the invention is used to coat semiconductor surfaces (such as silicon wafer surfaces). For example, an increase in the efficiency of the solar cells can be achieved by the plasmon resonance of immobilized metal nanoparticles.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zur Herstellung von Schaltkreisen verwendet. Definierte Strukturen mit geringem Raumbedarf können durch den Einsatz von (laser)-optischen Methoden, Elektronenbeschuß, Ionenbeschuß oder anderen Ätzmethoden realisiert werden.In a further embodiment, the surface modification system according to the invention is used for the production of circuits. Defined structures with a small space requirement can be realized by the use of (laser) optical methods, electron bombardment, ion bombardment or other etching methods.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem in zahntechnischen oder orthopädischen Anwendungen zum Einsatz gebracht. Durch eine Beschichtung von z.B. Titanbauteilen, kann somit eine verbesserte Kompatibilität zum Körpergewebe erreicht werden.In a further embodiment, the surface modification system according to the invention is used in dental or orthopedic applications. By a coating of e.g. Titanium components, thus an improved compatibility with the body tissue can be achieved.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem in elektrischen Anwendungen zum Einsatz gebracht. Eine stark haftende, elastische, homogene und defektfreie Isolation kann beispielsweise durch die Beschichtung mit Papierfasern erreicht werden. Ähnliche Anwendungen sind für Kondensatoren oder Transformatoren denkbar.In a further embodiment, the surface modification system according to the invention is used in electrical applications. Strongly adherent, elastic, homogeneous and defect-free insulation can be achieved, for example, by coating with paper fibers. Similar applications are conceivable for capacitors or transformers.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem für die homogene Beschichtung von Metallschaum verwendet. Bioresorbierbare Komponenten aus eisenhaltigen Metallschäumen, sind für osteochirurgische Anwendung sehr interessant. Die Integration dieser Komponenten wird durch pre-immobilisierte Apatite verstärkt. Jedoch sind auf Grund unterschiedlicher Materialeigenschaften zwischen Metall und Mineralstoff solche Systeme mechanisch und thermisch instabil. Das erfindungsgemäße Oberflächenmodifizierungssystem kann solche Systeme stabilisieren, in dem es auftretende Scherkräfte durch die Kombination Oberflächenrauhigkeit und Polymerkettenmobilität kompensiert.In a further embodiment, the surface modification system according to the invention is used for the homogeneous coating of metal foam. Bioresorbable components made of ferrous metal foams are very interesting for osteosurgical application. The integration of these components is enhanced by pre-immobilized apatites. However, due to different material properties between metal and mineral, such systems are mechanically and thermally unstable. The surface modification system of the present invention can stabilize such systems by compensating for any shear forces due to the combination of surface roughness and polymer chain mobility.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem für die Fertigung von Schutzüberzügen auf z.B. Stählen verwendet. Durch Sinterung von immobilisierten pulvergefüllten Pasten können z.B. Aluminid-Schutzüberzüge hergestellt werden, welche den Heißluftkorrosionswiderstand in z.B. Automobilkatalysatoren erhöhen.In a further embodiment the surface modification system according to the invention is used for the production of protective coatings on e.g. Used steels. By sintering immobilized powder filled pastes, e.g. Aluminide protective coatings which reduce hot air corrosion resistance in e.g. Increase automotive catalytic converters.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem mit Wasserglas, wie z.B. in DE4040153A1 beschrieben, beschichtet. Dadurch können wasser- und feuerstabile Oberflächen erzeugt werden, welche durch die stressabsorbierende Wirkung der partikelschützenden Polymere bruchstabilisiert werden.In a further embodiment, the inventive Surface modification system with water glass, such as in DE4040153A1 described, coated. As a result, water- and fire-stable surfaces can be produced, which are break-stabilized by the stress-absorbing effect of the particle-protecting polymers.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem zur Darstellung von analytischen Oberflächen eingesetzt. Mögliche Anwendung sind in der Screening-Analytik wie z.B. SPR Spektroskopie zu finden. Durch die mittels des Klemmmechanismus immobilisierten Polymere können völlig neuartige Oberflächenfunktionalitäten dargestellt werden, was einer größeren Anwendungsbreite entspricht.In a further embodiment, the surface modification system according to the invention is used to display analytical surfaces. Possible applications are in screening analysis such as e.g. To find SPR spectroscopy. The immobilized by means of the clamping mechanism polymers completely novel surface functionalities can be displayed, which corresponds to a wider range of applications.

In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Oberflächenmodifizierungssystem für die Diamantbeschichtung verwendet und so abrasionstabile, korrosionstabile Schichten mit gleitfähigen Oberflächen kombiniert.In a further embodiment, the surface modification system according to the invention for the diamond coating is used and so abrasion-stable, corrosion-resistant layers combined with lubricious surfaces.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

100100
metallisches Substratmetallic substrate
101101
Reaktion zwischen polymergeschützten Partikeln und SubstratoberflächeReaction between polymer-protected particles and substrate surface
102102
Derivatiesierung der Oberflächenmodifizierung zur Erzeugung von ionischen LadungenDerivatization of surface modification to generate ionic charges
103103
Beschichtung mit TargetmolekülenCoating with target molecules
104104
kolloidale polymerstabilisierte MetallpartikelColloidal polymer-stabilized metal particles
105105
Metallschicht mit immobilisierten Polymerketten (Klemmkomplexe)Metal layer with immobilized polymer chains (clamping complexes)
106106
ionisch geladene Haftvermittlerschichtionically charged adhesive layer
107107
funktionale Beschichtungfunctional coating
200200
metallisches Substratmetallic substrate
201201
Reaktion zwischen polymergeschützten gelandenen Partikeln und SubstratoberflächeReaction between polymer protected landed particles and substrate surface
202202
Beschichtung mit TargetmolekülenCoating with target molecules
203203
ionisch geladene, kolloidale polymerstabilisierte Metallpartikelionically charged, colloidal polymer-stabilized metal particles
204204
Metallschicht mit immobilisierten Polymerketten (Klemmkomplexe)Metal layer with immobilized polymer chains (clamping complexes)
205205
funktionale Beschichtungfunctional coating

Claims (13)

  1. A method for coating a surface of a substrate having a metallic nature using particles, comprising the following steps:
    - dispersing the particles in a solvent, wherein the particles employed are metal particles/metal alloy particles/metal oxide particles and have dimensions in the micron/submicron or nanometre range,
    - stabilizing the colloidal particles with a polymer, wherein the polymer is a dispersion-stabilizing biocompatible polymer or hydrogel-forming polymer,
    - wetting the metallic surface to be coated with the stabilized particle solution, whereupon the polymer chains become fixed in the interstices between the metallic surface and the particle by means of a clamping mechanism,
    - forming a stable particle layer on the substrate surface by collapse and aggregation of the colloidal system,
    - removing the non-bound particles after completing the coating procedure by washing with a solvent,
    - generating ionic charges on the coated metal surface, and
    - finally, drying the coated metal surface.
  2. The method as claimed in claim 1, characterized in that a stabilization of the adhesion promoting layer is accomplished by initiating cross-linking steps.
  3. The method as claimed in claims 1 and 2, characterized in that the metal particles/metal alloy particles/metal oxide particles employed are composed of one or more elements selected from groups 3 to 16 and the lanthanides of the periodic table of the elements, their isotopes, salts and also mixtures and alloys thereof.
  4. The method as claimed in one of the preceding claims, characterized in that the particles are at least partially coated with one or more colloid-stabilizing polymers.
  5. The method as claimed in one of the preceding claims, characterized in that different deposition strategies such as electrophoretic deposition and chemical in situ deposition are used, in combination and separately.
  6. The method as claimed in one of the preceding claims, characterized in that the particles exhibit a functionalization due to the colloid-stabilizing polymers employed.
  7. The method as claimed in one of the preceding claims, characterized in that dispersions are used which are composed of polymer-stabilizing particles and/or one or more oligomeric/polymeric components and/or radical initiators and/or cross-linking agents and/or complex-forming agents and/or surfactants which allow system-stabilizing cross-linking reactions to occur.
  8. The method as claimed in one of the preceding claims, characterized in that further cross-linking reactions are carried out in order to provide the modified surfaces with additional stabilization.
  9. The method as claimed in one of the preceding claims, characterized in that ionic charges are produced on the dispersion-stabilized polymer by means of a reaction step wherein the ionic charge of the modified surface is changed by changing the pH.
  10. The method as claimed in one of the preceding claims, characterized in that after coating the metal surface with the functionalizing particles, loading with target molecules is carried out, wherein the interaction between the adhesion promoting layer and the target molecule is based on stereocomplex-like electrostatic effects or hydrogen bonds.
  11. The method as claimed in one of the preceding claims, characterized in that a combination of collapsed particles and interpenetrating matrices is used, by which means the susceptibility of the subsequently applied coating with target molecules to stress is reduced.
  12. A coated substrate surface with a metallic nature produced in accordance with a method as claimed in claims 1 to 11.
  13. Use of a coated metallic surface as claimed in claim 12 to immobilize functional coatings such as non-reflective, anti-fouling, lubricating; synthetic/natural target molecules, hydrogel polymers; pharmaceuticals; peptides; antimicrobial agents; lipids; polysaccharides; biologically active molecules such as antibodies, nucleotides, enzymes, signal peptides, fluorescent/phosphorescent colorants, minerals, nanoparticles; clay minerals or activated carbon for example for water treatment; clathrates; cyclodextrin and other supermolecules, such as for detoxification or endotoxin removal; isolation surfaces, photoelectrically active surfaces, or biomimetic surfaces.
EP11723859.2A 2010-01-07 2011-01-05 Surface modification system for coating substrate surfaces Not-in-force EP2524014B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010004553 DE102010004553A1 (en) 2010-01-07 2010-01-07 Surface modification system for the coating of substrate surfaces
PCT/DE2011/000011 WO2011082706A2 (en) 2010-01-07 2011-01-05 Surface modification system for coating substrate surfaces

Publications (2)

Publication Number Publication Date
EP2524014A2 EP2524014A2 (en) 2012-11-21
EP2524014B1 true EP2524014B1 (en) 2015-08-26

Family

ID=44262874

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11723859.2A Not-in-force EP2524014B1 (en) 2010-01-07 2011-01-05 Surface modification system for coating substrate surfaces

Country Status (3)

Country Link
EP (1) EP2524014B1 (en)
DE (2) DE102010004553A1 (en)
WO (1) WO2011082706A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014214751A1 (en) 2014-07-28 2016-01-28 Leibniz-Institut Für Polymerforschung Dresden E.V. MODIFIED PLASTIC SURFACES AND METHOD FOR THEIR PRODUCTION
CN115820046B (en) * 2022-12-29 2023-07-18 广州市白云化工实业有限公司 Silicone sealant primer and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL89696A0 (en) * 1988-04-11 1989-09-28 Minnesota Mining & Mfg Abrasion resistant coatings comprising silicon dioxide dispersions
DE4040153A1 (en) 1990-12-15 1992-06-17 Henkel Kgaa BINDER BASED ON WAFER ALKALIMETAL SILICATE SOLUTIONS AND THEIR USE
GB2324530A (en) 1997-04-25 1998-10-28 Polybiomed Ltd Introduction of functional groups on polymers
US20040055420A1 (en) 2002-05-30 2004-03-25 Arkady Garbar Method for enhancing surface area of bulk metals
US7321714B2 (en) 2003-06-13 2008-01-22 Ers Company Moisture-resistant nano-particle material and its applications
DE102004014076B3 (en) 2004-03-19 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Metal foam body with open-pore structure and process for its preparation
US20060029808A1 (en) * 2004-08-06 2006-02-09 Lei Zhai Superhydrophobic coatings
EP1971377A2 (en) 2006-01-09 2008-09-24 Polybiomed Limited Hydrophilic coating method for medical devices
US20070248810A1 (en) * 2006-04-25 2007-10-25 Mcgee Dennis E Coated polymeric film
GB0617644D0 (en) 2006-09-07 2006-10-18 Polybiomed Ltd Hydrophilic surfaces for medical devices
US8173259B2 (en) 2007-09-27 2012-05-08 Intel Corporation Methods to fabricate functionally gradient materials and structures formed thereby
US20090092887A1 (en) 2007-10-05 2009-04-09 Quantumsphere, Inc. Nanoparticle coated electrode and method of manufacture

Also Published As

Publication number Publication date
WO2011082706A9 (en) 2011-12-29
EP2524014A2 (en) 2012-11-21
DE102010004553A1 (en) 2011-07-14
WO2011082706A2 (en) 2011-07-14
DE112011100203A5 (en) 2012-10-18
WO2011082706A3 (en) 2011-10-20

Similar Documents

Publication Publication Date Title
Fu et al. Nanofiber composite coating with self-healing and active anticorrosive performances
Grigoriev et al. Nanocontainers for self‐healing coatings
Szewczyk et al. Polydopamine films: Electrochemical growth and sensing applications
Zheludkevich et al. Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor
EP1886702B1 (en) Implant made of a biocorrodible metal substance with a coating of an organo-silicon compound
DE112004001096B4 (en) Polyelectrolyte ink, process for its preparation and its use for producing a filament
US20060211802A1 (en) Porous sintered metal-containing materials
US20070003749A1 (en) Process for production of porous reticulated composite materials
DE10162435A1 (en) Process for the production of surface coatings which reduce the adsorption of proteins or the adhesion of bacteria and / or cells
CN103757683A (en) Electrodeposition preparation method of light-crosslinking bio-based coating
KR102035115B1 (en) Conductive coated composite body and method for producing same
Fenero et al. Laponite-based surfaces with holistic self-cleaning functionality by combining antistatics and omniphobicity
Chen et al. Polydopamine as reinforcement in the coating of nano-silver on polyurethane surface: Performance and mechanisms
Jeong et al. Zr (IV) coordination chemistry for cell-repellent alginate coatings: The effect of surface functional groups
WO2007051806A1 (en) Coating method and coated body
EP2524014B1 (en) Surface modification system for coating substrate surfaces
Saraf et al. Polydopamine‐Enabled Biomimetic Surface Engineering of Materials: New Insights and Promising Applications
Placido et al. Electroactive layer-by-layer plasmonic architectures based on au nanorods
Wang et al. Electrophoretic deposition of halloysite nanotubes/PVA composite coatings for corrosion protection of metals
Samanta et al. Multifunctional Layer-by-Layer Coating Based on a New Amphiphilic Block Copolymer via RAFT-Mediated Polymerization-Induced Self-Assembly Process
Shen et al. Inexpensive synthesis of poly (ethylenedioxythiophene‐sulfobetaine) films with high bio‐antifouling ability
DE112008002441B4 (en) Metal materials with hybrid-stabilized oxide layer, process for the production and their use
Choi et al. Methods and applications of biomolecular surface coatings on individual cells
Rupprecht et al. Functionalization of stainless steel 316L with corrosion resistant polymer films
Yan et al. Tuning Stiffness of Free-Standing Hydrogen-Bonded LbL Films with Fe3+ Coordination

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121011

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130718

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150316

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GROMBE, RINGO

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20150703

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 745194

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011007698

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO AG, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151127

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151126

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151226

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011007698

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160105

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160105

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110105

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: POSTFACH, 8032 ZUERICH (CH)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011007698

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20191217

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191230

Year of fee payment: 10

Ref country code: BE

Payment date: 20191125

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200127

Year of fee payment: 10

Ref country code: AT

Payment date: 20200120

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200109

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011007698

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 745194

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210105

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210105

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131