EP2516521A1 - Verfahren zur behandlung der oberfläche einer vorrichtung zur ausgabe eines flüssigprodukts - Google Patents
Verfahren zur behandlung der oberfläche einer vorrichtung zur ausgabe eines flüssigproduktsInfo
- Publication number
- EP2516521A1 EP2516521A1 EP10808921A EP10808921A EP2516521A1 EP 2516521 A1 EP2516521 A1 EP 2516521A1 EP 10808921 A EP10808921 A EP 10808921A EP 10808921 A EP10808921 A EP 10808921A EP 2516521 A1 EP2516521 A1 EP 2516521A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vinyl
- acrylic
- terminated
- aryl
- constituent part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 239000012530 fluid Substances 0.000 title claims abstract description 35
- 239000000126 substance Substances 0.000 claims abstract description 39
- 239000010409 thin film Substances 0.000 claims abstract description 27
- 230000003993 interaction Effects 0.000 claims abstract description 10
- -1 siloxanes Chemical class 0.000 claims description 52
- 125000003118 aryl group Chemical group 0.000 claims description 21
- 239000000470 constituent Substances 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 16
- 229920002554 vinyl polymer Polymers 0.000 claims description 12
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 11
- 239000003638 chemical reducing agent Substances 0.000 claims description 11
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 238000004381 surface treatment Methods 0.000 claims description 7
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 claims description 6
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 6
- 239000000178 monomer Substances 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims description 5
- 239000012954 diazonium Substances 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 5
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 claims description 5
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 239000012736 aqueous medium Substances 0.000 claims description 3
- 238000002788 crimping Methods 0.000 claims description 3
- 229920001971 elastomer Polymers 0.000 claims description 3
- 239000000806 elastomer Substances 0.000 claims description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- 229920002994 synthetic fiber Polymers 0.000 claims description 3
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 claims description 2
- KTZVZZJJVJQZHV-UHFFFAOYSA-N 1-chloro-4-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C=C1 KTZVZZJJVJQZHV-UHFFFAOYSA-N 0.000 claims description 2
- LVJZCPNIJXVIAT-UHFFFAOYSA-N 1-ethenyl-2,3,4,5,6-pentafluorobenzene Chemical compound FC1=C(F)C(F)=C(C=C)C(F)=C1F LVJZCPNIJXVIAT-UHFFFAOYSA-N 0.000 claims description 2
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 claims description 2
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 claims description 2
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 claims description 2
- KFDVPJUYSDEJTH-UHFFFAOYSA-N 4-ethenylpyridine Chemical compound C=CC1=CC=NC=C1 KFDVPJUYSDEJTH-UHFFFAOYSA-N 0.000 claims description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 2
- 229920001651 Cyanoacrylate Polymers 0.000 claims description 2
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 claims description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 2
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 claims description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical group CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 2
- 150000003926 acrylamides Chemical class 0.000 claims description 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 claims description 2
- 125000005410 aryl sulfonium group Chemical group 0.000 claims description 2
- 229960005070 ascorbic acid Drugs 0.000 claims description 2
- 235000010323 ascorbic acid Nutrition 0.000 claims description 2
- 239000011668 ascorbic acid Substances 0.000 claims description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- NLCKLZIHJQEMCU-UHFFFAOYSA-N cyano prop-2-enoate Chemical class C=CC(=O)OC#N NLCKLZIHJQEMCU-UHFFFAOYSA-N 0.000 claims description 2
- 125000004386 diacrylate group Chemical group 0.000 claims description 2
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 claims description 2
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- FYCBGURDLIKBDA-UHFFFAOYSA-N n-hexyl-2-methylprop-2-enamide Chemical class CCCCCCNC(=O)C(C)=C FYCBGURDLIKBDA-UHFFFAOYSA-N 0.000 claims description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 claims description 2
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 238000002791 soaking Methods 0.000 claims description 2
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 claims 1
- 159000000000 sodium salts Chemical class 0.000 claims 1
- 239000000243 solution Substances 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000010935 stainless steel Substances 0.000 description 10
- 229910001220 stainless steel Inorganic materials 0.000 description 10
- 239000010408 film Substances 0.000 description 9
- 239000003586 protic polar solvent Substances 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 239000002904 solvent Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000000010 aprotic solvent Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000003760 magnetic stirring Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- JLLBHFPMIDLVRO-UHFFFAOYSA-M 4-aminobenzenediazonium;chloride Chemical compound [Cl-].NC1=CC=C([N+]#N)C=C1 JLLBHFPMIDLVRO-UHFFFAOYSA-M 0.000 description 2
- PVRAWCMFSQBKGP-UHFFFAOYSA-M 4-chloro-2-methylbenzenediazonium;chloride Chemical compound [Cl-].CC1=CC(Cl)=CC=C1[N+]#N PVRAWCMFSQBKGP-UHFFFAOYSA-M 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229960004050 aminobenzoic acid Drugs 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000010560 atom transfer radical polymerization reaction Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 239000007922 nasal spray Substances 0.000 description 2
- 229940097496 nasal spray Drugs 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000007348 radical reaction Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- FKZANSCJPQARGU-UHFFFAOYSA-L 2-methyl-4-[(2-methylphenyl)diazenyl]benzenediazonium;sulfate Chemical compound [O-]S([O-])(=O)=O.CC1=CC=CC=C1N=NC1=CC=C([N+]#N)C(C)=C1.CC1=CC=CC=C1N=NC1=CC=C([N+]#N)C(C)=C1 FKZANSCJPQARGU-UHFFFAOYSA-L 0.000 description 1
- PQBWUHWJQRHCQH-UHFFFAOYSA-N 4-(aminomethyl)benzenediazonium Chemical compound NCC1=CC=C([N+]#N)C=C1 PQBWUHWJQRHCQH-UHFFFAOYSA-N 0.000 description 1
- QAJMZRMIUJJTBN-UHFFFAOYSA-M 9,10-dioxoanthracene-1-diazonium;chloride Chemical compound [Cl-].C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1[N+]#N QAJMZRMIUJJTBN-UHFFFAOYSA-M 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 102000015731 Peptide Hormones Human genes 0.000 description 1
- 108010038988 Peptide Hormones Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 150000001989 diazonium salts Chemical class 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-O diazynium Chemical compound [NH+]#N IJGRMHOSHXDMSA-UHFFFAOYSA-O 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004851 dishwashing Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229910001448 ferrous ion Inorganic materials 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002390 heteroarenes Chemical class 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000002129 infrared reflectance spectroscopy Methods 0.000 description 1
- 229910001412 inorganic anion Inorganic materials 0.000 description 1
- MGFYSGNNHQQTJW-UHFFFAOYSA-N iodonium Chemical compound [IH2+] MGFYSGNNHQQTJW-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000006501 nitrophenyl group Chemical group 0.000 description 1
- 239000000668 oral spray Substances 0.000 description 1
- 229940041678 oral spray Drugs 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229960003424 phenylacetic acid Drugs 0.000 description 1
- 239000003279 phenylacetic acid Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- HFQQZARZPUDIFP-UHFFFAOYSA-M sodium;2-dodecylbenzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O HFQQZARZPUDIFP-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/16—Chemical modification with polymerisable compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/02—General characteristics of the apparatus characterised by a particular materials
- A61M2205/0238—General characteristics of the apparatus characterised by a particular materials the material being a coating or protective layer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2207/00—Methods of manufacture, assembly or production
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/18—Processes for applying liquids or other fluent materials performed by dipping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2201/00—Polymeric substrate or laminate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2202/00—Metallic substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
- B05D5/08—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D83/00—Containers or packages with special means for dispensing contents
- B65D83/14—Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
- B65D83/75—Aerosol containers not provided for in groups B65D83/16 - B65D83/74
Definitions
- the present invention relates to a surface treatment method for fluid dispensing devices.
- Dispensing devices for fluid products are well known. They may comprise one or more reservoirs, a dispensing member, such as a pump, a valve or a piston displaceable in the reservoir, and a dispensing head provided with a dispensing orifice. These dispensing devices generally comprise component parts made of various materials.
- the tank may be of plastic or synthetic material, glass or metal.
- Various parts, such as pistons or seals may be made of flexible plastic materials, such as elastomers.
- Other parts are generally metallic, for example crimping capsules, springs or balls forming a valve.
- these interactions may include releasing molecules of these materials into the fluid product. For example, these interactions can degrade certain active ingredients, such as hormones, peptides or enzymes, especially in nasal spray devices.
- the present invention aims to provide a surface treatment method that avoids the aforementioned drawbacks.
- the present invention aims to provide a surface treatment method that is effective, durable, non-polluting and simple to achieve.
- the present invention therefore relates to a surface treatment method of a fluid dispenser device, said method comprising the step of forming by chemical grafting a thin film on at least one support surface of at least a part constituent in contact with said fluid product, said thin film preventing interactions between said fluid product and said constituent part.
- said grafting step comprises contacting said surface in contact with the fluid product with a solution comprising at least one adhesion primer, said adhesion primer being a cleavable aryl salt and at least one monomer or a polymer selected from the group consisting of vinyl-terminated or acrylic-terminated siloxanes and acrylic or vinyl monomers.
- said chemical grafting creates covalent bonds between the molecules of said thin film and said support surface. This creates a strong and lasting connection over time.
- said chemical grafting is carried out in an aqueous medium. This allows a non-polluting or green chemistry, which does not present risks for the environment.
- the cleavable aryl salt is selected from the group consisting of aryl diazonium salts, aryl ammonium salts, aryl phosphonium salts, aryl sulfonium salts and aryl salts. iodonium.
- the cleavable aryl salts are chosen from compounds of the general formula ArN 2 + , X " in which Ar represents the aryl group and X " represents an anion.
- the aryl group in an organic compound is a functional group derived from an aromatic ring.
- the anions X " are selected from inorganic anions such as halides, such as, Cl" or Br ", the halogenoborates such as tetrafluoroborate and organic anions such as alcoholates, carboxylates, perchlorates and sulfonates.
- inorganic anions such as halides, such as, Cl" or Br "
- the halogenoborates such as tetrafluoroborate
- organic anions such as alcoholates, carboxylates, perchlorates and sulfonates.
- the Ar aryl groups are chosen from aromatic or heteroaromatic compounds, optionally mono- or polysubstituted, consisting of one or more aromatic rings of 3 to 8 carbons.
- the heteroatoms of the heteroaomatic compounds are chosen from N, O, P and S.
- the substituents may contain alkyl groups and one or more heteroatoms such as N, O, F, Cl, P, Si, Br or S.
- the aryl groups are chosen from aryl groups substituted with attracting groups such as NO 2, COH, CN, CO 2 H, ketones, esters, amines and halogens.
- the aryl groups are selected from the group consisting of phenyl and nitrophenyl.
- the cleavable aryl salt is selected from the group consisting of phenyldiazonium tetrafluoroborate, 4-nitrophenyldiazonium tetrafluoroborate, 4-bromophenyldiazonium tetrafluoroborate, 4-aminophenyldiazonium chloride, 4- aminomethylphenyldiazonium, 2-methyl-4-chlorophenyldiazonium chloride, 4-benzoylbenzenediazonium tetrafluoroborate, 4-cyanophenyldiazonium tetrafluoroborate, 4-carboxyphenyldiazonium tetrafluoroborate, 4-acetamidophenyldiazonium tetrafluoroborate, 4-phenylacetic acid tetrafluoroborate diazonium, 2-methyl-4 - [(2-methylphenyl) diazenyl] benzenediazonium sul
- the cleavable aryl salt is selected from the group consisting of 4-nitrophenyldiazonium tetrafluoroborate, the 4-aminophenyldiazonium chloride, 2-methyl-4-chlorophenyldiazonium chloride, 4-carboxyphenyldiazonium tetrafluoroborate.
- the salt concentration of cleavable aryl is between 5.10 "3 M and 10" 1 M.
- the concentration of cleavable aryl salt is of the order of 5.10 -2 M.
- the cleavable aryl salt is prepared in situ.
- said chemical grafting step is initiated by chemical activation of a diazonium salt to form an anchoring layer for said thin film.
- said chemical grafting step is initiated by chemical activation.
- said chemical activation is initiated by the presence of a reducing agent in the solution.
- the solution comprises a reducing agent.
- reducing agent a compound which in an oxidation-reduction reaction yields electrons.
- the reducing agent has a redox potential whose potential difference with respect to the oxidation-reduction potential of the cleavable aryl salt is between 0.3 V and 3 V.
- the reducing agent is selected from the group consisting of reducing metals which may be in finely divided form such as iron, zinc, or nickel, a metal salt which may be in the form of metallocene and an organic reducing agent such as hypophosphorous acid, ascorbic acid.
- the concentration of reducing agent is between 0.005 M and 2 M.
- the concentration of reducing agent is of the order of 0.6 M.
- said thin film has a thickness of less than 1 micrometer, between 10 and 2000 angstroms, advantageously between 10 and 800 angstroms, preferably between 400 and 1000 angstroms. No conventional coating technique makes it possible to obtain such thin layers chemically grafted.
- vinyl or acrylic terminated siloxane means a saturated hydride of silicon and oxygen formed of straight or branched chains, of alternating silicon and oxygen atoms comprising vinyl units or terminal acrylic units.
- the vinyl-terminated or acrylic-terminated siloxanes are chosen from the group consisting of polyalkylsiloxanes with acrylic or vinyl terminations, such as vinyl-terminated or acrylic-terminated polymethylsiloxane, and vinyl-terminated or acrylic-terminated polydimethylsiloxane, such as polydimethylsiloxane-acrylate (PDMS).
- polyalkylsiloxanes with acrylic or vinyl terminations such as vinyl-terminated or acrylic-terminated polymethylsiloxane
- vinyl-terminated or acrylic-terminated polydimethylsiloxane such as polydimethylsiloxane-acrylate (PDMS).
- vinyl-terminated or acrylic-terminated polyarylsiloxanes such as vinyl-terminated or acrylic-terminated polyphenylsiloxane, such as polyvinylphenylsiloxane, vinyl-terminated or acrylic-terminated polyarylalkylsiloxanes such as vinyl-terminated or acrylic-terminated polymethylphenylsiloxane.
- the acrylic or vinyl monomer is selected from the group consisting of vinyl acetate, acrylonitrile, methacrylonitrile, methyl methacrylate, ethyl methacrylate, butyl methacrylate, methacrylate, and the like.
- propyl hydroxyethyl methacrylate, hydroxypropyl methacrylate, glycidyl methacrylate and derivatives thereof, acrylamides such as aminoethyl, propyl, butyl, pentyl and hexyl methacrylamides, cyanoacrylates, diacrylates, dimethacrylates, triacrylates, trimethacrylates, tetraacrylates, tetramethacrylates, styrene and its derivatives, parachlorostyrene, pentafluorostyrene, N-vinyl pyrrolidone, 4-vinyl pyridine, 2-vinyl pyridine, vinyl halides, acryloyl and methacryloyl, divinylbenzene.
- acrylamides such as aminoethyl, propyl, butyl, pentyl and hexyl methacrylamides
- cyanoacrylates diacrylates, dimethacrylates, tri
- a potential difference is applied in said solution.
- potential difference is meant the difference in redox potential measured between two electrodes.
- the potential difference is applied by a generator connected to two identical or different electrodes immersed in the solution during the soaking step.
- the electrodes are selected from stainless steel, steel, nickel, platinum, gold, silver, zinc, iron, copper, in pure form or in the form of alloy.
- the electrodes are made of stainless steel.
- the potential difference applied by a generator is between 0.1 V and 2 V.
- it is of the order of 0.7 V.
- the potential difference is generated by a chemical battery.
- a chemical cell is a cell composed of two electrodes connected by an ion bridge. According to the present invention, the two electrodes are judiciously chosen so that the potential difference is between 0.1 V and 2.5 V.
- the chemical stack is created between two different electrodes dipping into the solution.
- the electrodes are selected from nickel, zinc, iron, copper, silver in pure form or in alloy form.
- the potential difference generated by the chemical battery is between 0.1 V and 1.5 V.
- the potential difference is of the order of 0.7 V.
- the electrodes are chemically isolated to avoid any contact between the substrate immersed in the bath of step b) and the electrodes also immersed in the bath of step b).
- said constituent part is made of metal, in particular a crimping cap, a spring or a ball forming a valve.
- said constituent part is made of a flexible material, such as an elastomer, in particular a piston or a seal.
- said constituent part is made of synthetic material, such as polyethylene or polypropylene.
- said constituent part is made of glass, in particular a reservoir,
- the method further comprises the step of forming by chemical grafting at least one additional thin film on said support surface.
- the method comprises the step of forming by chemical grafting a first additional thin film on said support surface, said first additional thin film preventing interactions between said support surface and said fluid product.
- the method comprises the step of forming by chemical grafting a second additional thin film on said support surface, said second additional thin film limiting the friction between two constituent parts moving relative to each other during the treatment. actuation of the fluid dispensing device.
- said at least one additional thin film is deposited on said support surface during at least one successive chemical grafting step, each carried out in a single-component bath.
- said at least one additional thin film is deposited on said support surface simultaneously during the same chemical grafting step in a multi-component bath.
- said fluid product is a pharmaceutical fluid product intended to be sprayed in particular nasally or orally.
- the present invention provides a method similar to that described in WO 2008/078052, which describes a method of preparing an organic film on the surface of a solid support under non-electrochemical conditions.
- this type of process has been found suitable for forming a thin film on surfaces intended to come into contact with a pharmaceutical fluid product in dispensing devices, to prevent interactions with said fluid product.
- Such an application of this grafting method had never been considered.
- the process aims to prepare a thin film on the surface of a support which can be made of different materials, such as hard plastics, soft plastics, metal or glass.
- This method mainly comprises contacting said support surface with a liquid solution.
- This comprises at least one solvent and at least one adhesion primer allowing the formation of radical entities from the adhesion primer.
- the "thin film” can be any polymeric film, in particular of organic nature, for example derived from several units of organic chemical species, and covalently bonded to the surface of the support on which the process is carried out. It is particularly a film covalently bonded to the surface of a support and comprising at least one layer of similar structural units of nature. Depending on the thickness of the film, its cohesion is ensured by the covalent bonds that develop between the different units.
- the solvent employed in the process may be protic or aprotic in nature. It is preferable that the primer is soluble in said solvent.
- protic solvent is meant a solvent which comprises at least one hydrogen atom capable of being released in the form of a proton.
- the protic solvent can be chosen from the group consisting of water, deionized water, distilled water, acidified or not, acetic acid, hydroxylated solvents such as methanol and ethanol, low-level liquid glycols. weight such as ethylene glycol, and mixtures thereof.
- the protic solvent consists only of a protic solvent or a mixture of different protic solvents.
- the protic solvent or the mixture of protic solvents may be used in admixture with at least one aprotic solvent, it being understood that the resulting mixture has the characteristics of a protic solvent.
- Acidified water is the preferred protic solvent and, more particularly, acidified distilled water or acidified deionized water.
- aprotic solvent is meant a solvent which is not considered as protic. Such solvents are not likely to release a proton or accept one under non-extreme conditions.
- the aprotic solvent is advantageously chosen from dimethylformamide (DMF), acetone and dimethyl sulfoxide (DMSO).
- adheresion primer corresponds to any organic molecule susceptible, under certain conditions, to chemisorber on the surface of the support by radical reaction such as radical chemical grafting.
- Such molecules comprise at least one functional group capable of reacting with a radical and also a reactive function with respect to another radical after chemisorption. These molecules are thus capable of forming a film of polymeric nature after grafting of a first molecule on the surface of the support and then reaction with other molecules present in its environment.
- radical chemical grafting refers in particular to the use of molecular entities having an unpaired electron to form covalent link bonds with a surface, said molecular entities being generated independently of the support surface on which they are to be grafted.
- the radical reaction leads to the formation of covalent bonds between the support surface in question and the grafted adhesion primer derivative and then between a grafted derivative and molecules present in its environment.
- the adhesion primer is advantageously a cleavable aryl salt selected from the group consisting of aryl diazonium salts, ammonium aryl salts, aryl phosphonium salts, arylsulphonium salts and aryl iodonium salts.
- At least one additional thin film is produced by chemical grafting on the same support surface to give at least one other property to this support surface.
- the fluid product may be likely to stick to a surface with which it is in contact, which may in particular have a detrimental effect on the reproducibility of the dispensed dose.
- the invention advantageously provides for forming by chemical grafting a first additional thin film which prevents the fluid product from sticking to the support surface.
- it could also be envisaged to apply a second additional thin film by chemical grafting to give a third property to the support surface. For example, in fluid product dispensing devices, some parts move relative to others, and blockages due to friction may interfere with the proper operation of the device.
- the invention advantageously provides to form by chemical grafting a second additional thin film which limits the friction between two component parts which move relative to each other during actuation.
- additional thin films can be applied during successive chemical grafting steps.
- each chemical grafting step is carried out in a single-component bath.
- the order of these successive chemical grafting steps can be arbitrary.
- the thin films additional can also be applied in a single step of chemical grafting, which is then carried out in a multi-component bath. A combination of the two variants is also conceivable.
- the present invention is applicable to multidose devices, such as pump or valve devices mounted on a reservoir and operated for the successive delivery of doses. It also applies to multi-dose devices comprising a plurality of individual reservoirs each containing a dose of fluid, such as pre-dosed powder inhalers. It also applies to single-dose or bidose devices, in which a piston moves directly into a reservoir each time it is actuated.
- the invention is particularly applicable to nasal or oral spray devices, ophthalmic dispensing devices and syringe-type needle devices.
- the invention also relates to the use of a grafting method according to the invention for treating at least one surface of at least one constituent part of a fluid dispenser device in contact with said fluid product, to prevent interactions between said fluid product and said constituent part.
- EXAMPLE 1 Grafting of a Poly (Butylmethacrylate) (BUMA) Barrier Film on Metal Parts of a Pump
- BUMA Poly (Butylmethacrylate)
- By pump is meant a manually operated fluid dispensing device comprising a pump body in which one or several pistons.
- the sodium dodecyl sulphate (0.283 g, 0.5 ⁇ 10 -3 mol) was solubilized in 33 ml of milliQ water and the butyl methacrylate (0.71 g, 10 -3 mol) is added and emulsified under strong magnetic agitation.
- the 4-aminobenzoic acid (0.686 g, 7.5 ⁇ 10 -3 mol) was solubilized in a solution of hydrochloric acid (1.9 mL in 30 mL of MQ water) and hypophosphorous acid (3.2 mL). mL, 3.1 10 "2 mol). This solution was added to the BUMA emulsion.
- Sodium dodecyl benzene sulphonate (0.849 g, 1.5 ⁇ 10 -2 mol) was solubilized in 100 ml of milliQ water and vinyl-terminated poly (dimethylsiloxane) (3 g, 10 g / l) was added and then The mixture was magnetically stirred to form an emulsion.
- 4-Aminobenzoic acid (2.058 g, 2.25 10 -2 mol) was solubilized in a solution of hydrochloric acid (5.8 mL in 90 mL of MQ water) and hypophosphorous acid (9.7 50% mL) This solution was added to the PDMS emulsion.
- the preparation of the biphasic solution takes place in two stages.
- the beaker (1) are added in order and with magnetic stirring (300 rpm), the PDMS-acrylate (1 g / L); Brij® 35 in solution in water at 8.5% wt (4.37 g / L) and 33 mL of water Dl.
- the emulsification is then sonicated at 40 ° C under a power of 200 W (100%) for 15 minutes.
- In the beaker (2) are added, with magnetic stirring (300 rpm), nitrobenzene diazonium tetrafluoroborate (0.05 mol / L); 130 mL of Dl water and hydrochloric acid (0.23 mol / L).
- the contents of the beaker (2) are poured into the emulsion of the beaker (1).
- the stainless steel blades (x 2), a galvanized steel wire (wound on 10 turns, a length of about 25 to 30 cm) and a Ni wire (wound on 10 turns, a length of about 25 to 30 cm) are placed in the beaker (1). Both wires are connected to a potentiostat and an ammeter is connected in series. The potentiostat imposes a constant potential difference of 0.5 V and the intensity of the current is measured over time via the ammeter.
- hypophosphorous acid 0.7 mol / L
- isopropanol in a soxhlet extractor for 16 hours.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0959512A FR2954330B1 (fr) | 2009-12-23 | 2009-12-23 | Procede de traitement de surface d'un dispositif de distribution de produit fluide. |
PCT/FR2010/052880 WO2011077049A1 (fr) | 2009-12-23 | 2010-12-22 | Procede de traitement de surface d'un dispositif de distribution de produit fluide. |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2516521A1 true EP2516521A1 (de) | 2012-10-31 |
Family
ID=42313965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10808921A Withdrawn EP2516521A1 (de) | 2009-12-23 | 2010-12-22 | Verfahren zur behandlung der oberfläche einer vorrichtung zur ausgabe eines flüssigprodukts |
Country Status (6)
Country | Link |
---|---|
US (1) | US20120318677A1 (de) |
EP (1) | EP2516521A1 (de) |
JP (1) | JP2013515803A (de) |
CN (1) | CN102639618A (de) |
FR (1) | FR2954330B1 (de) |
WO (1) | WO2011077049A1 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2969628B1 (fr) * | 2010-12-22 | 2013-09-27 | Pegastech | Procede de revetement par greffage chimique electrocatalyse d'une surface d'un substrat par une couche polymere. |
US11617716B2 (en) | 2021-06-10 | 2023-04-04 | Belhaven BioPharma Inc. | Dry powder formulations of epinephrine and associated methods |
US12005185B2 (en) | 2021-12-17 | 2024-06-11 | Belhaven BioPharma Inc. | Medical counter measures including dry powder formulations and associated methods |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4980231A (en) * | 1988-02-19 | 1990-12-25 | Snyder Laboratories, Inc. | Process for coating polymer surfaces and coated products produced using such process |
DE59800682D1 (de) * | 1997-04-14 | 2001-06-13 | Degussa | Verfahren zur Modifizierung der Oberfläche von Polymersubstraten durch Pfropfpolymerisation |
DE19753766A1 (de) * | 1997-12-04 | 1999-06-17 | Schott Glas | Länglicher Kunststoff-Hohlkörper und Verfahren zu seiner Herstellung |
GB9814717D0 (en) * | 1998-02-23 | 1998-09-02 | Bespak Plc | Improvements in drug delivery devices |
PT1066073E (pt) * | 1998-02-23 | 2002-10-31 | Glaxo Group Ltd | Recipientes de distribuicao pressurizados |
US6358557B1 (en) * | 1999-09-10 | 2002-03-19 | Sts Biopolymers, Inc. | Graft polymerization of substrate surfaces |
SE0004610D0 (sv) * | 2000-12-13 | 2000-12-13 | Astrazeneca Ab | Surface modification process |
FR2821575B1 (fr) * | 2001-03-02 | 2003-10-24 | Commissariat Energie Atomique | Procede de greffage organique localise sans masque sur des protions conductrices ou semiconductrices de surfaces composites |
AUPS041002A0 (en) * | 2002-02-08 | 2002-03-07 | Commonwealth Scientific And Industrial Research Organisation | Synthetic closure |
FR2843756B1 (fr) * | 2002-08-26 | 2005-04-22 | Commissariat Energie Atomique | Procede de soudage d'une surface polymere avec une surface conductrice ou semi-conductrice et ses applications |
US8043632B2 (en) * | 2003-08-18 | 2011-10-25 | E. I. Du Pont De Nemours And Company | Process for making antimicrobial articles by reacting chitosan with amino-reactive polymer surfaces |
CN101091947A (zh) * | 2006-06-20 | 2007-12-26 | 中国科学院兰州化学物理研究所 | 在金属铜表面上制备超疏水性表面的方法 |
FR2907131B1 (fr) * | 2006-10-12 | 2008-11-21 | Commissariat Energie Atomique | Procede de formation de films organiques sur des surfaces conductrices ou semi-conductrices de l'electricite a partir de solutions aqueuses en deux etapes |
FR2910010B1 (fr) * | 2006-12-19 | 2009-03-06 | Commissariat Energie Atomique | Procede de preparation d'un film organique a la surface d'un support solide dans des conditions non-electrochimiques, support solide ainsi obtenu et kit de preparation |
FR2910006B1 (fr) * | 2006-12-19 | 2009-03-06 | Commissariat Energie Atomique | Procede de preparation d'un film organique a la surface d'un support solide dans des conditions non-electrochimiques, support solide ainsi obtenu et kit de preparation |
FR2943930B1 (fr) * | 2009-04-02 | 2011-09-30 | Commissariat Energie Atomique | Procede pour modifier l'energie de surface d'un solide |
-
2009
- 2009-12-23 FR FR0959512A patent/FR2954330B1/fr active Active
-
2010
- 2010-12-22 JP JP2012545399A patent/JP2013515803A/ja not_active Withdrawn
- 2010-12-22 US US13/514,369 patent/US20120318677A1/en not_active Abandoned
- 2010-12-22 CN CN2010800505862A patent/CN102639618A/zh active Pending
- 2010-12-22 EP EP10808921A patent/EP2516521A1/de not_active Withdrawn
- 2010-12-22 WO PCT/FR2010/052880 patent/WO2011077049A1/fr active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2011077049A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN102639618A (zh) | 2012-08-15 |
JP2013515803A (ja) | 2013-05-09 |
US20120318677A1 (en) | 2012-12-20 |
FR2954330B1 (fr) | 2013-01-04 |
WO2011077049A1 (fr) | 2011-06-30 |
FR2954330A1 (fr) | 2011-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011077055A1 (fr) | Procede de traitement de surface d'un dispositif de distribution de produit fluide | |
EP2077918B1 (de) | Aus zwei schritten bestehendes verfahren zum bilden von organischen filmen auf elektrisch leitenden oberflächen aus wässrigen lösungen | |
EP1595001B1 (de) | Oberflächenbeschichtungsverfahren | |
EP2121814B1 (de) | Verfahren zur herstellung eines organischen films an der oberfläche eines festen substrats unter nicht-elektrochemischen bedingungen, auf diese weise hergestelltes festsubstrat und herstellungsset | |
EP1989345B1 (de) | Verfahren zur bildung von organischen schichten auf elektrisch leitenden oder halbleitenden oberflächen ausgehend von einer wässrigen lösung | |
FR2910006A1 (fr) | Procede de preparation d'un film organique a la surface d'un support solide dans des conditions non-electrochimiques, support solide ainsi obtenu et kit de preparation | |
WO2011077049A1 (fr) | Procede de traitement de surface d'un dispositif de distribution de produit fluide. | |
EP3077127B1 (de) | Haftvermittler für lack | |
WO2011077056A1 (fr) | Procede de traitement de surface d'un dispositif de distribution de produit fluide | |
FR2910007A1 (fr) | Procede de preparation d'un film organique a la surface d'un support solide dans des conditions non-electrochimiques, support solide ainsi obtenu et kit de preparation | |
EP2976162B1 (de) | Verfahren zur oberflächenbehandlung eines dosierventils | |
FR2897876A1 (fr) | Procede de formation de films organiques sur des surfaces conductrices ou semi-conductrices de l'electricite a partir de solutions aqueuses | |
WO2011077059A1 (fr) | Procede de traitement de surface d'un dispositif de distribution de produit fluide | |
US9534309B2 (en) | Coating method by electrocatalyzed chemical grafting of a surface of a substrate with a polymeric layer | |
FR2910009A1 (fr) | Procede de preparation d'un film organique a la surface d'un support solide dans des conditions non-electrochimiques, su pport solide ainsi obtenu et kit de preparation | |
EP2262866B1 (de) | Verfahren zur örtlichen elektro-transplantation auf leitenden oder halbleitenden substraten unter anwesenheit einer mikroelektrode | |
FR2910008A1 (fr) | Procede de preparation d'un film organique a la surface d'un support solide dans des conditions non-electrochimiques, support solide ainsi obtenu et kit de preparation | |
EP2516522A1 (de) | Verfahren zur behandlung der elastomeroberfläche einer vorrichtung zur ausgabe eines flüssigprodukts | |
FR2977812A1 (fr) | Procede de preparation d'un film organique hydrophobe a la surface d'un support solide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120720 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20161206 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170419 |