EP2507408A1 - Multi-stage pre-treatment method for metal components having zinc and iron surfaces - Google Patents
Multi-stage pre-treatment method for metal components having zinc and iron surfacesInfo
- Publication number
- EP2507408A1 EP2507408A1 EP10776723A EP10776723A EP2507408A1 EP 2507408 A1 EP2507408 A1 EP 2507408A1 EP 10776723 A EP10776723 A EP 10776723A EP 10776723 A EP10776723 A EP 10776723A EP 2507408 A1 EP2507408 A1 EP 2507408A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ions
- ppm
- composition
- nickel
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 50
- 239000002184 metal Substances 0.000 title claims abstract description 50
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 40
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 229910052725 zinc Inorganic materials 0.000 title claims abstract description 28
- 239000011701 zinc Substances 0.000 title claims abstract description 28
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 20
- 238000002203 pretreatment Methods 0.000 title abstract 2
- 238000000034 method Methods 0.000 claims abstract description 78
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 76
- 239000000203 mixture Substances 0.000 claims abstract description 75
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 36
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 34
- 239000010959 steel Substances 0.000 claims abstract description 34
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 29
- 239000010936 titanium Substances 0.000 claims abstract description 28
- 229910001335 Galvanized steel Inorganic materials 0.000 claims abstract description 26
- 239000008397 galvanized steel Substances 0.000 claims abstract description 26
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 26
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 24
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 21
- 239000011593 sulfur Substances 0.000 claims abstract description 21
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 17
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims abstract description 17
- 230000002378 acidificating effect Effects 0.000 claims abstract description 14
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 12
- 239000010941 cobalt Substances 0.000 claims abstract description 12
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 12
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000011135 tin Substances 0.000 claims abstract description 11
- 229910052718 tin Inorganic materials 0.000 claims abstract description 11
- 150000002500 ions Chemical class 0.000 claims abstract description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 9
- 239000011733 molybdenum Substances 0.000 claims abstract description 9
- 150000001875 compounds Chemical class 0.000 claims description 36
- 229910052726 zirconium Inorganic materials 0.000 claims description 33
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 31
- 230000007797 corrosion Effects 0.000 claims description 26
- 238000005260 corrosion Methods 0.000 claims description 26
- 238000004140 cleaning Methods 0.000 claims description 18
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 15
- 150000003839 salts Chemical class 0.000 claims description 13
- -1 silver ions Chemical class 0.000 claims description 12
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 11
- 229910001431 copper ion Inorganic materials 0.000 claims description 10
- 238000005238 degreasing Methods 0.000 claims description 9
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 8
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 claims description 8
- 229910019142 PO4 Inorganic materials 0.000 claims description 7
- 229910001453 nickel ion Inorganic materials 0.000 claims description 7
- 150000002894 organic compounds Chemical class 0.000 claims description 7
- 230000003647 oxidation Effects 0.000 claims description 7
- 238000007254 oxidation reaction Methods 0.000 claims description 7
- 235000021317 phosphate Nutrition 0.000 claims description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 6
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 claims description 5
- 238000005554 pickling Methods 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 4
- 150000002484 inorganic compounds Chemical class 0.000 claims description 4
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N thiocyanic acid Chemical class SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 claims description 4
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- 229910010272 inorganic material Inorganic materials 0.000 claims description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 2
- 150000001412 amines Chemical class 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 2
- 125000000524 functional group Chemical group 0.000 claims description 2
- 150000004715 keto acids Chemical class 0.000 claims description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052845 zircon Inorganic materials 0.000 abstract 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 27
- 238000000576 coating method Methods 0.000 description 19
- 238000000151 deposition Methods 0.000 description 19
- 230000008021 deposition Effects 0.000 description 19
- 239000003973 paint Substances 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 14
- 239000000243 solution Substances 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 7
- 238000003618 dip coating Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 150000001242 acetic acid derivatives Chemical class 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 238000004532 chromating Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229910001429 cobalt ion Inorganic materials 0.000 description 3
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000008139 complexing agent Substances 0.000 description 3
- 150000001879 copper Chemical class 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 150000002222 fluorine compounds Chemical class 0.000 description 3
- 238000009863 impact test Methods 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000002823 nitrates Chemical class 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- RMGVZKRVHHSUIM-UHFFFAOYSA-N dithionic acid Chemical compound OS(=O)(=O)S(O)(=O)=O RMGVZKRVHHSUIM-UHFFFAOYSA-N 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- MIMUSZHMZBJBPO-UHFFFAOYSA-N 6-methoxy-8-nitroquinoline Chemical compound N1=CC=CC2=CC(OC)=CC([N+]([O-])=O)=C21 MIMUSZHMZBJBPO-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910001451 bismuth ion Inorganic materials 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002898 organic sulfur compounds Chemical class 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 229910001432 tin ion Inorganic materials 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/78—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/34—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
Definitions
- the present invention relates to an acidic, aqueous, chromium-free composition (A) for the anticorrosive treatment of steel and / or galvanized steel surfaces, comprising metal ions (M) selected from ions of at least one of the elements nickel, cobalt, molybdenum, iron or tin, and a multi-stage process using the composition (A) for the anticorrosive pretreatment of metallic components having surfaces of steel and / or galvanized steel.
- metal ions selected from ions of at least one of the elements nickel, cobalt, molybdenum, iron or tin
- the invention relates to metallic surfaces of zinc or iron, which have a passive layer system containing at least 30 mg / m 2 nickel and at least 10 mg / m 2 zirconium, titanium and / or hafnium and sulfur, wherein nickel is at least 30 at .-% in metallic form, obtainable in a method according to the invention.
- Corrosion inhibitors which are an acidic aqueous solution of fluoro complexes, have long been known and substitute those long used in the art
- WO 07/065645 describes aqueous compositions containing fluorocomplexes of, inter alia, titanium and / or zirconium, wherein in addition a further component is present, which is selected from: nitrate ions, copper ions, silver ions, vanadium or vanadate ions, bismuth ions, magnesium ions, zinc ions, manganese ions, cobalt ions, nickel ions, tin ions, buffer systems for the pH range from 2.5 to 5.5, aromatic carboxylic acids with at least two groups containing donor atoms, or derivatives of such carboxylic acids, silica particles having a mean particle size below 1 ⁇ .
- Pretreatment before a zirconium-based conversion treatment of metal surfaces, in particular of steel and galvanized steel known.
- a pretreatment with an acidic aqueous composition containing water-soluble salts of electropositive metals selected from nickel, copper, silver and / or gold is carried out before the conversion treatment.
- Such a composition for metallization may additionally contain defoamers and wetting agents.
- sparingly soluble copper salts it is proposed to use complexing agents in WO 2009045845 in order to increase the concentration of copper ions in the metallizing composition. It turns out that in the WO
- Chromium (VI) -free electrolyte containing at least 50 g / l of zinc ions and at least 50-300 g / l of metal cations selected from cations of the elements iron, cobalt and / or nickel.
- the aqueous composition may contain electropositive metal cations of the elements copper, silver, tin and / or bismuth.
- Further constituents of the electrolytic layer formation compositions disclosed in US Pat. No. 5,032,236 are ionogenic compounds which improve the formation of layers, including inorganic and organic sulfur compounds. According to the teaching of US Pat. No.
- alkaline aqueous composition containing metal cations selected from ions of the elements cobalt, nickel, iron and / or tin in an amount of 0.01-1 g / l, a complexing agent selected from pyrophosphate and / or Nitrilotriacetic acid for preventing the precipitation of sparingly soluble heavy metal salts and optionally a reducing agent, preferably sulfite.
- metal cations selected from ions of the elements cobalt, nickel, iron and / or tin in an amount of 0.01-1 g / l
- a complexing agent selected from pyrophosphate and / or Nitrilotriacetic acid for preventing the precipitation of sparingly soluble heavy metal salts
- a reducing agent preferably sulfite.
- Zinc surfaces wherein such a coated zinc surface after chromating and application of a paint system high corrosion resistance at good paint adhesion values having. Due to the low ionic concentrations and the presence of the complexing agent, a high bath stability is ensured. However, that allows in the
- Corrosion protection and paint adhesion properties of a trication zinc phosphating is at least equivalent and can be operated in a resource-saving manner.
- the object of the present invention is therefore to provide a method for
- Pretreatment of metallic components having surfaces of steel and / or galvanized steel comprising the method steps i-iii), each of which involve contacting the metallic component with an aqueous treatment solution, wherein the respective method steps i-iii) follows are characterized:
- An acidic aqueous, chromium-free composition (A) according to the invention which, when brought into contact with steel and / or galvanized steel, in a process according to the invention effective corrosion protection already effected by deposition of small amounts of active components contains
- metallic components comprising steel and galvanized steel are treated with a composition (A) according to the invention, the surface of the metallic component consisting of at least 10% galvanized steel surfaces, the pH is preferably in the range from 4.0 to 7.0, more preferably in a range of 5.0 to 7.0, especially in the range of 6.0 to 6.8.
- the composition (A) is chromium-free, if less than 10 ppm,
- chromium preferably less than 1 ppm of chromium, in particular no chromium (VI) are contained.
- Composition (A) causes deposition of the metal ions (M) (active component) on the metal surfaces.
- the layer formation takes place at least partially in the form of metallic phases of the elements nickel, cobalt, molybdenum, iron or tin.
- the composition (A) may additionally contain chelating organic compounds which have at least two functional groups with oxygen and / or nitrogen atoms selected from carboxyl, hydroxyl, amine, phosphoric acid or phosphonic acid groups. Particularly preferred are chelating organic compounds containing phosphoric acid, phosphonic acid and / or hydroxyl groups, for example, 1-hydroxyethane (1, 1 -diphosphonic acid). It has been found that such chelating agents in the composition (A) according to the invention mainly complex zinc ions and therefore weaken the inhibition of the deposition of the metal ions (M) on the metal surfaces.
- the chelating organic compounds are preferably contained in such an amount that the molar excess of zinc ions relative to the chelating organic Compounds not greater than 2 g / l, preferably not greater than 1 g / l, more preferably not greater than 0.5 g / l of zinc ions.
- compositions (A) are preferred whose content of zinc ions is not greater than 2 g / l, preferably not greater than 1 g / l, more preferably not greater than 0.5 g / l of zinc ions.
- the amount of phosphate ions is limited in the compositions (A) according to the invention, since higher proportions can cause the formation of a thin phosphate passivation, which is disadvantageous for the deposition of the metal ions (M) on the metal surfaces. This is surprising as the passivating treatment of the metal surface with a
- compositions based on zirconium, titanium and / or hafnium analogously to the treatment step iii) according to the invention, is not detrimental to the layer-forming deposition of the metal ions (M). Therefore, such compositions (A) according to the invention are preferred in which the proportion of dissolved phosphate is not more than 500 ppm, more preferably not more than
- compositions (A) according to the invention can inhibit the deposition of the metal ions (M) on the steel surfaces.
- such compositions (A) do not result in precipitation of zirconium, titanium and / or hafnium so that the use of these compounds provides no advantage and is uneconomical.
- the at least one water-soluble compound containing sulfur in an oxidation state of less than +6 is preferably selected from inorganic compounds, more preferably from oxo acids of sulfur such as sulphurous acid, thiosulphuric acid, dithionic acid, polythionic acid, sulphurous acid, dibasic acid and / or dithionic acid and their salts, especially preferably from sulphurous acid.
- the water-soluble compound containing sulfur may also be selected from salts of the organic acids thiocyanic acid and / or thiourea, with the aforementioned water-soluble inorganic compounds containing sulfur being preferred over organic acids and salts.
- the oxidation state in the context of the present invention, is defined according to IUPL Rule I-5.5.2.1 ("Nomenclature of Inorganic Chemistry - Recommendations 1990", Blackwell: Oxford, 1990) and designates the hypothetical charge assigned to an element in a molecule would be if this element were to be assigned all the electrons shared with other elements of the molecule for which the element has a higher electronegativity than that of the element with which it shares the electrons.
- the preferred concentration of water-soluble compounds containing sulfur in an oxidation state less than +6 is at least 1 mM, preferably at least 5 mM, but not more than 100 mM, preferably not more than 50 mM. Below 1 mM is one
- Layer-forming deposition of metal ions (M) in typical treatment times of a few minutes is not given or does not occur. Above 100 mM, on the one hand, no further acceleration of the layer formation on contacting a cleaned steel surface with such a composition (A) is found, and on the other hand, higher amounts of sulfur-containing compounds are rejected for economic and occupational hygiene reasons.
- reducing agents based on water-soluble compounds containing phosphorus and / or nitrogen in an oxidation state of less than +5 are surprisingly unsuitable for the deposition of the metal ions (M), in particular for the deposition of nickel and / or cobalt ions that these reducing agents in the composition (A) for economic reasons, preferably not or only in very small amounts below 50 ppm are included.
- compositions (A) are preferably at least 0.2 g / l, but not more than 5 g / l, preferably not more than 2 g / l of metal ions (M) selected from ions of at least one of the elements nickel, cobalt , Molybdenum, iron or tin. If this value is undershot, the activity of the metal ions (M) in the composition (A) is usually too low for adequate deposition. Above 5 g / l there is no additional benefit, whereas the increased precipitation of insoluble salts of the metal ions (M) increases, so that such high concentrations of metal ions (M) in treatment baths according to step ii) of the process according to the invention are uneconomical and also require increased processing costs.
- M metal ions
- metal ions (M) which are deposited on the metal surfaces in process step ii) from the acidic aqueous composition (A) in a preferred embodiment, in particular nickel and / or cobalt, more preferably nickel.
- Metal surfaces of steel and / or galvanized steel which are brought into contact with an aqueous composition (A) containing nickel and / or cobalt ions, particularly preferably nickel ions, independently of the sequence of process steps ii) and iii) are provided within a short treatment time with a thin layer containing the elements nickel and / or Kolbalt, which gives an excellent paint adhesion to subsequently applied organic paint systems and thereby meets the highest standards of corrosion protection.
- A aqueous composition containing nickel and / or cobalt ions, particularly preferably nickel ions, independently of the sequence of process steps ii) and iii) are provided within a short treatment time with a thin layer containing the elements nickel and / or Kolbalt, which gives an excellent paint adhesion to subsequently applied organic paint systems and thereby meets the highest standards of corrosion protection.
- Preferred water-soluble compounds which release metal ions (M) are all water-soluble salts which do not contain chloride ions. Particular preference is given to sulfates, nitrates and acetates.
- a preferred composition (A) according to the invention has a molar ratio of metal ions (M) selected from ions of at least one of nickel, cobalt, molybdenum, iron or tin to water-soluble compounds containing sulfur of not greater than 1: 1, preferably not greater than 2: 3 but not less than 1: 5. Above this preferred molar ratio of 1: 1, the formation of the thin layer containing the elements of the metal ions (M) is slower, so that in particular for the application of
- a coating process is preferably those compositions (A) in which a sufficient amount of water-soluble compounds containing sulfur relative to the total amount of metal ions (M) is present.
- a molar ratio of metal ions (M) to water-soluble compounds containing sulfur below 1: 5 may be detrimental to the stability of compositions (A) of the invention because the reducing sulfur compounds can then cause precipitation of the containing metals in colloidal form.
- compositions (A) according to the invention it may be advantageous to add electropositive metal cations in order to accelerate the layer formation.
- electropositive metal cations for compositions (A) according to the invention, it may be advantageous to add electropositive metal cations in order to accelerate the layer formation.
- Embodiment of the invention therefore additionally contains copper ions and / or silver ions, preferably copper ions, in an amount of at least 1 ppm, but not more than 100 ppm. Above 100 ppm, the deposition of the electropositive metal in elemental form on the steel and / or galvanized steel surfaces dominate so far that the layer formation based on the metal ions (M) is pushed back so far that the paint adhesion applied subsequently in the process according to the invention organic paints is significantly deteriorated or inhomogeneous layer coatings are produced after step ii) of the method according to the invention, which offer a poorer corrosion protection.
- M metal ions
- Preferred water-soluble compounds that release copper ions are all
- water-soluble copper salts containing no chloride ions and all water-soluble silver salts Particular preference is given to sulfates, nitrates and acetates.
- composition (A) according to the invention may be preferred, wherein the
- Concentration of total fluoride in the composition (A) is preferably at least 50 ppm but not more than 2000 ppm.
- the addition of fluoride is particularly advantageous when, in a process according to the invention, step ii), with or without a rinsing step between them, immediately follows the purification step i) and in particular when hot-dip galvanized steel surfaces are treated. In such a case, the pickling rate on the metal surfaces and faster deposition kinetics of the thin increases
- Coating consisting of elements of metal ions (M) and a more homogeneous
- Preferred water-soluble compounds which serve as a source of fluoride ions are hydrogen fluoride, alkali fluorides, ammonium fluoride and / or
- a cleaning and degreasing of the metal surface is necessary for a homogeneous formation of the passivating coating according to process steps ii) and iii).
- those purification steps i) are preferred according to the invention, which are carried out by means of an aqueous cleaning solution, wherein the cleaning a Beizabtrag of at least 0.4 g / m 2 , but not more than 0.8 g / m 2 of zinc based on a surface of Electrolytic galvanized steel causes.
- cleaners which have a corresponding pickling rate for a given cleaning time. It has surprisingly been found that such a preferred purification leads to better results in terms of corrosion protection and paint adhesion of the steel and / or galvanized steel surfaces treated according to the invention.
- compositions (B) are preferably free of chromium, i. they contain less than 10 ppm, preferably less than 1 ppm of chromium, in particular no chromium (VI). Furthermore, the acidic compositions (B) in the process according to the invention preferably contain a total of 20 to 1000 ppm of water-soluble compounds of the elements zirconium, titanium and / or hafnium based on the elements zirconium, titanium and / or hafnium.
- metal surface may be the result so that only small amounts of hydroxides and / or oxides of these elements deposited and the passivating effect is too low.
- a further improvement in the corrosion properties of the metal surfaces treated according to the invention can not be determined.
- compositions (B) in the process according to the invention which contain, as water-soluble compounds of the elements zirconium, titanium and / or hafnium, only water-soluble compounds of the elements zirconium and / or titanium, more preferably water-soluble compounds of the element zirconium.
- Preferred water-soluble compounds of the elements zirconium, titanium and / or hafnium are compounds which dissociate in aqueous solution into anions of fluorocomplexes of the elements zirconium, titanium and / or hafnium.
- Such preferred compounds are, for example, H 2 ZrF 6 , K 2 ZrF 6 , Na 2 ZrF 6 and (NH 4 ) 2 ZrF 6 and the analogous titanium compounds.
- fluorine-free compounds of the elements zirconium, titanium and / or hafnium can be used as water-soluble
- a composition (B) in step iii) of the process according to the invention may contain 1 to 100 ppm of copper ions and optionally up to 200 ppm of free fluoride.
- copper ions accelerates the conversion of the purified or treated in step ii) metal surfaces and also increases the passivating effect. Especially in the event that first the passivating treatment of steel and / or galvanized
- Preferred water-soluble compounds that release copper ions are all water-soluble copper salts that do not contain chloride ions. Particular preference is given to sulfates, nitrates and acetates.
- Preferred water-soluble compounds which serve as a source of fluoride ions are hydrogen fluoride, alkali fluorides, ammonium fluoride and / or ammonium bifluoride.
- the treatment temperature and the duration of the respective treatment are different in the individual steps i-iii) of the process according to the invention and strongly dependent on the bath system and the type of application, but can be varied over a wide range, without sacrificing corrosion properties.
- the treatment in steps i-iii) should be carried out as follows:
- the concrete conditions for bringing the metal surfaces into contact with the aqueous treatment stages ii) and iii) are preferably to be selected such that in step ii) a layer coverage of at least 30 mg / 2 , more preferably at least 50 mg / m2 of one or more of the metal ions (M) on the surfaces of zinc, while the temperature and duration of treatment in step iii) are to be adjusted such that a coating of at least 10 mg / m 2 zirconium and / or titanium, more preferably at least 25 mg / m 2 zirconium and / or titanium on the surfaces of zinc results.
- the corrosion protection properties of the pretreatment are usually insufficient.
- a first step the layer formation based on the elements of the metal ions (M) is carried out and then a conversion of the metal surface treated in this way is carried out with the aid of the zirconium- and / or titanium-containing composition (B).
- the method according to the invention is suitable for metallic components which have iron, steel and / or galvanized steel surfaces and the corresponding pre-phosphated surfaces. Irrespective of the sequence of steps ii) and iii), sufficient layer formation on the basis of the elements of the metal ions (M) always takes place on these surfaces, which in turn is a prerequisite for the outstanding properties with respect to corrosion and paint adhesion. Likewise, surfaces of aluminum are passivated in step iii) in the process according to the invention, so that the process is particularly suitable for the corrosion-protective pretreatment of multi-metal construction surfaces, for example.
- aqueous compositions in steps i-iii) can be brought into contact with the metal surfaces in both immersion and spraying processes.
- the method can also be used in the pretreatment of metal strip and there, for example, by means of the roller application method known to those skilled in the art.
- the process of the invention is usually followed by the application of a coating system, so that after passing through the process steps i-iii) with or without intermediate rinsing and / or drying step preferably a dip coating or a
- Powder coating particularly preferably a dip coating, in particular a cathodic dip coating follows.
- the present invention further comprises a metal surface of iron and / or steel with passive layer system comprising at least 30 mg / m 2 nickel and at least 10 mg / m 2 zirconium, titanium and / or hafnium, preferably at least 10 mg / m 2 zirconium, and sulfur wherein nickel is at least 30 at.% in metallic form, obtainable in a preferred one
- step i) in which step i) with or without intermediate rinsing step directly followed by the electroless treatment according to step ii), the composition (A) in process step ii) at least 100 ppm, but not more than 5 g / l Nickel ions and at least 1 mM sulfurous acid and / or salt thereof and the iron and / or steel surface at a treatment temperature in the range of 20 to 50 ° C is brought into contact with such a composition (A) for at least one minute.
- the present invention comprises a metal surface of zinc and / or galvanized steel with a passive layer system comprising at least 30 mg / m 2 nickel and at least 10 mg / m 2 zirconium, titanium and / or hafnium, preferably at least 10 mg / m 2 zirconium, and Contains sulfur, wherein nickel is at least 30 at .-% in metallic form, obtainable in a process according to the invention, in which the process step ii) with or without intermediate rinsing step immediately following the process step iii) and in which the inventive
- Composition (A) in process step ii) comprises at least 100 ppm, but not more than 5 g / l of nickel ions and at least 1 mM sulphurous acid and / or salt thereof and the zinc and / or galvanized steel surface at a treatment temperature in the range of 20 to 50 ° C is brought into contact with such a composition (A) for at least one minute.
- the invention additionally relates to the use of the metallic components treated according to the invention or of the metal strip treated according to the invention in the manufacture of
- the preferred composition (A) according to the invention has a pH of 3.7 and following
- composition (Examples B1 and B2):
- a cleaning and degreasing with a cleaning solution as in Example B2 causes a pickling of 0.5 g / m 2 on electrolytically galvanized substrates, while a
- the metal sheets treated according to the invention and the comparative sheets were dried with compressed air after the last rinsing step and electrocoated with the following cathodic dip coating: Aqua® 3000 (Dupont Co., KTL layer thickness: 20 ⁇ m, determined nondestructively using a commercially available layer thickness gauge)
- Cleaning solution a further significantly improved performance of the present invention treated and coated with the dip coating zinc surfaces (B2 vs. B1) causes in the stone impact test.
- Such an improvement on zinc surfaces by the cleaning effect of the cleaner occurs only in the process according to the invention and is omitted both in the exclusive zirconium-based conversion treatment (V4 vs. V3) and the exclusive trication zinc phosphating (V2 vs. V1).
- Table 1
- the nickel layer coating was determined by means of X-ray fluorescence analysis after the individual step iii)
- XPS X-ray photoelectron spectroscopy
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL10776723T PL2507408T3 (en) | 2009-12-04 | 2010-11-15 | Multi-stage pre-treatment method for metal components having zinc and iron surfaces |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009047522A DE102009047522A1 (en) | 2009-12-04 | 2009-12-04 | Multi-stage pre-treatment process for metallic components with zinc and iron surfaces |
PCT/EP2010/067448 WO2011067094A1 (en) | 2009-12-04 | 2010-11-15 | Multi-stage pre-treatment method for metal components having zinc and iron surfaces |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2507408A1 true EP2507408A1 (en) | 2012-10-10 |
EP2507408B1 EP2507408B1 (en) | 2017-07-19 |
Family
ID=43415321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10776723.8A Active EP2507408B1 (en) | 2009-12-04 | 2010-11-15 | Multi-stage pre-treatment method for metal components having zinc and iron surfaces |
Country Status (10)
Country | Link |
---|---|
US (1) | US8715403B2 (en) |
EP (1) | EP2507408B1 (en) |
JP (1) | JP5837885B2 (en) |
CN (1) | CN102639750B (en) |
BR (1) | BR112012013126B1 (en) |
DE (1) | DE102009047522A1 (en) |
ES (1) | ES2642079T3 (en) |
HU (1) | HUE035823T2 (en) |
PL (1) | PL2507408T3 (en) |
WO (1) | WO2011067094A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021116320A1 (en) * | 2019-12-11 | 2021-06-17 | Salzgitter Flachstahl Gmbh | Metal sheet having adhesion-promoter coating as semi-finished product for the manufacture of metal-thermoplastic composite components, and method for producing a metal sheet of this type |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010001686A1 (en) * | 2010-02-09 | 2011-08-11 | Henkel AG & Co. KGaA, 40589 | Composition for the alkaline passivation of zinc surfaces |
PL2503025T3 (en) | 2011-03-22 | 2013-12-31 | Henkel Ag & Co Kgaa | Multi-step corrosion-resistant treatment of metallic workpieces having at least partially zinc or zinc alloy surfaces |
WO2014035690A1 (en) | 2012-08-29 | 2014-03-06 | Ppg Industries Ohio, Inc. | Zirconium pretreatment compositions containing lithium, associated methods for treating metal substrates, and related coated metal substrates |
PL2890830T3 (en) | 2012-08-29 | 2019-01-31 | Ppg Industries Ohio, Inc. | Zirconium pretreatment compositions containing molybdenum, associated methods for treating metal substrates, and related coated metal substrates |
FR3002545B1 (en) * | 2013-02-22 | 2016-01-08 | Alchimer | PROCESS FOR FORMING A METAL SILICIDE USING A SOLUTION CONTAINING GOLD IONS AND FLUOR IONS |
TWI550099B (en) * | 2013-02-28 | 2016-09-21 | 日鐵住金鋼板股份有限公司 | Galvanized steel sheet containing aluminum and its manufacturing method |
US20150021086A1 (en) * | 2013-07-19 | 2015-01-22 | San Diego Gas & Electric Company | Methods for dulling metallic surfaces and related products |
DE102014206407A1 (en) * | 2014-04-03 | 2015-10-08 | Henkel Ag & Co. Kgaa | Two-stage pre-treatment of aluminum including pickle and passivation |
HUE036114T2 (en) * | 2014-12-12 | 2018-06-28 | Henkel Ag & Co Kgaa | Optimized process control in the pretreatment of metals to protect against corrosion on the basis of baths containing fluoride |
CN105331966B (en) | 2015-11-30 | 2018-04-27 | 宝山钢铁股份有限公司 | A kind of Chrome-free surface treatment tin plate, its production method and surface conditioning agent |
EP3504356B1 (en) | 2016-08-24 | 2024-08-21 | PPG Industries Ohio, Inc. | Alkaline composition for treating metal substartes |
CA3041934A1 (en) * | 2016-11-23 | 2018-05-31 | Chemetall Gmbh | Composition and method for the chromium-free pretreatment of aluminium surfaces |
CN106756966B (en) * | 2016-12-09 | 2019-02-05 | 济南大学 | The purple tin cobalt copper of zinc coat is passivated coloring |
EP3502311A1 (en) * | 2017-12-20 | 2019-06-26 | Henkel AG & Co. KGaA | Method for the corrosion protection and cleaning pretreatment of metallic components |
CN108707884A (en) * | 2018-04-11 | 2018-10-26 | 浙江康盛股份有限公司 | A kind of chromium-free passivation liquid and its configuration method |
CN108531898A (en) * | 2018-04-11 | 2018-09-14 | 浙江康盛股份有限公司 | A kind of chromium-free passivation liquid |
FI3663435T3 (en) * | 2018-12-05 | 2024-05-24 | Henkel Ag & Co Kgaa | Passivation composition based on mixtures of phosphoric and phosphonic acids |
US11566330B2 (en) * | 2019-04-16 | 2023-01-31 | Ppg Industries Ohio, Inc. | Systems and methods for maintaining pretreatment baths |
EP3872231A1 (en) * | 2020-02-28 | 2021-09-01 | voestalpine Stahl GmbH | Method for conditioning the surface of a metal strip coated with a zinc alloy corrosion protection layer |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB789131A (en) * | 1955-05-24 | 1958-01-15 | Pyrene Co Ltd | Improvements in the formation of chemical coatings on metal surfaces |
US3357854A (en) * | 1964-10-30 | 1967-12-12 | Darrell D Hays | Nickel plating process |
US3515600A (en) * | 1966-10-19 | 1970-06-02 | Hooker Chemical Corp | Metal treating process and composition |
JPS51135840A (en) * | 1975-05-21 | 1976-11-25 | Nippon Packaging Kk | Surface treatment process for zinc or zinc alloy |
AU519486B2 (en) * | 1978-01-26 | 1981-12-03 | Commonwealth Scientific And Industrial Research Organisation | Nickel on zinc solar absorber surfaces |
US4278477A (en) | 1980-03-19 | 1981-07-14 | Amchem Products, Inc. | Metal treatment |
JPH0637711B2 (en) | 1989-06-22 | 1994-05-18 | 新日本製鐵株式会社 | Method for producing black surface-treated steel sheet |
CN1015186B (en) * | 1989-08-29 | 1991-12-25 | 佛山大学 | Method for manufacturing electrolytic water anode for welding machine and anode product |
JPH03226584A (en) * | 1990-01-30 | 1991-10-07 | Nippon Parkerizing Co Ltd | Solution for surface-treating galvanized steel sheet and method therefor |
US5318640A (en) * | 1990-01-30 | 1994-06-07 | Henkel Corporation | Surface treatment method and composition for zinc coated steel sheet |
AU4566900A (en) | 1999-05-28 | 2000-12-18 | Henkel Kommanditgesellschaft Auf Aktien | Post-passivation of a phosphatized metal surface |
JP3414348B2 (en) * | 2000-01-07 | 2003-06-09 | 住友金属工業株式会社 | Chrome-free treated galvanized steel sheet with excellent blackening resistance |
TW570842B (en) * | 2000-11-22 | 2004-01-11 | Nihon Parkerizing | Protective reaction rinse for autodeposition coatings |
DE10115244A1 (en) | 2001-03-28 | 2002-10-02 | Henkel Kgaa | Post-passivation of a phosphated metal surface using the belt process |
JP2006322048A (en) * | 2005-05-19 | 2006-11-30 | Three G Giken:Kk | Chemical conversion treatment solution, and chemical conversion treatment method |
DE102005059314B4 (en) | 2005-12-09 | 2018-11-22 | Henkel Ag & Co. Kgaa | Acid, chromium-free aqueous solution, its concentrate, and a process for the corrosion protection treatment of metal surfaces |
DE102006052919A1 (en) | 2006-11-08 | 2008-05-15 | Henkel Kgaa | Zr / Ti-containing phosphating solution for the passivation of metal composite surfaces |
WO2008069977A1 (en) * | 2006-12-01 | 2008-06-12 | HENKEL AG & CO. KGAaA | Acidic zincating solution |
DE102007021364A1 (en) * | 2007-05-04 | 2008-11-06 | Henkel Ag & Co. Kgaa | Metallizing pretreatment of zinc surfaces |
WO2009041616A1 (en) * | 2007-09-27 | 2009-04-02 | Nippon Paint Co., Ltd. | Method for producing surface-treated metal material and method for producing metal coated article |
US9574093B2 (en) | 2007-09-28 | 2017-02-21 | Ppg Industries Ohio, Inc. | Methods for coating a metal substrate and related coated metal substrates |
DE102008014465B4 (en) * | 2008-03-17 | 2010-05-12 | Henkel Ag & Co. Kgaa | Optimized Ti / Zr passivation agent for metal surfaces and conversion treatment method |
-
2009
- 2009-12-04 DE DE102009047522A patent/DE102009047522A1/en not_active Withdrawn
-
2010
- 2010-11-15 JP JP2012541391A patent/JP5837885B2/en not_active Expired - Fee Related
- 2010-11-15 ES ES10776723.8T patent/ES2642079T3/en active Active
- 2010-11-15 EP EP10776723.8A patent/EP2507408B1/en active Active
- 2010-11-15 BR BR112012013126A patent/BR112012013126B1/en not_active IP Right Cessation
- 2010-11-15 HU HUE10776723A patent/HUE035823T2/en unknown
- 2010-11-15 CN CN201080054392.XA patent/CN102639750B/en active Active
- 2010-11-15 PL PL10776723T patent/PL2507408T3/en unknown
- 2010-11-15 WO PCT/EP2010/067448 patent/WO2011067094A1/en active Application Filing
-
2012
- 2012-05-31 US US13/484,848 patent/US8715403B2/en active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2011067094A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021116320A1 (en) * | 2019-12-11 | 2021-06-17 | Salzgitter Flachstahl Gmbh | Metal sheet having adhesion-promoter coating as semi-finished product for the manufacture of metal-thermoplastic composite components, and method for producing a metal sheet of this type |
Also Published As
Publication number | Publication date |
---|---|
EP2507408B1 (en) | 2017-07-19 |
DE102009047522A1 (en) | 2011-06-09 |
JP5837885B2 (en) | 2015-12-24 |
HUE035823T2 (en) | 2018-08-28 |
JP2013513022A (en) | 2013-04-18 |
US20120325110A1 (en) | 2012-12-27 |
CN102639750A (en) | 2012-08-15 |
ES2642079T3 (en) | 2017-11-15 |
PL2507408T3 (en) | 2017-12-29 |
US8715403B2 (en) | 2014-05-06 |
WO2011067094A1 (en) | 2011-06-09 |
CN102639750B (en) | 2015-03-11 |
BR112012013126B1 (en) | 2019-08-27 |
BR112012013126A2 (en) | 2017-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2507408B1 (en) | Multi-stage pre-treatment method for metal components having zinc and iron surfaces | |
EP2292808B1 (en) | Metallising pre-treatment of zinc surfaces | |
DE102005059314B4 (en) | Acid, chromium-free aqueous solution, its concentrate, and a process for the corrosion protection treatment of metal surfaces | |
EP2534279B1 (en) | Composition for the alkaline passivation of zinc surfaces | |
EP2588646B1 (en) | Method for selectively phosphating a composite metal construction | |
EP0459541A1 (en) | Process for phosphating metal surfaces | |
EP2817434A1 (en) | Pretreating zinc surfaces prior to a passivating process | |
EP1390564A2 (en) | Method for coating metallic surfaces and use of the substrates coated in this manner | |
EP1254279A2 (en) | Anti-corrosive agents and method for protecting metal surfaces against corrosion | |
WO2011012443A1 (en) | Multistage method for treating metal surfaces prior to dip painting | |
EP0359296B1 (en) | Phosphating process | |
EP2215285B1 (en) | Zirconium phosphating of metal components, in particular iron | |
DE102019134298A1 (en) | Method for producing a flat steel product with a metallic protective layer based on zinc and a phosphate layer produced on a surface of the metallic protective layer and such a flat steel product | |
EP1292719A1 (en) | Adhesion promoter in conversion solutions | |
DE102009047523A1 (en) | Multi-stage method for corrosion-inhibiting pretreatment of metallic components having the surfaces of zinc, comprises subjecting the metallic components with an aqueous treatment solution, and cleaning and degreasing the metal surface | |
EP3728693B1 (en) | Method for the corrosion protection and cleaning pretreatment of metallic components | |
EP2726650B1 (en) | Electrolytic iron plating on zinc surfaces | |
EP1433879B1 (en) | Process for metal surface coating with an alkali phosphate solution, aqueous concentrate and use of such coated metal surfaces | |
WO2023275270A2 (en) | Method for sequentially constructing a conversion layer on components comprising steel surfaces | |
WO2023227522A1 (en) | Method for alkaline cleaning of zinc-magnesium-alloyed strip steel | |
DE102022106091A1 (en) | Method for modifying a surface of a coated steel sheet | |
WO2001016397A1 (en) | Zinc phosphatizing using epoxides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120529 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20160502 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20161011 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20170216 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 910473 Country of ref document: AT Kind code of ref document: T Effective date: 20170815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010013893 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2642079 Country of ref document: ES Kind code of ref document: T3 Effective date: 20171115 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170719 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171119 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171020 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171019 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010013893 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
26N | No opposition filed |
Effective date: 20180420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171130 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E035823 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171115 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20171130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171130 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 910473 Country of ref document: AT Kind code of ref document: T Effective date: 20171115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231123 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231120 Year of fee payment: 14 Ref country code: IT Payment date: 20231124 Year of fee payment: 14 Ref country code: HU Payment date: 20231122 Year of fee payment: 14 Ref country code: FR Payment date: 20231120 Year of fee payment: 14 Ref country code: DE Payment date: 20231121 Year of fee payment: 14 Ref country code: CZ Payment date: 20231106 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20231102 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240126 Year of fee payment: 14 |