[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2598439A1 - Recycling of silicon sawing slurries using thermal plasma for the production of ingots or wafers - Google Patents

Recycling of silicon sawing slurries using thermal plasma for the production of ingots or wafers

Info

Publication number
EP2598439A1
EP2598439A1 EP11735480.3A EP11735480A EP2598439A1 EP 2598439 A1 EP2598439 A1 EP 2598439A1 EP 11735480 A EP11735480 A EP 11735480A EP 2598439 A1 EP2598439 A1 EP 2598439A1
Authority
EP
European Patent Office
Prior art keywords
silicon
plasma
substrate
forming
sawing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11735480.3A
Other languages
German (de)
French (fr)
Inventor
Etienne Bouyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2598439A1 publication Critical patent/EP2598439A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • the present invention relates to the field of the preparation of silicon (Si) of high quality / purity, especially photovoltaic quality (PV), from sawing sludge.
  • Si silicon
  • PV photovoltaic quality
  • Si silicon
  • PV photovoltaic
  • a preferred way to develop the basic silicon elements derives from the purification of metallurgical Si.
  • the ingots from the successive phases of purification are then cut into slices. This step leads to a production of purified silicon waste, mixed with cutting agents (from the saw, for example SiC, diamond, ...) and lubricants.
  • the estimate of the level of waste can reach 50%.
  • the acid treatment process emits liquid effluents that will have to be treated.
  • the product formed is a purified silicon powder, more or less coarse.
  • the present invention relates to the use of thermal plasma for the purification of silicon from sawing sludge.
  • the plasma is an inductive thermal plasma.
  • sawing sludge in particular partly purified, is meant silicon particles mainly obtained from purified silicon ingots added contaminants from the tool that was used to saw the ingot, in particular carbon, iron, SiC ...
  • Silicon powders (Si) generally have an average grain size of between 0.1 and 10 micrometers.
  • Plasma technique allows to deposit a material (“feedstock”), typically a powder, a liquid or a suspension, by introducing it into a plasma jet, emanating from a plasma torch. In the jet, the material is melted and propelled to a substrate. The melted droplets solidify rapidly and form a deposit on the substrate.
  • feedstock typically a powder, a liquid or a suspension
  • the plasma jet can be generated in two ways:
  • DC plasma direct current
  • inductive plasma or RF high-frequency inductive coupling or radio frequency
  • the sawing sludge is advantageously treated by inductive thermal plasma or RF, which offers the possibility of a larger volume of treatment and a higher level of purity.
  • the corresponding plasma device is considered as a high temperature chemical reactor that can be the seat of physical transformations (fusion, evaporation, condensation, purification) and chemical reactions (synthesis, reduction, oxidation, introduction or separation of doping elements).
  • fusion, evaporation, condensation, purification physical transformations
  • chemical reactions synthesis, reduction, oxidation, introduction or separation of doping elements.
  • the control of plasma process parameters makes it possible to determine the purity levels of the silicon obtained.
  • the advantage of the use of the inductive thermal plasma is to be able to feed a large quantity (flow) of "feedstock", unlike a thermal plasma generated by direct current.
  • the thermal plasma is a method for removing impurities without leaving residues.
  • the degree of purity of the silicon deposited depends on the parameters of the applied plasma.
  • the purity of the deposited silicon is such that it can be used in photovoltaics or in microelectronics.
  • the invention thus provides a relatively simple, effective and fast way to recycle or reuse these sludge, by extracting or purifying the silicon present therein.
  • the present invention relates to a method of forming a silicon deposit on a substrate which comprises the following steps:
  • the sawing sludge containing silicon does not undergo any prior treatment stage including purification, before being subjected to thermal plasma.
  • the method according to the invention allows, simultaneously and concomitantly via the thermal plasma, the purification of sawing sludge containing silicon and the formation of a silicon deposit on a substrate.
  • the thermal plasma is preferably inductive and is conventionally generated, known to those skilled in the art and explained above.
  • the "feedstock” consists essentially of sawing sludge from the sawing of silicon ingots. In practice, it contains silicon dust, as well as residues of the sawing tool, such as iron, SiC, carbon.
  • the plasma is applied to this "feedstock" which can be in the form of a solid or a suspension.
  • the sawing sludge is mixed with a solvent, preferably hydrogenated water, before being subjected to plasma.
  • a solvent preferably hydrogenated water
  • the addition of solvent makes it possible to adjust the viscosity of the "feedstock".
  • several methods of introducing the "feedstock" into the plasma are possible.
  • the biphasic mixture liquid or solvent + fines derived from the sawing
  • the biphasic mixture is atomized with a gas of at least one atom.
  • atomization such as, for example, argon, or helium, optionally supplemented with hydrogen at a level of 10% by volume, in an atomization probe, so as to obtain drops formed of the solvent and silicon microparticles.
  • the reducing gas mixture employed is particularly useful for reducing SiC.
  • it is brought into the plasma center via a propellant of the same nature as before.
  • the material in the presence in this case the silicon microparticles, is melted and propelled towards a substrate.
  • a solvent In the case where a solvent has been added, it evaporates.
  • the melted droplets solidify and form a deposit on the substrate, according to the principle of thermal spraying.
  • the substrate may consist of a silicon ingot.
  • the substrate may be made of a refractory material, advantageously chosen from the following group: molybdenum (Mo), tantalum (Ta), and tungsten (W) and their alloys.
  • Mo molybdenum
  • Ta tantalum
  • W tungsten
  • the silicon deposit obtained is advantageously separated or extracted from the substrate, which then plays the role of support.
  • the substrate is cooled for example by being supported by a copper substrate holder traversed by a water cooling circuit.
  • the silicon deposition is subjected to the application of a plasma jet, allowing its recrystallization in situ.
  • the substrate may be subjected to rotational or lateral movement.
  • the plasma jet can be implemented in the same way as previously during the purification step using the same apparatus.
  • all the steps of purification and possible recrystallization can be carried out in the same enclosure.
  • Preferably, for this recrystallization step use will be made of a mixture of argon and hydrogen H 2 gas.
  • the method according to the invention thus makes it possible to enrich said ingots.
  • the present invention provides a solution for reinjecting the sludge by-product sludge into the PV cell manufacturing die.
  • the method according to the invention makes it possible to manufacture silicon wafers.
  • the parameters of the applied plasma allow the control of the characteristics of the deposited deposit.
  • the invention allows the manufacture of silicon wafers of thickness between 100 and 300 ⁇ , of controlled thickness.
  • Figure 1 illustrates a device and a method for reloading silicon ingots through the passage of sawing sludge in an inductive thermal plasma.
  • FIG. 2 illustrates a device and a method allowing the production of silicon wafers by the passage of sawing sludge in an inductive thermal plasma.
  • FIG. 3 illustrates a device and a method enabling the crystallization, by in situ heat treatment by plasma, of silicon wafers obtained by the passage of sawing sludge in an inductive thermal plasma.
  • the substrate (2) is a silicon ingot
  • the silicon ingot is enriched or recharged in silicon.
  • the inductive thermal plasma device comprises the following elements:
  • a plasma jet 4 for example with argon and with hydrogen (Ar / H 2 ).
  • an atomization probe 5 is provided in the case of injection into the center of the plasma by atomization.
  • the plasma device thus constituted is fed by the "feedstock" 1, constituted in this case by the recovered sludge.
  • a solvent preferably hydrogenated water, is added to adjust the viscosity to the appropriate conditions for atomization.
  • the biphasic mixture (liquid and fines from the sawing phase, the liquid corresponding to the residual liquid initially contained in the sawing sludge to which a solvent can be added to control the viscosity) is injected into the center plasma, either by atomization, as described in US 5,609,921, or via a propellant, depending on the viscosity.
  • an atomizing gas is added to the mixture which then passes into the atomization probe 5. Droplets comprising solvent and silicon microparticles are thus formed.
  • the purpose of the atomizing gas is to split the continuous flow of sludge (possibly with added solvent) into microdroplets. As previously explained, due to having finely divided flavors, the heat treatment in the plasma is more effective.
  • the atomization probe is the device that allows the meeting of the gas flow (atomizing gas) and the liquid vein (sludge) to form the droplets.
  • the method according to the invention has a second application: as illustrated in FIG. 2, it allows the direct production of Si plates from sawing sludges from Si ingots.
  • the sludge is introduced into the inductive plasma by atomization and then the Si melted by the plasma is recovered on a substrate 2 'to form a thin Si plate (6 ), generally between 100 and 300 ⁇ .
  • the essential difference with respect to the previous example is the nature of the substrate 2 'which is no longer a silicon ingot but a support / substrate planar or not, preferably of a refractory nature. In this way, the formed Si plate 6 does not adhere to the support / substrate of refractory material chosen for its properties of non reactivity with Si.
  • the substrate of refractory nature is itself cooled so that possible chemical reactions with the molten silicon during the deposition on the substrate are avoided.
  • a subsequent step is to extract the formed Si plate 6 from its support 2 '.
  • This step consists in scanning the Si 6 plate by the plasma jet 4.
  • This treatment thermal offers the advantage of recrystallizing the grains of Si that constitute the plate, by adjusting their size as a function of the passage time of the plasma jet on the surface, but also according to the intrinsic parameters of the plasma (power, composition and flow rates of the gases plasmagenes).
  • this step it is possible to animate the substrate or support V in a lateral or rotational movement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Silicon Compounds (AREA)

Abstract

A thermal, advantageously inductive, plasma is used to purify silicon from sawing slurries. For this purpose a thermal plasma is generated and a silicon-containing sawing slurry is subjected to the thermal plasma, so as to deposit silicon on a substrate.

Description

RECYCLAGE DE BOUES DE SCIAGE DE SILICIUM POUR LA PRÉPARATION DE LINGOTS OU DE PLAQUES PAR PLASMA THERMIQUE RECYCLING OF SILICON SAWING SLUDGE FOR THE PREPARATION OF INGOTS OR THERMAL PLASMA PLATES
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
La présente invention concerne le domaine de la préparation de silicium (Si) de haute qualité/pureté, notamment de qualité photovoltaïque (PV), à partir de boues de sciage. The present invention relates to the field of the preparation of silicon (Si) of high quality / purity, especially photovoltaic quality (PV), from sawing sludge.
Plus précisément, elle propose de traiter les boues de sciage, générées dans le domaine de la photovoltaïque ou de la microélectronique, à l'aide de la technique du plasma thermique inductif pour purifier le silicium contenu dans ces boues et le récupérer sous forme de lingots ou de plaques. More specifically, it proposes to treat sawing sludge, generated in the field of photovoltaics or microelectronics, using the inductive thermal plasma technique to purify the silicon contained in these sludges and recover it in the form of ingots. or plates.
ETAT ANTÉRIEUR DE LA TECHNIQUE PRIOR STATE OF THE ART
L'industrie du solaire est actuellement en pleine croissance. Aujourd'hui, la part donnée au silicium (Si) photovoltaïque (PV) est prépondérante, car mature par rapport aux autres technologies potentielles et candidates. Dans le solaire photovoltaïque, une voie privilégiée pour élaborer les éléments de base en silicium découle de la purification du Si métallurgique. Les lingots issus des phases successives de purification sont alors coupés en tranche. Cette étape conduit à une production de déchets de silicium purifié, mélangé avec des agents coupants (issus de la scie, par exemple SiC, diamant, ...) et des lubrifiants. L'estimation du niveau de déchets peut atteindre les 50%. The solar industry is currently growing. Today, the share given to silicon (Si) photovoltaic (PV) is preponderant, because mature compared to other potential technologies and candidates. In solar photovoltaic, a preferred way to develop the basic silicon elements derives from the purification of metallurgical Si. The ingots from the successive phases of purification are then cut into slices. This step leads to a production of purified silicon waste, mixed with cutting agents (from the saw, for example SiC, diamond, ...) and lubricants. The estimate of the level of waste can reach 50%.
Comme déjà dit, la production de silicium de qualité photovoltaïque se base sur l'utilisation de silicium métallurgique, lequel va être purifié puis subir des étapes d'élaboration : fusion, recristallisation, sciage des lingots. Ces différentes étapes conduisent à des « wafers ». L'étape de sciage des lingots de Si PV génère des boues de sciage. Cette étape de sciage introduit des impuretés (par exemple le fer) qui doivent être éliminées car néfastes pour atteindre le niveau de pureté et donc de performances PV nécessaires. La réutilisation des boues de sciage est donc une préoccupation constante, nécessitant la récupération et la purification du silicium contenu dans celles-ci. Des études par des procédés basse température, par exemple par traitement acide et séparation électrocinétique, ont révélé la possibilité de purifier efficacement le silicium issu des boues de sciage (T. -H. Tsai, «Pretreatment of recycling wiresaw slurries - Iron removal using acid treatment and electrokinetic séparation», Séparation and Purification Technology, 68 (2009) pp. 24-29). As already stated, the production of photovoltaic grade silicon is based on the use of metallurgical silicon, which will be purified and then undergo development steps: melting, recrystallization, sawing ingots. These different steps lead to wafers. The sawing step of Si PV ingots generates sawing sludge. This sawing step introduces impurities (for example iron) which must be eliminated as harmful to achieve the level of purity and therefore required PV performance. The reuse of sawing sludge is therefore a constant concern, requiring the recovery and purification of the silicon contained therein. Studies using low temperature processes, for example acid treatment and electrokinetic separation, have revealed the possibility of efficiently purifying silicon from sawing sludge (T.H. Tsai, "Pretreatment of recycling wiresaw slurries - Iron removal using acid treatment and electrokinetic separation ", Separation and Purification Technology, 68 (2009) pp. 24-29).
D'autres méthodes de séparation physiques et chimiques conduisent à l'obtention de matériaux très purs (jusqu'à ION), comme décrit notamment dans le document WO 2009/126922. Other physical and chemical separation methods lead to the production of very pure materials (up to ION), as described in particular in document WO 2009/126922.
Toutefois, ces procédés sont très longs, pouvant aller de l'ordre de l'heure à la centaine d'heures. De plus, le procédé de traitement acide émet des effluents liquides qui devront être traités. Au sortir de ces procédés, le produit formé est une poudre de silicium purifiée, plus ou moins grossière. However, these methods are very long, ranging from about one hour to one hundred hours. In addition, the acid treatment process emits liquid effluents that will have to be treated. At the end of these processes, the product formed is a purified silicon powder, more or less coarse.
A noter que l'industrie de la micro électronique produit également des déchets lors de la phase de sciage. Là encore, ces déchets correspondent à des produits à base de silicium très pur, dont le recyclage est un enjeu important. La présente invention s'inscrit donc dans la recherche de nouvelles solutions techniques permettant de récupérer le silicium contenu dans les boues de sciage des lingots de Si. It should be noted that the microelectronics industry also produces waste during the sawing phase. Here again, this waste corresponds to products based on very pure silicon, the recycling of which is an important issue. The present invention is therefore part of the search for new technical solutions for recovering the silicon contained in the sawing sludge of Si ingots.
EXPOSE DE L'INVENTION Dans son aspect le plus général, la présente invention concerne l'utilisation du plasma thermique pour la purification de silicium à partir de boues de sciage. SUMMARY OF THE INVENTION In its most general aspect, the present invention relates to the use of thermal plasma for the purification of silicon from sawing sludge.
Avantageusement, le plasma est un plasma thermique inductif. Par boue de sciage, en particulier en partie purifiée, on entend des particules de silicium issues principalement de lingots purifiés de silicium additionnées de contaminants issus de l'outil qui ayant servi à scier le lingot, en particulier du carbone, du fer, du SiC... Les poudres de silicium (Si) ont généralement une taille moyenne de grain comprise entre 0,1 et 10 micromètres. Advantageously, the plasma is an inductive thermal plasma. By sawing sludge, in particular partly purified, is meant silicon particles mainly obtained from purified silicon ingots added contaminants from the tool that was used to saw the ingot, in particular carbon, iron, SiC ... Silicon powders (Si) generally have an average grain size of between 0.1 and 10 micrometers.
Il a été montré, dans le cadre de la présente invention, que la technique dite de plasma thermique était parfaitement adaptée pour le traitement de cette matière (« feedstock ») issue de l'industrie du solaire PV et de l'industrie de la microélectronique. La technique plasma, bien connue de l'homme du métier, permet de déposer une matière (« feedstock »), typiquement une poudre, un liquide ou une suspension, en l'introduisant dans un jet plasma, émanant d'une torche plasma. Dans le jet, la matière est fondue et propulsée vers un substrat. Les gouttelettes fondues se solidifient rapidement et forment un dépôt sur le substrat. It has been shown, in the context of the present invention, that the so-called thermal plasma technique is perfectly suited for the treatment of this material ("feedstock") resulting from the PV solar industry and from the microelectronics industry. . Plasma technique, well known to those skilled in the art, allows to deposit a material ("feedstock"), typically a powder, a liquid or a suspension, by introducing it into a plasma jet, emanating from a plasma torch. In the jet, the material is melted and propelled to a substrate. The melted droplets solidify rapidly and form a deposit on the substrate.
Communément, le jet plasma peut être généré de deux manières : Commonly, the plasma jet can be generated in two ways:
par courant direct (plasma DC) ;  direct current (DC plasma);
par plasma inductif ou RF (couplage inductif haute fréquence ou radio fréquence), dans lequel l'énergie est transférée par induction d'une bobine au jet plasma, à travers laquelle passe un courant RF alternatif.  by inductive plasma or RF (high-frequency inductive coupling or radio frequency), wherein the energy is transferred by induction of a coil to the plasma jet, through which passes an alternating RF current.
Selon l'invention, les boues de sciage sont avantageusement traitées par plasma thermique inductif ou RF, qui offre la possibilité d'un plus gros volume de traitement ainsi qu'un niveau de pureté supérieur. According to the invention, the sawing sludge is advantageously treated by inductive thermal plasma or RF, which offers the possibility of a larger volume of treatment and a higher level of purity.
En effet, ce type de plasma extrêmement pur ne nécessite pas d'électrode pour la génération du plasma. Le dispositif plasma correspondant est considéré comme un réacteur chimique haute température permettant d'être le siège de transformations physiques (fusion, évaporation, condensation, purification) et de réactions chimiques (synthèse, réduction, oxydation, introduction ou séparation d'éléments dopants). En termes de procédé, le temps de résidence relativement long dans ce type de plasma, couplé aux températures élevées (> 10000 K), permet de réaliser les transformations physico-chimiques mentionnées précédemment. Indeed, this type of extremely pure plasma does not require an electrode for the generation of plasma. The corresponding plasma device is considered as a high temperature chemical reactor that can be the seat of physical transformations (fusion, evaporation, condensation, purification) and chemical reactions (synthesis, reduction, oxidation, introduction or separation of doping elements). In terms of process, the relatively long residence time in this type of plasma, coupled with high temperatures (> 10,000 K), makes it possible to carry out the physico-chemical transformations mentioned above.
En outre, la maîtrise des paramètres du procédé plasma (nature et débit des gaz, pression, puissance appliquée, mode d'introduction du « feedstock ») permet de déterminer les niveaux de pureté du silicium obtenu. Par ailleurs, l'intérêt de l'utilisation du plasma thermique inductif est de pouvoir alimenter une grande quantité (débit) de « feedstock », contrairement à un plasma thermique généré par courant continu. In addition, the control of plasma process parameters (type and flow rate of gas, pressure, power applied, feedstock introduction mode) makes it possible to determine the purity levels of the silicon obtained. Moreover, the advantage of the use of the inductive thermal plasma is to be able to feed a large quantity (flow) of "feedstock", unlike a thermal plasma generated by direct current.
Du fait de la nature des impuretés incluses dans les boues de sciage, typiquement, du carbone, du carbure de silicium, du fer, le plasma thermique est une méthode permettant d'éliminer les impuretés sans laisser de résidus. Ainsi, dans le cadre de l'invention, il a été mis en évidence la possibilité d'utiliser cette technique pour extraire le silicium des boues de sciage et réaliser un dépôt de silicium purifié sur un substrat d'intérêt. Comme déjà dit, le degré de pureté du silicium déposé dépend des paramètres du plasma appliqué. Dans un mode de réalisation privilégié, la pureté du silicium déposé est telle qu'il peut être utilisé en photovoltaïque ou en micro électronique . Due to the nature of the impurities included in the sawing sludge, typically carbon, silicon carbide, iron, the thermal plasma is a method for removing impurities without leaving residues. Thus, in the context of the invention, it has been demonstrated the possibility of using this technique for extracting silicon from the sawing sludge and producing a deposition of purified silicon on a substrate of interest. As already stated, the degree of purity of the silicon deposited depends on the parameters of the applied plasma. In a preferred embodiment, the purity of the deposited silicon is such that it can be used in photovoltaics or in microelectronics.
L'invention offre donc un moyen relativement simple, efficace et rapide de recycler ou réutiliser ces boues, en extrayant ou purifiant le silicium présent dans celles-ci. The invention thus provides a relatively simple, effective and fast way to recycle or reuse these sludge, by extracting or purifying the silicon present therein.
Plus précisément, la présente invention concerne un procédé de formation d'un dépôt de silicium sur un substrat qui comprend les étapes suivantes : More specifically, the present invention relates to a method of forming a silicon deposit on a substrate which comprises the following steps:
générer un plasma thermique ;  generate a thermal plasma;
soumettre des boues de sciage contenant du silicium au plasma thermique, pour former le dépôt de silicium sur ledit substrat.  subjecting sawing sludge containing silicon to the thermal plasma, to form the deposition of silicon on said substrate.
A noter que de manière avantageuse selon l'invention, les boues de sciage contenant le silicium ne subissent aucune étape préalable de traitement notamment de purification, avant d'être soumise au plasma thermique. En d'autres termes, le procédé selon l'invention permet, de manière simultanée et concomitante via le plasma thermique, la purification des boues de sciage contenant le silicium et la formation d'un dépôt de silicium sur un substrat. Note that advantageously according to the invention, the sawing sludge containing silicon does not undergo any prior treatment stage including purification, before being subjected to thermal plasma. In other words, the method according to the invention allows, simultaneously and concomitantly via the thermal plasma, the purification of sawing sludge containing silicon and the formation of a silicon deposit on a substrate.
Le plasma thermique est de préférence inductif et est généré de manière classique, connu de l'homme du métier et expliqué ci-dessus. The thermal plasma is preferably inductive and is conventionally generated, known to those skilled in the art and explained above.
Dans le cadre de l'invention, le « feedstock » est constitué essentiellement de boues de sciage issues du sciage de lingots de silicium. En pratique, il contient des poussières de silicium, ainsi que des résidus de l'outil de sciage, comme du fer, du SiC, du carbone. In the context of the invention, the "feedstock" consists essentially of sawing sludge from the sawing of silicon ingots. In practice, it contains silicon dust, as well as residues of the sawing tool, such as iron, SiC, carbon.
Le plasma est appliqué sur ce « feedstock » qui peut se présenter sous forme de solide ou de suspension. The plasma is applied to this "feedstock" which can be in the form of a solid or a suspension.
Dans un mode de réalisation privilégié, les boues de sciage sont mélangées à un solvant, avantageusement de l'eau hydrogénée, avant d'être soumises au plasma. L'ajout de solvant permet d'ajuster la viscosité du « feedstock ». En fonction de cette viscosité obtenue, plusieurs méthodes d'introduction du « feedstock » dans le plasma sont envisageables. Dans le cas privilégié où la technique du plasma thermique inductif par atomisation (« Suspension plasma spray » décrit dans le document US 5,609,921) est mise en œuvre, le mélange biphasique (liquide ou solvant + fines issues du sciage) est atomisé avec un gaz d' atomisation, comme par exemple de l'argon, ou de l'hélium, éventuellement complété par de l'hydrogène à hauteur de 10% en volume, dans une sonde d' atomisation, de sorte à obtenir des gouttes formées du solvant et des microparticules de silicium. In a preferred embodiment, the sawing sludge is mixed with a solvent, preferably hydrogenated water, before being subjected to plasma. The addition of solvent makes it possible to adjust the viscosity of the "feedstock". Depending on this viscosity obtained, several methods of introducing the "feedstock" into the plasma are possible. In the preferred case where the inductive spray plasma technique ("Plasma spray suspension" described in document US Pat. No. 5,609,921) is implemented, the biphasic mixture (liquid or solvent + fines derived from the sawing) is atomized with a gas of at least one atom. atomization, such as, for example, argon, or helium, optionally supplemented with hydrogen at a level of 10% by volume, in an atomization probe, so as to obtain drops formed of the solvent and silicon microparticles.
Le mélange de gaz réducteur employé est en particulier utile pour réduire le SiC. Alternativement et en fonction de la viscosité du « feedstock », celui-ci est amené dans le centre de plasma via un gaz propulseur de même nature que précédemment. The reducing gas mixture employed is particularly useful for reducing SiC. Alternatively and depending on the viscosity of the "feedstock", it is brought into the plasma center via a propellant of the same nature as before.
Lorsque les boues de sciage sont soumises au plasma thermique inductif, la matière en présence, en l'occurrence les microparticules de silicium, est fondue et propulsée vers un substrat. Dans le cas où un solvant a été ajouté, celui-ci s'évapore. Les gouttelettes fondues se solidifient et forment un dépôt sur le substrat, selon le principe de la projection thermique. When the sawing sludge is subjected to the inductive thermal plasma, the material in the presence, in this case the silicon microparticles, is melted and propelled towards a substrate. In the case where a solvent has been added, it evaporates. The melted droplets solidify and form a deposit on the substrate, according to the principle of thermal spraying.
Le substrat peut être constitué d'un lingot de silicium. The substrate may consist of a silicon ingot.
Alternativement, le substrat peut être constitué d'un matériau réfractaire, avantageusement choisi dans le groupe suivant : molybdène (Mo), tantale (Ta), et tungstène (W) et leurs alliages. Dans ce cas de figure, le dépôt de silicium obtenu est avantageusement séparé ou extrait du substrat qui joue alors le rôle de support. De préférence, le substrat est refroidi par exemple en étant supporté par un porte-substrat en cuivre parcouru par un circuit de refroidissement à eau. Alternatively, the substrate may be made of a refractory material, advantageously chosen from the following group: molybdenum (Mo), tantalum (Ta), and tungsten (W) and their alloys. In this case, the silicon deposit obtained is advantageously separated or extracted from the substrate, which then plays the role of support. Preferably, the substrate is cooled for example by being supported by a copper substrate holder traversed by a water cooling circuit.
De manière privilégiée avant l'extraction, le dépôt de silicium est soumis à l'application d'un jet plasma, permettant sa recristallisation in situ. Au cours de cette étape, le substrat peut être soumis à un mouvement de type rotationnel ou latéral. Le jet plasma peut être mis en œuvre de la même façon que précédemment lors de l'étape de purification en utilisant le même appareillage. De fait, l'ensemble des étapes de purification et de recristallisation éventuelle peut être mis en œuvre dans la même enceinte. De manière préférée, pour cette étape de recristallisation, on utilisera un gaz en mélange d'argon et d'hydrogène H2. Selon un mode de réalisation particulier et lorsque le substrat est un lingot de silicium, le procédé selon l'invention permet donc d'enrichir lesdits lingots. De fait, la présente invention propose une solution pour réinjecter le sous-produit du sciage que sont les boues dans la filière de fabrication de cellules PV. In a preferred manner before the extraction, the silicon deposition is subjected to the application of a plasma jet, allowing its recrystallization in situ. During this step, the substrate may be subjected to rotational or lateral movement. The plasma jet can be implemented in the same way as previously during the purification step using the same apparatus. In fact, all the steps of purification and possible recrystallization can be carried out in the same enclosure. Preferably, for this recrystallization step, use will be made of a mixture of argon and hydrogen H 2 gas. According to a particular embodiment and when the substrate is a silicon ingot, the method according to the invention thus makes it possible to enrich said ingots. In fact, the present invention provides a solution for reinjecting the sludge by-product sludge into the PV cell manufacturing die.
Dans un mode de réalisation alternatif et notamment lorsque le substrat sur lequel est réalisé le dépôt est réfractaire, le procédé selon l'invention permet de fabriquer des plaques de silicium. Comme déjà dit, les paramètres du plasma appliqué permettent le contrôle des caractéristiques du dépôt réalisé. En pratique, l'invention permet la fabrication de plaques de silicium d'épaisseur comprise entre 100 et 300 μιη, d'épaisseur contrôlée. In an alternative embodiment and in particular when the substrate on which the deposit is made is refractory, the method according to the invention makes it possible to manufacture silicon wafers. As already stated, the parameters of the applied plasma allow the control of the characteristics of the deposited deposit. In practice, the invention allows the manufacture of silicon wafers of thickness between 100 and 300 μιη, of controlled thickness.
BRÈVE DESCRIPTION DES FIGURES La manière dont l'invention peut être réalisée et les avantages qui en découlent ressortiront mieux des exemples de réalisation qui suivent, donnés à titre indicatif et non limitatif, à l'appui des figures annexées parmi lesquelles : BRIEF DESCRIPTION OF THE FIGURES The manner in which the invention can be realized and the advantages which result therefrom will emerge more clearly from the following exemplary embodiments, given as an indication and without being limiting, in support of the appended figures among which:
La figure 1 illustre un dispositif et un procédé permettant le rechargement de lingots de silicium grâce au passage de boues de sciage dans un plasma thermique inductif. Figure 1 illustrates a device and a method for reloading silicon ingots through the passage of sawing sludge in an inductive thermal plasma.
La figure 2 illustre un dispositif et un procédé permettant l'élaboration de plaques de silicium grâce au passage de boues de sciage dans un plasma thermique inductif.  FIG. 2 illustrates a device and a method allowing the production of silicon wafers by the passage of sawing sludge in an inductive thermal plasma.
La figure 3 illustre un dispositif et un procédé permettant la cristallisation, par traitement thermique in situ par plasma, de plaques de silicium obtenues grâce au passage de boues de sciage dans un plasma thermique inductif. FIG. 3 illustrates a device and a method enabling the crystallization, by in situ heat treatment by plasma, of silicon wafers obtained by the passage of sawing sludge in an inductive thermal plasma.
MODES DE RÉALISATION DE L'INVENTION MODES FOR CARRYING OUT THE INVENTION
1/ Rechargement de lingots de silicium 1 / Reloading of silicon ingots
La mise en œuvre du procédé selon l'invention, dans le cas où le substrat (2) est un lingot de silicium, est illustrée à la figure 1. De fait et à l'issue du procédé, le lingot en silicium est enrichi ou rechargé en silicium. The implementation of the method according to the invention, in the case where the substrate (2) is a silicon ingot, is illustrated in FIG. 1. In fact and at the end of the process, the silicon ingot is enriched or recharged in silicon.
De manière classique, le dispositif de plasma thermique inductif comprend les éléments suivants :  In a conventional manner, the inductive thermal plasma device comprises the following elements:
une bobine 3, inducteur de la torche plasma, à travers laquelle passe un courant RF alternatif ;  a coil 3, inductor of the plasma torch, through which passes an alternating RF current;
un jet plasma 4 par exemple à l'argon et à l'hydrogène (Ar/H2). Dans le cas d'une injection dans le centre du plasma par atomisation, il est prévu une sonde d'atomisation 5. a plasma jet 4 for example with argon and with hydrogen (Ar / H 2 ). In the case of injection into the center of the plasma by atomization, an atomization probe 5 is provided.
Le procédé mis en œuvre se décompose en trois étapes : The process implemented breaks down into three stages:
1 - Préparation du « feedstock » : 1 - Preparation of the feedstock:
Le dispositif plasma ainsi constitué est alimenté par le «feedstock » 1, constitué en l'occurrence par les boues de sciage récupérées. Aux boues de sciage qui contiennent le silicium sous forme de poussières ou de fines, est ajouté un solvant, avantageusement de l'eau hydrogénée, afin d'ajuster la viscosité aux conditions appropriées pour Γ atomisation.  The plasma device thus constituted is fed by the "feedstock" 1, constituted in this case by the recovered sludge. For sawing slurries that contain silicon in the form of dust or fines, a solvent, preferably hydrogenated water, is added to adjust the viscosity to the appropriate conditions for atomization.
2 - Atomisation du « feedstock » Le mélange biphasique (liquide et fines issues de la phase de sciage, le liquide correspondant au liquide résiduel contenu initialement dans les boues de sciage auquel on peut ajouter un solvant pour contrôler la viscosité) est injecté dans le centre du plasma, soit par atomisation, comme décrit dans le document US 5,609,921, soit via un gaz propulseur, en fonction de la viscosité. 2 - Atomization of the "feedstock" The biphasic mixture (liquid and fines from the sawing phase, the liquid corresponding to the residual liquid initially contained in the sawing sludge to which a solvent can be added to control the viscosity) is injected into the center plasma, either by atomization, as described in US 5,609,921, or via a propellant, depending on the viscosity.
En pratique et comme illustré à la figure 1 dans le cas de Γ atomisation, un gaz d'atomisation est ajouté au mélange qui passe alors dans la sonde d'atomisation 5. Des gouttelettes comprenant du solvant et des microparticules de silicium sont ainsi formées. Le gaz d'atomisation a pour objet de scinder le flux continu de boues (additionnées possiblement de solvant) en microgouttelettes. Comme expliqué précédemment, en raison d'avoir des goûtes finement divisées, le traitement thermique dans le plasma s'en trouve plus efficace. La sonde d'atomisation constitue le dispositif qui permet la rencontre du flux gazeux (gaz d'atomisation) et de la veine liquide (boues) afin de former les gouttelettes. In practice and as illustrated in FIG. 1 in the case of atomization, an atomizing gas is added to the mixture which then passes into the atomization probe 5. Droplets comprising solvent and silicon microparticles are thus formed. The purpose of the atomizing gas is to split the continuous flow of sludge (possibly with added solvent) into microdroplets. As previously explained, due to having finely divided flavors, the heat treatment in the plasma is more effective. The atomization probe is the device that allows the meeting of the gas flow (atomizing gas) and the liquid vein (sludge) to form the droplets.
3 - Formation du dépôt : 3 - Formation of the deposit:
Lors du passage dans le centre du plasma et sous l'action du jet plasma Ar/H2 4, le solvant est vaporisé, les fines de silicium sont fondues, accélérées et viennent se déposer sur le lingot 2 et se solidifier. Un tel procédé permet de récupérer des matériaux à bon niveau de pureté et de les intégrer directement dans la filière classique d'élaboration de lingot de silicium, du fait de l'apport thermique nécessaire à la mise en forme du Si. 2/ Fabrication de plaques de silicium During the passage in the center of the plasma and under the action of the plasma jet Ar / H 2 4, the solvent is vaporized, the silicon fines are melted, accelerated and are deposited on the ingot 2 and solidify. Such a process makes it possible to recover materials with a good level of purity and to integrate them directly into the conventional silicon ingot production die, because of the heat input necessary for the shaping of the Si. silicon wafers
Le procédé selon l'invention présente une deuxième application : comme illustré à la figure 2, il permet l'élaboration directe de plaques de Si à partir de boues de sciage provenant de lingots de Si. The method according to the invention has a second application: as illustrated in FIG. 2, it allows the direct production of Si plates from sawing sludges from Si ingots.
Selon cette alternative, un procédé et un dispositif équivalents sont mis en œuvre : les boues sont introduites dans le plasma inductif par atomisation puis le Si fondu par le plasma est récupéré sur un substrat 2' pour former une plaque de Si de faible épaisseur (6), généralement comprise entre 100 et 300 μιη. According to this alternative, a method and an equivalent device are implemented: the sludge is introduced into the inductive plasma by atomization and then the Si melted by the plasma is recovered on a substrate 2 'to form a thin Si plate (6 ), generally between 100 and 300 μιη.
La différence essentielle par rapport à l'exemple précédent est la nature du substrat 2' qui n'est plus un lingot de silicium mais un support/substrat plan ou pas, préférentiellement de nature réfractaire. De la sorte, la plaque de Si formée 6 n'adhère pas sur le support/substrat en matériau réfractaire choisi pour ses propriétés de non réactivité avec le Si. The essential difference with respect to the previous example is the nature of the substrate 2 'which is no longer a silicon ingot but a support / substrate planar or not, preferably of a refractory nature. In this way, the formed Si plate 6 does not adhere to the support / substrate of refractory material chosen for its properties of non reactivity with Si.
De préférence, le substrat de nature réfractaire est lui-même refroidi de façon qu'on évite de possibles réactions chimiques avec le silicium fondu lors du dépôt sur le substrat. Une étape ultérieure consiste à extraire la plaque de Si formée 6 de son support 2'. Preferably, the substrate of refractory nature is itself cooled so that possible chemical reactions with the molten silicon during the deposition on the substrate are avoided. A subsequent step is to extract the formed Si plate 6 from its support 2 '.
Avant l'extraction de la plaque et comme illustré à la figure 3, il est possible de réaliser une recristallisation in situ de la plaque de Si plasmaformée 6. Cette étape consiste à balayer la plaque de Si 6 par le jet plasma 4. Ce traitement thermique offre l'avantage de recristalliser les grains de Si qui constituent la plaque, en ajustant leur taille en fonction de la durée de passage du jet plasma en surface, mais aussi en fonction des paramètres intrinsèques du plasma (puissance, composition et débits des gaz plasmagènes). Dans cette étape, il est possible d'animer le substrat ou support V d'un mouvement latéral ou rotationnel. Before extraction of the plate and as illustrated in FIG. 3, it is possible to carry out an in situ recrystallization of the plasma formed Si plate 6. This step consists in scanning the Si 6 plate by the plasma jet 4. This treatment thermal offers the advantage of recrystallizing the grains of Si that constitute the plate, by adjusting their size as a function of the passage time of the plasma jet on the surface, but also according to the intrinsic parameters of the plasma (power, composition and flow rates of the gases plasmagenes). In this step, it is possible to animate the substrate or support V in a lateral or rotational movement.

Claims

REVENDICATIONS
1. Procédé de formation d'un dépôt de silicium sur un substrat comprenant les étapes suivantes :  A method of forming a silicon deposit on a substrate comprising the steps of:
- générer un plasma thermique inductif;  - generate an inductive thermal plasma;
- mélanger des boues de sciage contenant du silicium à un solvant, avantageusement de l'eau hydrogénée ;  - Mixing silicon-containing sawing sludge with a solvent, preferably hydrogenated water;
- soumettre ce mélange au plasma thermique inductif, pour former le dépôt de silicium sur le substrat.  - Subjecting this mixture to the inductive thermal plasma, to form the silicon deposit on the substrate.
2. Procédé de formation d'un dépôt de silicium sur un substrat selon la revendication 1 , selon lequel les boues de sciage sont soumises au plasma par atomisation. 2. A method of forming a silicon deposition on a substrate according to claim 1, wherein the sawing sludge is subjected to plasma spray.
3. Procédé de formation d'un dépôt de silicium sur un substrat selon la revendication 1, selon lequel les boues de sciage sont soumises au plasma à l'aide d'un gaz propulseur, avantageusement de l'argon. 3. A method of forming a silicon deposition on a substrate according to claim 1, wherein the sawing sludge is subjected to plasma with a propellant, preferably argon.
4. Procédé de formation d'un dépôt de silicium sur un substrat selon l'une des revendications 1 à 3, selon lequel le substrat est un lingot de silicium. 4. A method of forming a silicon deposit on a substrate according to one of claims 1 to 3, wherein the substrate is a silicon ingot.
5. Procédé de formation d'un dépôt de silicium sur un substrat selon l'une des revendications 1 à 3, selon lequel le substrat est constitué d'un matériau réfractaire refroidi, avantageusement choisi dans le groupe suivant : Mo, Ta, W et leurs alliages. 5. A method of forming a silicon deposit on a substrate according to one of claims 1 to 3, wherein the substrate consists of a cooled refractory material, preferably selected from the following group: Mo, Ta, W and their alloys.
6. Procédé de formation d'un dépôt de silicium sur un substrat selon la revendication 5, selon lequel le dépôt de silicium est séparé du substrat. 6. A method of forming a silicon deposition on a substrate according to claim 5, wherein the deposition of silicon is separated from the substrate.
7. Procédé de formation d'un dépôt de silicium sur un substrat selon l'une des revendications 4 à 6, selon lequel le dépôt de silicium est soumis à l'application d'un jet plasma. 7. A method of forming a silicon deposit on a substrate according to one of claims 4 to 6, wherein the deposition of silicon is subjected to the application of a plasma jet.
8. Procédé de formation d'un dépôt de silicium sur un substrat selon la revendication 7, selon lequel le substrat est soumis à un mouvement pendant l'application du jet plasma. 8. A method of forming a silicon deposition on a substrate according to claim 7, wherein the substrate is subjected to movement during the application of the plasma jet.
9. Utilisation du procédé de formation d'un dépôt de silicium sur un substrat selon la revendication 4 pour l'enrichissement de lingots de silicium. 9. Use of the method of forming a silicon deposit on a substrate according to claim 4 for enriching silicon ingots.
10. Utilisation du procédé de formation d'un dépôt de silicium sur un substrat selon l'une des revendications 5 à 8 pour la fabrication de plaques de silicium, présentant avantageusement une épaisseur comprise entre 100 et 300 μιη. 10. Use of the method of forming a silicon deposit on a substrate according to one of claims 5 to 8 for the manufacture of silicon wafers, advantageously having a thickness between 100 and 300 μιη.
EP11735480.3A 2010-07-30 2011-06-10 Recycling of silicon sawing slurries using thermal plasma for the production of ingots or wafers Withdrawn EP2598439A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1056299A FR2963337B1 (en) 2010-07-30 2010-07-30 RECYCLING OF SILICON SAWING SLUDGE FOR THE PREPARATION OF INGOTS OR PLATES BY THERMAL PLASMA
PCT/FR2011/051331 WO2012013876A1 (en) 2010-07-30 2011-06-10 Recycling of silicon sawing slurries using thermal plasma for the production of ingots or wafers

Publications (1)

Publication Number Publication Date
EP2598439A1 true EP2598439A1 (en) 2013-06-05

Family

ID=43736127

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11735480.3A Withdrawn EP2598439A1 (en) 2010-07-30 2011-06-10 Recycling of silicon sawing slurries using thermal plasma for the production of ingots or wafers

Country Status (4)

Country Link
US (1) US20130139550A1 (en)
EP (1) EP2598439A1 (en)
FR (1) FR2963337B1 (en)
WO (1) WO2012013876A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3434646A1 (en) * 2017-07-25 2019-01-30 Total Solar International Method for recycling sub-micron si-particles from a si wafer production process

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2941908C2 (en) * 1979-10-17 1986-07-03 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Method for producing a solar cell having a silicon layer
CA1147698A (en) * 1980-10-15 1983-06-07 Maher I. Boulos Purification of metallurgical grade silicon
FR2562056B1 (en) * 1984-04-02 1986-06-27 Rhone Poulenc Spec Chim NON-POLLUTANT MANUFACTURING PROCESS OF SOLID SILICON FROM DIVIDED SILICON
FR2594856A1 (en) * 1986-02-27 1987-08-28 Photowatt Int PROCESS FOR OBTAINING SILICON CRYSTALS FOR PHOTOVOLTAIC APPLICATIONS
DE3760173D1 (en) * 1987-01-08 1989-06-29 Rhone Poulenc Chimie Process for the plasma purification of divided silicon
US5609921A (en) * 1994-08-26 1997-03-11 Universite De Sherbrooke Suspension plasma spray
JPH10182124A (en) * 1996-12-20 1998-07-07 Kawasaki Steel Corp Treatment of slice loss of silicon substrate
EP2274767A4 (en) 2008-04-11 2014-09-17 Iosil Energy Corp Methods and apparatus for recovery of silicon and silicon carbide from spent wafer-sawing slurry

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012013876A1 *

Also Published As

Publication number Publication date
WO2012013876A1 (en) 2012-02-02
FR2963337A1 (en) 2012-02-03
US20130139550A1 (en) 2013-06-06
FR2963337B1 (en) 2013-03-01

Similar Documents

Publication Publication Date Title
JP4754488B2 (en) Methods for the synthesis, separation and purification of powder materials
WO2010017373A2 (en) Plasma processes for producing silanes and derivatives thereof
EP1409406A1 (en) Medium purity metallurgical silicon and method for preparing same
Hachichi et al. Silicon recovery from kerf slurry waste: a review of current status and perspective
CN1665746A (en) Tapelike material containing carbon nanotube and production method for carbon nanotube and electric field emission type electrode containing the tapelike material and production method therefor
FR2997095A1 (en) PROCESS FOR ISOLATING RARE EARTHS AND / OR APPARENT METAL ELEMENT (S) CONTAINED IN THE MAGNETIC PHASE OF PERMANENT MAGNETS.
JP5733732B2 (en) Ruthenium powder production method for ruthenium (Ru) target production
EP0161975B1 (en) Process for producing porous products of boron or boron compounds
EP3052444B1 (en) Process for deoxidizing silicon
WO2012013876A1 (en) Recycling of silicon sawing slurries using thermal plasma for the production of ingots or wafers
EP2683856B1 (en) Process for manufacturing silicon-based nanoparticles from metallurgical-grade silicon or refined metallurgical-grade silicon
CA2634592A1 (en) Method for the production of silicon suitable for solar purposes
JP2010254506A (en) Method for producing nanodiamond
CN111699155B (en) Silicon granule for preparing trichlorosilane and related production method
WO2010055615A1 (en) High grade silicon and thermoelectric conversion material
JP2005219971A (en) Silicon spherical powder and its manufacturng method
EP0274283B1 (en) Process for the plasma purification of divided silicon
RU2327639C2 (en) Method of producing high purity silicon
EP4247756A1 (en) Method and plant for purifying silicon from a mixture obtained by cutting silicon bricks into wafers
KR101938280B1 (en) Recycling method of tungsten scrap having metal coating layer
JP2000327488A (en) Production of silicon substrate for solar battery
JP5811002B2 (en) Method and apparatus for producing SiO using hollow carbon electrode
Lombardi et al. High yield recycling process of silicon kerf from diamond wire wafering
RU2445384C1 (en) Method for obtaining ultrafine powder of nickel and rhenium alloy
EP0239794A1 (en) Process for making silicium crystals for photovoltaic applications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130131

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140303

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140718

RIC1 Information provided on ipc code assigned before grant

Ipc: C01B 33/037 20060101AFI20140704BHEP

Ipc: C23C 4/12 20060101ALI20140704BHEP

Ipc: C23C 4/18 20060101ALI20140704BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141129