EP2592241A1 - Method for operating a gas and steam turbine facility for frequency support - Google Patents
Method for operating a gas and steam turbine facility for frequency support Download PDFInfo
- Publication number
- EP2592241A1 EP2592241A1 EP11188956.4A EP11188956A EP2592241A1 EP 2592241 A1 EP2592241 A1 EP 2592241A1 EP 11188956 A EP11188956 A EP 11188956A EP 2592241 A1 EP2592241 A1 EP 2592241A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steam
- turbine
- steam turbine
- pressure
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K27/00—Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
- F01K27/02—Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/02—Use of accumulators and specific engine types; Control thereof
- F01K3/04—Use of accumulators and specific engine types; Control thereof the engine being of multiple-inlet-pressure type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
- F01K23/101—Regulating means specially adapted therefor
Definitions
- the invention relates to the frequency support operation of a gas and steam turbine plant.
- the EP 1 164 254 B1 describes a gas and steam turbine plant with steam diversion for the peak load coverage, ie for additional power at full load.
- a portion of the steam generated in the heat recovery steam generator bypass ducts past the turbine inlets downstream of these turbine inlets arranged further inputs the turbine parts, whereby the pressure in the heat recovery steam generator can be kept substantially constant and the absorption capacity of the steam turbine and thus the output power are increased ,
- the object of the invention is to provide a method for the frequency support operation of a gas and steam turbine plant, which provides an improved power reserve available.
- the invention solves this problem by providing that in the operation of a gas and steam turbine plant with a gas turbine, a steam turbine and a heat recovery steam generator, in the heat exchange with exhaust gas from the gas turbine steam for the steam turbine can be generated for frequency support in the power grid from a stationary operation out the absorption capacity of the steam turbine increased and the pressure in the heat recovery steam generator can be lowered to use storage reserves in the heat recovery steam generator for increased steam generation, and that the heat recovery steam generator so quickly heat energy is supplied that a performance curve of the gas and steam turbine plant as a result of the increase Damping ability of the steam turbine and the pressure reduction in the heat recovery steam generator is greater than or equal to an immediately prior existing power of stationary operation.
- the invention is therefore based on the idea to use storage reserves in the heat recovery steam generator to generate additional steam at sudden opening of the valves.
- the pressure drop in the heat recovery steam generator additionally generates steam and a sufficiently large and rapid supply of heat energy is the usual dent in the performance curve prevent.
- This method can provide control power at partial and full load.
- the flexibility and efficiency of the power plant can be significantly increased, since high power requirements additional energy is available, which leads to increased revenue especially at high electricity revenues in electricity markets and the operation of the system designed more economical (peak load capacity).
- the primary frequency support or the peak load operation it is not necessary for the primary frequency support or the peak load operation to design the high-pressure or the reheat part higher in the pressure than for the nominal operation.
- the load range of the power plant can be extended, since even the low load operation can be set more flexible.
- At least one valve in a bypass channel for bypassing a steam turbine stage or a steam turbine module is opened.
- Valve of a control wheel on a high-pressure turbine and / or a medium-pressure turbine is opened.
- the heat energy is supplied by an additional power of the gas turbine and thus an increased exhaust gas flow.
- the heat energy is supplied via an additional firing.
- this must be dimensioned accordingly.
- FIG. 1 shows a gas and steam turbine plant 1, which includes a gas turbine 2 and a steam turbine 3.
- a gas turbine 2 and a steam turbine 3.
- a rotor of the gas turbine, a rotor of a generator 5 and a rotor of the steam turbine 3 are coupled together, the rotor of the steam turbine 3 and the Rotor of the generator 4 via a clutch 6 rotatably separable from each other and can be coupled.
- the rotor of the generator 5 and the gas turbine 2 are rigidly connected to each other via the shaft 4.
- a flue gas outlet of the gas turbine 2 is connected via an exhaust pipe 7 with a heat recovery steam generator 8, which is provided for generating the operating steam of the steam turbine 3 from waste heat of the gas turbine.
- a compressor 9 is driven by the rotating rotor of the gas turbine 2 via the shaft 4, which sucks combustion air from the environment and a combustion chamber 10 supplies.
- the combustion air is mixed with fuel supplied by a fuel supply 11 and burned and the hot, pressurized exhaust gases are supplied to the gas turbine 12 and there relaxed under the power of work.
- the still about 500 to 600 ° C hot exhaust gases are then fed through the exhaust pipe 7 to the heat recovery steam generator 8 and flow through this until they pass through a chimney 13 into the environment.
- superheated steam is supplied through a steam discharge line 24 of a high pressure stage 25 of the steam turbine 3 and there relaxed under the power of work.
- the shaft 4 and thus the generator 5 is moved to generate electrical energy.
- the partially relaxed in the high-pressure stage 25 hot steam is then fed to the high-pressure reheater 15, where it is reheated and fed via a derivative 26 a medium-pressure stage 27 of the steam turbine 3 and there relaxed under the power of mechanical work.
- the there partially relaxed steam is via an overflow 28 of a low pressure stage 29th fed to the steam turbine 3 and further relaxed there with the release of mechanical energy.
- the expanded steam is condensed in the condenser 30 of the steam turbine 3, and the resulting condensate is a condensate pump 31 directly to a low pressure stage 32 of the heat recovery steam generator 8 or via a feed 33 - and provided by the corresponding pressure - a medium-pressure stage 34 or a high-pressure stage 35th the heat recovery steam generator 8 supplies, where the condensate is evaporated.
- the steam is supplied via the corresponding outlets 24, 26, 36 of the heat recovery steam generator 8 back to the steam turbine 3 for relaxation and performance mechanical work.
- shut-off valves 37 and 38 are arranged. From the high pressure stage 25 of the steam turbine 3 leading steam discharge line 24 branches off a bypass channel 39 with a shut-off valve 40 for bypassing the high-pressure stage 25 from. Similarly, a bypass channel 41 branches off with a shut-off valve 42 for bypassing the intermediate-pressure stage 27.
- a first control wheel 43 is attached to the rotor of the steam turbine 3.
- a second control wheel 44 is attached to the rotor of the steam turbine 3.
- a control wheel comprises valves controlled via valves, which can be acted upon by segments of a turbine. Depending on how many of the valves are opened, a more or less large amount of additional steam flows through the nozzles into the turbine.
- FIG. 1 shows an additional firing 45 at the entrance of the heat recovery steam generator 8, in which the gas turbine exhaust gas, which still contains much oxygen, fuel is added and the mixture is burned.
- the live steam over the temperature of the gas turbine exhaust gas can be overheated or for generating process steam when the steam generation is to be decoupled from the power generation of the gas turbine 2.
- supplemental firing 45 may be of interest to increase the output of electrical power during peak demand periods.
- the inventive method provides that the steam mass flow is increased by the steam turbine in the short term by opening an overload valve 40, 42 and a turbine bypass 39, 41 and connected to the power of the steam turbine 3 increases rapidly (seconds range).
- the overload introduction can be utilized both on the high-pressure turbine 25 for raising the live steam mass flow and on the medium-pressure turbine 27 for increasing the reheat steam mass flow as well as before each further turbine stage (for example low-pressure turbine 29).
- the intake capacity of the steam turbine can be increased via a control wheel 43, 44 on the high-pressure turbine 25 and / or the medium-pressure turbine 27 by opening associated valves.
- Storage reserves can be released from all pressure stages 32, 34, 35 of the heat recovery steam generator 8 (for example also medium and low pressure systems, if present).
- the drum pressure e.g. by a pressure control valve 46 in the medium-pressure steam system 34, while the Aus Grandefil can be increased. This increase in steam mass flow rate is due to an increase in the absorption capacity of the steam turbine and an associated pressure drop in the system.
- the decreasing storage effect either by a self-igniting supplementary firing 45 in the heat recovery steam generator 8, operated in continuous minimum load additional firing 45 or by existing power reserves in the gas turbine 2 (turning up the compressor vanes, over-firing, steam injection or water injection in the compressor. 9 or combustion chamber 10) compensated or further increased.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Control Of Turbines (AREA)
Abstract
Description
Die Erfindung betrifft den Frequenzstützbetrieb einer Gas-und Dampfturbinenanlage.The invention relates to the frequency support operation of a gas and steam turbine plant.
Der Energiemarkt fordert in vermehrtem Maße hochflexible Kraftwerksanlagen, die neben schnellen An- und Abfahrzeiten auch einen großen Leistungsbereich abdecken können und für den Frequenzstützbetrieb gut vorbereitet sind.The energy market is increasingly demanding highly flexible power plants that can cover not only fast startup and shutdown times but also a large power range and are well prepared for frequency support operations.
Dazu gehört u.a. auch die Fähigkeit, bei hohem Strombedarf zusätzlich Leistung freizusetzen (sog. Spitzenlastbetrieb). Dabei wird in Zukunft erwartet, dass sich auch Kraftwerke, die in ihrem Nominalpunkt betrieben werden, an der Spitzenlastabdeckung und an der Frequenzstützung beteiligen.This includes u.a. also the ability to release additional power at high power consumption (so-called peak load operation). In the future, it is expected that power plants operating at their nominal point will also participate in peak load coverage and frequency support.
Heutige Lösungen setzen auf die Nutzung von Leistungsreserven innerhalb der Komponenten oder beruhen auf Technologien, die nur eine sehr geringe Leistungsreserve zur Verfügung stellen können. Sowohl für die Frequenzstützung als auch die Spitzenlastabdeckung kann die Gasturbine überfeuert werden, es können die Verdichterleitschaufeln über die GrundlaststeIlung hinaus geöffnet werden, oder es kann Wasser in den Ansaugluftkanal eingedüst werden. Anforderungen, die lediglich die Spitzenlastabdeckung betreffen, können durch Dampfeindüsung in die Gasturbinen-Brennkammer, durch Kühlung der Gasturbinen-Ansaugluft, beispielsweise mit Verdunstungskühlern oder mit Kältemaschinen (sog. Chiller) erfüllt werden, oder indem der Abhitzedampferzeuger (AHDE) mit einer Zusatzfeuerung ausgestattet wird, um die Dampfturbinenleistung anzuheben. Zur Frequenzstützung können der Frischdampf oder der Dampf aus der Zwischenüberhitzung (modifizierte Gleitdruckfahrweise) angestaut werden und die Turbinen-Regelventile anschließend schnell geöffnet werden.Today's solutions rely on the use of power reserves within the components or are based on technologies that can provide only a very low power reserve. For both frequency support and peak load coverage, the gas turbine may overfill, the compressor vanes may be opened beyond the base load range, or water may be injected into the intake air duct. Requirements relating only to peak load coverage can be met by steam injection into the gas turbine combustor, by cooling the gas turbine intake air, for example with evaporative coolers or chillers, or by providing the heat recovery steam generator (AHDE) with auxiliary firing to raise the steam turbine power. For frequency support, the live steam or the steam from the reheat (modified Gleitdruckfahrweise) can be accumulated and the turbine control valves are then opened quickly.
Die
Aufgabe der Erfindung ist es, ein Verfahren für den Frequenzstützbetrieb einer Gas- und Dampfturbinenanlage bereitzustellen, das eine verbesserte Leistungsreserve zur Verfügung stellt.The object of the invention is to provide a method for the frequency support operation of a gas and steam turbine plant, which provides an improved power reserve available.
Die Erfindung löst diese Aufgabe, indem sie vorsieht, dass beim Betrieb einer Gas- und Dampfturbinenanlage mit einer Gasturbine, einer Dampfturbine und einem Abhitzedampferzeuger, in dem im Wärmetausch mit Abgas aus der Gasturbine Dampf für die Dampfturbine erzeugbar ist, zur Frequenzstützung im Stromnetz aus einem stationären Betrieb heraus die Schluckfähigkeit der Dampfturbine vergrößert und der Druck im Abhitzedampferzeuger abgesenkt werden, um Speicherreserven im Abhitzedampferzeuger zu einer erhöhten Dampferzeugung zu nutzen, und dass dem Abhitzedampferzeuger so schnell Wärmeenergie zugeführt wird, dass ein Leistungsverlauf der Gas- und Dampfturbinenanlage in Folge der Vergrößerung der Schluckfähigkeit der Dampfturbine und der Druckabsenkung im Abhitzedampferzeuger größer gleich einer unmittelbar zuvor vorhandenen Leistung des stationären Betriebs ist.The invention solves this problem by providing that in the operation of a gas and steam turbine plant with a gas turbine, a steam turbine and a heat recovery steam generator, in the heat exchange with exhaust gas from the gas turbine steam for the steam turbine can be generated for frequency support in the power grid from a stationary operation out the absorption capacity of the steam turbine increased and the pressure in the heat recovery steam generator can be lowered to use storage reserves in the heat recovery steam generator for increased steam generation, and that the heat recovery steam generator so quickly heat energy is supplied that a performance curve of the gas and steam turbine plant as a result of the increase Damping ability of the steam turbine and the pressure reduction in the heat recovery steam generator is greater than or equal to an immediately prior existing power of stationary operation.
Die Erfindung beruht demnach auf dem Gedanken, Speicherreserven im Abhitzedampferzeuger zu nutzen, um zusätzlichen Dampf bei schlagartigem Öffnen der Ventile zu erzeugen. Durch den Druckabfall im Abhitzedampferzeuger wird zusätzlich Dampf erzeugt und eine ausreichend dimensionierte und schnelle Zufuhr von Wärmeenergie soll die übliche Delle im Leistungsverlauf verhindern. Durch dieses Verfahren kann Regelleistung bei Teil- und Volllast bereitgestellt werden.The invention is therefore based on the idea to use storage reserves in the heat recovery steam generator to generate additional steam at sudden opening of the valves. The pressure drop in the heat recovery steam generator additionally generates steam and a sufficiently large and rapid supply of heat energy is the usual dent in the performance curve prevent. This method can provide control power at partial and full load.
Durch das erfinderische Verfahren kann die Flexibilität und Wirtschaftlichkeit der Kraftwerksanlage erheblich gesteigert werden, da bei hohem Leistungsbedarf zusätzliche Energie zur Verfügung steht, die insbesondere bei hohen Stromerlösen in Strommärkten zu erhöhten Einnahmen führt und den Betrieb der Anlage wirtschaftlicher gestaltet (Spitzenlastfähigkeit). Dies gilt für den Frequenzstützbetrieb insbesondere für die Sekundär- und Tertiär-Stützung. Somit ist es für die Primärfrequenzstützung bzw. den Spitzenlastbetrieb nicht notwendig, den Hochdruck- bzw. auch den Zwischenüberhitzungsteil im Druck höher auszulegen als für den Nennbetrieb. Außerdem ist es nicht erforderlich, die Anlage im sogenannten modifizierten Gleitdruckbetrieb zu fahren, der durch die Androsselung der Dampfturbinen-Regelventile Leistungs- und Wirkungsgradverluste im Bereitschaftsbetrieb der Anlage produziert. Mit dem erfinderischen Verfahren kann der Lastbereich des Kraftwerkes ausgedehnt werden kann, da auch der Schwachlastbetrieb flexibler eingestellt werden kann.The inventive method, the flexibility and efficiency of the power plant can be significantly increased, since high power requirements additional energy is available, which leads to increased revenue especially at high electricity revenues in electricity markets and the operation of the system designed more economical (peak load capacity). This applies to the frequency support operation, in particular for secondary and tertiary support. Thus, it is not necessary for the primary frequency support or the peak load operation to design the high-pressure or the reheat part higher in the pressure than for the nominal operation. In addition, it is not necessary to run the system in the so-called modified sliding pressure operation, which produces power and efficiency losses in the standby mode of the plant by throttling the steam turbine control valves. With the inventive method, the load range of the power plant can be extended, since even the low load operation can be set more flexible.
Vorteilhafterweise wird zur Erhöhung der Schluckfähigkeit der Dampfturbine mindestens ein Ventil in einem Bypasskanal zum Umfahren einer Dampfturbinenstufe oder eines Dampfturbinenmoduls geöffnet.Advantageously, to increase the absorption capacity of the steam turbine, at least one valve in a bypass channel for bypassing a steam turbine stage or a steam turbine module is opened.
Dabei ist es zweckmäßig, wenn Dampf über den Bypasskanal stromab eines Hochdruckeinlasses in die Dampfturbine geleitet wird.It is expedient if steam is passed via the bypass channel downstream of a high-pressure inlet into the steam turbine.
Besonders vorteilhaft ist es, wenn Dampf alternativ oder zusätzlich über den Bypasskanal stromab eines Mitteldruckeinlasses in die Dampfturbine geleitet wird.It is particularly advantageous if steam is fed alternatively or additionally via the bypass channel downstream of a medium-pressure inlet into the steam turbine.
Alternativ oder ergänzend kann es vorteilhaft sein, wenn zur Erhöhung der Schluckfähigkeit der Dampfturbine mindestens einAlternatively or additionally, it may be advantageous if at least one to increase the absorption capacity of the steam turbine
Ventil eines Regelrads an einer Hochdruckturbine und / oder einer Mitteldruckturbine geöffnet wird.Valve of a control wheel on a high-pressure turbine and / or a medium-pressure turbine is opened.
Vorzugsweise wird die Wärmeenergie durch eine Mehrleistung der Gasturbine und somit einen erhöhten Abgasstrom zugeführt.Preferably, the heat energy is supplied by an additional power of the gas turbine and thus an increased exhaust gas flow.
Weiterhin kann es vorteilhaft sein, wenn die Wärmeenergie über eine Zusatzfeuerung zugeführt wird. Diese muss jedoch entsprechend dimensioniert sein.Furthermore, it may be advantageous if the heat energy is supplied via an additional firing. However, this must be dimensioned accordingly.
Um das Ausspeichervermögen weiter zu erhöhen, ist es zweckmäßig, wenn ein Dampftrommeldruck im stationären Betrieb durch ein Ventil angestaut wird, welches zur Frequenzstützung geöffnet wird.In order to further increase the Ausspeichervermögen, it is advantageous if a steam drum pressure is accumulated in stationary operation by a valve which is opened for frequency support.
Die Erfindung wird beispielhaft anhand der Zeichnungen näher erläutert. Es zeigen schematisch und nicht maßstäblich:
- Figur 1
- ein vereinfachtes Schaltschema einer Gas- und Dampfturbinenanlage mit Hoch- und MitteldruckÜberlasteinleitung sowie Regelrädern in der Dampfturbine und einer Zusatzfeuerung im Abhitzedampferzeuger,
- Figur 2
- Dampfturbinen-Leistungsverlauf bei Überlasteinleitung in die Hochdruckturbine für verschiedene Frischdampfdruck zu Einleitdruck-Verhältnisse und
- Figur 3
- Dampfturbinen-Leistungsverlauf bei Überlasteinleitung in die Mitteldruckturbine für verschiedene Frischdampfdruck zu Einleitdruck-Verhältnisse.
- FIG. 1
- a simplified circuit diagram of a gas and steam turbine plant with high and medium pressure overload discharge and control wheels in the steam turbine and an additional firing in the heat recovery steam generator,
- FIG. 2
- Steam turbine power curve with overload introduction into the high-pressure turbine for various live steam pressure to inlet pressure ratios and
- FIG. 3
- Steam turbine power curve with overload introduction into the medium-pressure turbine for various live steam pressure to inlet pressure conditions.
Während eines Betriebs der Gas- und Dampfturbinenanlage 1 wird vom rotierenden Läufer der Gasturbine 2 über die Welle 4 ein Verdichter 9 angetrieben, der Verbrennungsluft aus der Umgebung ansaugt und einer Brennkammer 10 zuführt. Dort wird die Verbrennungsluft mit von einer Brennstoffzuführung 11 herangeführtem Brennstoff vermischt und verbrannt und die heißen, unter Druck stehenden Abgase werden der Gasturbine 12 zugeführt und dort unter Leistung von Arbeit entspannt. Die noch etwa 500 bis 600°C heißen Abgase werden anschließend durch die Abgasleitung 7 dem Abhitzedampferzeuger 8 zugeführt und durchströmen diesen, bis sie durch einen Kamin 13 in die Umgebung gelangen. Auf ihrem Weg durch den Abhitzedampferzeuger 8 führen sie ihre Wärme einem Hochdrucküberhitzer 14 zu, dann einem Hochdruck-Zwischenüberhitzer 15, einem Hochdruckverdampfer 16, einem Hochdruckvorwärmer 17, dann einem Mitteldrucküberhitzer 18, einem Mitteldruckverdampfer 19, einem Mitteldruckvorwärmer 20, dann einem Niederdrucküberhitzer 21, einem Niederdruckverdampfer 22 und schließlich einem Kondensatvorwärmer 23.During operation of the gas and steam turbine 1, a
Im Hochdrucküberhitzer 14 überhitzter Dampf wird durch eine Dampfableitung 24 einer Hochdruckstufe 25 der Dampfturbine 3 zugeführt und dort unter Leistung von Arbeit entspannt. Mit der Arbeit wird - analog zur in der Gasturbine geleisteten Arbeit - die Welle 4 und damit der Generator 5 zur Erzeugung elektrischer Energie bewegt. Der in der Hochdruckstufe 25 teilweise entspannte heiße Dampf wird anschließend dem Hochdruck-Zwischenüberhitzer 15 zugeführt, dort erneut erhitzt und über eine Ableitung 26 einer Mitteldruckstufe 27 der Dampfturbine 3 zugeführt und dort unter Leistung von mechanischer Arbeit entspannt. Der dort teilweise entspannte Dampf wird über eine Überströmleitung 28 einer Niederdruckstufe 29 der Dampfturbine 3 zugeführt und dort unter Abgabe von mechanischer Energie weiter entspannt.In the high pressure superheater 14 superheated steam is supplied through a
Der entspannte Dampf wird im Kondensator 30 der Dampfturbine 3 kondensiert, und das so entstehende Kondensat wird über eine Kondensatpumpe 31 direkt einer Niederdruckstufe 32 des Abhitzedampferzeugers 8 oder über eine Zuführpumpe 33 - und von dieser mit entsprechendem Druck versehen - einer Mitteldruckstufe 34 oder einer Hochdruckstufe 35 des Abhitzedampferzeugers 8 zuführt, wo das Kondensat verdampf wird. Nach einer Dampferzeugung und Überhitzung wird der Dampf über die entsprechenden Ableitungen 24, 26, 36 des Abhitzedampferzeugers 8 wieder der Dampfturbine 3 zur Entspannung und Verrichtung mechanischer Arbeit zugeführt.The expanded steam is condensed in the
In den Dampfableitungen 24 und 26 sind Absperrarmaturen 37 und 38 angeordnet. Von der zur Hochdruckstufe 25 der Dampfturbine 3 führenden Dampfableitung 24 zweigt ein Bypasskanal 39 mit einer Absperrarmatur 40 zum Umfahren der Hochdruckstufe 25 ab. Analog zweigt ein Bypasskanal 41 mit einer Absperrarmatur 42 zum Umfahren der Mitteldruckstufe 27 ab.In the
In Strömungsrichtung vor dem Hochdruckteil 25 ist ein erstes Regelrad 43 am Rotor der Dampfturbine 3 befestigt. Analog ist in Strömungsrichtung vor dem Mitteldruckteil 27 ist ein zweites Regelrad 44 am Rotor der Dampfturbine 3 befestigt. Ein Regelrad umfasst über Ventile kontrollierte Düsen, über die jeweils Segmente einer Turbine beaufschlagt werden können. Je nach dem, wie viele der Ventile geöffnet werden, strömt eine mehr oder minder große Menge von Zusatzdampf über die Düsen in die Turbine.In the flow direction in front of the high-
Weiterhin zeigt
Das erfinderische Verfahren sieht vor, dass der Dampfmassenstrom durch die Dampfturbine kurzfristig durch Öffnen eines Überlastventils 40, 42 bzw. eines Turbinen-Bypasses 39, 41 erhöht wird und damit verbunden die Leistung der Dampfturbine 3 schnell ansteigt (Sekundenbereich).The inventive method provides that the steam mass flow is increased by the steam turbine in the short term by opening an
Die Überlasteinleitung kann erfindungsgemäß sowohl an der Hochdruckturbine 25 zur Anhebung des Frischdampfmassenstroms als auch an der Mitteldruckturbine 27 zur Anhebung des Zwischenüberhitzungs-Dampfmassenstroms als auch vor jeder weiteren Turbinenstufe (z.B. Niederdruck-Turbine 29) genutzt werden.According to the invention, the overload introduction can be utilized both on the high-
Alternativ kann die Schluckfähigkeit der Dampfturbine über ein Regelrad 43, 44 an der Hochdruckturbine 25 und/oder der Mitteldruckturbine 27 durch Öffnen zugehöriger Ventile vergrößert werden.Alternatively, the intake capacity of the steam turbine can be increased via a
Dabei können Speicherreserven aus allen Druckstufen 32,34,35 des Abhitzedampferzeugers 8 (z.B. auch Mittel- und Niederdrucksystem, falls vorhanden) freigesetzt werden. Durch Anstauen des Trommeldruckes, z.B. durch ein Druckregelventil 46 im Mitteldruckdampfsystem 34, kann dabei das Ausspeichervermögen erhöht werden. Dieser Dampfmassenstromanstieg beruht auf einer Vergrößerung der Schluckfähigkeit der Dampfturbine und einem damit verbundenen Druckabfall im System.Storage reserves can be released from all pressure stages 32, 34, 35 of the heat recovery steam generator 8 (for example also medium and low pressure systems, if present). By accumulating the drum pressure, e.g. by a
Dieser Druckabfall führt zu einer Ausspeicherung von thermischen Reserven (Heißwasser, Stahlmassen im Abhitzedampferzeuger) und damit zu einer kurzzeitigen Leistungserhöhung der Dampfturbine, wie die
Da die thermischen Speicherreserven limitiert sind, wird erfindungsgemäß die nachlassende Speicherwirkung entweder durch eine selbstzündende Zusatzfeuerung 45 im Abhitzedampferzeuger 8, eine in kontinuierlichen Mindestlast betriebene Zusatzfeuerung 45 oder durch vorhandene Leistungsreserven in der Gasturbine 2 (Aufdrehen der Verdichterleitschaufeln, Überfeuerung, Dampfeindüsung oder Wassereinspritzung in Verdichter 9 oder Brennkammer 10) kompensiert bzw. weiter erhöht.Since the thermal storage reserves are limited, according to the invention the decreasing storage effect either by a self-igniting supplementary firing 45 in the heat recovery steam generator 8, operated in continuous minimum load additional firing 45 or by existing power reserves in the gas turbine 2 (turning up the compressor vanes, over-firing, steam injection or water injection in the compressor. 9 or combustion chamber 10) compensated or further increased.
Claims (8)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11188956.4A EP2592241A1 (en) | 2011-11-14 | 2011-11-14 | Method for operating a gas and steam turbine facility for frequency support |
CN201280055971.5A CN104246151B (en) | 2011-11-14 | 2012-10-30 | For the method that frequency remains on combustion gas and steam turbine |
US14/356,158 US20140345278A1 (en) | 2011-11-14 | 2012-10-30 | Method for operating a gas and steam turbine installation for frequency support |
EP14004089.0A EP2907980A1 (en) | 2011-11-14 | 2012-10-30 | Method for operating a gas and steam turbine facility for frequency support |
PCT/EP2012/071478 WO2013072183A2 (en) | 2011-11-14 | 2012-10-30 | Method for operating a gas and steam turbine system for frequency assistance |
KR1020147012600A KR20140088145A (en) | 2011-11-14 | 2012-10-30 | Method for operating a gas and steam turbine system for frequency assistance |
EP12780192.6A EP2798164A2 (en) | 2011-11-14 | 2012-10-30 | Method for operating a gas and steam turbine system for frequency assistance |
IN869KON2014 IN2014KN00869A (en) | 2011-11-14 | 2012-10-30 | |
RU2014124127/06A RU2014124127A (en) | 2011-11-14 | 2012-10-30 | METHOD FOR OPERATING A STEAM-GAS-TURBINE UNIT WITH FREQUENCY SUPPORT |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11188956.4A EP2592241A1 (en) | 2011-11-14 | 2011-11-14 | Method for operating a gas and steam turbine facility for frequency support |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2592241A1 true EP2592241A1 (en) | 2013-05-15 |
Family
ID=47115955
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11188956.4A Withdrawn EP2592241A1 (en) | 2011-11-14 | 2011-11-14 | Method for operating a gas and steam turbine facility for frequency support |
EP14004089.0A Withdrawn EP2907980A1 (en) | 2011-11-14 | 2012-10-30 | Method for operating a gas and steam turbine facility for frequency support |
EP12780192.6A Withdrawn EP2798164A2 (en) | 2011-11-14 | 2012-10-30 | Method for operating a gas and steam turbine system for frequency assistance |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14004089.0A Withdrawn EP2907980A1 (en) | 2011-11-14 | 2012-10-30 | Method for operating a gas and steam turbine facility for frequency support |
EP12780192.6A Withdrawn EP2798164A2 (en) | 2011-11-14 | 2012-10-30 | Method for operating a gas and steam turbine system for frequency assistance |
Country Status (7)
Country | Link |
---|---|
US (1) | US20140345278A1 (en) |
EP (3) | EP2592241A1 (en) |
KR (1) | KR20140088145A (en) |
CN (1) | CN104246151B (en) |
IN (1) | IN2014KN00869A (en) |
RU (1) | RU2014124127A (en) |
WO (1) | WO2013072183A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2918797A1 (en) * | 2014-03-12 | 2015-09-16 | Siemens Aktiengesellschaft | Method for operating a steam power plant assembly |
EP2918796A1 (en) * | 2014-03-13 | 2015-09-16 | Siemens Aktiengesellschaft | Steam power plant with steam generator comprising a drum pressure vessel regulator |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2685055A1 (en) * | 2012-07-12 | 2014-01-15 | Siemens Aktiengesellschaft | Method for supporting a network frequency |
US9243519B2 (en) * | 2012-09-06 | 2016-01-26 | General Electric Company | Systems and methods for accelerating droop response to frequency variation of an electrical grid in a combined cycle power plant |
JP2017044131A (en) * | 2015-08-26 | 2017-03-02 | 株式会社東芝 | Steam turbine equipment |
EP3301267A1 (en) * | 2016-09-29 | 2018-04-04 | Siemens Aktiengesellschaft | Method and device for operating a turbo set |
JP7234266B2 (en) * | 2018-06-22 | 2023-03-07 | シーメンス エナジー グローバル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | Method for operating a power plant |
CN111507011B (en) * | 2020-04-26 | 2020-11-17 | 国电南京电力试验研究有限公司 | Method for correcting influence quantity of heat supply extraction steam on sliding pressure operation of steam turbine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0976914A1 (en) * | 1998-07-29 | 2000-02-02 | Asea Brown Boveri AG | System and process providing rapid power reserve in combined gas- and steam turbines plants |
EP1164254B1 (en) | 2000-06-13 | 2009-04-15 | General Electric Company | Optimized steam turbine peaking cycles utilizing steam bypass and related process |
US20090277183A1 (en) * | 2008-05-12 | 2009-11-12 | Petrobras Energia S.A. | Primary frequency regulation method through joint control in combined cycle turbines |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4031404A (en) * | 1974-08-08 | 1977-06-21 | Westinghouse Electric Corporation | Combined cycle electric power plant and a heat recovery steam generator having improved temperature control of the steam generated |
ZA835029B (en) * | 1982-09-27 | 1984-03-28 | English Electric Co Ltd | Power-generation plant and method |
US4578944A (en) * | 1984-10-25 | 1986-04-01 | Westinghouse Electric Corp. | Heat recovery steam generator outlet temperature control system for a combined cycle power plant |
DE10042317A1 (en) * | 2000-08-29 | 2002-03-14 | Alstom Power Nv | Steam turbine for combined cycle power plant, has quick acting valves in combination with regulating valves, provided in both fresh steam and bypass paths |
DE10115131A1 (en) * | 2001-03-27 | 2002-10-17 | Alstom Switzerland Ltd | Process for the immediate, quick and temporary increase in the output of a combined cycle power plant |
AR029828A1 (en) * | 2001-07-13 | 2003-07-16 | Petrobras En S A | METHOD FOR PRIMARY FREQUENCY REGULATION IN COMBINED CYCLE STEAM TURBINES |
CN101142375B (en) * | 2005-03-18 | 2010-05-26 | 西门子公司 | Method and device for production of controlled power by means of a combined gas and steam turbine plant |
US7608938B2 (en) * | 2006-10-12 | 2009-10-27 | General Electric Company | Methods and apparatus for electric power grid frequency stabilization |
PL2098691T3 (en) * | 2008-03-06 | 2013-12-31 | Ansaldo Energia Spa | Method for controlling a combined-cycle plant, and combined-cycle plant |
EP2136035A1 (en) * | 2008-06-16 | 2009-12-23 | Siemens Aktiengesellschaft | Operation of a gas and steam turbine plant using a frequency converter |
-
2011
- 2011-11-14 EP EP11188956.4A patent/EP2592241A1/en not_active Withdrawn
-
2012
- 2012-10-30 KR KR1020147012600A patent/KR20140088145A/en not_active Application Discontinuation
- 2012-10-30 US US14/356,158 patent/US20140345278A1/en not_active Abandoned
- 2012-10-30 CN CN201280055971.5A patent/CN104246151B/en not_active Expired - Fee Related
- 2012-10-30 RU RU2014124127/06A patent/RU2014124127A/en not_active Application Discontinuation
- 2012-10-30 IN IN869KON2014 patent/IN2014KN00869A/en unknown
- 2012-10-30 EP EP14004089.0A patent/EP2907980A1/en not_active Withdrawn
- 2012-10-30 WO PCT/EP2012/071478 patent/WO2013072183A2/en active Application Filing
- 2012-10-30 EP EP12780192.6A patent/EP2798164A2/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0976914A1 (en) * | 1998-07-29 | 2000-02-02 | Asea Brown Boveri AG | System and process providing rapid power reserve in combined gas- and steam turbines plants |
EP1164254B1 (en) | 2000-06-13 | 2009-04-15 | General Electric Company | Optimized steam turbine peaking cycles utilizing steam bypass and related process |
US20090277183A1 (en) * | 2008-05-12 | 2009-11-12 | Petrobras Energia S.A. | Primary frequency regulation method through joint control in combined cycle turbines |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2918797A1 (en) * | 2014-03-12 | 2015-09-16 | Siemens Aktiengesellschaft | Method for operating a steam power plant assembly |
EP2918796A1 (en) * | 2014-03-13 | 2015-09-16 | Siemens Aktiengesellschaft | Steam power plant with steam generator comprising a drum pressure vessel regulator |
WO2015135772A1 (en) * | 2014-03-13 | 2015-09-17 | Siemens Aktiengesellschaft | Steam power installation having a steam generator that comprises a drum-pressure-maintaining fitting |
Also Published As
Publication number | Publication date |
---|---|
EP2798164A2 (en) | 2014-11-05 |
WO2013072183A3 (en) | 2014-10-02 |
WO2013072183A2 (en) | 2013-05-23 |
EP2907980A1 (en) | 2015-08-19 |
KR20140088145A (en) | 2014-07-09 |
CN104246151B (en) | 2016-07-13 |
RU2014124127A (en) | 2015-12-27 |
US20140345278A1 (en) | 2014-11-27 |
IN2014KN00869A (en) | 2015-10-02 |
CN104246151A (en) | 2014-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2907980A1 (en) | Method for operating a gas and steam turbine facility for frequency support | |
EP1432889B1 (en) | Method and device for the starting of emission-free gas turbine power stations | |
EP2480762B1 (en) | Power plant comprising overload control valve | |
DE10041413B4 (en) | Method for operating a power plant | |
EP2067940B2 (en) | Method for operating a combined cycle power plant, and also combined-cycle power plant for carrying out the method | |
EP1866521B1 (en) | Process for starting a gas and steam turbine plant | |
CH700310A1 (en) | Processes for CO2 capture from a combined cycle power plant and combined cycle power plant with a gas turbine with flow separation and recirculation. | |
DE102010037861A1 (en) | Gas turbine with reheat | |
EP2447506A2 (en) | System for generating mechanical and/or electrical energy | |
DE102018123663A1 (en) | Fuel preheating system for a combustion gas turbine | |
CH702740B1 (en) | System and method for powering up a heat recovery steam generator. | |
EP2288791B1 (en) | Operation of a gas and a steam turbine system by means of a frequency converter | |
EP1896697B1 (en) | Method of starting up a gas and steam turbine plant | |
EP0764768A1 (en) | Process for operating a power plant | |
EP1904731B1 (en) | Combined gas and steam turbine installation and method of operating same | |
DE102012110579B4 (en) | Plant and process for generating process steam | |
EP2556218B1 (en) | Method for quickly connecting a steam generator | |
EP2829691A1 (en) | Method for operating a combined power generation system | |
EP0995891B1 (en) | Turbomachine and method for its operation | |
EP1801363A1 (en) | Power plant | |
EP2138677A1 (en) | Gas and steam turbine array | |
DE10307606A1 (en) | Power supply plant for power station has take-out device in flow circulation path of gas turbine between last turbine and heat sink | |
EP3183436A1 (en) | Method for shortening the start-up process of a steam turbine | |
DE102013202111B4 (en) | Waste heat utilization and performance increase of gas turbine plants | |
DE102011078205A1 (en) | Auxiliary steam generator as additional frequency or primary and / or secondary control measure in a steam power plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20131116 |