[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2589682A1 - Keramische Wärmedämmschicht auf strukturierter Oberfläche und Herstellungsverfahren - Google Patents

Keramische Wärmedämmschicht auf strukturierter Oberfläche und Herstellungsverfahren Download PDF

Info

Publication number
EP2589682A1
EP2589682A1 EP11188032.4A EP11188032A EP2589682A1 EP 2589682 A1 EP2589682 A1 EP 2589682A1 EP 11188032 A EP11188032 A EP 11188032A EP 2589682 A1 EP2589682 A1 EP 2589682A1
Authority
EP
European Patent Office
Prior art keywords
layer
recesses
layer system
turbine
structured surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11188032.4A
Other languages
English (en)
French (fr)
Inventor
Fathi Ahmad
Christian Amann
Björn Beckmann
Björn Buchholz
Giuseppe Gaio
Thomas Hille
Eckart Schumann
Rostislav Teteruk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP11188032.4A priority Critical patent/EP2589682A1/de
Priority to EP12759691.4A priority patent/EP2753729A1/de
Priority to PCT/EP2012/068048 priority patent/WO2013068159A1/de
Priority to US14/354,573 priority patent/US9862002B2/en
Publication of EP2589682A1 publication Critical patent/EP2589682A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/29Three-dimensional machined; miscellaneous
    • F05D2250/294Three-dimensional machined; miscellaneous grooved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05003Details of manufacturing specially adapted for combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05004Special materials for walls or lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00018Manufacturing combustion chamber liners or subparts

Definitions

  • the invention relates to a ceramic layer on a structured surface and manufacturing method.
  • High-temperature components such as gas turbine components are often provided with ceramic thermal barrier coatings, which can also chip off under the most extreme operating conditions. This happens because stresses occur that lead to flaking of the ceramic thermal barrier coating.
  • the object is achieved by a ceramic thermal barrier coating according to claim 1 and a manufacturing method according to claim 9 or 12.
  • FIG. 5 a layer system 1, 120, 130, 155 is shown.
  • the layer system 1, 120, 130, 155 has a substrate 4 which has in particular a nickel- or cobalt-based superalloy, in particular consists thereof, very particularly according to an alloy according to FIG. 9 ,
  • an intermediate layer 10 in particular a metallic adhesion promoter layer 10 is optionally present, on whose surface 13, in turn, a ceramic thermal barrier coating 16 is present.
  • a ceramic thermal barrier coating 16 is present.
  • the metallic adhesion promoter layer 10 preferably comprises an MCrAIX alloy.
  • depressions 19 ', 19 ",... are present or are introduced into the surface 7 of the substrate 4 or in the surface 13 of the layer 10 (FIG. Fig. 1 ).
  • the recesses 19 ', 19'', ... have a certain depth b and a certain width a.
  • the width a of the recesses 19 ', 19 ", ... is at least 10 .mu.m, preferably 10 .mu.m to 30 .mu.m.
  • the depth b is at least 10%, preferably 10% to 30% of the thickness of the underlying layer 10, more preferably 10 ⁇ m to 30 ⁇ m.
  • the distance d of the opposite recesses 19 ', 19 ", ... is at least 100 ⁇ m, preferably between 100 ⁇ m and 300 ⁇ m ( Fig. 2 ).
  • the parameters a, b, d can be varied on the surface 7, 13 depending on the conditions of use or locally (on the blade leaf 406, but not on the blade blade shape 403).
  • the recesses 19 ', 19 "only locally limited on the surface 7, 13 of the component 1, 120, 130 may be present.
  • the depressions 19 ', 19 ",... can preferably be made round on the base 20 (FIG. Fig. 1 ).
  • the recesses 19 ', 19 ", ... can be a honeycomb structure ( FIG. 3 ) or a mesh structure ( FIG. 4 ) exhibit.
  • FIG. 1 In FIG. 1 is shown a cross section through such a deliberately structured surface. Depending on how large the depressions 19 ', 19 “,..., The depression 19', 19” also continues on the surface 22 of the ceramic thermal barrier coating 16 in depressions 23 ', 23 ".
  • the coating 16 may be configured so that the outermost surface 22 is smooth, i. the underlying recesses 23 ', 23 "would not be visible on the surface 22.
  • the layers 10 are applied by applying material (eg powder) from a nozzle, in particular linear.
  • material eg powder
  • the structured surface 7, 13 is an integral part of a layer 10. It thus does not represent a honeycomb structure which is filled with a ceramic material.
  • FIG. 6 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example. Coupled to the rotor 103 is a generator or work machine (not shown).
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the provided at the turbine end of the compressor 105 compressed air is fed to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110. To withstand the prevailing temperatures, they can be cooled by means of a coolant.
  • substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • As the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110 for example, iron-, nickel- or cobalt-based superalloys are used. Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 EP 1 319 729 A1 .
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 786 017 B1 EP 0 786 017 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 On the MCrAIX may still be present a thermal barrier coating, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , that is, it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • suitable coating processes such as electron beam evaporation (EB-PVD), stalk-shaped grains are produced in the thermal barrier coating.
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
  • the FIG. 7 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is designed, for example, as a so-called annular combustion chamber, in which a plurality of burners 107 arranged around a rotation axis 102 in the circumferential direction open into a common combustion chamber space 154, which generate flames 156.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.
  • Each heat shield element 155 made of an alloy is equipped on the working medium side with a particularly heat-resistant protective layer (MCrAIX layer and / or ceramic coating) or is made of high-temperature-resistant material (solid ceramic stones).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • MCrAIX means: M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 is known from the EP 0 486 489 B1 .
  • a ceramic thermal barrier coating may be present and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • suitable coating processes such as electron beam evaporation (EB-PVD)
  • stalk-shaped grains are produced in the thermal barrier coating.
  • APS atmospheric plasma spraying
  • LPPS LPPS
  • VPS vacuum plasma spraying
  • CVD chemical vaporation
  • the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • Refurbishment means that heat shield elements 155 may need to be deprotected (e.g., by sandblasting) after use. This is followed by removal of the corrosion and / or oxidation layers or products. If necessary, cracks in the heat shield element 155 are also repaired. This is followed by a recoating of the heat shield elements 155 and a renewed use of the heat shield elements 155.
  • the heat shield elements 155 are then, for example, hollow and possibly still have cooling holes (not shown) which open into the combustion chamber space 154.
  • FIG. 8 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example. Coupled to the rotor 103 is a generator or work machine (not shown).
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120. Relaxed on the rotor blades 120 the working medium 113 is pulse-transmitting, so that the rotor blades 120 drive the rotor 103 and this drives the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110. To withstand the prevailing temperatures, they can be cooled by means of a coolant.
  • substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • As the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110 for example, iron-, nickel- or cobalt-based superalloys are used. Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 EP 1 319 729 A1 .
  • the blades 120, 130 may have anticorrosive coatings (MCrAIX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and represents yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • MCrAIX anticorrosive coatings
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • EP 0 786 017 B1 EP 0 412 397 B1 or EP 1 306 454 A1 .
  • MCrAlX may still be present a thermal barrier coating, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , that is, it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Durch die Einbringung von Vertiefungen (19', 19'', ...) in eine Oberfläche (7, 13) werden die Spannungen in der keramischen Schicht (16) an den metallischen Untergrund reduziert, so dass eine längere Lebensdauer für die keramische Schicht erzielt wird.

Description

  • Die Erfindung betrifft eine keramische Schicht auf einer strukturierten Oberfläche und Herstellungsverfahren.
  • Hochtemperaturbauteile wie Gasturbinenbauteile werden oft mit keramischen Wärmedämmschichten versehen, die jedoch unter extremsten Einsatzbedingungen auch abplatzen können.
    Dies geschieht dadurch, dass Spannungen auftreten, die zu Abplatzungen der keramischen Wärmedämmschicht führen.
  • Eine Lösung war es bisher, die Wärmedämmschicht nachträglich mit Vertiefungen zu versehen.
  • Es ist daher Aufgabe der Erfindung o. g. Problem weiter zu verbessern.
  • Die Aufgabe wird gelöst durch eine keramische Wärmedämmschicht gemäß Anspruch 1 und ein Herstellungsverfahren nach Anspruch 9 oder 12.
  • In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig miteinander kombiniert werden können, um weitere Vorteile zu erzielen.
  • Es zeigen
  • Figur 1 - 5
    Ausführungsbeispiele der Erfindung,
    Figur 6
    eine Turbinenschaufel,
    Figur 7
    eine Brennkammer,
    Figur 8
    eine Gasturbine und
    Figur 9
    eine Liste von Superlegierungen.
  • Die Beschreibung und die Figuren stellen Ausführungsbeispiele der Erfindung dar.
  • In Figur 5 ist ein Schichtsystem 1, 120, 130, 155 gezeigt. Das Schichtsystem 1, 120, 130, 155 weist ein Substrat 4 auf, das insbesondere eine nickel- oder kobaltbasierte Superlegierung aufweist, insbesondere daraus besteht, ganz insbesondere gemäß einer Legierung gemäß Figur 9.
  • Auf der Oberfläche 7 des Substrats 4 ist optional eine Zwischenschicht 10, insbesondere eine metallische Haftvermittlerschicht 10 vorhanden, auf dessen Oberfläche 13 wiederum eine keramische Wärmedämmschicht 16 vorhanden ist.
    Es gibt auch Kombinationen von Substraten 4 mit alitiertem Oberflächenbereich, bei dem die keramische Wärmedämmschicht direkt auf dem Substrat aufgebracht werden kann.
  • Die metallische Haftvermittlerschicht 10 weist vorzugsweise eine MCrAIX-Legierung auf.
  • Erfindungsgemäß sind oder werden in die Oberfläche 7 des Substrats 4 oder in der Oberfläche 13 der Schicht 10 Vertiefungen 19', 19" , ... vorhanden oder eingebracht (Fig. 1).
  • Die Vertiefungen 19', 19'', ... weisen eine bestimmte Tiefe b und eine gewisse Breite a auf.
    Die Breite a der Vertiefungen 19', 19", ... beträgt mindestens 10µm, vorzugsweise 10µm bis 30µm.
    Die Tiefe b beträgt mindestens 10%, vorzugsweise 10% bis 30% der Dicke der unten liegenden Schicht 10, ganz insbesondere 10µm bis 30µm.
  • Der Abstand d der gegenüberliegenden Vertiefungen 19', 19", ... beträgt mindestens 100µm, vorzugsweise zwischen 100µm und 300µm (Fig. 2).
  • Die Parameter a, b, d können je nach Einsatzbedingungen oder lokal (auf dem Schaufelblatt 406, nicht aber auf Schaufelblattform 403) auf der Oberfläche 7, 13 variiert werden.
  • Ebenso können die Vertiefungen 19', 19" nur lokal begrenzt auf der Oberfläche 7, 13 des Bauteils 1, 120, 130 vorhanden sein.
  • Die Vertiefungen 19', 19" , ... können am Boden 20 vorzugsweise rund ausgeführt werden (Fig. 1).
  • Die Vertiefungen 19', 19", ... können eine Honigwabenstruktur (Figur 3) oder eine Maschenstruktur (Figur 4) aufweisen.
  • In Figur 1 ist ein Querschnitt durch eine solche gezielt strukturierte Oberfläche gezeigt.
    Je nach dem, wie groß die Vertiefungen 19', 19" , ... sind, setzt sich die Vertiefung 19', 19" auch an der Oberfläche 22 der keramischen Wärmedämmschicht 16 in Vertiefungen 23', 23" fort.
  • Es kommt zur Spannungsreduzierung und mechanischen Verklammerung zwischen metallischer Haftvermittlerschicht 10 und keramischer Wärmedämmschicht 16 (bzw. Schicht 16 und Substrat 4). Es ist sehr viel einfacher die metallische Oberfläche der Schicht 10 oder des Substrats 4 zu bearbeiten, als eine keramische Oberfläche.
  • Ebenso kann die Beschichtung 16 so ausgeführt sein/werden, dass die äußerste Oberfläche 22 glatt ist, d.h. die unterliegenden Vertiefungen 23', 23" wären an der Oberfläche 22 nicht erkennbar.
  • Oft werden die Schichten 10 durch Auftragen von Material (z.B. Pulver) aus einer Düse aufgebracht, insbesondere linienförmig. Durch das Auslassen einer Beschichtungsspur beim Beschichten oder gezieltes Nichtbeschichten wird dort kein Material aufgetragen und es entsteht eine Vertiefung 19', 19''.
  • Dies ist insbesondere bei Beschichtungsverfahren wie APS, VPS, LPPS, HVOF, Kaltgasspritzen möglich, bei denen Pulver in Bahnen aufgetragen wird.
  • Die strukturierte Oberfläche 7, 13 ist integraler Bestandteil einer Schicht 10. Sie stellt somit keine Honigwabenstruktur dar, die mit einem keramischen Material gefüllt ist.
  • Die Figur 6 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt.
    Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 mit einer Welle 101 auf, der auch als Turbinenläufer bezeichnet wird.
    Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.
    Die Ringbrennkammer 110 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Turbine 108.
    Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.
  • Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind.
    An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).
  • Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.
  • Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 110 auskleidenden Hitzeschildelementen am meisten thermisch belastet.
    Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden.
    Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin (SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur).
    Als Material für die Bauteile, insbesondere für die Turbinenschaufel 120, 130 und Bauteile der Brennkammer 110 werden beispielsweise eisen-, nickel- oder kobaltbasierte Superlegierungen verwendet.
    Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 B1 , EP 1 306 454 , EP 1 319 729 A1 , WO 99/67435 oder WO 00/44949 bekannt.
  • Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium, Scandium (Sc) und/oder zumindest ein Element der Seltenen Erden bzw. Hafnium). Solche Legierungen sind bekannt aus der EP 0 486 489 B1 , EP 0 786 017 B1 , EP 0 412 397 B1 oder EP 1 306 454 A1 . Auf der MCrAIX kann noch eine Wärmedämmschicht vorhanden sein, und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
    Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
  • Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht dargestellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt.
  • Die Figur 7 zeigt eine Brennkammer 110 einer Gasturbine.
    Die Brennkammer 110 ist beispielsweise als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um eine Rotationsachse 102 herum angeordneten Brennern 107 in einen gemeinsamen Brennkammerraum 154 münden, die Flammen 156 erzeugen. Dazu ist die Brennkammer 110 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Rotationsachse 102 herum positioniert ist.
  • Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1000°C bis 1600°C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 155 gebildeten Innenauskleidung versehen.
    Jedes Hitzeschildelement 155 aus einer Legierung ist arbeitsmediumsseitig mit einer besonders hitzebeständigen Schutzschicht (MCrAIX-Schicht und/oder keramische Beschichtung) ausgestattet oder ist aus hochtemperaturbeständigem Material (massive keramische Steine) gefertigt.
  • Diese Schutzschichten können ähnlich der Turbinenschaufeln sein, also bedeutet beispielsweise MCrAIX: M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf). Solche Legierungen sind bekannt aus der EP 0 486 489 B1 , EP 0 786 017 B1 , EP 0 412 397 B1 oder EP 1 306 454 A1 .
  • Auf der MCrAlX kann noch eine beispielsweise keramische Wärmedämmschicht vorhanden sein und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
    Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
    Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Körner zur besseren Thermoschockbeständigkeit aufweisen.
  • Wiederaufarbeitung (Refurbishment) bedeutet, dass Hitzeschildelemente 155 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse in dem Hitzeschildelement 155 repariert. Danach erfolgt eine Wiederbeschichtung der Hitzeschildelemente 155 und ein erneuter Einsatz der Hitzeschildelemente 155.
  • Aufgrund der hohen Temperaturen im Inneren der Brennkammer 110 kann zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen sein. Die Hitzeschildelemente 155 sind dann beispielsweise hohl und weisen ggf. noch in den Brennkammerraum 154 mündende Kühllöcher (nicht dargestellt) auf.
  • Die Figur 8 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt.
    Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 mit einer Welle 101 auf, der auch als Turbinenläufer bezeichnet wird.
    Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.
    Die Ringbrennkammer 110 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Turbine 108.
    Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.
  • Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind.
    An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).
  • Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.
  • Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 110 auskleidenden Hitzeschildelementen am meisten thermisch belastet. Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden.

    Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin (SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur).
    Als Material für die Bauteile, insbesondere für die Turbinenschaufel 120, 130 und Bauteile der Brennkammer 110 werden beispielsweise eisen-, nickel- oder kobaltbasierte Superlegierungen verwendet.
    Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 B1 , EP 1 306 454 , EP 1 319 729 A1 , WO 99/67435 oder WO 00/44949 bekannt.
  • Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion (MCrAIX; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium, Scandium (Sc) und/oder zumindest ein Element der Seltenen Erden bzw. Hafnium). Solche Legierungen sind bekannt aus der EP 0 486 489 B1 , EP 0 786 017 B1 , EP 0 412 397 B1 oder EP 1 306 454 A1 .
  • Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
  • Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
  • Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht dargestellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt.

Claims (12)

  1. Schichtsystem,
    das zumindest aufweist:
    ein Substrat (4),
    eine keramische Schicht (16),
    die (16) auf einer gezielt strukturierten Oberfläche (7, 13) aufgebracht ist.
  2. Schichtsystem nach Anspruch 1,
    bei dem die strukturierte Oberfläche (7, 13) durch Vertiefungen (19', 19", ...),
    insbesondere durch längliche Vertiefungen (19', 19" , ...), in der Oberfläche (7, 13) ausgebildet ist.
  3. Schichtsystem nach einem oder beiden der Ansprüche 1 oder 2,
    bei dem die Vertiefungen (19', 19", ...) eine Honigwabenstruktur bilden.
  4. Schichtsystem nach einem oder beiden der Ansprüche 1 oder 2,
    bei dem die Vertiefungen (19', 19", ...) eine Maschenstruktur bilden,
    insbesondere mit quadratischer oder rechteckiger Masche.
  5. Schichtsystem nach einem oder mehreren der Ansprüche 1, 2, 3 oder 4,
    bei dem die Vertiefungen (19', 19", ...) eine Breite (a) von mindestens 10µm,
    insbesondere von 10µm bis 30µm,
    aufweisen.
  6. Schichtsystem nach einem oder mehreren der Ansprüche 1, 2, 3, 4 oder 5,
    bei dem die Vertiefungen (19, 19") eine Tiefe (b) von mindestens 10%,
    insbesondere 10% bis 30% der Schichtdicke der Schicht (16), ganz insbesondere von 10µm bis 30µm aufweisen.
  7. Schichtsystem nach einem oder mehreren der Ansprüche 1, 2, 3, 4, 5 oder 6,
    bei dem der Abstand (d) gegenüberliegender Vertiefungen (19', 19" , ...) mindestens 100µm,
    insbesondere zwischen 100µm und 300µm,
    beträgt.
  8. Schichtsystem nach einem oder mehreren der Ansprüche 1, 2, 3, 4, 5, 6 oder 7,
    das eine Zwischenschicht (10), insbesondere eine metallische Schicht (10),
    ganz insbesondere aus einer MCrAlX-Legierung, aufweist,
    in der (10) die Vertiefungen (19', 19" , ...) eingebracht sind.
  9. Verfahren zur Herstellung eines Schichtsystems nach einem oder mehreren der Ansprüche 1 bis 8,
    bei dem die Vertiefungen (19', 19", ...) nachträglich in die Oberfläche (7, 13) eingebracht werden.
  10. Verfahren nach Anspruch 9,
    bei dem ein chemisches Ätzverfahren verwendet wird.
  11. Verfahren nach Anspruch 9,
    bei dem ein Laserverfahren verwendet wird.
  12. Verfahren zur Herstellung eines Schichtsystems nach einem oder mehreren der Ansprüche 1 bis 8,
    bei dem die Zwischenschicht (10),
    insbesondere die metallische Schicht (10),
    so aufgebracht wird,
    dass die Vertiefungen (19', 19'', ...) während der Beschichtung entstehen.
EP11188032.4A 2011-11-07 2011-11-07 Keramische Wärmedämmschicht auf strukturierter Oberfläche und Herstellungsverfahren Withdrawn EP2589682A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11188032.4A EP2589682A1 (de) 2011-11-07 2011-11-07 Keramische Wärmedämmschicht auf strukturierter Oberfläche und Herstellungsverfahren
EP12759691.4A EP2753729A1 (de) 2011-11-07 2012-09-14 Herstellungsverfahren eines schichtsystems
PCT/EP2012/068048 WO2013068159A1 (de) 2011-11-07 2012-09-14 Herstellungsverfahren eines schichtsystems
US14/354,573 US9862002B2 (en) 2011-11-07 2012-09-14 Process for producing a layer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11188032.4A EP2589682A1 (de) 2011-11-07 2011-11-07 Keramische Wärmedämmschicht auf strukturierter Oberfläche und Herstellungsverfahren

Publications (1)

Publication Number Publication Date
EP2589682A1 true EP2589682A1 (de) 2013-05-08

Family

ID=46875780

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11188032.4A Withdrawn EP2589682A1 (de) 2011-11-07 2011-11-07 Keramische Wärmedämmschicht auf strukturierter Oberfläche und Herstellungsverfahren
EP12759691.4A Withdrawn EP2753729A1 (de) 2011-11-07 2012-09-14 Herstellungsverfahren eines schichtsystems

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP12759691.4A Withdrawn EP2753729A1 (de) 2011-11-07 2012-09-14 Herstellungsverfahren eines schichtsystems

Country Status (3)

Country Link
US (1) US9862002B2 (de)
EP (2) EP2589682A1 (de)
WO (1) WO2013068159A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015222812A1 (de) * 2015-11-19 2017-05-24 Siemens Aktiengesellschaft Keramisches Schichtsystem mit Vertiefungen in keramischer Schicht und strukturierter Haftvermittlerschicht
DE102015222808A1 (de) * 2015-11-19 2017-05-24 Siemens Aktiengesellschaft Segmentiertes zweilagiges Schichtsystem
EP3222747A1 (de) * 2016-03-24 2017-09-27 Siemens Aktiengesellschaft Heissgaskomponente

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2733310A1 (de) * 2012-11-16 2014-05-21 Siemens Aktiengesellschaft Modifizierte Oberfläche um ein Loch
WO2016147364A1 (ja) * 2015-03-18 2016-09-22 中国電力株式会社 高温部品のひずみ測定方法及び高温部品
DE102015224844A1 (de) * 2015-12-10 2017-06-14 Siemens Aktiengesellschaft Bauteil mit lokaler Verstärkung bezüglich Festigkeit und Oxidationsbeständigkeit und Verfahren

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0486489B1 (de) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile
US5419971A (en) * 1993-03-03 1995-05-30 General Electric Company Enhanced thermal barrier coating system
EP0412397B1 (de) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Rheniumhaltige Schutzbeschichtung mit grosser Korrosions- und/oder Oxidationsbeständigkeit
EP0786017B1 (de) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6074706A (en) * 1998-12-15 2000-06-13 General Electric Company Adhesion of a ceramic layer deposited on an article by casting features in the article surface
WO2000044949A1 (en) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Nickel base superalloy with good machinability
EP1306454A1 (de) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
EP1319729A1 (de) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
WO2004043691A1 (en) * 2002-11-12 2004-05-27 University Of Virginia Patent Foundation Extremely strain tolerant thermal protection coating and related method and apparatus thereof
EP1204776B1 (de) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Hochtemperaturbeständiges bauteil und verfahren zur herstellung des hochtemperaturbeständigen bauteils
US20080085191A1 (en) * 2006-10-05 2008-04-10 Siemens Power Generation, Inc. Thermal barrier coating system for a turbine airfoil usable in a turbine engine
US20090017260A1 (en) * 2001-08-02 2009-01-15 Kulkarni Anand A Segmented thermal barrier coating
EP2275645A2 (de) * 2009-07-17 2011-01-19 Rolls-Royce Corporation Gasturbinenkomponente mit Merkmalen zur Spannungsreduktion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846574B2 (en) * 2001-05-16 2005-01-25 Siemens Westinghouse Power Corporation Honeycomb structure thermal barrier coating

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0486489B1 (de) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile
EP0412397B1 (de) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Rheniumhaltige Schutzbeschichtung mit grosser Korrosions- und/oder Oxidationsbeständigkeit
US5419971A (en) * 1993-03-03 1995-05-30 General Electric Company Enhanced thermal barrier coating system
EP0786017B1 (de) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6074706A (en) * 1998-12-15 2000-06-13 General Electric Company Adhesion of a ceramic layer deposited on an article by casting features in the article surface
WO2000044949A1 (en) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Nickel base superalloy with good machinability
EP1204776B1 (de) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Hochtemperaturbeständiges bauteil und verfahren zur herstellung des hochtemperaturbeständigen bauteils
US20090017260A1 (en) * 2001-08-02 2009-01-15 Kulkarni Anand A Segmented thermal barrier coating
EP1306454A1 (de) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
EP1319729A1 (de) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
WO2004043691A1 (en) * 2002-11-12 2004-05-27 University Of Virginia Patent Foundation Extremely strain tolerant thermal protection coating and related method and apparatus thereof
US20080085191A1 (en) * 2006-10-05 2008-04-10 Siemens Power Generation, Inc. Thermal barrier coating system for a turbine airfoil usable in a turbine engine
EP2275645A2 (de) * 2009-07-17 2011-01-19 Rolls-Royce Corporation Gasturbinenkomponente mit Merkmalen zur Spannungsreduktion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015222812A1 (de) * 2015-11-19 2017-05-24 Siemens Aktiengesellschaft Keramisches Schichtsystem mit Vertiefungen in keramischer Schicht und strukturierter Haftvermittlerschicht
DE102015222808A1 (de) * 2015-11-19 2017-05-24 Siemens Aktiengesellschaft Segmentiertes zweilagiges Schichtsystem
EP3222747A1 (de) * 2016-03-24 2017-09-27 Siemens Aktiengesellschaft Heissgaskomponente

Also Published As

Publication number Publication date
US20140295086A1 (en) 2014-10-02
US9862002B2 (en) 2018-01-09
EP2753729A1 (de) 2014-07-16
WO2013068159A1 (de) 2013-05-16

Similar Documents

Publication Publication Date Title
EP3068921B1 (de) Verdichterschaufel mit erosionsbeständiger hartstoffbeschichtung
EP2097616B1 (de) Bauteil mit schräg verlaufenden vertiefungen in der oberfläche und verfahren zum betreiben einer turbine
EP2436798A1 (de) Maskierungsmaterial, Maskierungsschicht, Verfahren zum Maskieren eines Substrats und Verfahren zum Beschichten eines Substrats
WO2012007320A1 (de) Poröses keramisches schichtsystem
EP2589682A1 (de) Keramische Wärmedämmschicht auf strukturierter Oberfläche und Herstellungsverfahren
EP2904211A1 (de) Modifizierte oberfläche um ein loch
EP2279282A1 (de) Verfahren zur herstellung einer optimierten haftvermittlerschicht durch teilweise verdampfung der haftvermittlerschicht und ein schichtsystem
EP1816316B1 (de) Bauteilreparaturverfahren
EP2373824B1 (de) Verfahren zum beschichten eines bauteils mit filmkühllöchern, und bauteil
EP2216509A1 (de) Turbinenbauteil mit leicht entfernbarer Schutzschicht, Satz von Turbinenbauteilen, eine Turbine und ein Verfahren zum Schützen eines Turbinenbauteils
EP2584067A1 (de) Bauteil mit Graphen und Verfahren zur Herstellung von Bauteilen mit Graphen
EP1967615A1 (de) Verfahren zum Aufbringen einer Wärmedämmbeschichtung und Turbinenbauteile mit einer Wärmedämmbeschichtung
WO2013075858A1 (de) Modifizierte oberfläche um ein loch
EP2341165A1 (de) Keramisches Bauteil oder keramische Schicht mit hoher Porosität, deren Verwendung sowie Bauteil aufweisend diese Schicht
EP1808236A1 (de) Verfahren zum Abdecken von Kühlungsbohrungen, insbesondere von Turbinenschaufeln
EP1707651A1 (de) Schichtsystem und Verfahren zur Herstellung eines Schichtsystems
WO2013060499A1 (de) Oberfläche mit speziell ausgeformten vertiefungen und bauteil
EP2761057B1 (de) Schichtsystem mit strukturierter substratoberfläche und verfahren zur herstellung
EP1867749A1 (de) Verfahren zum Aufbringen von Material auf ein Bauteil
EP1772529A1 (de) Trockene Zusammensetzung, Verwendung derer, Schichtsystem und Verfahren zur Beschichtung
EP1808507A1 (de) Bauteil mit Beschichtung und Verfahren zum Herstellen einer Beschichtung
EP1932935A1 (de) Verfahren zur Herstellung einer Turbinenschaufel mit einem Oxid auf einer metallischen Schicht, eine Turbineschaufel ,Verwendung einer solchen Turbinenschaufel und ein Verfahren zum Betreiben einer Turbine
EP1783243A1 (de) Trockene Zusammensetzung, deren Verwendung, Schichtsystem und Verfahren zur Beschichtung
EP2599890A1 (de) Abplatzungssichere keramische Schicht und Schichtsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131109