EP2586790A2 - Immunogene von uropathogenen Escherichia coli - Google Patents
Immunogene von uropathogenen Escherichia coli Download PDFInfo
- Publication number
- EP2586790A2 EP2586790A2 EP12194903.6A EP12194903A EP2586790A2 EP 2586790 A2 EP2586790 A2 EP 2586790A2 EP 12194903 A EP12194903 A EP 12194903A EP 2586790 A2 EP2586790 A2 EP 2586790A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- amino acid
- acid sequence
- sequence
- polypeptides
- protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 0 CC*C(*)=***C(*)C1C(*[N+]([O-])(O*(C)C(C)(C)**)[U]***)CC1* Chemical compound CC*C(*)=***C(*)C1C(*[N+]([O-])(O*(C)C(C)(C)**)[U]***)CC1* 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/025—Enterobacteriales, e.g. Enterobacter
- A61K39/0258—Escherichia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- This invention is in the field of Escherichia coli biology, and in particular relates to immunogens for use in immunising against extraintestinal pathogenic E . coli (ExPEC) strains.
- E. coli can also be a deadly pathogen.
- E. coli strains have traditionally been classified as either commensal or pathogenic, and pathogenic strains are then sub-classified as intestinal or extraintestinal strains. More recent taxonomic techniques such as multilocus enzyme electrophoresis (MLEE) classify E. coli into five phylogenetic groups (A, B1, B2, D & E), and these groupings do not match the traditional ones. For instance, MLEE group B1 includes both commensal and pathogenic strains, and group D includes both intestinal and extraintestinal strains.
- MLEE group B1 includes both commensal and pathogenic strains
- group D includes both intestinal and extraintestinal strains.
- UPEC strains cause urinary tract infections (UTIs), and are the most common form of cystitis. They also cause pyelonephritis (and its complications such as sepsis) and catheter-associated infections.
- UTIs urinary tract infections
- MNEC strains cause neonatal meningitis (0.1 cases per 1000 live births) with case fatality rates ranging from 25 to 40%, and are also responsible for around 1/6 of sepsis cases.
- ExPEC vaccines including a need to move away from crude cell lysates and towards better-defined molecules, and a need to identify further antigens that are suitable for inclusion in vaccines, particularly antigens that are prevalent among clinical ExPEC strains without also being found in commensal strains.
- Reference 10 used the genome sequence of UPEC (O6:K2:H1) strain CFT073 [11,12] to identify sequences not present in non-pathogenic E. coli strains.
- Reference 13 discloses a comparison of the genome sequence of E. coli human pyelonephritis isolate 536 (O6:K15:H31), an UPEC, with sequence data for strains CFT073 (UPEC), EDL933 (enterohemorrhagic) and MG1655 (non-pathogenic laboratory strain).
- Genome sequences of pathogenic strains are available in the databases under accession numbers AE005174 (gi:56384585), BA000007 (gi:47118301) and NC-004431 (gi:26245917).
- a sequence from a non-pathogenic strain is available under accession number U00096 (gi:48994873).
- the inventors have identified various genes that can be included in immunogenic compositions specific for pathogenic E. coli strains.
- the genes are from uropathogenic strains (UPEC) but are absent from non-pathogenic strains, and their encoded proteins have cellular locations which render them accessible to the immune system.
- UPEC uropathogenic strains
- the invention relates to a polypeptide comprising: (a) an amino acid sequence selected from the group consisting of SEQ ID NOs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106,
- the invention in another aspect, relates to a polypeptide comprising: (a) an amino acid sequence selected from the group consisting of SEQ ID NOs 1, 2, 3, 4, 5, 6, and 7; (b) an amino acid sequence having at least 80% sequence identity to an amino acid sequence of (a); (c) an amino acid sequence which is a fragment of at least 10 consecutive amino acids from an amino acid sequence of (a); or (d) an amino acid sequence having at least 80% sequence identity to an amino acid sequence of (a) and including a fragment of at least 10 consecutive amino acids from an amino acid sequence of (a).
- polypeptides of this aspect of the invention comprise a fragment which comprises at least one B-cell epitope of (a).
- the present invention further relates to immunogenic compositions comprising one or more outer membrane vesicles (OMVs) expressing one or more polypeptides comprising: (a) an amino acid sequence selected from the group consisting of SEQ ID NOs 1, 2, 3, 4, 5, 6, and 7; (b) an amino acid sequence having at least 80% sequence identity to an amino acid sequence of (a); (c) an amino acid sequence which is a fragment of at least 10 consecutive amino acids from an amino acid sequence of (a); or (d) an amino acid sequence having at least 80% sequence identity to an amino acid sequence of (a) and including a fragment of at least 10 consecutive amino acids from an amino acid sequence of (a).
- the immunogenic composition of this aspect of the invention comprises one or more polypeptides comprising a fragment which comprises at least one B-cell epitope of (a).
- polypeptides of the invention can be used in medicine and in the manufacture of a medicament for raising an immune response in a patient.
- the present invention also relates to a pharmaceutical composition comprising a polypeptide of the invention in admixture with a pharmaceutically acceptable carrier.
- the invention further relates to a pharmaceutical composition comprising two or more polypeptides of the invention in admixture with a pharmaceutically acceptable carrier.
- the pharmaceutical compositions of the invention further comprise a vaccine adjuvant.
- the present invention also relates to methods for raising an immune response in a patient, comprising administering to the patient a pharmaceutical composition or immunogenic composition of the invention.
- the immune response is protective against ExPEC infection.
- the inventors have identified various and polypeptides that can be included in immunogenic compositions specific for pathogenic E. coli strains.
- the polypeptides have cellular locations which render them accessible to the immune system.
- the genes encoding the polypeptides were initially identified as being present in uropathogenic strain 536 but absent from non-pathogenic strains.
- the invention provides polypeptides comprising the amino acid sequences disclosed in the examples. These amino acid sequences are given in the sequence listing as SEQ ID NOs 1 to 167. A preferred subset of SEQ ID NOs 1 to 167 is given in Table 2.
- polypeptide may, compared to the sequences of the examples, include one or more (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc.) conservative amino acid replacements i.e. replacements of one amino acid with another which has a related side chain.
- conservative amino acid replacements i.e. replacements of one amino acid with another which has a related side chain.
- Genetically-encoded amino acids are generally divided into four families: (1) acidic i.e. aspartate, glutamate; (2) basic i.e. lysine, arginine, histidine; (3) non-polar i.e. alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar i.e.
- the polypeptides may have one or more ( e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc.) single amino acid deletions relative to a reference sequence.
- the polypeptides may also include one or more ( e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc. ) insertions (e.g. each of 1, 2, 3, 4 or 5 amino acids) relative to a reference sequence.
- Preferred polypeptides include polypeptides that are lipidated, that are located in the outer membrane, that are located in the inner membrane, or that are located in the periplasm. Particularly preferred polypeptides are those that fall into more than one of these categories e.g. lipidated polypeptides that are located in the outer membrane. Lipoproteins may have a N-terminal cysteine to which lipid is covalently attached, following post-translational processing of the signal peptide.
- the invention further provides polypeptides comprising fragments of the amino acid sequences disclosed in the examples.
- the fragments should comprise at least n consecutive amino acids from the sequences and, depending on the particular sequence, n is 7 or more ( e.g. 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 or more).
- the fragment may comprise at least one T-cell or, preferably, a B-cell epitope of the sequence.
- T- and B-cell epitopes can be identified empirically ( e.g. using PEPSCAN [14,15] or similar methods), or they can be predicted ( e.g.
- polypeptides of the invention are (a) the N-terminal signal peptides of the polypeptides of the invention, (b) the polypeptides, but without their N-terminal signal peptides, (c) the polypeptides, but without their N-terminal amino acid residue.
- the invention further provides truncated sequences of the polypeptides of the invention.
- the sequences may be truncated at the N-terminus and/or the C-terminus. Truncation may involve a single amino acid or a longer sequence.
- a truncated sequence preferably retains at least one epitope of the pre-truncation sequence.
- the invention provides truncated sequence, SEQ ID NO: 168 which is amino acids 21-470 of SEQ ID NO:56.
- the invention also provides polypeptides comprising amino acid sequences that have sequence identity to, and comprise fragments of, the amino acid sequences disclosed in the examples.
- the degree of sequence identity is preferably greater than 50% (e.g. 60%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more)
- the fragments should comprise at least n consecutive amino acids from the sequences and, depending on the particular sequence, n is 7 or more ( e.g. 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 or more).
- Polypeptides of the invention can be prepared in many ways e.g. by chemical synthesis (in whole or in part), by digesting longer polypeptides using proteases, by translation from RNA, by purification from cell culture ( e.g. from recombinant expression), from the organism itself ( e.g. after bacterial culture, or direct from patients), etc.
- a preferred method for production of peptides ⁇ 40 amino acids long involves in vitro chemical synthesis [29,30].
- Solid-phase peptide synthesis is particularly preferred, such as methods based on tBoc or Fmoc [31] chemistry.
- Enzymatic synthesis [32] may also be used in part or in full.
- biological synthesis may be used e.g.
- the polypeptides may be produced by translation. This may be carried out in vitro or in vivo .
- Biological methods are in general restricted to the production of polypeptides based on L-amino acids, but manipulation of translation machinery (e.g. of aminoacyl tRNA molecules) can be used to allow the introduction of D-amino acids (or of other non natural amino acids, such as iodotyrosine or methylphenylalanine, azidohomoalanine, etc.) [33]. Where D-amino acids are included, however, it is preferred to use chemical synthesis.
- Polypeptides of the invention may have covalent modifications at the C-terminus and/or N-terminus.
- Polypeptides of the invention can take various forms (e.g. native, fusions, glycosylated, non-glycosylated, lipidated, non-lipidated, phosphorylated, non-phosphorylated, myristoylated, non-myristoylated, monomeric, multimeric, particulate, denatured, etc. ).
- Polypeptides of the invention are preferably provided in purified or substantially purified form i.e. substantially free from other polypeptides ( e.g. free from naturally-occurring polypeptides), particularly from other ExPEC or host cell polypeptides, and are generally at least about 50% pure (by weight), and usually at least about 90% pure i.e. less than about 50%, and more preferably less than about 10% ( e.g. 5% or less) of a composition is made up of other expressed polypeptides.
- Polypeptides of the invention are preferably ExPEC polypeptides.
- Polypeptides of the invention may be attached to a solid support.
- Polypeptides of the invention may comprise a detectable label (e.g. a radioactive or fluorescent label, or a biotin label).
- polypeptide refers to amino acid polymers of any length.
- the polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids.
- the terms also encompass an amino acid polymer that has been modified naturally or by intervention; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling component.
- polypeptides containing one or more analogs of an amino acid including, for example, unnatural amino acids, etc.
- Polypeptides can occur as single chains or associated chains.
- Polypeptides of the invention can be naturally or non-naturally glycosylated (i.e. the polypeptide has a glycosylation pattern that differs from the glycosylation pattern found in the corresponding naturally occurring polypeptide).
- Polypeptides of the invention may be at least 40 amino acids long ( e.g. at least 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 350, 400, 450, 500 or more). Polypeptides of the invention may be shorter than 500 amino acids ( e.g. no longer than 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 350, 400 or 450 amino acids).
- the invention provides polypeptides comprising a sequence -X-Y- or -Y-X-, wherein: -X- is an amino acid sequence as defined above and -Y- is not a sequence as defined above i.e. the invention provides fusion proteins.
- -X- is an amino acid sequence as defined above
- -Y- is not a sequence as defined above i.e. the invention provides fusion proteins.
- the invention provides a process for producing polypeptides of the invention, comprising culturing a host cell of to the invention under conditions which induce polypeptide expression.
- the invention provides a process for producing a polypeptide of the invention, wherein the polypeptide is synthesised in part or in whole using chemical means.
- the invention provides a composition comprising two or more polypeptides of the invention.
- the invention also provides a hybrid polypeptide represented by the formula NH 2 -A-[-X-L-] n -B-COOH, wherein X is a polypeptide of the invention as defined above, L is an optional linker amino acid sequence, A is an optional N-terminal amino acid sequence, B is an optional C-terminal amino acid sequence, and n is an integer greater than 1.
- the value of n is between 2 and x, and the value of x is typically 3, 4, 5, 6, 7, 8, 9 or 10.
- -X- may be the same or different.
- linker amino acid sequence -L- may be present or absent.
- the hybrid may be NH 2 -X 1 -L 1 -X 2 -L 2 -COOH, NH 2 -X 1 -X 2 -COOH, NH 2 -X 1 -L 1 -X 2 -COOH, NH 2 -X 1 -X 2 -L 2 -COOH, etc.
- Linker amino acid sequence(s) -L- will typically be short ( e.g. 20 or fewer amino acids i.e. 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1).
- Other suitable linker amino acid sequences will be apparent to those skilled in the art.
- -A- and -B- are optional sequences which will typically be short ( e.g. 40 or fewer amino acids i.e. 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1).
- Other suitable N-terminal and C-terminal amino acid sequences will be apparent to those skilled in the art.
- polypeptides of the invention can be expressed recombinantly and used to screen patient sera by immunoblot. A positive reaction between the polypeptide and patient serum indicates that the patient has previously mounted an immune response to the protein in question i.e. the protein is an immunogen. This method can also be used to identify immunodominant proteins.
- the invention provides antibodies that bind to polypeptides of the invention. These may be polyclonal or monoclonal and may be produced by any suitable means ( e.g. by recombinant expression). To increase compatibility with the human immune system, the antibodies may be chimeric or humanised [ e.g. refs. 34 & 35], or fully human antibodies may be used. The antibodies may include a detectable label ( e.g. for diagnostic assays). Antibodies of the invention may be attached to a solid support. Antibodies of the invention are preferably neutralising antibodies.
- Monoclonal antibodies are particularly useful in identification and purification of the individual polypeptides against which they are directed.
- Monoclonal antibodies of the invention may also be employed as reagents in immunoassays, radioimmunoassays (RIA) or enzyme-linked immunosorbent assays (ELISA), etc.
- the antibodies can be labelled with an analytically-detectable reagent such as a radioisotope, a fluorescent molecule or an enzyme.
- the monoclonal antibodies produced by the above method may also be used for the molecular identification and characterization (epitope mapping) of polypeptides of the invention.
- Antibodies of the invention are preferably specific to ExPEC strains of E. coli, i.e. they bind preferentially to ExPEC E. coli relative to other bacteria ( e.g. relative to non-ExPEC E. coli and relative to non- E.coli bacteria). More preferably, the antibodies are specific to UPEC strains i.e. they bind preferentially to UPEC bacteria relative to other bacteria, including other ExPEC E. coli.
- Antibodies of the invention are preferably provided in purified or substantially purified form. Typically, the antibody will be present in a composition that is substantially free of other polypeptides e.g. where less than 90% (by weight), usually less than 60% and more usually less than 50% of the composition is made up of other polypeptides.
- Antibodies of the invention can be of any isotype (e.g. IgA, IgG, IgM i.e. an ⁇ , ⁇ or ⁇ heavy chain), but will generally be IgG. Within the IgG isotype, antibodies may be IgG1, IgG2, IgG3 or IgG4 subclass. Antibodies of the invention may have a ⁇ or a ⁇ light chain.
- IgA IgG
- IgM i.e. an ⁇ , ⁇ or ⁇ heavy chain
- Antibodies of the invention can take various forms, including whole antibodies, antibody fragments such as F(ab') 2 and F(ab) fragments, Fv fragments (non-covalent heterodimers), single-chain antibodies such as single chain Fv molecules (scFv), minibodies, oligobodies, etc.
- antibody does not imply any particular origin, and includes antibodies obtained through non-conventional processes, such as phage display.
- the invention provides a process for detecting polypeptides of the invention, comprising the steps of: (a) contacting an antibody of the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complexes; and (b) detecting said complexes.
- the invention provides a process for detecting antibodies of the invention, comprising the steps of: (a) contacting a polypeptide of the invention with a biological sample (e.g. a blood or serum sample) under conditions suitable for the formation of an antibody-antigen complexes; and (b) detecting said complexes.
- a biological sample e.g. a blood or serum sample
- Preferred antibodies bind to a polypeptide of the invention with substantially greater affinity than antibodies known in the art.
- the affinity is at least 1.5-fold, 2-fold, 5-fold 10-fold, 100-fold, 10 3 -fold, 10 4 -fold, 10 5 -fold, 10 6 -fold etc. stronger than antibodies known in the art.
- the invention also provides nucleic acid comprising a nucleotide sequence encoding the polypeptides of the invention.
- the invention also provides nucleic acid comprising nucleotide sequences having sequence identity to such nucleotide sequences. Identity between sequences is preferably determined by the Smith-Waterman homology search algorithm as described above. Such nucleic acids include those using alternative codons to encode the same amino acid.
- the invention also provides nucleic acid which can hybridize to these nucleic acids.
- Hybridization reactions can be performed under conditions of different "stringency”. Conditions that increase stringency of a hybridization reaction of widely known and published in the art [ e.g. page 7.52 of reference 297].
- Examples of relevant conditions include (in order of increasing stringency): incubation temperatures of 25°C, 37°C, 50°C, 55°C and 68°C; buffer concentrations of 10 x SSC, 6 x SSC, 1 x SSC, 0.1 x SSC (where SSC is 0.15 M NaCl and 15 mM citrate buffer) and their equivalents using other buffer systems; formamide concentrations of 0%, 25%, 50%, and 75%; incubation times from 5 minutes to 24 hours; 1, 2, or more washing steps; wash incubation times of 1, 2, or 15 minutes; and wash solutions of 6 x SSC, 1 x SSC, 0.1 x SSC, or de-ionized water.
- Hybridization techniques and their optimization are well known in the art [ e.g. see refs 36, 37, 297, 299, etc. ].
- nucleic acid of the invention hybridizes to a target under low stringency conditions; in other embodiments it hybridizes under intermediate stringency conditions; in preferred embodiments, it hybridizes under high stringency conditions.
- An exemplary set of low stringency hybridization conditions is 50°C and 10 x SSC.
- An exemplary set of intermediate stringency hybridization conditions is 55°C and 1 x SSC.
- An exemplary set of high stringency hybridization conditions is 68°C and 0.1 x SSC.
- Nucleic acid comprising fragments of these sequences are also provided. These should comprise at least n consecutive nucleotides from the sequences and, depending on the particular sequence, n is 10 or more ( e.g. 12, 14, 15, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). Preferred fragments are those that are common to a nucleic acid sequence of the invention and to a nucleic acid sequence identified in any of references 5, 6, 8, 10 and 11.
- the invention provides nucleic acid of formula 5'-X-Y-Z-3', wherein: -X- is a nucleotide sequence consisting of x nucleotides; -Z- is a nucleotide sequence consisting of z nucleotides; -Y- is a nucleotide sequence consisting of either (a) a fragment of a nucleic acid sequence encoding one of SEQ ID NOS: 1 to 168 or (b) the complement of (a); and said nucleic acid 5'-X-Y-Z-3' is neither (i) a fragment of either a nucleic acid sequence encoding one of SEQ ID NOS: 1 to 168 nor (ii) the complement of (i).
- the -X- and/or -Z- moieties may comprise a promoter sequence (or its complement).
- the invention includes nucleic acid comprising sequences complementary to these sequences (e.g. for antisense or probing, or for use as primers).
- Nucleic acids of the invention can be used in hybridisation reactions (e.g. Northern or Southern blots, or in nucleic acid microarrays or 'gene chips') and amplification reactions (e.g. PCR, SDA, SSSR, LCR, TMA, NASBA, etc.) and other nucleic acid techniques.
- hybridisation reactions e.g. Northern or Southern blots, or in nucleic acid microarrays or 'gene chips'
- amplification reactions e.g. PCR, SDA, SSSR, LCR, TMA, NASBA, etc.
- Nucleic acid according to the invention can take various forms (e.g. single-stranded, double-stranded, vectors, primers, probes, labelled etc. ). Nucleic acids of the invention may be circular or branched, but will generally be linear. Unless otherwise specified or required, any embodiment of the invention that utilizes a nucleic acid may utilize both the double-stranded form and each of two complementary single-stranded forms which make up the double-stranded form. Primers and probes are generally single-stranded, as are antisense nucleic acids.
- Nucleic acids of the invention are preferably provided in purified or substantially purified form i.e. substantially free from other nucleic acids (e.g. free from naturally-occurring nucleic acids), particularly from other ExPEC or host cell nucleic acids, generally being at least about 50% pure (by weight), and usually at least about 90% pure. Nucleic acids of the invention are preferably ExPEC nucleic acids.
- Nucleic acids of the invention may be prepared in many ways e.g. by chemical synthesis (e.g. phosphoramidite synthesis of DNA) in whole or in part, by digesting longer nucleic acids using nucleases (e.g. restriction enzymes), by joining shorter nucleic acids or nucleotides ( e.g. using ligases or polymerases), from genomic or cDNA libraries, etc.
- nucleases e.g. restriction enzymes
- ligases or polymerases e.g. using ligases or polymerases
- Nucleic acid of the invention may be attached to a solid support (e.g. a bead, plate, filter, film, slide, microarray support, resin, etc. ). Nucleic acid of the invention may be labelled e.g. with a radioactive or fluorescent label, or a biotin label. This is particularly useful where the nucleic acid is to be used in detection techniques e.g. where the nucleic acid is a primer or as a probe.
- a solid support e.g. a bead, plate, filter, film, slide, microarray support, resin, etc.
- Nucleic acid of the invention may be labelled e.g. with a radioactive or fluorescent label, or a biotin label. This is particularly useful where the nucleic acid is to be used in detection techniques e.g. where the nucleic acid is a primer or as a probe.
- nucleic acid includes in general means a polymeric form of nucleotides of any length, which contain deoxyribonucleotides, ribonucleotides, and/or their analogs. It includes DNA, RNA, DNA/RNA hybrids. It also includes DNA or RNA analogs, such as those containing modified backbones (e.g. peptide nucleic acids (PNAs) or phosphorothioates) or modified bases.
- PNAs peptide nucleic acids
- the invention includes mRNA, tRNA, rRNA, ribozymes, DNA, cDNA, recombinant nucleic acids, branched nucleic acids, plasmids, vectors, probes, primers, etc. . Where nucleic acid of the invention takes the form of RNA, it may or may not have a 5' cap.
- Nucleic acids of the invention comprise sequences, but they may also comprise non-ExPEC sequences (e.g. in nucleic acids of formula 5'-X-Y-Z-3', as defined above). This is particularly useful for primers, which may thus comprise a first sequence complementary to a nucleic acid target and a second sequence which is not complementary to the nucleic acid target. Any such non-complementary sequences in the primer are preferably 5' to the complementary sequences. Typical non-complementary sequences comprise restriction sites or promoter sequences.
- Nucleic acids of the invention may be part of a vector i.e. part of a nucleic acid construct designed for transduction/transfection of one or more cell types.
- Vectors may be, for example, "cloning vectors” which are designed for isolation, propagation and replication of inserted nucleotides, "expression vectors” which are designed for expression of a nucleotide sequence in a host cell, "viral vectors” which is designed to result in the production of a recombinant virus or virus-like particle, or “shuttle vectors", which comprise the attributes of more than one type of vector.
- Preferred vectors are plasmids.
- a "host cell” includes an individual cell or cell culture which can be or has been a recipient of exogenous nucleic acid.
- Host cells include progeny of a single host cell, and the progeny may not necessarily be completely identical (in morphology or in total DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation and/or change.
- Host cells include cells transfected or infected in vivo or in vitro with nucleic acid of the invention.
- nucleic acid is DNA
- U in a RNA sequence
- T in the DNA
- RNA RNA
- T in a DNA sequence
- complement or “complementary” when used in relation to nucleic acids refers to Watson-Crick base pairing.
- the complement of C is G
- the complement of G is C
- the complement of A is T (or U)
- the complement of T is A.
- bases such as I (the purine inosine) e.g. to complement pyrimidines (C or T).
- the terms also imply a direction - the complement of 5'-ACAGT-3' is 5'-ACTGT-3' rather than 5'-TGTCA-3'.
- Nucleic acids of the invention can be used, for example: to produce polypeptides; as hybridization probes for the detection of nucleic acid in biological samples; to generate additional copies of the nucleic acids; to generate ribozymes or antisense oligonucleotides; as single-stranded DNA primers or probes; or as triple-strand forming oligonucleotides.
- the invention provides a process for producing nucleic acid of the invention, wherein the nucleic acid is synthesised in part or in whole using chemical means.
- the invention provides vectors comprising nucleotide sequences of the invention (e.g. cloning or expression vectors) and host cells transformed with such vectors.
- the invention also provides a kit comprising primers (e.g. PCR primers) for amplifying a template sequence contained within an ExPEC nucleic acid sequence, the kit comprising a first primer and a second primer, wherein the first primer is substantially complementary to said template sequence and the second primer is substantially complementary to a complement of said template sequence, wherein the parts of said primers which have substantial complementarity define the termini of the template sequence to be amplified.
- the first primer and/or the second primer may include a detectable label (e.g. a fluorescent label).
- the invention also provides a kit comprising first and second single-stranded oligonucleotides which allow amplification of a ExPEC template nucleic acid sequence contained in a single- or double-stranded nucleic acid (or mixture thereof), wherein: (a) the first oligonucleotide comprises a primer sequence which is substantially complementary to said template nucleic acid sequence; (b) the second oligonucleotide comprises a primer sequence which is substantially complementary to the complement of said template nucleic acid sequence; (c) the first oligonucleotide and/or the second oligonucleotide comprise(s) sequence which is not complementary to said template nucleic acid; and (d) said primer sequences define the termini of the template sequence to be amplified.
- the non-complementary sequence(s) of feature (c) are preferably upstream of (i.e. 5' to) the primer sequences.
- One or both of these (c) sequences may comprise a restriction site [e.g. ref. 38] or a promoter sequence [ e.g. 39].
- the first oligonucleotide and/or the second oligonucleotide may include a detectable label (e.g. a fluorescent label).
- the invention provides a process for detecting nucleic acid of the invention, comprising: (a) contacting a nucleic probe according to the invention with a biological sample under hybridising conditions to form duplexes; and (b) detecting said duplexes.
- the invention provides a process for detecting in a biological sample (e.g. blood), comprising contacting nucleic acid according to the invention with the biological sample under hybridising conditions.
- the process may involve nucleic acid amplification (e.g. PCR, SDA, SSSR, LCR, TMA, NASBA, etc. ) or hybridisation (e.g. microarrays, blots, hybridisation with a probe in solution etc.).
- PCR detection of ExPEC in clinical samples has been reported [ e.g. see ref. 40].
- Clinical assays based on nucleic acid are described in general in ref. 41.
- the invention provides a process for preparing a fragment of a target sequence, wherein the fragment is prepared by extension of a nucleic acid primer.
- the target sequence and/or the primer are nucleic acids of the invention.
- the primer extension reaction may involve nucleic acid amplification (e.g. PCR, SDA, SSSR, LCR, TMA, NASBA, etc. ).
- Nucleic acid amplification according to the invention may be quantitative and/or real-time.
- nucleic acids are preferably at least 7 nucleotides in length (e.g. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 50, 55, 60, 65, 70, 75, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, 300 nucleotides or longer).
- nucleic acids are preferably at most 500 nucleotides in length (e.g. 450, 400, 350, 300, 250, 200, 150, 140, 130, 120, 110, 100, 90, 80, 75, 70, 65, 60, 55, 50, 45, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15 nucleotides or shorter).
- Primers and probes of the invention, and other nucleic acids used for hybridization are preferably between 10 and 30 nucleotides in length ( e.g. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides).
- Reference 42 describes the preparation of vesicles from a uropathogenic (UPEC) strain by the knockout of mltA (a murein lytic transglycosylase) or one or more of the components of the E.coli Tol-Pal complex [43], such as tolA, tolQ, tolB, pal and/or tolR.
- mltA murein lytic transglycosylase
- Tol-Pal complex such as tolA, tolQ, tolB, pal and/or tolR.
- These vesicles can be improved by making one or more further genetic changes to the chromosome of the bacterium or through insertion of episomal elements (e.g. expression vectors) in order to increase the amount of and/or immunoaccessibility of protective antigens on the surface the vesicles.
- One way of obtaining such improvements is to up-regulate the expression of the polypeptides of the invention.
- Many different genetic strategies for increasing the expression of a target protein are well-known in the art and can be distinguished into two broad categories: one relying on modifications of the chromosome (e.g. replacement of the wild-type promoter with a stronger promoter, inactivation of natural repressor genes, etc.) to increase expression of an endogenous gene, and the other based on recombinant expression by episomal elements (e.g. high-copy number plasmids, vectors harboring an engineered target gene, etc. ) or integration of a exogenous gene in the chromosome. Practical examples for each of these approaches can be found in references 44 to 50.
- Another way of increasing vesicle immunogenicity and selectivity is to down-regulate the expression of immunodominant non-protective antigens or to down-regulate proteins that are homologous to proteins found in commensal strains. Further improvements can be achieved by detoxification of the Lipid A moiety of LPS. Similar changes have been previously described to produce improved vesicles from other Gram-negative pathogens (see for example references 51 & 52).
- the invention provides a pathogenic Escherichia coli bacterium (particularly a UPEC) having a knockout of mltA and/or of a component of its Tol-Pal complex, and one or more of: (i) a chromosomal gene encoding a polypeptide of the invention under the control of a promoter that provides higher expression levels of the polypeptide than the promoter that is naturally associated with the gene encoding the polypeptide; or (ii) an autonomously-replicating extrachromosomal element encoding a polypeptide of the invention, and optionally also (iii) a genetic modification to reduce the toxicity of the Lipid A moiety of E. coli LPS relative to wild-type LPS.
- the invention also provides vesicles obtainable by culturing such a bacterium, such as the vesicles that, during culture of the bacterium, are released into the culture medium.
- the invention provides immunogenic compositions comprising one or more outer membrane vesicles (OMVs) expressing one or more polypeptides of the invention.
- OMVs outer membrane vesicles
- the invention provides an immunogenic composition comprising one or more OMVs expressing one or more polypeptides comprising: (a) an amino acid sequence selected from the group consisting of SEQ ID NOs 1 to 168; (b) an amino acid sequence having at least 80% sequence identity to an amino acid sequence of (a); (c) an amino acid sequence which is a fragment of at least 10 consecutive amino acids from an amino acid sequence of (a); or (d) an amino acid sequence having at least 80% sequence identity to an amino acid sequence of (a) and including a fragment of at least 10 consecutive amino acids from an amino acid sequence of (a).
- the immunogenic composition comprises a polypeptide comprising a fragment which comprises at least one B-cell epitope of an amino acid sequence selected from the group consisting of SEQ ID NOs 1-168.
- compositions comprising: (a) polypeptide, antibody, vesicles and/or nucleic acid of the invention; and (b) a pharmaceutically acceptable carrier.
- compositions may be suitable as immunogenic compositions, for instance, or as diagnostic reagents, or as vaccines.
- Vaccines according to the invention may either be prophylactic ( i.e. to prevent infection) or therapeutic ( i.e. to treat infection), but will typically be prophylactic.
- a 'pharmaceutically acceptable carrier' includes any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition.
- Suitable carriers are typically large, slowly metabolised macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, sucrose, trehalose, lactose, and lipid aggregates (such as oil droplets or liposomes).
- Such carriers are well known to those of ordinary skill in the art.
- the vaccines may also contain diluents, such as water, saline, glycerol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present. Sterile pyrogen-free, phosphate-buffered physiologic saline is a typical carrier. A thorough discussion of pharmaceutically acceptable excipients is available in ref. 294.
- compositions of the invention may include an antimicrobial, particularly if packaged in a multiple dose format.
- compositions of the invention may comprise detergent e.g. a Tween (polysorbate), such as Tween 80.
- Detergents are generally present at low levels e.g. ⁇ 0.01 %.
- compositions of the invention may include sodium salts (e.g. sodium chloride) to give tonicity.
- sodium salts e.g. sodium chloride
- a concentration of 10 ⁇ 2mg/ml NaCl is typical.
- compositions of the invention will generally include a buffer.
- a phosphate buffer is typical.
- compositions of the invention may comprise a sugar alcohol (e.g. mannitol) or a disaccharide (e.g. sucrose or trehalose) e.g. at around 15-30mg/ml (e.g. 25 mg/ml), particularly if they are to be lyophilised or if they include material which has been reconstituted from lyophilised material.
- a sugar alcohol e.g. mannitol
- a disaccharide e.g. sucrose or trehalose
- the pH of a composition for lyophilisation may be adjusted to around 6.1 prior to lyophilisation.
- compositions will usually include a vaccine adjuvant.
- the adjuvant may be selected from one or more of the group consisting of a TH1 adjuvant and TH2 adjuvant, further discussed below.
- Adjuvants which may be used in compositions of the invention include, but are not limited to:
- Mineral containing compositions suitable for use as adjuvants in the invention include mineral salts, such as aluminium salts and calcium salts.
- the invention includes mineral salts such as hydroxides (e.g. oxyhydroxides), phosphates ( e.g. hydroxyphosphates, orthophosphates), sulphates, etc. [ e.g. see chapters 8 & 9 of ref. 53], or mixtures of different mineral compounds ( e.g. a mixture of a phosphate and a hydroxide adjuvant, optionally with an excess of the phosphate), with the compounds taking any suitable form ( e.g. gel, crystalline, amorphous, etc.), and with adsorption to the salt(s) being preferred.
- Mineral containing compositions may also be formulated as a particle of metal salt [54].
- a typical aluminium phosphate adjuvant is amorphous aluminium hydroxyphosphate with PO 4 /Al molar ratio between 0.84 and 0.92, included at 0.6mg Al 3+ /ml.
- Adsorption with a low dose of aluminium phosphate may be used e.g. between 50 and 100 ⁇ g Al 3+ per conjugate per dose.
- an aluminium phosphate it used and it is desired not to adsorb an antigen to the adjuvant, this is favoured by including free phosphate ions in solution ( e.g. by the use of a phosphate buffer).
- Suspensions of aluminium salts used to prepare compositions of the invention may contain a buffer (e.g. a phosphate or a histidine or a Tris buffer), but this is not always necessary.
- the suspensions are preferably sterile and pyrogen-free.
- a suspension may include free aqueous phosphate ions e.g. present at a concentration between 1.0 and 20 mM, preferably between 5 and 15 mM, and more preferably about 10 mM.
- the suspensions may also comprise sodium chloride.
- the invention can use a mixture of both an aluminium hydroxide and an aluminium phosphate.
- there may be more aluminium phosphate than hydroxide e.g. a weight ratio of at least 2:1 e.g. ⁇ 5:1, ⁇ 6:1, ⁇ 7:1, ⁇ 8:1, ⁇ 9:1, etc.
- Aluminum salts may be included in vaccines of the invention such that the dose of Al 3+ is between 0.2 and 1.0 mg per dose.
- Oil emulsion compositions suitable for use as adjuvants in the invention include squalene-water emulsions, such as MF59 (5% Squalene, 0.5% Tween 80, and 0.5% Span 85, formulated into submicron particles using a microfluidizer) [Chapter 10 of ref. 53; see also refs. 55-57, chapter 12 of ref. 58].
- MF59 is used as the adjuvant in the FLUADTM influenza virus trivalent subunit vaccine.
- the emulsion advantageously includes citrate ions e.g. 10mM sodium citrate buffer.
- Particularly preferred adjuvants for use in the compositions are submicron oil-in-water emulsions.
- Preferred submicron oil-in-water emulsions for use herein are squalene/water emulsions optionally containing varying amounts of MTP-PE, such as a submicron oil-in-water emulsion containing 4-5% w/v squalene, 0.25-1.0% w/v Tween 80 (polyoxyelthylenesorbitan monooleate), and/or 0.25-1.0% Span 85 (sorbitan trioleate), and, optionally, N-acetylmuramyl-L-alanyl-D-isogluatminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphophoryloxy)-ethylamine (MTP-PE).
- MTP-PE N-acetylmuramyl-L-alany
- An emulsion of squalene, a tocopherol, and Tween 80 can be used.
- the emulsion may include phosphate buffered saline. It may also include Span 85 (e.g. at 1%) and/or lecithin. These emulsions may have from 2 to 10% squalene, from 2 to 10% tocopherol and from 0.3 to 3% Tween 80, and the weight ratio of squalene:tocopherol is preferably ⁇ 1 as this provides a more stable emulsion.
- One such emulsion can be made by dissolving Tween 80 in PBS to give a 2% solution, then mixing 90ml of this solution with a mixture of (5 g of DL- ⁇ -tocopherol and 5 ml squalene), then microfluidising the mixture.
- the resulting emulsion may have submicron oil droplets e.g. with an average diameter of between 100 and 250 nm, preferably about 180nm.
- Triton detergent e.g. Triton X-100
- An emulsion of squalane, polysorbate 80 and poloxamer 401 (“PluronicTM L121") can be used.
- the emulsion can be formulated in phosphate buffered saline, pH 7.4.
- This emulsion is a useful delivery vehicle for muramyl dipeptides, and has been used with threonyl-MDP in the "SAF-1" adjuvant [61] (0.05-1% Thr-MDP, 5% squalane, 2.5% Pluronic L121 and 0.2% polysorbate 80). It can also be used without the Thr-MDP, as in the "AF” adjuvant [62] (5% squalane, 1.25% Pluronic L121 and 0.2% polysorbate 80). Microfluidisation is preferred.
- CFA Complete Freund's adjuvant
- IFA incomplete Freund's adjuvant
- Saponin formulations may also be used as adjuvants in the invention.
- Saponins are a heterologous group of sterol glycosides and triterpenoid glycosides that are found in the bark, leaves, stems, roots and even flowers of a wide range of plant species. Saponins isolated from the bark of the Quillaia saponaria Molina tree have been widely studied as adjuvants. Saponin can also be commercially obtained from Smilax ornata (sarsaprilla), Gypsophilla paniculata (brides veil), and Saponaria officianalis (soap root).
- Saponin adjuvant formulations include purified formulations, such as QS21, as well as lipid formulations, such as ISCOMs.
- Saponin compositions have been purified using HPLC and RP-HPLC. Specific purified fractions using these techniques have been identified, including QS7, QS17, QS18, QS21, QH-A, QH-B and QH-C.
- the saponin is QS21.
- a method of production of QS21 is disclosed in ref. 63.
- Saponin formulations may also comprise a sterol, such as cholesterol [64].
- ISCOMs immunostimulating complexs
- phospholipid such as phosphatidylethanolamine or phosphatidylcholine.
- Any known saponin can be used in ISCOMs.
- the ISCOM includes one or more of QuilA, QHA and QHC.
- ISCOMs are further described in refs. 64-66.
- the ISCOMS may be devoid of additional detergent(s) [67].
- Virosomes and virus-like particles can also be used as adjuvants in the invention.
- These structures generally contain one or more proteins from a virus optionally combined or formulated with a phospholipid. They are generally non-pathogenic, non-replicating and generally do not contain any of the native viral genome.
- the viral proteins may be recombinantly produced or isolated from whole viruses.
- viral proteins suitable for use in virosomes or VLPs include proteins derived from influenza virus (such as HA or NA), Hepatitis B virus (such as core or capsid proteins), Hepatitis E virus, measles virus, Sindbis virus, Rotavirus, Foot-and-Mouth Disease virus, Retrovirus, Norwalk virus, human Papilloma virus, HIV, RNA-phages, Qß-phage (such as coat proteins), GA-phage, fr-phage, AP205 phage, and Ty (such as retrotransposon Ty protein p1).
- VLPs are discussed further in refs. 70-75.
- Virosomes are discussed further in, for example, ref. 76
- Adjuvants suitable for use in the invention include bacterial or microbial derivatives such as non-toxic derivatives of enterobacterial lipopolysaccharide (LPS), Lipid A derivatives, immunostimulatory oligonucleotides and ADP-ribosylating toxins and detoxified derivatives thereof.
- LPS enterobacterial lipopolysaccharide
- Lipid A derivatives Lipid A derivatives
- immunostimulatory oligonucleotides and ADP-ribosylating toxins and detoxified derivatives thereof.
- Non-toxic derivatives of LPS include monophosphoryl lipid A (MPL) and 3-O-deacylated MPL (3dMPL).
- 3dMPL is a mixture of 3 de-O-acylated monophosphoryl lipid A with 4, 5 or 6 acylated chains.
- a preferred "small particle" form of 3 De-O-acylated monophosphoryl lipid A is disclosed in ref. 77. Such "small particles" of 3dMPL are small enough to be sterile filtered through a 0.22 ⁇ m membrane [77].
- Other non-toxic LPS derivatives include monophosphoryl lipid A mimics, such as aminoalkyl glucosaminide phosphate derivatives e.g. RC-529 [78,79].
- Lipid A derivatives include derivatives of lipid A from Escherichia coli such as OM-174.
- OM-174 is described for example in refs. 80 & 81.
- Immunostimulatory oligonucleotides suitable for use as adjuvants in the invention include nucleotide sequences containing a CpG motif (a dinucleotide sequence containing an unmethylated cytosine linked by a phosphate bond to a guanosine). Double-stranded RNAs and oligonucleotides containing palindromic or poly(dG) sequences have also been shown to be immunostimulatory.
- the CpG's can include nucleotide modifications/analogs such as phosphorothioate modifications and can be double-stranded or single-stranded.
- References 82, 83 and 84 disclose possible analog substitutions e.g. replacement of guanosine with 2'-deoxy-7-deazaguanosine.
- the adjuvant effect of CpG oligonucleotides is further discussed in refs. 85-90.
- the CpG sequence may be directed to TLR9, such as the motif GTCGTT or TTCGTT [91].
- the CpG sequence may be specific for inducing a Th1 immune response, such as a CpG-A ODN, or it may be more specific for inducing a B cell response, such a CpG-B ODN.
- CpG-A and CpG-B ODNs are discussed in refs. 92-94.
- the CpG is a CpG-A ODN.
- the CpG oligonucleotide is constructed so that the 5' end is accessible for receptor recognition.
- two CpG oligonucleotide sequences may be attached at their 3' ends to form "immunomers". See, for example, refs. 91 & 95-97.
- immunostimulatory oligonucleotides include a double-stranded RNA, or an oligonucleotide containing a palindromic sequence, or an oligonucleotide containing a poly(dG) sequence.
- Bacterial ADP-ribosylating toxins and detoxified derivatives thereof may be used as adjuvants in the invention.
- the protein is derived from E.coli ( E.coli heat labile enterotoxin "LT"), cholera ("CT"), or pertussis ("PT").
- LT E.coli heat labile enterotoxin
- CT cholera
- PT pertussis
- the use of detoxified ADP-ribosylating toxins as mucosal adjuvants is described in ref. 98 and as parenteral adjuvants in ref. 99.
- the toxin or toxoid is preferably in the form of a holotoxin, comprising both A and B subunits.
- the A subunit contains a detoxifying mutation; preferably the B subunit is not mutated.
- the adjuvant is a detoxified LT mutant such as LT-K63, LT-R72, and LT-G192.
- LT-K63 LT-K63
- LT-R72 LT-G192.
- ADP-ribosylating toxins and detoxified derivaties thereof, particularly LT-K63 and LT-R72, as adjuvants can be found in refs. 100-107.
- Numerical reference for amino acid substitutions is preferably based on the alignments of the A and B subunits of ADP-ribosylating toxins set forth in ref. 108.
- Compounds of formula I, II or III, or salts thereof, can also be used as adjuvants: as defined in reference 109, such as 'ER 803058', 'ER 803732', 'ER 804053', ER 804058', 'ER 804059', 'ER 804442', 'ER 804680', 'ER 804764', ER 803022 or 'ER 804057' e.g.:
- Human immunomodulators suitable for use as adjuvants in the invention include cytokines, such as interleukins (e.g. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12 [110], etc. ) [111], interferons (e.g. interferon- ⁇ ), macrophage colony stimulating factor, tumor necrosis factor and macrophage inflammatory protein-1alpha (MIP-1alpha) and MIP-1beta [112].
- interleukins e.g. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12 [110], etc.
- interferons e.g. interferon- ⁇
- macrophage colony stimulating factor e.g. interferon- ⁇
- MIP-1alpha macrophage inflammatory protein-1alpha
- MIP-1beta MIP-1beta
- Bioadhesives and mucoadhesives may also be used as adjuvants in the invention.
- Suitable bioadhesives include esterified hyaluronic acid microspheres [113] or mucoadhesives such as cross-linked derivatives of poly(acrylic acid), polyvinyl alcohol, polyvinyl pyrollidone, polysaccharides and carboxymethylcellulose. Chitosan and derivatives thereof may also be used as adjuvants in the invention [114].
- Microparticles may also be used as adjuvants in the invention.
- Microparticles i.e. a particle of ⁇ 100nm to ⁇ 150 ⁇ m in diameter, more preferably ⁇ 200nm to ⁇ 30 ⁇ m in diameter, and most preferably ⁇ 500nm to ⁇ 10 ⁇ m in diameter
- materials that are biodegradable and non-toxic e.g. a poly( ⁇ -hydroxy acid), a polyhydroxybutyric acid, a polyorthoester, a polyanhydride, a polycaprolactone, etc.
- a negatively-charged surface e.g. with SDS
- a positively-charged surface e.g. with a cationic detergent, such as CTAB
- liposome formulations suitable for use as adjuvants are described in refs. 115-117.
- Adjuvants suitable for use in the invention include polyoxyethylene ethers and polyoxyethylene esters [118]. Such formulations further include polyoxyethylene sorbitan ester surfactants in combination with an octoxynol [119] as well as polyoxyethylene alkyl ethers or ester surfactants in combination with at least one additional non-ionic surfactant such as an octoxynol [120].
- Preferred polyoxyethylene ethers are selected from the following group: polyoxyethylene-9-lauryl ether (laureth 9), polyoxyethylene-9-steoryl ether, polyoxytheylene-8-steoryl ether, polyoxyethylene-4-lauryl ether, polyoxyethylene-35-lauryl ether, and polyoxyethylene-23-lauryl ether.
- Phosphazene adjuvants include poly[di(carboxylatophenoxy)phosphazene] ("PCPP") as described, for example, in refs. 121 and 122.
- muramyl peptides suitable for use as adjuvants in the invention include N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), and N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine MTP-PE).
- thr-MDP N-acetyl-muramyl-L-threonyl-D-isoglutamine
- nor-MDP N-acetyl-normuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-
- Imidazoquinoline adjuvants include Imiquimod ("R-837”) [123,124], Resiquimod ("R-848”) [125], and their analogs; and salts thereof (e.g. the hydrochloride salts). Further details about immunostimulatory imidazoquinolines can be found in references 126 to 130.
- thiosemicarbazone compounds as well as methods of formulating, manufacturing, and screening for compounds all suitable for use as adjuvants in the invention include those described in ref. 131.
- the thiosemicarbazones are particularly effective in the stimulation of human peripheral blood mononuclear cells for the production of cytokines, such as TNF- ⁇ .
- tryptanthrin compounds as well as methods of formulating, manufacturing, and screening for compounds all suitable for use as adjuvants in the invention include those described in ref. 132.
- the tryptanthrin compounds are particularly effective in the stimulation of human peripheral blood mononuclear cells for the production of cytokines, such as TNF- ⁇ .
- nucleoside analogs can be used as adjuvants, such as (a) Isatorabine (ANA-245; 7-thia-8-oxoguanosine): and prodrugs thereof; (b) ANA975; (c) ANA-025-1; (d) ANA380; (e) the compounds disclosed in references 133 to 135; (f) a compound having the formula: wherein:
- Adjuvants containing lipids linked to a phosphate-containing acyclic backbone include the TLR4 antagonist E5564 [136,137]:
- SIPs Small molecule immunopotentiators
- SMIPs include:
- One adjuvant is an outer membrane protein proteosome preparation prepared from a first Gram-negative bacterium in combination with a liposaccharide preparation derived from a second Gram-negative bacterium, wherein the outer membrane protein proteosome and liposaccharide preparations form a stable non-covalent adjuvant complex.
- Such complexes include "IVX-908", a complex comprised of Neisseria meningitidis outer membrane and lipopolysaccharides. They have been used as adjuvants for influenza vaccines [138].
- the invention may also comprise combinations of one or more of the adjuvants identified above.
- the following combinations may be used as adjuvant compositions in the invention: (1) a saponin and an oil-in-water emulsion [150]; (2) a saponin (e.g. QS21) + a non-toxic LPS derivative (e.g. 3dMPL) [151]; (3) a saponin ( e.g. QS21) + a non-toxic LPS derivative (e.g. 3dMPL) + a cholesterol; (4) a saponin (e.g.
- Ribi TM adjuvant system (RAS), (Ribi Immunochem) containing 2% squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (DetoxTM); (8) one or more mineral salts (such as an aluminum salt) + a non-toxic derivative of LPS (such as 3dMPL); and (9) one or more mineral salts (such as an aluminum salt) + an immunostimulatory oligonucleotide (such as a nucleotide sequence including a CpG motif).
- RAS Ribi TM adjuvant system
- Ribi Immunochem containing 2% squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall ske
- compositions of the invention will preferably elicit both a cell mediated immune response as well as a humoral immune response in order to effectively address a uropathogenic infection.
- This immune response will preferably induce long lasting (e.g. neutralising) antibodies and a cell mediated immunity that can quickly respond upon exposure to UPEC-associated antigens.
- CD8 T cells can express a CD8 co-receptor and are commonly referred to as cytotoxic T lymphocytes (CTLs).
- CTLs cytotoxic T lymphocytes
- CD8 T cells are able to recognized or interact with antigens displayed on MHC Class I molecules.
- CD4 T cells can express a CD4 co-receptor and are commonly referred to as T helper cells.
- CD4 T cells are able to recognize antigenic peptides bound to MHC class II molecules. Upon interaction with a MHC class II molecule, the CD4 cells can secrete factors such as cytokines.
- helper T cells or CD4 + cells can be further divided into two functionally distinct subsets: TH1 phenotype and TH2 phenotypes which differ in their cytokine and effector function.
- Activated THI cells enhance cellular immunity (including an increase in antigen-specific CTL production) and are therefore of particular value in responding to intracellular infections.
- Activated TH1 cells may secrete one or more of IL-2, IFN- ⁇ , and TNF- ⁇ .
- a TH1 immune response may result in local inflammatory reactions by activating macrophages, NK (natural killer) cells, and CD8 cytotoxic T cells (CTLs).
- a TH1 immune response may also act to expand the immune response by stimulating growth of B and T cells with IL-12.
- TH1 stimulated B cells may secrete IgG2a.
- Activated TH2 cells enhance antibody production and are therefore of particular value in responding to extracellular infections.
- Activated TH2 cells may secrete one or more of IL-4, IL-5, IL-6, and IL-10.
- a TH2 immune response may result in the production of IgG1, IgE, IgA and memory B cells for future protection.
- An enhanced immune response may include one or more of an enhanced TH1 immune response and a TH2 immune response.
- An enhanced TH1 immune response may include one or more of an increase in CTLs, an increase in one or more of the cytokines associated with a TH1 immune response (such as IL-2, IFN- ⁇ , and TNF- ⁇ ), an increase in activated macrophages, an increase in NK activity, or an increase in the production of IgG2a.
- the enhanced TH1 immune response will include an increase in IgG2a production.
- An enhanced TH2 immune response may include one or more of an increase in one or more of the cytokines associated with a TH2 immune response (such as IL-4, IL-5, IL-6 and IL-10), or an increase in the production of IgG1, IgE, IgA and memory B cells.
- the enhanced TH2 immune resonse will include an increase in IgG 1 production.
- a TH1 immune response may be elicited using a TH1 adjuvant.
- a TH1 adjuvant will generally elicit increased levels of IgG2a production relative to immunization of the antigen without adjuvant.
- TH1 adjuvants suitable for use in the invention may include for example saponin formulations, virosomes and virus like particles, non-toxic derivatives of enterobacterial lipopolysaccharide (LPS), immunostimulatory oligonucleotides.
- LPS enterobacterial lipopolysaccharide
- Immunostimulatory oligonucleotides such as oligonucleotides containing a CpG motif, are preferred TH1 adjuvants for use in the invention.
- a TH2 immune response may be elicited using a TH2 adjuvant.
- a TH2 adjuvant will generally elicit increased levels of IgG1 production relative to immunization of the antigen without adjuvant.
- TH2 adjuvants suitable for use in the invention include, for example, mineral containing compositions, oil-emulsions, and ADP-ribosylating toxins and detoxified derivatives hereof. Mineral containing compositions, such as aluminium salts are preferred TH2 adjuvants for use in the invention.
- the invention includes a composition comprising a combination of a TH1 adjuvant and a TH2 adjuvant.
- a composition comprising a combination of a TH1 adjuvant and a TH2 adjuvant.
- such a composition elicits an enhanced TH1 and an enhanced TH2 response i.e. an increase in the production of both IgG1 and IgG2a production relative to immunization without an adjuvant.
- the composition comprising a combination of a TH1 and a TH2 adjuvant elicits an increased TH1 and/or an increased TH2 immune response relative to immunization with a single adjuvant (i.e. relative to immunization with a TH1 adjuvant alone or immunization with a TH2 adjuvant alone).
- the immune response may be one or both of a TH1 immune response and a TH2 response.
- immune response provides for one or both of an enhanced TH1 response and an enhanced TH2 response.
- the enhanced immune response may be one or both of a systemic and a mucosal immune response.
- the immune response provides for one or both of an enhanced systemic and an enhanced mucosal immune response.
- the mucosal immune response is a TH2 immune response.
- the mucosal immune response includes an increase in the production of IgA.
- aluminium hydroxide or aluminium phosphate adjuvant is particularly preferred, and antigens are generally adsorbed to these salts.
- compositions of the invention is preferably between 6 and 8, preferably about 7. Stable pH may be maintained by the use of a buffer. Where a composition comprises an aluminium hydroxide salt, it is preferred to use a histidine buffer [154].
- the composition may be sterile and/or pyrogen-free. Compositions of the invention may be isotonic with respect to humans.
- compositions may be presented in vials, or they may be presented in ready-filled syringes.
- the syringes may be supplied with or without needles.
- a syringe will include a single dose of the composition, whereas a vial may include a single dose or multiple doses.
- injectable compositions will usually be liquid solutions or suspensions. Alternatively, they may be presented in solid form (e.g. freeze-dried) for solution or suspension in liquid vehicles prior to injection.
- compositions of the invention may be packaged in unit dose form or in multiple dose form.
- vials are preferred to pre-filled syringes.
- Effective dosage volumes can be routinely established, but a typical human dose of the composition for injection has a volume of 0.5ml.
- kits may comprise two vials, or it may comprise one ready-filled syringe and one vial, with the contents of the syringe being used to reactivate the contents of the vial prior to injection.
- the invention provides for a kit comprising a first component and a second component, wherein: the first component comprises one or more polypeptide, antibody, vesicle and/or nucleic acid of the invention; and the second component comprises one or more of the following: instructions for administering a composition to a patient, a syringe or other delivery device, an adjuvant, and/or a pharmaceutically acceptable formulating solution.
- the invention also provides a delivery device (e.g. a syringe) pre-filled with the immunogenic compositions of the invention.
- a delivery device e.g. a syringe
- Immunogenic compositions used as vaccines comprise an immunologically effective amount of antigen(s), as well as any other components, as needed.
- 'immunologically effective amount' it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, age, the taxonomic group of individual to be treated ( e.g. non-human primate, primate, etc. ), the capacity of the individual's immune system to synthesise antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials, and a typical quantity of each antigen per dose is between 0.1 ⁇ g and 1mg per antigen.
- the immunogenic compositions described above include polypeptide antigens from UPEC.
- nucleic acid preferably DNA e .g. in the form of a plasmid
- Nucleic acid immunisation is now a developed field (e.g. see references 155 to 162 etc. ), and has been applied to many vaccines.
- the nucleic acid encoding the immunogen is expressed in vivo after delivery to a patient and the expressed immunogen then stimulates the immune system.
- the active ingredient will typically take the form of a nucleic acid vector comprising: (i) a promoter; (ii) a sequence encoding the immunogen, operably linked to the promoter; and optionally (iii) a selectable marker.
- Preferred vectors may further comprise (iv) an origin of replication; and (v) a transcription terminator downstream of and operably linked to (ii).
- (i) and (v) will be eukaryotic and (iii) and (iv) will be prokaryotic.
- Preferred promoters are viral promoters e.g. from cytomegalovirus (CMV).
- the vector may also include transcriptional regulatory sequences (e.g. enhancers) in addition to the promoter and which interact functionally with the promoter.
- Preferred vectors include the immediate-early CMV enhancer/promoter, and more preferred vectors also include CMV intron A.
- the promoter is operably linked to a downstream sequence encoding an immunogen, such that expression of the immunogen-encoding sequence is under the promoter's control.
- a marker preferably functions in a microbial host (e.g. in a prokaryote, in a bacteria, in a yeast).
- the marker is preferably a prokaryotic selectable marker (e.g. transcribed under the control of a prokaryotic promoter).
- prokaryotic selectable marker e.g. transcribed under the control of a prokaryotic promoter.
- typical markers are antibiotic resistance genes.
- the vector of the invention is preferably an autonomously replicating episomal or extrachromosomal vector, such as a plasmid.
- the vector of the invention preferably comprises an origin of replication. It is preferred that the origin of replication is active in prokaryotes but not in eukaryotes.
- Preferred vectors thus include a prokaryotic marker for selection of the vector, a prokaryotic origin of replication, but a eukaryotic promoter for driving transcription of the immunogen-encoding sequence.
- the vectors will therefore (a) be amplified and selected in prokaryotic hosts without polypeptide expression, but (b) be expressed in eukaryotic hosts without being amplified. This arrangement is ideal for nucleic acid immunization vectors.
- the vector of the invention may comprise a eukaryotic transcriptional terminator sequence downstream of the coding sequence. This can enhance transcription levels.
- the vector of the invention preferably comprises a polyadenylation sequence.
- a preferred polyadenylation sequence is from bovine growth hormone.
- the vector of the invention may comprise a multiple cloning site.
- the vector may comprise a second eukaryotic coding sequence.
- the vector may also comprise an IRES upstream of said second sequence in order to permit translation of a second eukaryotic polypeptide from the same transcript as the immunogen.
- the immunogen-coding sequence may be downstream of an IRES.
- the vector of the invention may comprise unmethylated CpG motifs e.g. unmethylated DNA sequences which have in common a cytosine preceding a guanosine, flanked by two 5' purines and two 3' pyrimidines. In their unmethylated form these DNA motifs have been demonstrated to be potent stimulators of several types of immune cell.
- Vectors may be delivered in a targeted way.
- Receptor-mediated DNA therapy techniques are described in, for example, references 163 to 168.
- Therapeutic compositions containing a nucleic acid are administered in a range of about 100ng to about 200mg of DNA for local administration in a gene therapy protocol. Concentration ranges of about 500 ng to about 50 mg, about 1 ⁇ g to about 2 mg, about 5 ⁇ g to about 500 ⁇ g, and about 20 ⁇ g to about 100 ⁇ g of DNA can also be used during a gene therapy protocol.
- Factors such as method of action (e.g. for enhancing or inhibiting levels of the encoded gene product) and efficacy of transformation and expression are considerations which will affect the dosage required for ultimate efficacy.
- Vectors can be delivered using gene delivery vehicles.
- the gene delivery vehicle can be of viral or non-viral origin (see generally references 169 to 172).
- Viral-based vectors for delivery of a desired nucleic acid and expression in a desired cell are well known in the art.
- Exemplary viral-based vehicles include, but are not limited to, recombinant retroviruses (e.g. references 173 to 183), alphavirus-based vectors (e.g. Sindbis virus vectors, Semliki forest virus (ATCC VR-67; ATCC VR-1247), Ross River virus (ATCC VR-373; ATCC VR-1246) and Venezuelan equine encephalitis virus (ATCC VR-923; ATCC VR-1250; ATCC VR 1249; ATCC VR-532); hybrids or chimeras of these viruses may also be used (e.g. U.S. Publication No.
- poxvirus vectors e.g. vaccinia, fowlpox, canarypox, modified vaccinia Ankara, etc.
- adenovirus vectors e.g. see refs. 184 to 189.
- AAV adeno-associated virus
- Non-viral delivery vehicles and methods can also be employed, including, but not limited to, polycationic condensed DNA linked or unlinked to killed adenovirus alone [ e.g. 190], ligand-linked DNA [191], eukaryotic cell delivery vehicles cells [e.g. refs. 192 to 196] and nucleic charge neutralization or fusion with cell membranes. Naked DNA can also be employed. Exemplary naked DNA introduction methods are described in refs. 197 and 198. Liposomes (e.g. immunoliposomes) that can act as gene delivery vehicles are described in refs. 199 to 203. Additional approaches are described in references 204 & 205.
- non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in ref. 205.
- the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials or use of ionizing radiation [ e.g. refs. 206 & 207].
- Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun [208] or use of ionizing radiation for activating transferred genes [206 & 207].
- Delivery DNA using PLG ⁇ poly(lactide-co-glycolide) ⁇ microparticles is a particularly preferred method e.g. by adsorption to the microparticles, which are optionally treated to have a negatively-charged surface (e.g. treated with SDS) or a positively-charged surface (e.g. treated with a cationic detergent, such as CTAB).
- a negatively-charged surface e.g. treated with SDS
- a positively-charged surface e.g. treated with a cationic detergent, such as CTAB
- the invention also provides a method of treating a patient, comprising administering to the patient a therapeutically effective amount of a composition of the invention.
- the patient may either be at risk from the disease themselves or may be a pregnant woman ('maternal immunisation' [209]).
- the invention provides nucleic acid, polypeptide, vesicle or antibody of the invention for use as medicaments ( e.g. as immunogenic compositions or as vaccines, or in a method of treating a patient) or as diagnostic reagents. It also provides the use of nucleic acid, polypeptide, vesicle or antibody of the invention in the manufacture of: (i) a medicament for treating or preventing disease and/or infection caused by an ExPEC bacterium; (ii) a diagnostic reagent for detecting the presence of or of antibodies raised against an ExPEC bacterium; and/or (iii) a reagent which can raise antibodies against an ExPEC bacterium.
- Said ExPEC bacterium can be of any serotype or strain.
- the ExPEC bacterium is a UPEC strain.
- the invention is useful for the prevention and/or treatment of diseases such as bacteremia, meningitis, a urinary tract infection, pyelonephritis and/or cystitis.
- diseases such as bacteremia, meningitis, a urinary tract infection, pyelonephritis and/or cystitis.
- the invention is particularly useful for the treatment of urinary tract infections.
- the patient is preferably a human.
- the human is preferably an adult (e.g. aged between 20 and 55).
- a vaccine intended for children or adolescents may also be administered to adults e.g. to assess safety, dosage, immunogenicity, etc.
- Female patients are a preferred subset, with sexually-active females aged 20-55 being a particularly preferred patient group.
- Another groups of patients is females aged 12-20, particularly for prophylactic use.
- Dogs which may be carriers of ExPEC [210,211].
- One way of checking efficacy of therapeutic treatment involves monitoring infection after administration of the composition of the invention.
- One way of checking efficacy of prophylactic treatment involves monitoring immune responses against an administered polypeptide after administration.
- Immunogenicity of compositions of the invention can be determined by administering them to test subjects (e.g. children 12-16 months age, or animal models e.g. a mouse model) and then determining standard parameters including ELISA titres (GMT) of IgG. These immune responses will generally be determined around 4 weeks after administration of the composition, and compared to values determined before administration of the composition. Where more than one dose of the composition is administered, more than one post-administration determination may be made.
- Various mouse models of UTI are available [ e.g. refs. 212 & 213-214].
- Administration of polypeptide antigens is a preferred method of treatment for inducing immunity.
- Administration of antibodies of the invention is another preferred method of treatment. This method of passive immunisation is particularly useful for newborn children or for pregnant women. This method will typically use monoclonal antibodies, which will be humanised or fully human.
- compositions of the invention will generally be administered directly to a patient.
- Direct delivery may be accomplished by parenteral injection (e.g. subcutaneously, intraperitoneally, intravenously, intramuscularly, or to the interstitial space of a tissue), or by rectal, oral ( e.g. tablet, spray), vaginal, topical, transdermal, transcutaneous, intranasal, sublingual, ocular, aural, pulmonary or other mucosal administration.
- Intramuscular administration to the thigh or the upper arm is preferred.
- Injection may be via a needle (e.g. a hypodermic needle), but needle-free injection may alternatively be used.
- a typical intramuscular dose is 0.5 ml.
- the invention may be used to elicit systemic and/or mucosal immunity.
- the enhanced systemic and/or mucosal immunity is reflected in an enhanced TH1 and/or TH2 immune response.
- the enhanced immune response includes an increase in the production of IgG1 and/or IgG2a and/or IgA.
- Dosage treatment can be a single dose schedule or a multiple dose schedule. Multiple doses may be used in a primary immunisation schedule and/or in a booster immunisation schedule. A primary dose schedule may be followed by a booster dose schedule. In a multiple dose schedule the various doses may be given by the same or different routes e.g. a parenteral prime and mucosal boost, a mucosal prime and parenteral boost, etc. Suitable timing between priming doses (e.g. between 4-16 weeks), and between priming and boosting, can be routinely determined.
- a primary course of vaccination may include 1-10 separate doses, followed by other doses given at subsequent time intervals required to maintain and/or reinforce an immune response, for example, at 1-4 months for a second dose, and if needed, a subsequent dose or doses after several months.
- a single dose schedule may comprise one administration or multiple administrations (collectively a single dose schedule).
- a multiple dose schedule comprises multiple doses, wherein each dose may comprise one administration or multiple administrations.
- compositions may be prepared in various forms.
- the compositions may be prepared as injectables, either as liquid solutions or suspensions.
- Solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection can also be prepared (e.g. a lyophilised or a spray-freeze dried composition).
- the composition may be prepared for topical administration e.g. as an ointment, cream or powder.
- the composition be prepared for oral administration e.g. as a tablet or capsule, as a spray or as a syrup (optionally flavoured).
- the composition may be prepared for pulmonary administration e.g. as an inhaler, using a fine powder or a spray.
- the composition may be prepared as a suppository or pessary.
- the composition may be prepared for nasal, aural or ocular administration e.g. as spray, drops, gel or powder [ e.g. refs 215 & 216].
- the composition may be in kit form, designed such that a combined composition is reconstituted just prior to administration to a patient.
- kits may comprise one or more antigens in liquid form and one or more lyophilised antigens.
- compositions of the invention may be administered to patients at substantially the same time as ( e.g. during the same medical consultation or visit to a healthcare professional) other vaccines e.g. at substantially the same time as a measles vaccine, a mumps vaccine, a rubella vaccine, a MMR vaccine, a varicella vaccine, a MMRV vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a DTP vaccine, a conjugated H.
- other vaccines e.g. at substantially the same time as a measles vaccine, a mumps vaccine, a rubella vaccine, a MMR vaccine, a varicella vaccine, a MMRV vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a DTP vaccine, a conjugated H.
- influenzae type b vaccine a human papillomavirus vaccine, an inactivated poliovirus vaccine, a hepatitis B virus vaccine, a pneumococcal conjugate vaccine, a meningococcal conjugate vaccine, etc.
- they may be administered to patients at substantially the same time as ( e.g. during the same medical consultation or visit to a healthcare professional) an antibiotic, and in particular an antibiotic compound active against UPEC.
- compositions of the invention are antigenic components of compositions of the invention.
- the invention also provides a composition comprising a polypeptide or the invention and one or more of the following further antigens:
- composition may comprise one or more of these further antigens.
- antigens of the invention are combined with one or more additional, non E.coli antigens suitable for use in a vaccine designed to protect females against genitourinary and/or sexually transmitted diseases.
- the antigens may be combined with an antigen derived from the group consisting of Streptococcus agalactiae, Chlamydia trachomatis, Neisseria gonorrhoeae, papillomavirus and herpes simplex virus.
- human papillomavirus antigens may be from one or more of the strains, HPV 16, HPV 18, HPV 6 and/or HPV 11.
- Preferred gonococcal antigens include one or more of ngs13 (OmpA), OmpH, ngs576 (peptidyl-prolyl cis/trans isomerase (PPIase) protein), ngs41 and ngs 117.
- HPV antigens include one or more from the strains HPV 16, HPV 18, HPV 6 and HPV 11.
- Chlamydia trachomatis antigens include one or more of: CT045, CT089, CT242, CT316, CT381. CT396, CT398, CT444, CT467, CT547, CT587, CT823, CT761 and specific combinations of these antigens as disclosed in reference273.
- Chlamydia pneumoniae antigens include one or more of: CPn0324, Cpn0301, Cpn0482, Cpn0503, Cpn0525, Cpn0558, Cpn0584, Cpn0800, Cpn0979, Cpn0498, Cpn0300, Cpn0042, Cpn0013, Cpn450, Cpn0661, Cpn0557, Cpn0904, Clpn0795, Cpn0186 and Cpn0604 and specific combinations of these antigens as disclosed in reference274.
- Preferred GBS antigens include one or more of GBS80, GBS 104, GBS 59, GBS 67, GBS 322 and GBS 276.
- the antigen combinations of the invention are combined with one or more additional, non-ExPEC antigens suitable for use in a vaccine designed to protect elderly or immunocompromised individuals.
- the antigen combinations may be combined with an antigen derived from the group consisting of Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermis, Pseudomonas aeruginosa, Legionella pneumophila, Listeria monocytogenes, Neisseria meningitidies, influenza, and Parainfluenza virus ('PIV').
- Toxic protein antigens may be detoxified where necessary (e.g . detoxification of pertussis toxin by chemical and/or genetic means [240]).
- diphtheria antigen is included in the composition it is preferred also to include tetanus antigen and pertussis antigens. Similarly, where a tetanus antigen is included it is preferred also to include diphtheria and pertussis antigens. Similarly, where a pertussis antigen is included it is preferred also to include diphtheria and tetanus antigens. DTP combinations are thus preferred.
- Saccharide antigens are preferably in the form of conjugates.
- Carrier proteins for the conjugates include bacterial toxins (such as diphtheria toxoid or tetanus toxoid), the N.meningitidis outer membrane protein [275], synthetic peptides [276,277], heat shock proteins [278,279], pertussis proteins [280,281], protein D from H.influenzae [282,283], cytokines [284], lymphokines [284], H.influenzae proteins, hormones [284], growth factors [284], toxin A or B from C.difficile [285], iron-uptake proteins [286], artificial proteins comprising multiple human CD4+ T cell epitopes from various pathogen-derived antigens [287] such as the N19 protein [288], pneumococcal surface protein PspA [289], pneumolysin [290], etc.
- a preferred carrier protein is CRM197 protein [
- Antigens in the composition will typically be present at a concentration of at least 1 ⁇ g/ml each. In general, the concentration of any given antigen will be sufficient to elicit an immune response against that antigen.
- Antigens are preferably adsorbed to an aluminium salt.
- composition comprising X may consist exclusively of X or may include something additional e.g . X + Y.
- the N-terminus residues in the amino acid sequences in the sequence listing are given as the amino acid encoded by the first codon in the corresponding nucleotide sequence. Where the first codon is not ATG, it will be understood that it will be translated as methionine when the codon is a start codon, but will be translated as the indicated non-Met amino acid when the sequence is at the C-terminus of a fusion partner.
- the invention specifically discloses and encompasses each of the amino acid sequences of the sequence listing having a N-terminus methionine residue (e.g . a formyl-methionine residue) in place of any indicated non-Met residue. It also specifically discloses and encompasses each of the amino acid sequences of the sequence listing starting at any internal methionine residues in the sequences.
- sequences disclosed herein were originally identified in the 536 strain. Genome sequences of several other strains of E. coli are available. Standard search and alignment techniques can be used to identify in any of these (or other) further genome sequences the homolog of any particular sequence of the present invention. Moreover, the sequences can be used to design primers for amplification of homologous sequences from other strains. Thus the invention is not limited to strain 536 sequences, but rather encompasses such variants and homologs from other strains of E. coli, particularly ExPEC and UPEC strains. In general, suitable variants of a particular SEQ ID NO include its allelic variants, its polymorphic forms, its homologs, its orthologs, its paralogs, its mutants, etc.
- polypeptides used with the invention may, compared to the 536 sequence, include one or more (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, etc .) amino acid substitutions, insertions, deletions, etc. as disclosed above.
- nucleic acids and polypeptides of the invention may include sequences that:
- nucleic acids and polypeptides of the invention may additionally have further sequences to the N-terminus/5' and/or C-terminus/3' of these sequences (a) to (d).
- the invention does not encompass the polypeptides disclosed in reference 27, reference 28, U.S. Provisional Application No. 60/654,632 (filed February 18, 2005 ; priority application for refs 27 & 28) or U.S. Provisional Application No. 60/712,720 (filed August 29, 2005 ; priority application for ref. 28).
- Computer-based comparative and predictive tools were used to identify 93 polypeptides from the UPEC 536 strain, using criteria such as (a) less than 90% sequence identity with two commensal strains (mg1655, DH10B), (b) have a length greater than 100 amino acids, (c) have a non-cytoplasmic cellular localisation, and (d) are common to another UPEC strain (CFT073) but are not found in an MNEC strain (IHE3034). These sequences are listed in the sequence listing. Their amino acid sequences are SEQ ID NOS: 8 to 100.
- SEQ ID NOs 166 and 167 were identified.
- SEQ ID NOs 1-167 are listed in the sequence listing. They are also referred to by 'RECP' nomenclature, as shown in Table 4.
- the invention provides a credible utility for these polypeptides, namely in the provision of immunogenic compositions as described herein.
- polypeptides may be cloned, expressed and purified.
- the purified antigens may then be used to immunise mice, whose sera can be analysed by Western blot, ELISA and FACS, and further tested in both in vitro and in vivo experiments.
- Suitable in vitro experiments include testing the ability of antibodies to induce complement-mediated bacterial killing and/or opsonophagocytosis activity, to block binding of ExPEC strains (or the purified antigen) to human epithelial cells (e.g . in bladder cells) or other cell lines, and/or to inhibit adhesion/invasion of E.coli bacteria (e.g . K1 strain) to brain microvascular endothelial cells (BMEC).
- BMEC brain microvascular endothelial cells
- Suitable in vivo experiments include active and/or passive systemic immunisations and challenge in mouse models of UTI (adult mice), protection by active or passive immunisations against bacteremia and meningitis in 5-day-old rats challenged with E.coli K1 strain, and immunisation and intraperitoneal infection of adult mice with an ExPEC strain.
- the importance of the proteins to the bacterial life-cycle may be tested by creating isogenic knockout mutants.
- the mutants can also be used to ensure that sera raised by an antigen are specific for that antigen.
- Microarrays may be used to study expression patterns. Conservation and/or variability is assessed by sequencing the genes from multiple different ExPEC strains.
- the invention also provides an E.coli in which one or more of the polypeptides of the invention has/have been knocked out.
- a knockout mutation may be situated in the coding region of the gene or may lie within its transcriptional control regions ( e.g . within its promoter).
- a knockout mutation will reduce the level of mRNA encoding the antigen to ⁇ 1% of that produced by the wild-type bacterium, preferably ⁇ 0.5%, more preferably ⁇ 0.1%, and most preferably to 0%.
- Proteomic assays were carried out in order to select predicted surface-exposed proteins, which are specific for UPEC strains and absent in non-pathogenic strains (commensal and laboratory strains). Once selected these proteins may be expressed and purified and used to immunize mice.
- the first step consists in amplifying independently the upstream and downstream regions of the target gene (tolR) and the resistance marker cassette.
- the two PCR products obtained in step 1 are mixed with the amplification producer of the AB cassette at equimolar concentrations and submitted to a second round of PCR (a three way PCR) to generate a resistance marker cassette flanked by upstream and downstream 500bp (or more) regions homologous to the target gene.
- large amounts (1 ⁇ g) of the desired linear DNA are electroporated into lamda-red competent cells.
- LB media was inoculated with bacteria grown on plates and incubated overnight at 37°C under gentle shaking. The culture was used to inoculate 200ml of LB at OD600 0.1. Bacteria were grown to OD600 0.4 (or as specified). Culture was centrifuged for 10 minutes at 4000 x g and the supernatant was filtered through a 0.22mm filter to remove residual bacteria.
- Precipitation was performed by adding to the culture supernatant 10% final of a solution at 100% (w/v) TCA, 0.4% (w/v) deoxycholate. The precipitation was allowed to proceed for 30 minutes at 4°C. Precipitate was recovered by 10 minutes centrifugation at 20000 x g at 4°C. The pellet was washed once with 10% TCA (w/v) and twice with absolute ethanol. The pellet was dried with speed vac, and stored at -20°C.
- the wild type and mutated strains were subjected to SDS polyacrylamide gel electrophoresis from which it could be observed that there were many more bands in the supernatant of the mutated strains than the wildtype strains. Randomly picked bands demonstrated that most of the proteins in the supernatant were membrane proteins, indicating enrichment in membrane content.
- Culture supernatant was ultracentrifuged at 200000 x g for 2 hours at 4°C. The pellet was washed with PBS, resuspended in PBS, and stored at -20°C.
- Vesicles Prior to the guanidinium denaturation, Vesicles were precipitated with ethanol. 10 ⁇ g of OMV in PBS were precipitate by adding cold absolute ethanol to 90% final. Precipitation was allowed to proceed for 20 minutes at -20°C. Precipitate was recovered by 10 minutes centrifugation at 13000 x g. Pellet was resuspended with 50ml, 6M guanidinium, 15mM DTT, 200mM Tris-HCl, pH 8.0. Denaturation was allowed to proceed for 60 minutes at 60°C. Prior to digestion, solution was diluted 1/8 with a solution of 1.5M Tris pH 8.0 and 5mg of trypsin were added to the diluted solution. Digestion was allowed to proceed overnight at 37°C. Reaction was stopped by adding 0.1% final of formic acid. Peptides were extracted using Oasis extraction cartridges. Peptides were analyzed by LC coupled MS-MS.
- Proteins were quantified with the Bradford method, using the BSA as standard.
- Samples were analyzed with a sodium dodecyl sulfate (SDS) 4-12% polyacrylamide gel, using a Mini-Protean II electrophoresis apparatus. Samples were suspended in SDS sample buffer (0.06 M Tris-HCl pH 6.8, 10% (v/v) glycerol, 2% (w/v) SDS, 5% (v/v) 2-mercaptoethanol, 10 mg/ml bromophenol blue) and heated to 100°C for 5 min before SDS-polyacrylamide gel electrophoreis. After the run, gels were stained with Coomassie Blue
- Protein bands or spots were excised from gels, washed with 50 mM ammonium bicarbonate/acetonitrile (50/50, v/v) twice, washed once with pure acetonitrile and air-dried.
- the dried spots were digested at 37°C for 2 h by adding 7 to 10 ml of a solution containing 5 mM ammonium bicarbonate, 0.012 mg of sequencing-grade trypsin. After digestion 0.6 ml were loaded on a matrix pre-spotted target and air-dried. Spots were washed with 0.6ml of a solution of 70% ethanol, 0.1% trifluoracetic acid. Mass spectra were acquired on an ultraflex MALDI TOF mass spectrometer.
- Spectra were externally calibrated by using a combination of standards pre-spotted on the target. Protein identification was carried out by both automatic and manual comparisons of experimentally generated monoisotopic peaks of peptides in the mass range of 700 to 3,000 Da with computer-generated fingerprints, using the Mascot program.
- the first dimension was run using a IPGphor Isoelectric Focusing Unit, applying sequentially 150 V for 35 minutes, 500 V for 35 minutes, 1,000 V for 30 minutes, 2,600 V for 10 minutes, 3,500 V for 15 minutes, 4,200 V for 15 minutes, and finally 5,000 V to reach 10kVh.
- the strips were equilibrated by two 10 minute -incubations in 4 M urea, 2 M thiourea, 30% glycerol, 2% SDS, 5mM TBP, 50Mm Tris HCl pH 8.8, 2.5% acrylamide, Bromo phenol Blue 0.2%: Proteins were then separated on linear 4-12 % precasted polyacrylamide gels.
- Peptides were separated by nano-LC on a CapLC HPLC system connected to a Q-ToF Micro ESI mass spectrometer equipped with a nanospray source. Samples were loaded onto an Atlantis C18 NanoEase column (100 ⁇ m i.d. x 100mm), through a C18 trap column (300 ⁇ m i.d. x 5 mm). Peptides were eluted with a 50-min gradient from 2% to 60% of 95% ACN, in a solution of 0.1% formic acid at a flow rate of 400 nl/minute.
- the eluted peptides were subjected to an automated data-dependent acquisition program, using the MassLynx software, version 4.0, where a MS survey scan was used to automatically select multi-charged peptides over the m/z range of 400-2,000 for further MS/MS fragmentation. Up to three different components where subjected to MS/MS fragmentation at the same time. After data acquisition, the individual MS/MS spectra were combined, smoothed and centroided by MassLynx. Search and identification of peptides were performed in batch mode with a licensed version of MASCOT.
- the MASCOT search parameters were: (1) species: ExPEC (2) allowed number of missed cleavages (only for trypsin digestion): 6; (3) variable post-translational modifications: methionine oxidation; (4) peptide tolerance: ⁇ 500 ppm; (5) MS/MS tolerance: ⁇ 0.3 Da and (6): peptide charge: from +1 to +4. As for the previous platform, only significant hits as defined by MASCOT probability analysis were considered.
- the score thresholds for acceptance of protein identifications from at least one peptide were set by MASCOT as 18 for trypsin digestion and 36 for proteinase K digestion.
- the experimental model uses 5 week old - CD1 outbreed mice which are challenged with intravenous inoculation of virulent UPEC 536 E. coli strain.
- the challenge dose has been experimentally determined as the amount of bacteria able to kill 80% of adult mice within 4 days and corresponds to 4x10 7 cfu/mouse for the 536 strain.
- SEQ ID NO 168 which corresponds to the N-terminal region (amino acids 21-470) of SEQ ID NO 56, was cloned, expressed and purified.
- the purified antigens were used to immunize mice in the experimental mouse model in the following way.
- mice are immunized three times by subcutaneous injection of 150 ⁇ l of protein solution using freund's adjuvants as shown in the table below:
- Control mice Immunized mice: Day 0 75 ⁇ l of saline solution 75 ⁇ l of protein solution ( 20 ⁇ g) 75 ⁇ l of complete freund's adjuvant 75 ⁇ l of complete freund's adjuvant Day 21 75 ⁇ l of saline solution 75 ⁇ l of protein solution ( 20 ⁇ g) 75 ⁇ l of incomplete freund's adjuvant 75 ⁇ l of incomplete freund's adjuvant Day 35 75 ⁇ l of saline solution 75 ⁇ l of protein solution ( 20 ⁇ g) 75 ⁇ l of incomplete freund's adjuvant 75 ⁇ l of incomplete freund's adjuvant
- Plasma samples are collected the day before the first immunization (preimmune serum), at day 34 and 48 (day before challenge). Sera from immunized animals are tested by western blot and ELISA to determine the antibodies titer.
- E.coli UPEC 536 strain is streaked on LB agar plate from frozen stock and incubated overnight (ON) at 37° C in incubator.
- the culture is centrifuged and the pellet resuspended in the same volume with physiological solution and used for challenge undiluted.
- the culture is plated using a standard plate count method to verify the inoculum.
- 100 ⁇ l of the cell suspension containing 4x10 7 UPEC 536 bacteria is injected intravenously, using a 1ml syringe, to control and immunized mice. The number of deaths in each animal group at 24, 48, 72 and 96 hours after infection are recorded.
- the protection due to vaccination is evaluated by comparison of the survival in the vaccinated group and the survival in control group of mice at 96 hours from the challenge. Percentage of survival relative to controls is calculated using the formula: rate of deaths in vaccine group - rate of deaths in control group rate of deaths in control group
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US83897506P | 2006-08-16 | 2006-08-16 | |
EP07825559A EP2064230A2 (de) | 2006-08-16 | 2007-08-15 | Immungene aus uropathogenen escherichia coli |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07825559.3 Division | 2007-08-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2586790A2 true EP2586790A2 (de) | 2013-05-01 |
EP2586790A3 EP2586790A3 (de) | 2013-08-14 |
Family
ID=39082411
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07825559A Withdrawn EP2064230A2 (de) | 2006-08-16 | 2007-08-15 | Immungene aus uropathogenen escherichia coli |
EP12194903.6A Withdrawn EP2586790A3 (de) | 2006-08-16 | 2007-08-15 | Immunogene von uropathogenen Escherichia coli |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07825559A Withdrawn EP2064230A2 (de) | 2006-08-16 | 2007-08-15 | Immungene aus uropathogenen escherichia coli |
Country Status (6)
Country | Link |
---|---|
US (2) | US20100166788A1 (de) |
EP (2) | EP2064230A2 (de) |
JP (1) | JP2010500399A (de) |
AU (1) | AU2007285484B2 (de) |
CA (1) | CA2659552A1 (de) |
WO (1) | WO2008020330A2 (de) |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7082569B2 (en) | 2001-01-17 | 2006-07-25 | Outlooksoft Corporation | Systems and methods providing dynamic spreadsheet functionality |
JP2010500399A (ja) * | 2006-08-16 | 2010-01-07 | ノバルティス アーゲー | 尿路病原性大腸菌由来の免疫原 |
CA2737455A1 (en) | 2008-09-18 | 2010-03-25 | Novartis Ag | Vaccine adjuvant combinations |
ITMI20090946A1 (it) | 2009-05-28 | 2010-11-29 | Novartis Ag | Espressione di proteine ricombinanti |
WO2011004263A2 (en) | 2009-07-07 | 2011-01-13 | Novartis Ag | Conserved escherichia coli immunogens |
NZ598459A (en) | 2009-08-27 | 2014-03-28 | Novartis Ag | Adjuvant comprising aluminium, oligonucleotide and polycation |
SG178954A1 (en) | 2009-09-02 | 2012-04-27 | Novartis Ag | Immunogenic compositions including tlr activity modulators |
US9192661B2 (en) | 2010-07-06 | 2015-11-24 | Novartis Ag | Delivery of self-replicating RNA using biodegradable polymer particles |
EP2590626B1 (de) | 2010-07-06 | 2015-10-28 | GlaxoSmithKline Biologicals SA | Liposomen aus lipiden, die einen vorteilhaften pka-wert zur verabreichung von rna besitzen |
US9770463B2 (en) | 2010-07-06 | 2017-09-26 | Glaxosmithkline Biologicals Sa | Delivery of RNA to different cell types |
PT3243526T (pt) | 2010-07-06 | 2020-03-04 | Glaxosmithkline Biologicals Sa | Distribuição de arn para despoletar múltiplas vias imunitárias |
BR112013000392B8 (pt) | 2010-07-06 | 2022-10-04 | Novartis Ag | Composição farmacêutica contendo partícula de distribuição semelhante a vírion para moléculas de rna autorreplicantes e seu uso |
PT2591114T (pt) | 2010-07-06 | 2016-08-02 | Glaxosmithkline Biologicals Sa | Imunização de mamíferos de grande porte com doses baixas de arn |
TR201908635T4 (tr) | 2010-08-31 | 2019-07-22 | Glaxosmithkline Biologicals Sa | Protein kodlayıcı rna?nın lipozomal verilmesine uygun lipitler. |
HRP20221023T1 (hr) | 2010-08-31 | 2022-11-11 | Glaxosmithkline Biologicals S.A. | Pegilirani liposomi za isporuku rna koja kodira imunogen |
WO2012031140A1 (en) | 2010-09-01 | 2012-03-08 | Novartis Ag | Adsorption of immunopotentiators to insoluble metal salts |
KR102266691B1 (ko) | 2010-10-11 | 2021-06-23 | 노파르티스 아게 | 항원 전달 플랫폼 |
WO2012082914A1 (en) | 2010-12-14 | 2012-06-21 | Novartis Ag | Flow cytometry analysis of materials adsorbed to metal salts |
WO2012103421A1 (en) | 2011-01-27 | 2012-08-02 | Novartis Ag | Adjuvant nanoemulsions with crystallisation inhibitors |
AU2012222883A1 (en) | 2011-03-02 | 2013-10-17 | Novartis Ag | Combination vaccines with lower doses of antigen and/or adjuvant |
EP2688590B1 (de) | 2011-03-24 | 2020-02-12 | GlaxoSmithKline Biologicals SA | Adjuvante nanoemulsionen mit phospholipiden |
ES2656050T3 (es) | 2011-07-06 | 2018-02-22 | Glaxosmithkline Biologicals Sa | Composiciones de combinación inmunogénica y usos de las mismas |
BR112014000236A2 (pt) | 2011-07-06 | 2017-02-14 | Novartis Ag | lipossomas com razão n:p útil para a liberação de moléculas de rna, composição e uso de ditos lipossomas |
DK2750707T3 (en) | 2011-08-31 | 2019-02-11 | Glaxosmithkline Biologicals Sa | PEGYLED LIPOSOMES FOR DELIVERING IMMUNOGEN-CODING RNA |
ES2597755T3 (es) | 2012-03-07 | 2017-01-20 | Glaxosmithkline Biologicals Sa | Sales de arginina de un agonista de TLR7 |
US20150132339A1 (en) | 2012-03-07 | 2015-05-14 | Novartis Ag | Adjuvanted formulations of streptococcus pneumoniae antigens |
US9375471B2 (en) | 2012-03-08 | 2016-06-28 | Glaxosmithkline Biologicals Sa | Adjuvanted formulations of booster vaccines |
MX363529B (es) | 2012-09-18 | 2019-03-27 | Novartis Ag | Vesículas de membrana externa. |
WO2014136086A1 (en) | 2013-03-08 | 2014-09-12 | Novartis Ag | Lipids and lipid compositions for the delivery of active agents |
EA033538B1 (ru) * | 2013-03-15 | 2019-10-31 | Univ Arkansas | Композиции и способы усиления иммунного ответа на кишечные патогены |
US20150086592A1 (en) * | 2013-09-25 | 2015-03-26 | Sequoia Sciences, Inc | Compositions of vaccines and adjuvants and methods for the treatment of urinary tract infections |
PT3083556T (pt) | 2013-12-19 | 2020-03-05 | Novartis Ag | Lípidos e composições lipídicas para a entrega de agentes ativos |
ES2908827T3 (es) | 2013-12-19 | 2022-05-04 | Novartis Ag | Lípidos y composiciones lipídicas para el suministro de agentes activos |
CL2014001126A1 (es) * | 2014-04-29 | 2014-08-29 | Univ Chile | Composición farmacéutica útil como vacuna contra bacterias escherichia coli productoras de shigatoxinas (stec), que comprende al menos un antígeno o una proteína de membrana externa inmunogénica o proteína inmunogénica asociada y conservada en cepas stec. |
RU2572713C1 (ru) * | 2014-06-26 | 2016-01-20 | Государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановская государственная медицинская академия" Министерства здравоохранения Российской Федерации | Способ лечения асимптоматической бактериоспермии |
EP3169309B1 (de) | 2014-07-16 | 2023-05-10 | Novartis AG | Verfahren zur verkapselung einer nukleinsäure in einem lipidnanopartikelhost |
JP6731912B2 (ja) | 2014-09-05 | 2020-07-29 | ノバルティス アーゲー | 活性物質の送達用の脂質および脂質組成物 |
EP3257868A4 (de) * | 2015-02-13 | 2018-07-11 | National University Corporation Kyoto Institute of Technology | Peptide mit affinität für polydimethylsiloxan und verwendungen davon |
EP3061826A1 (de) | 2015-02-27 | 2016-08-31 | Novartis AG | Flavivirus-replikons |
GB201617470D0 (en) * | 2016-10-14 | 2016-11-30 | Linnane Pharma Ab | Novel therapy |
RU2019128674A (ru) * | 2017-02-13 | 2021-03-16 | Александр Эдуардо НОВИЛЛ | Иммуногенная композиция для модуляции иммунной системы и способы лечения бактериальных инфекций у субъекта |
US20220233672A1 (en) | 2019-05-31 | 2022-07-28 | Universidad De Chile | An immunogenic formulation that induces protection against shiga toxin-producing escherichia coli (stec) |
US20240226260A9 (en) * | 2021-02-16 | 2024-07-11 | Duke University | Vaccine compositions and methods for the treatment and prevention of urinary tract infections |
EP4387597A1 (de) | 2021-08-16 | 2024-06-26 | GlaxoSmithKline Biologicals SA | Gefriertrocknung von lipidnanopartikeln (lnps) zur verkapselung von rna und formulierungen davon |
WO2023021421A1 (en) | 2021-08-16 | 2023-02-23 | Glaxosmithkline Biologicals Sa | Low-dose lyophilized rna vaccines and methods for preparing and using the same |
GB202303019D0 (en) | 2023-03-01 | 2023-04-12 | Glaxosmithkline Biologicals Sa | Method of lyophilisation |
CN116949027A (zh) * | 2023-07-19 | 2023-10-27 | 浙江中医药大学 | 一种尿路致病性大肠埃希菌重组蛋白组合物ls、其构建、表达、纯化方法及其应用 |
Citations (161)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0109942A2 (de) | 1982-10-18 | 1984-05-30 | Bror Morein | Immunogener Protein- oder Peptidkomplex, Verfahren zur Herstellung dieses Komplexes und seine Verwendung als Immunstimulans und als Impfstoff |
US4680338A (en) | 1985-10-17 | 1987-07-14 | Immunomedics, Inc. | Bifunctional linker |
US4689338A (en) | 1983-11-18 | 1987-08-25 | Riker Laboratories, Inc. | 1H-Imidazo[4,5-c]quinolin-4-amines and antiviral use |
GB2200651A (en) | 1987-02-07 | 1988-08-10 | Al Sumidaie Ayad Mohamed Khala | A method of obtaining a retrovirus-containing fraction from retrovirus-containing cells |
US4777127A (en) | 1985-09-30 | 1988-10-11 | Labsystems Oy | Human retrovirus-related products and methods of diagnosing and treating conditions associated with said retrovirus |
EP0345242A2 (de) | 1988-06-03 | 1989-12-06 | Smithkline Biologicals S.A. | Expression von retroviralen GAG-Proteinen in eukaryontischen Zellen |
US4929624A (en) | 1989-03-23 | 1990-05-29 | Minnesota Mining And Manufacturing Company | Olefinic 1H-imidazo(4,5-c)quinolin-4-amines |
EP0372501A2 (de) | 1988-12-07 | 1990-06-13 | BEHRINGWERKE Aktiengesellschaft | Synthetische Antigene, Verfahren zu ihrer Herstellung und ihre Verwendung |
EP0378881A1 (de) | 1989-01-17 | 1990-07-25 | ENIRICERCHE S.p.A. | Synthetische Peptide und deren Verwendung als allgemeine Träger für die Herstellung von immunogenischen Konjugaten, die für die Entwicklung von synthetischen Impfstoffen geeignet sind |
WO1990007936A1 (en) | 1989-01-23 | 1990-07-26 | Chiron Corporation | Recombinant therapies for infection and hyperproliferative disorders |
WO1990011092A1 (en) | 1989-03-21 | 1990-10-04 | Vical, Inc. | Expression of exogenous polynucleotide sequences in a vertebrate |
WO1990014837A1 (en) | 1989-05-25 | 1990-12-13 | Chiron Corporation | Adjuvant formulation comprising a submicron oil droplet emulsion |
US4988815A (en) | 1989-10-26 | 1991-01-29 | Riker Laboratories, Inc. | 3-Amino or 3-nitro quinoline compounds which are intermediates in preparing 1H-imidazo[4,5-c]quinolines |
WO1991001146A1 (en) | 1989-07-14 | 1991-02-07 | Praxis Biologics, Inc. | Cytokine and hormone carriers for conjugate vaccines |
WO1991002805A2 (en) | 1989-08-18 | 1991-03-07 | Viagene, Inc. | Recombinant retroviruses delivering vector constructs to target cells |
US5011828A (en) | 1985-11-15 | 1991-04-30 | Michael Goodman | Immunostimulating guanine derivatives, compositions and methods |
EP0427347A1 (de) | 1989-11-10 | 1991-05-15 | ENIRICERCHE S.p.A. | Synthetische Peptide nützlich als universale Träger für die Herstellung von immunogenischen Konjugaten und deren Benützung in der Entwicklung von synthetischen Impfstoffen |
WO1991014445A1 (en) | 1990-03-21 | 1991-10-03 | Research Development Foundation | Heterovesicular liposomes |
US5057540A (en) | 1987-05-29 | 1991-10-15 | Cambridge Biotech Corporation | Saponin adjuvant |
EP0471177A2 (de) | 1990-08-13 | 1992-02-19 | American Cyanamid Company | Faser-Hemagglutinin von Bordetella pertussis als Träger für konjugierten Impfstoff |
WO1992011033A1 (en) | 1990-12-20 | 1992-07-09 | Arch Development Corporation | Control of gene expression by ionizing radiation |
WO1992015582A1 (en) | 1991-03-01 | 1992-09-17 | Minnesota Mining And Manufacturing Company | 1-SUBSTITUTED, 2-SUBSTITUTED 1H-IMIDAZO[4,5-c]QUINOLIN-4-AMINES |
US5149655A (en) | 1990-06-21 | 1992-09-22 | Agracetus, Inc. | Apparatus for genetic transformation |
WO1993003769A1 (en) | 1991-08-20 | 1993-03-04 | THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTEMENT OF HEALTH AND HUMAN SERVICES | Adenovirus mediated transfer of genes to the gastrointestinal tract |
US5206152A (en) | 1988-04-08 | 1993-04-27 | Arch Development Corporation | Cloning and expression of early growth regulatory protein genes |
WO1993010218A1 (en) | 1991-11-14 | 1993-05-27 | The United States Government As Represented By The Secretary Of The Department Of Health And Human Services | Vectors including foreign genes and negative selective markers |
WO1993011230A1 (en) | 1991-12-02 | 1993-06-10 | Dynal As | Modified mammalian stem cell blocking viral replication |
US5219740A (en) | 1987-02-13 | 1993-06-15 | Fred Hutchinson Cancer Research Center | Retroviral gene transfer into diploid fibroblasts for gene therapy |
US5238944A (en) | 1988-12-15 | 1993-08-24 | Riker Laboratories, Inc. | Topical formulations and transdermal delivery systems containing 1-isobutyl-1H-imidazo[4,5-c]quinolin-4-amine |
WO1993017712A2 (en) | 1992-03-06 | 1993-09-16 | Biocine Spa | Conjugates formed from heat shock proteins and oligo- or polysaccharides |
WO1993019191A1 (fr) | 1992-03-16 | 1993-09-30 | Centre National De La Recherche Scientifique | Adenovirus recombinants defectifs exprimant des cytokines pour traitement antitumoral |
US5266575A (en) | 1991-11-06 | 1993-11-30 | Minnesota Mining And Manufacturing Company | 2-ethyl 1H-imidazo[4,5-ciquinolin-4-amines |
US5268376A (en) | 1991-09-04 | 1993-12-07 | Minnesota Mining And Manufacturing Company | 1-substituted 1H-imidazo[4,5-c]quinolin-4-amines |
WO1993025234A1 (en) | 1992-06-08 | 1993-12-23 | The Regents Of The University Of California | Methods and compositions for targeting specific tissue |
WO1993025698A1 (en) | 1992-06-10 | 1993-12-23 | The United States Government As Represented By The | Vector particles resistant to inactivation by human serum |
WO1994000153A1 (en) | 1992-06-25 | 1994-01-06 | Smithkline Beecham Biologicals (S.A.) | Vaccine composition containing adjuvants |
WO1994003208A1 (en) | 1992-07-30 | 1994-02-17 | Yeda Research And Development Company Ltd. | Conjugates of poorly immunogenic antigens and synthetic peptide carriers and vaccines comprising them |
WO1994003622A1 (en) | 1992-07-31 | 1994-02-17 | Imperial College Of Science, Technology & Medicine | D-type retroviral vectors, based on mpmv |
EP0594610A1 (de) | 1990-05-31 | 1994-05-04 | Arne Forsgren | Protein d- ein igd-bindendes protein von haemophilus influenzae |
WO1994012649A2 (en) | 1992-12-03 | 1994-06-09 | Genzyme Corporation | Gene therapy for cystic fibrosis |
US5352784A (en) | 1993-07-15 | 1994-10-04 | Minnesota Mining And Manufacturing Company | Fused cycloalkylimidazopyridines |
WO1994023697A1 (en) | 1993-04-22 | 1994-10-27 | Depotech Corporation | Cyclodextrin liposomes encapsulating pharmacologic compounds and methods for their use |
EP0624376A1 (de) | 1993-05-13 | 1994-11-17 | American Cyanamid Company | Herstellung und Verwendungen von LOS-verminderten Aussenmembran-Proteinen von Gram-negativen Kokken |
EP0626169A2 (de) | 1988-08-25 | 1994-11-30 | The Liposome Company, Inc. | Dosierungsform enthaltend ein Antigen und ein Salzform von ein Säurederivat von ein Sterol |
WO1994028938A1 (en) | 1993-06-07 | 1994-12-22 | The Regents Of The University Of Michigan | Adenovirus vectors for gene therapy sponsorship |
WO1995000655A1 (en) | 1993-06-24 | 1995-01-05 | Mc Master University | Adenovirus vectors for gene therapy |
US5389640A (en) | 1991-03-01 | 1995-02-14 | Minnesota Mining And Manufacturing Company | 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines |
US5395937A (en) | 1993-01-29 | 1995-03-07 | Minnesota Mining And Manufacturing Company | Process for preparing quinoline amines |
WO1995007994A2 (en) | 1993-09-15 | 1995-03-23 | Viagene, Inc. | Recombinant alphavirus vectors |
WO1995011984A2 (en) | 1993-10-25 | 1995-05-04 | Canji, Inc. | Recombinant adenoviral vector and methods of use |
WO1995013796A1 (en) | 1993-11-16 | 1995-05-26 | Depotech Corporation | Vesicles with controlled release of actives |
US5422120A (en) | 1988-05-30 | 1995-06-06 | Depotech Corporation | Heterovesicular liposomes |
WO1995017211A1 (en) | 1993-12-22 | 1995-06-29 | Biocine S.P.A. | Non-toxic mucosal adjuvant |
WO1995030763A2 (en) | 1994-05-09 | 1995-11-16 | Chiron Viagene, Inc. | Retroviral vectors having a reduced recombination rate |
EP0689454A1 (de) | 1993-03-23 | 1996-01-03 | Smithkline Beecham Biolog | 3-0-deazylierte monophosphoryl lipid a enthaltende impfstoff-zusammensetzungen |
US5482936A (en) | 1995-01-12 | 1996-01-09 | Minnesota Mining And Manufacturing Company | Imidazo[4,5-C]quinoline amines |
US5494916A (en) | 1993-07-15 | 1996-02-27 | Minnesota Mining And Manufacturing Company | Imidazo[4,5-C]pyridin-4-amines |
WO1996011711A1 (en) | 1994-10-12 | 1996-04-25 | Iscotec Ab | Saponin preparations and use thereof in iscoms |
WO1996017072A2 (en) | 1994-11-30 | 1996-06-06 | Chiron Viagene, Inc. | Recombinant alphavirus vectors |
EP0735898A1 (de) | 1993-12-23 | 1996-10-09 | SMITHKLINE BEECHAM BIOLOGICALS s.a. | Impfstoffe |
WO1996033739A1 (en) | 1995-04-25 | 1996-10-31 | Smithkline Beecham Biologicals S.A. | Vaccines containing a saponin and a sterol |
US5580859A (en) | 1989-03-21 | 1996-12-03 | Vical Incorporated | Delivery of exogenous DNA sequences in a mammal |
WO1997004110A1 (en) | 1995-07-14 | 1997-02-06 | Somatogen, Inc. | Methods for increasing protein expression |
US5658731A (en) | 1990-04-09 | 1997-08-19 | Europaisches Laboratorium Fur Molekularbiologie | 2'-O-alkylnucleotides as well as polymers which contain such nucleotides |
WO1997042338A1 (en) | 1996-05-06 | 1997-11-13 | Chiron Corporation | Crossless retroviral vectors |
US5707829A (en) | 1995-08-11 | 1998-01-13 | Genetics Institute, Inc. | DNA sequences and secreted proteins encoded thereby |
EP0835318A2 (de) | 1995-06-29 | 1998-04-15 | SMITHKLINE BEECHAM BIOLOGICALS s.a. | Impfstoffe für hepatitis c |
EP0505012B1 (de) | 1985-03-28 | 1998-05-06 | F. Hoffmann-La Roche Ag | Oligonukleotide zur Amplifizierung von Nukleinsäuresequenzen und zur Anknüpfung einer Promotersequenz |
WO1998040100A1 (en) | 1997-03-10 | 1998-09-17 | Ottawa Civic Loeb Research Institute | USE OF NUCLEIC ACIDS CONTAINING UNMETHYLATED CpG DINUCLEOTIDE AS AN ADJUVANT |
US5814482A (en) | 1993-09-15 | 1998-09-29 | Dubensky, Jr.; Thomas W. | Eukaryotic layered vector initiation systems |
WO1998042375A1 (en) | 1997-03-21 | 1998-10-01 | Chiron Corporation | Detoxified mutants of bacterial adp-ribosylating toxins as parenteral adjuvants |
WO1998057659A1 (en) | 1997-06-14 | 1998-12-23 | Smithkline Beecham Biologicals S.A. | Adjuvant compositions for vaccines |
WO1998058668A2 (en) | 1997-06-20 | 1998-12-30 | Microbiological Research Authority | Bordetella pertussis antigens as carriers in vaccinating conjugates and oral vaccines comprising bordetella pertussis fimbriae |
WO1999011241A1 (en) | 1997-09-05 | 1999-03-11 | Smithkline Beecham Biologicals S.A. | Oil in water emulsions containing saponins |
WO1999024578A2 (en) | 1997-11-06 | 1999-05-20 | Chiron S.P.A. | Neisserial antigens |
WO1999027105A2 (en) | 1997-11-21 | 1999-06-03 | Genset | Chlamydia pneumoniae genomic sequence and polypeptides, fragments thereof and uses thereof, in particular for the diagnosis, prevention and treatment of infection |
WO1999027960A1 (en) | 1997-11-28 | 1999-06-10 | West Pharmaceutical Services | Vaccine compositions for mucosal administration comprising chitosan |
US5916588A (en) | 1984-04-12 | 1999-06-29 | The Liposome Company, Inc. | Peptide-containing liposomes, immunogenic liposomes and methods of preparation and use |
WO1999036544A2 (en) | 1998-01-14 | 1999-07-22 | Chiron S.P.A. | Neisseria meningitidis antigens |
WO1999040936A2 (en) | 1998-02-12 | 1999-08-19 | American Cyanamid Company | Pneumococcal and meningococcal vaccines formulated with interleukin-12 |
WO1999044636A2 (en) | 1998-03-05 | 1999-09-10 | The Medical College Of Ohio | Il-12 enhancement of immune responses to t-independent antigens |
WO1999052549A1 (en) | 1998-04-09 | 1999-10-21 | Smithkline Beecham Biologicals S.A. | Adjuvant compositions |
WO1999054457A1 (en) | 1998-04-20 | 1999-10-28 | Chiron S.P.A. | Vaccine formulations comprising antiidiotypic antibodies which immunologically mimic group b streptococcal carbohydrates |
WO1999057280A2 (en) | 1998-05-01 | 1999-11-11 | Chiron Corporation | Neisseria meningitidis antigens and compositions |
WO1999062923A2 (en) | 1998-06-05 | 1999-12-09 | Dynavax Technologies Corporation | Immunostimulatory oligonucleotides with modified bases and methods of use thereof |
WO2000007621A2 (en) | 1998-08-05 | 2000-02-17 | Smithkline Beecham Biologicals S.A. | Vaccine comprising an iscom consisting of sterol and saponin which is free of additional detergent |
WO2000009699A2 (en) | 1998-08-14 | 2000-02-24 | Chiron Corporation | Method for producing yeast expressed hpv types 6 and 16 capsid proteins |
WO2000023105A2 (en) | 1998-10-16 | 2000-04-27 | Smithkline Beecham Biologicals S.A. | Adjuvant systems and vaccines |
WO2000027994A2 (en) | 1998-11-12 | 2000-05-18 | The Regents Of The University Of California | Chlamydia pneumoniae genome sequence |
WO2000037494A2 (en) | 1998-12-18 | 2000-06-29 | Chiron S.P.A. | Chlamydia trachomatis antigens |
US6083505A (en) | 1992-04-16 | 2000-07-04 | 3M Innovative Properties Company | 1H-imidazo[4,5-C]quinolin-4-amines as vaccine adjuvants |
US6090406A (en) | 1984-04-12 | 2000-07-18 | The Liposome Company, Inc. | Potentiation of immune responses with liposomal adjuvants |
WO2000056360A2 (en) | 1999-03-19 | 2000-09-28 | Smithkline Beecham Biologicals S.A. | Vaccine against antigens from bacteriae |
WO2000061761A2 (en) | 1999-04-09 | 2000-10-19 | Techlab, Inc. | Recombinant clostridium toxin a protein carrier for polysaccharide conjugate vaccines |
WO2000066791A1 (en) | 1999-04-30 | 2000-11-09 | Chiron Corporation | Neisseria genomic sequences and methods of their use |
WO2000068253A1 (en) | 1999-05-05 | 2000-11-16 | Sterrenbeld Biotechnologie North America, Inc. | Dna promoter sequence for gene expression |
WO2001009350A2 (en) | 1999-08-03 | 2001-02-08 | Smithkline Beecham Biologicals S.A. | Genetically engineered bleb vaccine |
US6207646B1 (en) | 1994-07-15 | 2001-03-27 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
WO2001021207A2 (en) | 1999-09-24 | 2001-03-29 | Smithkline Beecham Biologicals S.A. | Use of combination of polyoxyethylene sorbitan ester and octoxynol as adjuvant and its use in vaccines |
WO2001021152A1 (en) | 1999-09-24 | 2001-03-29 | Smithkline Beecham Biologicals S.A. | Adjuvant comprising a polyxyethylene alkyl ether or ester and at least one nonionic surfactant |
US6239116B1 (en) | 1994-07-15 | 2001-05-29 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
WO2001064920A2 (en) | 2000-02-28 | 2001-09-07 | Chiron Spa | Hybrid expression of neisserial proteins |
WO2001066572A2 (en) | 2000-03-10 | 2001-09-13 | Institut National De La Sante Et De La Recherche Medicale (I.N.S.E.R.M.) | Polynucleotides isolated from e. coli of nature b2/d+ a-, and uses thereof |
WO2001072337A1 (en) | 2000-03-27 | 2001-10-04 | Microbiological Research Authority | Proteins for use as carriers in conjugate vaccines |
WO2001095935A1 (en) | 2000-01-20 | 2001-12-20 | Ottawa Health Research Institute | Immunostimulatory nucleic acids for inducing a th2 immune response |
WO2002002606A2 (en) | 2000-07-03 | 2002-01-10 | Chiron S.P.A. | Immunisation against chlamydia pneumoniae |
WO2002018383A2 (en) | 2000-09-01 | 2002-03-07 | Chiron Corporation | Aza heterocyclic derivatives and their therapeutic use |
WO2002026757A2 (en) | 2000-09-26 | 2002-04-04 | Hybridon, Inc. | Modulation of immunostimulatory activity of immunostimulatory oligonucleotide analogs by positional chemical changes |
WO2002034771A2 (en) | 2000-10-27 | 2002-05-02 | Chiron Srl | Nucleic acids and proteins from streptococcus groups a & b |
US6429199B1 (en) | 1994-07-15 | 2002-08-06 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules for activating dendritic cells |
US6440992B1 (en) | 1998-07-28 | 2002-08-27 | 3M Innovative Properties Company | Oxazolo, thiazolo and selenazolo [4,5-c]-quinolin-4-amines and analogs thereof |
WO2002072012A2 (en) | 2001-03-09 | 2002-09-19 | Id Biomedical Corporation Of Quebec | A novel proteosome-liposaccharide vaccine adjuvant |
WO2002079243A2 (en) | 2001-02-12 | 2002-10-10 | Chiron Srl. | Gonococcal proteins and nucleic acids |
WO2002091998A2 (en) | 2001-05-11 | 2002-11-21 | Aventis Pasteur, Inc. | Novel meningitis conjugate vaccine |
WO2002099035A2 (en) | 2001-05-31 | 2002-12-12 | Chiron Corporation | Chimeric alphavirus replicon particles |
WO2003007985A2 (en) | 2001-06-20 | 2003-01-30 | Chiron Srl. | Capsular polysaccharide solubilisation and combination vaccines |
WO2003009869A1 (en) | 2001-07-26 | 2003-02-06 | Chiron Srl. | Vaccines comprising aluminium adjuvants and histidine |
WO2003011223A2 (en) | 2001-07-31 | 2003-02-13 | Eisai Co., Ltd. | Immunomodulatory compounds and methods of use thereof |
WO2003020756A2 (en) | 2001-09-06 | 2003-03-13 | Chiron Srl. | Hybrid and tandem expression of neisserial proteins |
WO2003024480A2 (en) | 2001-09-14 | 2003-03-27 | Cytos Biotechnology Ag | In vivo activation of antigen presenting cells for enhancement of immune responses induced by virus like particles |
WO2003024481A2 (en) | 2001-09-14 | 2003-03-27 | Cytos Biotechnology Ag | Packaging of immunostimulatory substances into virus-like particles: method of preparation and use |
WO2003035836A2 (en) | 2001-10-24 | 2003-05-01 | Hybridon Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends |
US6586409B1 (en) | 1999-03-26 | 2003-07-01 | Vical Incorporated | Adjuvant compositions and methods for enhancing immune responses to polynucleotide-based vaccines |
US6605617B2 (en) | 2000-09-11 | 2003-08-12 | Chiron Corporation | Quinolinone derivatives |
US20030165870A1 (en) | 2002-03-01 | 2003-09-04 | Blattner Frederick R. | Novel sequences of E. coli CFT073 |
WO2003074553A2 (en) | 2002-03-06 | 2003-09-12 | Mutabilis Sa | Expec-specific proteins, genes encoding them and uses thereof |
WO2003082272A1 (en) | 2002-03-29 | 2003-10-09 | Chiron Corporation | Substituted benzazoles and use thereof as raf kinase inhibitors |
US6656938B2 (en) | 2000-12-08 | 2003-12-02 | 3M Innovative Properties Company | Urea substituted imidazoquinoline ethers |
US6660735B2 (en) | 2000-12-08 | 2003-12-09 | 3M Innovative Properties Company | Urea substituted imidazoquinoline ethers |
US6660747B2 (en) | 2000-12-08 | 2003-12-09 | 3M Innovative Properties Company | Amido ether substituted imidazoquinolines |
US6664265B2 (en) | 2000-12-08 | 2003-12-16 | 3M Innovative Properties Company | Amido ether substituted imidazoquinolines |
US6664264B2 (en) | 2000-12-08 | 2003-12-16 | 3M Innovative Properties Company | Thioether substituted imidazoquinolines |
US6664260B2 (en) | 2000-12-08 | 2003-12-16 | 3M Innovative Properties Company | Heterocyclic ether substituted imidazoquinolines |
US6667312B2 (en) | 2000-12-08 | 2003-12-23 | 3M Innovative Properties Company | Thioether substituted imidazoquinolines |
WO2004001846A2 (en) | 2002-06-21 | 2003-12-31 | Micron Technology, Inc. | Method and structures for reduced parasitic capacitance in integrated circuit metallizations |
US6677347B2 (en) | 2000-12-08 | 2004-01-13 | 3M Innovative Properties Company | Sulfonamido ether substituted imidazoquinolines |
US6677348B2 (en) | 2000-12-08 | 2004-01-13 | 3M Innovative Properties Company | Aryl ether substituted imidazoquinolines |
US6677349B1 (en) | 2001-12-21 | 2004-01-13 | 3M Innovative Properties Company | Sulfonamide and sulfamide substituted imidazoquinolines |
WO2004005535A2 (en) | 2002-07-09 | 2004-01-15 | Mutabilis | Pathogenicity proteins which can be used as targets for developing means for preventing and controlling bacterial infections |
WO2004018455A1 (en) | 2002-08-23 | 2004-03-04 | Chiron Corporation | Pyrrole based inhibitors of glycogen synthase kinase 3 |
WO2004032958A1 (en) | 2002-10-11 | 2004-04-22 | Chiron Srl | Polypeptide-vaccines for broad protection against hypervirulent meningococcal lineages |
WO2004041157A2 (en) | 2002-09-13 | 2004-05-21 | Chiron Corporation | Group b streptococcus vaccine |
US6743920B2 (en) | 2002-05-29 | 2004-06-01 | 3M Innovative Properties Company | Process for imidazo[4,5-c]pyridin-4-amines |
WO2004048404A2 (en) | 2002-11-22 | 2004-06-10 | Chiron Srl | Multiple variants of meningococcal protein nmb1870 |
WO2004060308A2 (en) | 2002-12-27 | 2004-07-22 | Chiron Corporation | Thiosemicarbazones as anti-virals and immunopotentiators |
EP1441036A1 (de) | 2003-01-27 | 2004-07-28 | Université de Nantes | Verfahren zur Identifizierung und Isolierung von starken bakteriellen Promotoren |
WO2004064715A2 (en) | 2003-01-23 | 2004-08-05 | M N L Pharma Limited | Polyhydroxylated pyrrolizidine |
WO2004064759A2 (en) | 2003-01-21 | 2004-08-05 | Chiron Corporation | Use of tryptanthrin compounds for immune potentiation |
US6800624B2 (en) | 1999-06-10 | 2004-10-05 | 3M Innovative Properties Company | Sulfonamide and sulfamide substituted imidazoquinolines |
WO2004087153A2 (en) | 2003-03-28 | 2004-10-14 | Chiron Corporation | Use of organic compounds for immunopotentiation |
US20040209370A1 (en) | 2002-12-19 | 2004-10-21 | Wonchul Suh | Method for chromosomal engineering |
WO2005002619A2 (en) | 2003-06-26 | 2005-01-13 | Chiron Corporation | Immunogenic compositions for chlamydia trachomatis |
WO2005028618A2 (en) | 2003-09-15 | 2005-03-31 | Chiron Corporation | Immunogenic compositions for streptococcus agalactiae |
US20050070556A1 (en) | 2001-11-27 | 2005-03-31 | Anadys Pharmaceuticals, Inc. | 3-B-D-ribofuranosylthiazolo [4,5-d] pyridimine nucleosides and uses thereof |
US6924271B2 (en) | 2001-11-27 | 2005-08-02 | Anadys Pharmaceuticals, Inc. | 3-β-D-ribofuranosylthiazolo[4-5-d]pyridimine nucleosides and uses thereof |
WO2005084306A2 (en) | 2004-03-02 | 2005-09-15 | Chiron Corporation | Immunogenic compositions for chlamydia pneunomiae |
US20050215517A1 (en) | 1999-01-14 | 2005-09-29 | Rossignol Daniel P | Use of an anti-endotoxin drug in the prevention and treatment of disease |
WO2006002422A2 (en) | 2004-06-24 | 2006-01-05 | Novartis Vaccines And Diagnostics Inc. | Compounds for immunopotentiation |
WO2006046143A2 (en) | 2004-10-29 | 2006-05-04 | Novartis Vaccines And Diagnostics Srl | Immunogenic bacterial vesicles with outer membrane proteins |
WO2006089264A2 (en) | 2005-02-18 | 2006-08-24 | Novartis Vaccines And Diagnostics Inc. | Proteins and nucleic acids from meningitis/sepsis-associated escherichia coli |
WO2006091517A2 (en) | 2005-02-18 | 2006-08-31 | Novartis Vaccines And Diagnostics Inc. | Immunogens from uropathogenic escherichia coli |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6610836B1 (en) * | 1999-01-29 | 2003-08-26 | Genome Therapeutics Corporation | Nucleic acid amino acid sequences relating to Klebsiella pneumoniae for diagnostics and therapeutics |
CA2467691A1 (en) * | 2001-11-30 | 2004-01-29 | University Of Maryland, Baltimore | Novel proteins in enteroaggregative escherichia coli (eaec) useful for diagnosis and therapy of eaec infections |
JP2010500399A (ja) * | 2006-08-16 | 2010-01-07 | ノバルティス アーゲー | 尿路病原性大腸菌由来の免疫原 |
-
2007
- 2007-08-15 JP JP2009524256A patent/JP2010500399A/ja active Pending
- 2007-08-15 CA CA002659552A patent/CA2659552A1/en not_active Abandoned
- 2007-08-15 AU AU2007285484A patent/AU2007285484B2/en not_active Ceased
- 2007-08-15 WO PCT/IB2007/003306 patent/WO2008020330A2/en active Application Filing
- 2007-08-15 EP EP07825559A patent/EP2064230A2/de not_active Withdrawn
- 2007-08-15 US US12/377,572 patent/US20100166788A1/en not_active Abandoned
- 2007-08-15 EP EP12194903.6A patent/EP2586790A3/de not_active Withdrawn
-
2012
- 2012-09-04 US US13/603,391 patent/US20130004531A1/en not_active Abandoned
Patent Citations (177)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0109942A2 (de) | 1982-10-18 | 1984-05-30 | Bror Morein | Immunogener Protein- oder Peptidkomplex, Verfahren zur Herstellung dieses Komplexes und seine Verwendung als Immunstimulans und als Impfstoff |
US4689338A (en) | 1983-11-18 | 1987-08-25 | Riker Laboratories, Inc. | 1H-Imidazo[4,5-c]quinolin-4-amines and antiviral use |
US5916588A (en) | 1984-04-12 | 1999-06-29 | The Liposome Company, Inc. | Peptide-containing liposomes, immunogenic liposomes and methods of preparation and use |
US6090406A (en) | 1984-04-12 | 2000-07-18 | The Liposome Company, Inc. | Potentiation of immune responses with liposomal adjuvants |
EP0505012B1 (de) | 1985-03-28 | 1998-05-06 | F. Hoffmann-La Roche Ag | Oligonukleotide zur Amplifizierung von Nukleinsäuresequenzen und zur Anknüpfung einer Promotersequenz |
EP0509612B1 (de) | 1985-03-28 | 2001-09-26 | F. Hoffmann-La Roche Ag | Verfahren zur Amplifizierung und zum Nachweis von Nukleinsäuresequenzen |
US4777127A (en) | 1985-09-30 | 1988-10-11 | Labsystems Oy | Human retrovirus-related products and methods of diagnosing and treating conditions associated with said retrovirus |
US4680338A (en) | 1985-10-17 | 1987-07-14 | Immunomedics, Inc. | Bifunctional linker |
US5011828A (en) | 1985-11-15 | 1991-04-30 | Michael Goodman | Immunostimulating guanine derivatives, compositions and methods |
GB2200651A (en) | 1987-02-07 | 1988-08-10 | Al Sumidaie Ayad Mohamed Khala | A method of obtaining a retrovirus-containing fraction from retrovirus-containing cells |
US5219740A (en) | 1987-02-13 | 1993-06-15 | Fred Hutchinson Cancer Research Center | Retroviral gene transfer into diploid fibroblasts for gene therapy |
US5057540A (en) | 1987-05-29 | 1991-10-15 | Cambridge Biotech Corporation | Saponin adjuvant |
US5206152A (en) | 1988-04-08 | 1993-04-27 | Arch Development Corporation | Cloning and expression of early growth regulatory protein genes |
US5422120A (en) | 1988-05-30 | 1995-06-06 | Depotech Corporation | Heterovesicular liposomes |
EP0345242A2 (de) | 1988-06-03 | 1989-12-06 | Smithkline Biologicals S.A. | Expression von retroviralen GAG-Proteinen in eukaryontischen Zellen |
EP0626169A2 (de) | 1988-08-25 | 1994-11-30 | The Liposome Company, Inc. | Dosierungsform enthaltend ein Antigen und ein Salzform von ein Säurederivat von ein Sterol |
EP0372501A2 (de) | 1988-12-07 | 1990-06-13 | BEHRINGWERKE Aktiengesellschaft | Synthetische Antigene, Verfahren zu ihrer Herstellung und ihre Verwendung |
US5238944A (en) | 1988-12-15 | 1993-08-24 | Riker Laboratories, Inc. | Topical formulations and transdermal delivery systems containing 1-isobutyl-1H-imidazo[4,5-c]quinolin-4-amine |
EP0378881A1 (de) | 1989-01-17 | 1990-07-25 | ENIRICERCHE S.p.A. | Synthetische Peptide und deren Verwendung als allgemeine Träger für die Herstellung von immunogenischen Konjugaten, die für die Entwicklung von synthetischen Impfstoffen geeignet sind |
WO1990007936A1 (en) | 1989-01-23 | 1990-07-26 | Chiron Corporation | Recombinant therapies for infection and hyperproliferative disorders |
US5580859A (en) | 1989-03-21 | 1996-12-03 | Vical Incorporated | Delivery of exogenous DNA sequences in a mammal |
WO1990011092A1 (en) | 1989-03-21 | 1990-10-04 | Vical, Inc. | Expression of exogenous polynucleotide sequences in a vertebrate |
US4929624A (en) | 1989-03-23 | 1990-05-29 | Minnesota Mining And Manufacturing Company | Olefinic 1H-imidazo(4,5-c)quinolin-4-amines |
US6299884B1 (en) | 1989-05-25 | 2001-10-09 | Chiron Corporation | Adjuvant formulation comprising a submicron oil droplet emulsion |
US6451325B1 (en) | 1989-05-25 | 2002-09-17 | Chiron Corporation | Adjuvant formulation comprising a submicron oil droplet emulsion |
WO1990014837A1 (en) | 1989-05-25 | 1990-12-13 | Chiron Corporation | Adjuvant formulation comprising a submicron oil droplet emulsion |
WO1991001146A1 (en) | 1989-07-14 | 1991-02-07 | Praxis Biologics, Inc. | Cytokine and hormone carriers for conjugate vaccines |
WO1991002805A2 (en) | 1989-08-18 | 1991-03-07 | Viagene, Inc. | Recombinant retroviruses delivering vector constructs to target cells |
US4988815A (en) | 1989-10-26 | 1991-01-29 | Riker Laboratories, Inc. | 3-Amino or 3-nitro quinoline compounds which are intermediates in preparing 1H-imidazo[4,5-c]quinolines |
EP0427347A1 (de) | 1989-11-10 | 1991-05-15 | ENIRICERCHE S.p.A. | Synthetische Peptide nützlich als universale Träger für die Herstellung von immunogenischen Konjugaten und deren Benützung in der Entwicklung von synthetischen Impfstoffen |
WO1991014445A1 (en) | 1990-03-21 | 1991-10-03 | Research Development Foundation | Heterovesicular liposomes |
EP0524968A1 (de) | 1990-03-21 | 1993-02-03 | Res Dev Foundation | Aus einem nichteinheitlichen bläschen bestehende liposomen. |
US5658731A (en) | 1990-04-09 | 1997-08-19 | Europaisches Laboratorium Fur Molekularbiologie | 2'-O-alkylnucleotides as well as polymers which contain such nucleotides |
EP0594610A1 (de) | 1990-05-31 | 1994-05-04 | Arne Forsgren | Protein d- ein igd-bindendes protein von haemophilus influenzae |
US5149655A (en) | 1990-06-21 | 1992-09-22 | Agracetus, Inc. | Apparatus for genetic transformation |
EP0471177A2 (de) | 1990-08-13 | 1992-02-19 | American Cyanamid Company | Faser-Hemagglutinin von Bordetella pertussis als Träger für konjugierten Impfstoff |
WO1992011033A1 (en) | 1990-12-20 | 1992-07-09 | Arch Development Corporation | Control of gene expression by ionizing radiation |
US5389640A (en) | 1991-03-01 | 1995-02-14 | Minnesota Mining And Manufacturing Company | 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines |
WO1992015582A1 (en) | 1991-03-01 | 1992-09-17 | Minnesota Mining And Manufacturing Company | 1-SUBSTITUTED, 2-SUBSTITUTED 1H-IMIDAZO[4,5-c]QUINOLIN-4-AMINES |
WO1993003769A1 (en) | 1991-08-20 | 1993-03-04 | THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTEMENT OF HEALTH AND HUMAN SERVICES | Adenovirus mediated transfer of genes to the gastrointestinal tract |
US5346905A (en) | 1991-09-04 | 1994-09-13 | Minnesota Mining And Manufacturing Company | 1-substituted 1H-imidazo-[4,5-C]quinolin-4-amines |
US5525612A (en) | 1991-09-04 | 1996-06-11 | Minnesota Mining And Manufacturing Company | 1-substituted 1H-imidazo-[4,5-c]quinolin-4-amines |
US5268376A (en) | 1991-09-04 | 1993-12-07 | Minnesota Mining And Manufacturing Company | 1-substituted 1H-imidazo[4,5-c]quinolin-4-amines |
US5266575A (en) | 1991-11-06 | 1993-11-30 | Minnesota Mining And Manufacturing Company | 2-ethyl 1H-imidazo[4,5-ciquinolin-4-amines |
WO1993010218A1 (en) | 1991-11-14 | 1993-05-27 | The United States Government As Represented By The Secretary Of The Department Of Health And Human Services | Vectors including foreign genes and negative selective markers |
WO1993011230A1 (en) | 1991-12-02 | 1993-06-10 | Dynal As | Modified mammalian stem cell blocking viral replication |
WO1993017712A2 (en) | 1992-03-06 | 1993-09-16 | Biocine Spa | Conjugates formed from heat shock proteins and oligo- or polysaccharides |
WO1993019191A1 (fr) | 1992-03-16 | 1993-09-30 | Centre National De La Recherche Scientifique | Adenovirus recombinants defectifs exprimant des cytokines pour traitement antitumoral |
US6083505A (en) | 1992-04-16 | 2000-07-04 | 3M Innovative Properties Company | 1H-imidazo[4,5-C]quinolin-4-amines as vaccine adjuvants |
WO1993025234A1 (en) | 1992-06-08 | 1993-12-23 | The Regents Of The University Of California | Methods and compositions for targeting specific tissue |
WO1993025698A1 (en) | 1992-06-10 | 1993-12-23 | The United States Government As Represented By The | Vector particles resistant to inactivation by human serum |
WO1994000153A1 (en) | 1992-06-25 | 1994-01-06 | Smithkline Beecham Biologicals (S.A.) | Vaccine composition containing adjuvants |
EP0761231A1 (de) | 1992-06-25 | 1997-03-12 | SMITHKLINE BEECHAM BIOLOGICALS s.a. | Adjuvantien enthaltende Impfstoffzusammensetzung |
WO1994003208A1 (en) | 1992-07-30 | 1994-02-17 | Yeda Research And Development Company Ltd. | Conjugates of poorly immunogenic antigens and synthetic peptide carriers and vaccines comprising them |
WO1994003622A1 (en) | 1992-07-31 | 1994-02-17 | Imperial College Of Science, Technology & Medicine | D-type retroviral vectors, based on mpmv |
WO1994012649A2 (en) | 1992-12-03 | 1994-06-09 | Genzyme Corporation | Gene therapy for cystic fibrosis |
US5395937A (en) | 1993-01-29 | 1995-03-07 | Minnesota Mining And Manufacturing Company | Process for preparing quinoline amines |
EP0689454A1 (de) | 1993-03-23 | 1996-01-03 | Smithkline Beecham Biolog | 3-0-deazylierte monophosphoryl lipid a enthaltende impfstoff-zusammensetzungen |
WO1994023697A1 (en) | 1993-04-22 | 1994-10-27 | Depotech Corporation | Cyclodextrin liposomes encapsulating pharmacologic compounds and methods for their use |
EP0624376A1 (de) | 1993-05-13 | 1994-11-17 | American Cyanamid Company | Herstellung und Verwendungen von LOS-verminderten Aussenmembran-Proteinen von Gram-negativen Kokken |
WO1994028938A1 (en) | 1993-06-07 | 1994-12-22 | The Regents Of The University Of Michigan | Adenovirus vectors for gene therapy sponsorship |
WO1995000655A1 (en) | 1993-06-24 | 1995-01-05 | Mc Master University | Adenovirus vectors for gene therapy |
US5494916A (en) | 1993-07-15 | 1996-02-27 | Minnesota Mining And Manufacturing Company | Imidazo[4,5-C]pyridin-4-amines |
US5352784A (en) | 1993-07-15 | 1994-10-04 | Minnesota Mining And Manufacturing Company | Fused cycloalkylimidazopyridines |
US5814482A (en) | 1993-09-15 | 1998-09-29 | Dubensky, Jr.; Thomas W. | Eukaryotic layered vector initiation systems |
WO1995007994A2 (en) | 1993-09-15 | 1995-03-23 | Viagene, Inc. | Recombinant alphavirus vectors |
WO1995011984A2 (en) | 1993-10-25 | 1995-05-04 | Canji, Inc. | Recombinant adenoviral vector and methods of use |
WO1995013796A1 (en) | 1993-11-16 | 1995-05-26 | Depotech Corporation | Vesicles with controlled release of actives |
WO1995017211A1 (en) | 1993-12-22 | 1995-06-29 | Biocine S.P.A. | Non-toxic mucosal adjuvant |
EP0735898A1 (de) | 1993-12-23 | 1996-10-09 | SMITHKLINE BEECHAM BIOLOGICALS s.a. | Impfstoffe |
WO1995030763A2 (en) | 1994-05-09 | 1995-11-16 | Chiron Viagene, Inc. | Retroviral vectors having a reduced recombination rate |
US6429199B1 (en) | 1994-07-15 | 2002-08-06 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules for activating dendritic cells |
US6207646B1 (en) | 1994-07-15 | 2001-03-27 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US6239116B1 (en) | 1994-07-15 | 2001-05-29 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
WO1996011711A1 (en) | 1994-10-12 | 1996-04-25 | Iscotec Ab | Saponin preparations and use thereof in iscoms |
WO1996017072A2 (en) | 1994-11-30 | 1996-06-06 | Chiron Viagene, Inc. | Recombinant alphavirus vectors |
US5482936A (en) | 1995-01-12 | 1996-01-09 | Minnesota Mining And Manufacturing Company | Imidazo[4,5-C]quinoline amines |
WO1996033739A1 (en) | 1995-04-25 | 1996-10-31 | Smithkline Beecham Biologicals S.A. | Vaccines containing a saponin and a sterol |
EP0835318A2 (de) | 1995-06-29 | 1998-04-15 | SMITHKLINE BEECHAM BIOLOGICALS s.a. | Impfstoffe für hepatitis c |
WO1997004110A1 (en) | 1995-07-14 | 1997-02-06 | Somatogen, Inc. | Methods for increasing protein expression |
US5707829A (en) | 1995-08-11 | 1998-01-13 | Genetics Institute, Inc. | DNA sequences and secreted proteins encoded thereby |
WO1997042338A1 (en) | 1996-05-06 | 1997-11-13 | Chiron Corporation | Crossless retroviral vectors |
WO1998040100A1 (en) | 1997-03-10 | 1998-09-17 | Ottawa Civic Loeb Research Institute | USE OF NUCLEIC ACIDS CONTAINING UNMETHYLATED CpG DINUCLEOTIDE AS AN ADJUVANT |
WO1998042375A1 (en) | 1997-03-21 | 1998-10-01 | Chiron Corporation | Detoxified mutants of bacterial adp-ribosylating toxins as parenteral adjuvants |
WO1998057659A1 (en) | 1997-06-14 | 1998-12-23 | Smithkline Beecham Biologicals S.A. | Adjuvant compositions for vaccines |
WO1998058668A2 (en) | 1997-06-20 | 1998-12-30 | Microbiological Research Authority | Bordetella pertussis antigens as carriers in vaccinating conjugates and oral vaccines comprising bordetella pertussis fimbriae |
WO1999011241A1 (en) | 1997-09-05 | 1999-03-11 | Smithkline Beecham Biologicals S.A. | Oil in water emulsions containing saponins |
WO1999024578A2 (en) | 1997-11-06 | 1999-05-20 | Chiron S.P.A. | Neisserial antigens |
WO1999027105A2 (en) | 1997-11-21 | 1999-06-03 | Genset | Chlamydia pneumoniae genomic sequence and polypeptides, fragments thereof and uses thereof, in particular for the diagnosis, prevention and treatment of infection |
WO1999027960A1 (en) | 1997-11-28 | 1999-06-10 | West Pharmaceutical Services | Vaccine compositions for mucosal administration comprising chitosan |
WO1999036544A2 (en) | 1998-01-14 | 1999-07-22 | Chiron S.P.A. | Neisseria meningitidis antigens |
WO1999040936A2 (en) | 1998-02-12 | 1999-08-19 | American Cyanamid Company | Pneumococcal and meningococcal vaccines formulated with interleukin-12 |
WO1999044636A2 (en) | 1998-03-05 | 1999-09-10 | The Medical College Of Ohio | Il-12 enhancement of immune responses to t-independent antigens |
WO1999052549A1 (en) | 1998-04-09 | 1999-10-21 | Smithkline Beecham Biologicals S.A. | Adjuvant compositions |
WO1999054457A1 (en) | 1998-04-20 | 1999-10-28 | Chiron S.P.A. | Vaccine formulations comprising antiidiotypic antibodies which immunologically mimic group b streptococcal carbohydrates |
WO1999057280A2 (en) | 1998-05-01 | 1999-11-11 | Chiron Corporation | Neisseria meningitidis antigens and compositions |
WO1999062923A2 (en) | 1998-06-05 | 1999-12-09 | Dynavax Technologies Corporation | Immunostimulatory oligonucleotides with modified bases and methods of use thereof |
US6627640B2 (en) | 1998-07-28 | 2003-09-30 | 3M Innovative Properties Company | Oxazolo, thiazolo and selenazolo [4,5-c]-quinolin-4-amines and analogs thereof |
US6703402B2 (en) | 1998-07-28 | 2004-03-09 | 3M Innovative Properties Company | Oxazolo, thiazolo and selenazolo [4,5-c]-quinolin-4-amines and analogs thereof |
US6809203B2 (en) | 1998-07-28 | 2004-10-26 | 3M Innovative Properties Company | Oxazolo, thiazolo and selenazolo [4,5-C]-quinolin-4-amines and analogs thereof |
US6440992B1 (en) | 1998-07-28 | 2002-08-27 | 3M Innovative Properties Company | Oxazolo, thiazolo and selenazolo [4,5-c]-quinolin-4-amines and analogs thereof |
WO2000007621A2 (en) | 1998-08-05 | 2000-02-17 | Smithkline Beecham Biologicals S.A. | Vaccine comprising an iscom consisting of sterol and saponin which is free of additional detergent |
WO2000009699A2 (en) | 1998-08-14 | 2000-02-24 | Chiron Corporation | Method for producing yeast expressed hpv types 6 and 16 capsid proteins |
WO2000023105A2 (en) | 1998-10-16 | 2000-04-27 | Smithkline Beecham Biologicals S.A. | Adjuvant systems and vaccines |
WO2000027994A2 (en) | 1998-11-12 | 2000-05-18 | The Regents Of The University Of California | Chlamydia pneumoniae genome sequence |
WO2000037494A2 (en) | 1998-12-18 | 2000-06-29 | Chiron S.P.A. | Chlamydia trachomatis antigens |
US20050215517A1 (en) | 1999-01-14 | 2005-09-29 | Rossignol Daniel P | Use of an anti-endotoxin drug in the prevention and treatment of disease |
WO2000056360A2 (en) | 1999-03-19 | 2000-09-28 | Smithkline Beecham Biologicals S.A. | Vaccine against antigens from bacteriae |
US6586409B1 (en) | 1999-03-26 | 2003-07-01 | Vical Incorporated | Adjuvant compositions and methods for enhancing immune responses to polynucleotide-based vaccines |
WO2000061761A2 (en) | 1999-04-09 | 2000-10-19 | Techlab, Inc. | Recombinant clostridium toxin a protein carrier for polysaccharide conjugate vaccines |
WO2000066791A1 (en) | 1999-04-30 | 2000-11-09 | Chiron Corporation | Neisseria genomic sequences and methods of their use |
WO2000068253A1 (en) | 1999-05-05 | 2000-11-16 | Sterrenbeld Biotechnologie North America, Inc. | Dna promoter sequence for gene expression |
US6800624B2 (en) | 1999-06-10 | 2004-10-05 | 3M Innovative Properties Company | Sulfonamide and sulfamide substituted imidazoquinolines |
WO2001009350A2 (en) | 1999-08-03 | 2001-02-08 | Smithkline Beecham Biologicals S.A. | Genetically engineered bleb vaccine |
WO2001021152A1 (en) | 1999-09-24 | 2001-03-29 | Smithkline Beecham Biologicals S.A. | Adjuvant comprising a polyxyethylene alkyl ether or ester and at least one nonionic surfactant |
WO2001021207A2 (en) | 1999-09-24 | 2001-03-29 | Smithkline Beecham Biologicals S.A. | Use of combination of polyoxyethylene sorbitan ester and octoxynol as adjuvant and its use in vaccines |
WO2001095935A1 (en) | 2000-01-20 | 2001-12-20 | Ottawa Health Research Institute | Immunostimulatory nucleic acids for inducing a th2 immune response |
WO2001064922A2 (en) | 2000-02-28 | 2001-09-07 | Chiron Spa | Heterologous expression of neisserial proteins |
WO2001064920A2 (en) | 2000-02-28 | 2001-09-07 | Chiron Spa | Hybrid expression of neisserial proteins |
WO2001066572A2 (en) | 2000-03-10 | 2001-09-13 | Institut National De La Sante Et De La Recherche Medicale (I.N.S.E.R.M.) | Polynucleotides isolated from e. coli of nature b2/d+ a-, and uses thereof |
WO2001072337A1 (en) | 2000-03-27 | 2001-10-04 | Microbiological Research Authority | Proteins for use as carriers in conjugate vaccines |
WO2002002606A2 (en) | 2000-07-03 | 2002-01-10 | Chiron S.P.A. | Immunisation against chlamydia pneumoniae |
WO2002018383A2 (en) | 2000-09-01 | 2002-03-07 | Chiron Corporation | Aza heterocyclic derivatives and their therapeutic use |
US6605617B2 (en) | 2000-09-11 | 2003-08-12 | Chiron Corporation | Quinolinone derivatives |
WO2002026757A2 (en) | 2000-09-26 | 2002-04-04 | Hybridon, Inc. | Modulation of immunostimulatory activity of immunostimulatory oligonucleotide analogs by positional chemical changes |
WO2002034771A2 (en) | 2000-10-27 | 2002-05-02 | Chiron Srl | Nucleic acids and proteins from streptococcus groups a & b |
US6660735B2 (en) | 2000-12-08 | 2003-12-09 | 3M Innovative Properties Company | Urea substituted imidazoquinoline ethers |
US6664260B2 (en) | 2000-12-08 | 2003-12-16 | 3M Innovative Properties Company | Heterocyclic ether substituted imidazoquinolines |
US6660747B2 (en) | 2000-12-08 | 2003-12-09 | 3M Innovative Properties Company | Amido ether substituted imidazoquinolines |
US6664264B2 (en) | 2000-12-08 | 2003-12-16 | 3M Innovative Properties Company | Thioether substituted imidazoquinolines |
US6656938B2 (en) | 2000-12-08 | 2003-12-02 | 3M Innovative Properties Company | Urea substituted imidazoquinoline ethers |
US6683088B2 (en) | 2000-12-08 | 2004-01-27 | 3M Innovative Properties Company | Sulfonamido ether substituted imidazoquinolines |
US6677348B2 (en) | 2000-12-08 | 2004-01-13 | 3M Innovative Properties Company | Aryl ether substituted imidazoquinolines |
US6677347B2 (en) | 2000-12-08 | 2004-01-13 | 3M Innovative Properties Company | Sulfonamido ether substituted imidazoquinolines |
US6670372B2 (en) | 2000-12-08 | 2003-12-30 | 3M Innovative Properties Company | Aryl ether substituted imidazoquinolines |
US6667312B2 (en) | 2000-12-08 | 2003-12-23 | 3M Innovative Properties Company | Thioether substituted imidazoquinolines |
US6664265B2 (en) | 2000-12-08 | 2003-12-16 | 3M Innovative Properties Company | Amido ether substituted imidazoquinolines |
WO2002079243A2 (en) | 2001-02-12 | 2002-10-10 | Chiron Srl. | Gonococcal proteins and nucleic acids |
WO2002072012A2 (en) | 2001-03-09 | 2002-09-19 | Id Biomedical Corporation Of Quebec | A novel proteosome-liposaccharide vaccine adjuvant |
WO2002091998A2 (en) | 2001-05-11 | 2002-11-21 | Aventis Pasteur, Inc. | Novel meningitis conjugate vaccine |
WO2002099035A2 (en) | 2001-05-31 | 2002-12-12 | Chiron Corporation | Chimeric alphavirus replicon particles |
US20030148262A1 (en) | 2001-05-31 | 2003-08-07 | Polo John M. | Chimeric alphavirus replicon particles |
WO2003007985A2 (en) | 2001-06-20 | 2003-01-30 | Chiron Srl. | Capsular polysaccharide solubilisation and combination vaccines |
WO2003009869A1 (en) | 2001-07-26 | 2003-02-06 | Chiron Srl. | Vaccines comprising aluminium adjuvants and histidine |
WO2003011223A2 (en) | 2001-07-31 | 2003-02-13 | Eisai Co., Ltd. | Immunomodulatory compounds and methods of use thereof |
WO2003020756A2 (en) | 2001-09-06 | 2003-03-13 | Chiron Srl. | Hybrid and tandem expression of neisserial proteins |
WO2003024480A2 (en) | 2001-09-14 | 2003-03-27 | Cytos Biotechnology Ag | In vivo activation of antigen presenting cells for enhancement of immune responses induced by virus like particles |
WO2003024481A2 (en) | 2001-09-14 | 2003-03-27 | Cytos Biotechnology Ag | Packaging of immunostimulatory substances into virus-like particles: method of preparation and use |
WO2003035836A2 (en) | 2001-10-24 | 2003-05-01 | Hybridon Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends |
US6924271B2 (en) | 2001-11-27 | 2005-08-02 | Anadys Pharmaceuticals, Inc. | 3-β-D-ribofuranosylthiazolo[4-5-d]pyridimine nucleosides and uses thereof |
US20050070556A1 (en) | 2001-11-27 | 2005-03-31 | Anadys Pharmaceuticals, Inc. | 3-B-D-ribofuranosylthiazolo [4,5-d] pyridimine nucleosides and uses thereof |
US6888000B2 (en) | 2001-12-21 | 2005-05-03 | 3M Innovative Properties Company | Sulfonamide and sulfamide substituted imidazoquinolines |
US6677349B1 (en) | 2001-12-21 | 2004-01-13 | 3M Innovative Properties Company | Sulfonamide and sulfamide substituted imidazoquinolines |
US6924293B2 (en) | 2001-12-21 | 2005-08-02 | 3M Innovative Properties Company | Sulfonamide and sulfamide substituted imidazoquinolines |
US20030165870A1 (en) | 2002-03-01 | 2003-09-04 | Blattner Frederick R. | Novel sequences of E. coli CFT073 |
WO2003074553A2 (en) | 2002-03-06 | 2003-09-12 | Mutabilis Sa | Expec-specific proteins, genes encoding them and uses thereof |
WO2003082272A1 (en) | 2002-03-29 | 2003-10-09 | Chiron Corporation | Substituted benzazoles and use thereof as raf kinase inhibitors |
US6743920B2 (en) | 2002-05-29 | 2004-06-01 | 3M Innovative Properties Company | Process for imidazo[4,5-c]pyridin-4-amines |
WO2004001846A2 (en) | 2002-06-21 | 2003-12-31 | Micron Technology, Inc. | Method and structures for reduced parasitic capacitance in integrated circuit metallizations |
WO2004005535A2 (en) | 2002-07-09 | 2004-01-15 | Mutabilis | Pathogenicity proteins which can be used as targets for developing means for preventing and controlling bacterial infections |
WO2004018455A1 (en) | 2002-08-23 | 2004-03-04 | Chiron Corporation | Pyrrole based inhibitors of glycogen synthase kinase 3 |
WO2004041157A2 (en) | 2002-09-13 | 2004-05-21 | Chiron Corporation | Group b streptococcus vaccine |
WO2004032958A1 (en) | 2002-10-11 | 2004-04-22 | Chiron Srl | Polypeptide-vaccines for broad protection against hypervirulent meningococcal lineages |
WO2004048404A2 (en) | 2002-11-22 | 2004-06-10 | Chiron Srl | Multiple variants of meningococcal protein nmb1870 |
US20040209370A1 (en) | 2002-12-19 | 2004-10-21 | Wonchul Suh | Method for chromosomal engineering |
WO2004060308A2 (en) | 2002-12-27 | 2004-07-22 | Chiron Corporation | Thiosemicarbazones as anti-virals and immunopotentiators |
WO2004064759A2 (en) | 2003-01-21 | 2004-08-05 | Chiron Corporation | Use of tryptanthrin compounds for immune potentiation |
WO2004064715A2 (en) | 2003-01-23 | 2004-08-05 | M N L Pharma Limited | Polyhydroxylated pyrrolizidine |
EP1441036A1 (de) | 2003-01-27 | 2004-07-28 | Université de Nantes | Verfahren zur Identifizierung und Isolierung von starken bakteriellen Promotoren |
WO2004087153A2 (en) | 2003-03-28 | 2004-10-14 | Chiron Corporation | Use of organic compounds for immunopotentiation |
WO2005002619A2 (en) | 2003-06-26 | 2005-01-13 | Chiron Corporation | Immunogenic compositions for chlamydia trachomatis |
WO2005028618A2 (en) | 2003-09-15 | 2005-03-31 | Chiron Corporation | Immunogenic compositions for streptococcus agalactiae |
WO2005084306A2 (en) | 2004-03-02 | 2005-09-15 | Chiron Corporation | Immunogenic compositions for chlamydia pneunomiae |
WO2006002422A2 (en) | 2004-06-24 | 2006-01-05 | Novartis Vaccines And Diagnostics Inc. | Compounds for immunopotentiation |
WO2006046143A2 (en) | 2004-10-29 | 2006-05-04 | Novartis Vaccines And Diagnostics Srl | Immunogenic bacterial vesicles with outer membrane proteins |
WO2006089264A2 (en) | 2005-02-18 | 2006-08-24 | Novartis Vaccines And Diagnostics Inc. | Proteins and nucleic acids from meningitis/sepsis-associated escherichia coli |
WO2006091517A2 (en) | 2005-02-18 | 2006-08-31 | Novartis Vaccines And Diagnostics Inc. | Immunogens from uropathogenic escherichia coli |
Non-Patent Citations (157)
Title |
---|
AGARWAL; MISHRA, INDIAN JEXP BIOL, vol. 37, 1999, pages 6 - 16 |
ALLISON; BYARS, RES IMMUNOL, vol. 143, 1992, pages 519 - 525 |
ALMEIDA; ALPAR, J. DRUG TARGETING, vol. 3, 1996, pages 455 - 467 |
ALPER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 102, 2005, pages 12678 - 12683 |
ANDERSON, VACCINE, vol. 19, no. 1, 2000, pages S59 - S65 |
ANDRIANOV ET AL., BIOMATERIALS, vol. 19, 1998, pages 109 - 115 |
AUSUBEL ET AL.: "Short protocols in molecular biology", 2002, CURRENT PROTOCOLS |
BAHRANI-MOUGEOT ET AL., MOLECULAR MICROBIOLOGY, vol. 45, no. 4, 2002, pages 1079 - 1093 |
BARALDO ET AL., INFECT IMMUN., vol. 72, 2004, pages 4884 - 4887 |
BARR ET AL., ADVANCED DRUG DELIVERY REVIEWS, vol. 32, 1998, pages 247 - 271 |
BEIGNON ET AL., INFECT IMMUN, vol. 70, 2002, pages 3012 - 3019 |
BELL, PEDIATR INFECT DIS J, vol. 19, 2000, pages 1187 - 1188 |
BERNADAC ET AL., J BACTERIOL, vol. 180, no. 18, 1998, pages 4872 - 4878 |
BHAGAT ET AL., BBRC, vol. 300, 2003, pages 853 - 861 |
BIRDI, K.S.: "Handbook of Surface and Colloidal Chemistry", 1997, CRC PRESS |
BLACKWELL ET AL., J IMMUNOL, vol. 170, 2003, pages 4061 - 4068 |
BODANSZKY, PRINCIPLES OFPEPTIDE SYNTHESIS, 1993 |
BREEDVELD, LANCET, vol. 355, no. 9205, 2000, pages 735 - 740 |
BRUNHAM ET AL., J INFECT DIS, vol. 181, no. 3, 2000, pages S538 - S543 |
BRUSIC ET AL., BIOINFORMATICS, vol. 14, no. 2, 1998, pages 121 - 130 |
CARTER, METHODS MOL BIOL, vol. 36, 1994, pages 207 - 223 |
CHAN; WHITE, FMOC SOLID PHASE PEPTIDE SYNTHESIS, 2000 |
CHIOU ET AL.: "Gene Therapeutics: Methods And Applications Of Direct Gene Transfer", 1994 |
CONNELLY, HUMAN GENE THERAPY, vol. 1, 1995, pages 185 |
COOPER, PHARM BIOTECHNOL, vol. 6, 1995, pages 559 - 580 |
COSTANTINO ET AL., VACCINE, vol. 10, 1992, pages 691 - 698 |
COSTANTINO ET AL., VACCINE, vol. 17, 1999, pages 1251 - 1263 |
CROWE, VACCINE, vol. 13, 1995, pages 415 - 421 |
CUI, ADV GENET, vol. 54, 2005, pages 257 - 89 |
CURIEL, HUM. GENE THER., vol. 3, 1992, pages 147 |
D.M. WEIR AND C.C. BLACKWELL,: "Handbook of Experimental Immunology", vol. I-IV |
DALE, INFECT DIS CLIN NORTH AM, vol. 13, 1999, pages 227 - 43 |
DAVENPORT ET AL., IMMUNOGENETICS, vol. 42, 1995, pages 392 - 397 |
DE LALLA ET AL., J. IMMUNOL., vol. 163, 1999, pages 1725 - 1729 |
DEL GUIDICE ET AL., MOLECULAR ASPECTS OF MEDICINE, vol. 19, 1998, pages 1 - 70 |
DEMICHELI ET AL., VACCINE, vol. 16, 1998, pages 880 - 884 |
DOBRINDT ET AL., INFECT IMMUN, vol. 70, 2002, pages 6365 - 6372 |
DOMENIGHINI ET AL., MOL MICROBIOL, vol. 15, 1995, pages 1165 - 1167 |
DONNELLY ET AL., ANNU REV IMMUNOL, vol. 15, 1997, pages 617 - 648 |
DREESEN, VACCINE, vol. 15, 1997, pages S2 - S6 |
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1 July 2003 (2003-07-01) |
EVANS ET AL., EXPERT REV VACCINES, vol. 2, 2003, pages 219 - 229 |
F.M. AUSUBEL ET AL.: "Current Protocols in Molecular Biology", 1987, article "Supplement 30" |
FALUGI ET AL., EUR J IMMUNO, vol. 31, 2001, pages 3816 - 3824 |
FELLER; DE LA CRUZ, NATURE, vol. 349, no. 6311, 1991, pages 720 - 721 |
FERRETTI ET AL., PNAS USA, vol. 98, 2001, pages 4658 - 4663 |
FIELDS ET AL., METH ENZYMOL 289: SOLID-PHASE PEPTIDE SYNTHESIS, 1997 |
FINDEIS ET AL., TRENDS BIOTECHNOL., vol. 11, 1993, pages 202 |
FREY ET AL., VACCINE, vol. 21, 2003, pages 4234 - 4237 |
GENNARO: "Remington: The Science and Practice of Pharmacy. 20th edition,", 2000, ISBN: 0683306472 |
GERBER ET AL., VIROL, vol. 75, 2001, pages 4752 - 4760 |
GERLICH ET AL., VACCINE, vol. 8, 1990, pages 63 - 68,79-80 |
GEYSEN ET AL., PNAS USA, vol. 81, 1984, pages 3998 - 4002 |
GLEZEN; ALPERS, CLIN. INFECT. DIS., vol. 28, 1999, pages 219 - 224 |
GLUCK ET AL., VACCINE, vol. 20, 2002, pages B10 - B16 |
GORMAN; CLARK, SEMIN. IMMUNOL., vol. 2, 1990, pages 457 - 466 |
GUSTAFSSON ET AL., N. ENGL. J MED., vol. 334, 1996, pages 349 - 355 |
HARIHARAN ET AL., CANCER RES, vol. 55, 1995, pages 3486 - 3489 |
HOPP, PEPTIDE RESEARCH, vol. 6, 1993, pages 183 - 190 |
HSU ET AL., CLIN LIVER DIS, vol. 3, 1999, pages 901 - 915 |
IBBA, BIOTECHNOL GENET ENG REV, vol. 13, 1996, pages 197 - 216 |
IWARSON, APMIS, vol. 103, 1995, pages 321 - 326 |
JAMESON, BA ET AL., CABIOS, vol. 4, no. 1, 1988, pages 181 - 186 |
JANKE ET AL., FEMS MICROBIOL LETT, vol. 199, 2001, pages 61 - 66 |
JEDRZEJAS, MICROBIOL MOL BIOL REV, vol. 65, 2001, pages 187 - 207 |
JOHNSON ET AL., BIOORG MED CHEM LETT, vol. 9, 1999, pages 2273 - 2278 |
JOHNSON ET AL., INFECT IMMUN, vol. 69, 2001, pages 1306 - 1314 |
JOHNSON ET AL., INFECTION AND IMMUNITY, 1998, pages 3059 - 3065 |
JOHNSON ET AL., J INFECT DIS, vol. 183, 2001, pages 897 - 906 |
JOHNSON, HOPKINS, INFECTION AND IMMUNITY, vol. 66, 1998, pages 6063 - 6064 |
JOHNSON; STELL, J CLIN MICROBIOL, vol. 39, 2001, pages 3712 - 3717 |
JOLLY, CANCER GENE THERAPY, vol. 1, 1994, pages 51 |
JONES, CURR OPIN INVESTIG DRUGS, vol. 4, 2003, pages 214 - 218 |
KAHN, CURR OPIN PEDIATR, vol. 12, 2000, pages 257 - 262 |
KALMAN ET AL., NATURE GENETICS, vol. 21, 1999, pages 385 - 389 |
KANDIMALLA ET AL., BBRC, vol. 306, 2003, pages 948 - 953 |
KANDIMALLA ET AL., BIOCHEMICAL SOCIETY TRANSACTIONS, vol. 31, 2003, pages 654 - 658 |
KANDIMALLA ET AL., NUCLEIC ACIDS RESEARCH, vol. 31, 2003, pages 2393 - 2400 |
KAPLITT, NATURE GENETICS, vol. 6, 1994, pages 148 |
KIMURA, HUMAN GENE THERAPY, vol. 5, 1994, pages 845 |
KOPROWSKI ET AL.: "DNA Vaccination - Genetic Vaccination", 1998, ISBN: 3540633928 |
KRIEG, NATURE MEDICINE, vol. 9, 2003, pages 831 - 835 |
KRIEG, TRENDS IMMUNOL, vol. 23, 2002, pages 64 - 65 |
KULLMANN, ENZYMATIC PEPTIDE SYNTHESIS., 1987 |
KUO ET AL., INFECT IMMUN, vol. 63, 1995, pages 2706 - 2713 |
KURODA ET AL., LANCET, vol. 357, no. 9264, 2001, pages 1225 - 1240 |
LANGERMANN ET AL., SCIENCE, vol. 276, 1997, pages 607 - 611 |
LENZ ET AL., J IMMUNOL, vol. 166, 2001, pages 5346 - 5355 |
LILLARD JW ET AL., BLOOD, vol. 101, no. 3, 12 September 2002 (2002-09-12), pages 807 - 814 |
MAKSYUTOV; ZAGREBELNAYA, COMPUT APPL BIOSCI, vol. 9, no. 3, 1993, pages 291 - 297 |
MCCLUSKIE ET AL., FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY, vol. 32, 2002, pages 179 - 185 |
MCMICHAEL, VACCINE, vol. 19, no. 1, 2000, pages S101 - S107 |
MEISTER ET AL., VACCINE, vol. 13, no. 6, 1995, pages 581 - 591 |
MERALDI ET AL., VACCINE, vol. 21, 2003, pages 2485 - 2491 |
MEYNIAL-SALLES ET AL., APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 71, 2005, pages 2140 - 2144 |
MMWR MORB MORTAL WKLY REP, vol. 47, no. 1, 16 January 1998 (1998-01-16), pages 12,19 |
MODLIN ET AL., J TOXICOL CLIN TOXICOL, vol. 39, 2001, pages 85 - 100 |
MURPHY, J. BACTERIOL, vol. 180, 1998, pages 2063 - 2071 |
NEEDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453 |
NEWTON & GRAHAM: "PCR, 2nd ed.", 1997, SPRINGER VERLAG |
NIIKURA ET AL., VIROLOGY, vol. 293, 2002, pages 273 - 280 |
PAJAK ET AL., VACCINE, vol. 21, 2003, pages 836 - 842 |
PARTIDOS ET AL., IMMUNOL LETT, vol. 67, 1999, pages 209 - 216 |
PAYNE ET AL., ADV DRUG DELIVERY REVIEW, vol. 31, 1998, pages 185 - 196 |
PEPPOLONI ET AL., EXPERT REV VACCINES, vol. 2, 2003, pages 285 - 293 |
PHILIP, MOL. CELL BIOL., vol. 14, 1994, pages 2411 |
PINE ET AL., J CONTROL RELEASE, vol. 85, 2002, pages 263 - 270 |
PINTO ET AL., J INFECT DIS, vol. 188, 2003, pages 327 - 338 |
PIZZA ET AL., INT J MED MICROBIOL, vol. 290, 2000, pages 455 - 461 |
PIZZA ET AL., VACCINE, vol. 19, 2001, pages 2534 - 2541 |
PLOTKIN ET AL.: "Vaccines, 4th edition", 2003, W.B. SAUNDERS COMPANY |
PODDA, VACCINE, vol. 19, 2001, pages 2673 - 2680 |
POWELL & NEWMAN: "Vaccine Design.", 1995, PLENUM, ISBN: 030644867X |
RADDRIZZANI; HAMMER, BRIEF BIOINFORM, vol. 1, no. 2, 2000, pages 179 - 189 |
RAPPUOLI ET AL., TIBTECH, vol. 9, 1991, pages 232 - 238 |
RAZ: "Gene Vaccination: Theory and Practice", 1998, ISBN: 3540644288 |
READ ET AL., NUCLEIC ACIDS RES, vol. 28, 2000, pages 1397 - 1406 |
REAM ET AL.,: "Molecular Biology Techniques: An Intensive Laboratory Course", 1998, ACADEMIC PRESS |
RESEARCH DISCLOSURE, January 2002 (2002-01-01) |
RICE ET AL., TRENDS GENET, vol. 16, 2000, pages 276 - 277 |
ROBERTS ET AL., AIDS RES HUM RETROVIRUSES, vol. 12, no. 7, 1996, pages 593 - 610 |
ROBINSON; TORRES, SEMINARS IN IMMUNOL, vol. 9, 1997, pages 271 - 283 |
ROSS ET AL., VACCINE, vol. 19, 2001, pages 4135 - 4142 |
RUBIN, PEDIATR CLIN NORTH AM, vol. 47, 2000, pages 269 - 285 |
RUSSO; JOHNSON, J INFECT DIS, vol. 181, 2000, pages 1753 - 1754 |
RYAN ET AL., INFECT IMMUN, vol. 67, 1999, pages 6270 - 6280 |
S. COLOWICK AND N. KAPLAN: "Methods In Enzymology", ACADEMIC PRESS, INC. |
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual, 3rd edition", 2001, COLD SPRING HARBOR LABORATORY PRESS |
SCHARTON-KERSTEN, INFECT IMMUN, vol. 68, 2000, pages 5306 - 5313 |
SCHUCHAT, LANCET, vol. 353, no. 9146, 1999, pages 51 - 56 |
SHIRAI ET AL., J. INFECT. DIS., vol. 181, no. 3, 2000, pages S524 - S527 |
SIGNORELLI; HADDEN, INT IMMUNOPHARMACOL, vol. 3, no. 8, 2003, pages 1177 - 1186 |
SINGH, J CONT RELEASE, vol. 70, 2001, pages 267 - 276 |
SJOLANDERET ET AL., ADVANCED DRUG DELIVERY REVIEWS, vol. 32, 1998, pages 321 - 338 |
SORENSEN; MORTENSEN, JOURNAL OF BIOTECHNOLOGY, vol. 115, 2005, pages 113 - 128 |
STANLEY, CLIN EXP DERMATOL, vol. 27, 2002, pages 571 - 577 |
STEPANOV ET AL., J BIOTECHNOL, vol. 44, 1996, pages 155 - 160 |
STRATOV ET AL., CURR DRUG TGTS, vol. 5, no. 1, 2004, pages 71 - 88 |
STRUGNELL ET AL., IMMUNOL CELL BIOL, vol. 75, no. 4, 1997, pages 364 - 369 |
SUTTER ET AL., PEDIATR CLIN NORTH AM, vol. 47, 2000, pages 287 - 308 |
SVANHOLM ET AL., SCAND J IMMUNOL, vol. 51, no. 4, 2000, pages 345 - 353 |
TAMMEN, BR J UROL, vol. 65, 1990, pages 6 - 9 |
TANG ET AL., CLIN. CHEM., vol. 43, 1997, pages 2021 - 2038 |
UEHLING ET AL., J UROL, vol. 157, 1997, pages 2049 - 2052 |
VASILAKOS ET AL., CELL IMMUNOL., vol. 204, no. 1, 2000, pages 64 - 74 |
WATSON, PEDIATR INFECT DIS J, vol. 19, 2000, pages 331 - 332 |
WELCH ET AL., PROC NATL ACAD SCI USA, vol. 99, 2002, pages 17020 - 17024 |
WELLING ET AL., FEBS LETT., vol. 188, 1985, pages 215 - 218 |
WOFFENDIN, PROC. NATL. ACAD. SCI., vol. 91, 1994, pages 11581 |
WONG ET AL., J CLIN PHARMACOL, vol. 43, no. 7, 2003, pages 735 - 42 |
WU ET AL., ANTIVIRAL RES., vol. 64, no. 2, 2004, pages 79 - 83 |
WU ET AL., J. BIOL. CHEM., vol. 263, 1988, pages 621 |
WU ET AL., J. BIOL. CHEM., vol. 266, 1991, pages 338 |
WU ET AL., J. BIOL. CHEM., vol. 269, 1994, pages 542 |
WU, J. BIOL. CHEM., vol. 264, 1989, pages 16985 |
ZENKE ET AL., PROC. NATL. ACAD. SCI., vol. 87, 1990, pages 3655 |
ZIMMERMAN; SPANN, AM FAM PHYSICIAN, vol. 59, 1999, pages 113 - 118,125-126 |
Also Published As
Publication number | Publication date |
---|---|
JP2010500399A (ja) | 2010-01-07 |
CA2659552A1 (en) | 2008-02-21 |
WO2008020330A9 (en) | 2008-10-23 |
WO2008020330A2 (en) | 2008-02-21 |
EP2586790A3 (de) | 2013-08-14 |
US20100166788A1 (en) | 2010-07-01 |
EP2064230A2 (de) | 2009-06-03 |
AU2007285484B2 (en) | 2013-05-02 |
US20130004531A1 (en) | 2013-01-03 |
AU2007285484A1 (en) | 2008-02-21 |
WO2008020330A8 (en) | 2008-06-05 |
WO2008020330A3 (en) | 2009-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2007285484B2 (en) | Immunogens from uropathogenic Escherichia coli | |
EP1858920B1 (de) | Proteine und nukleinsäuren von meningitis-/sepsis-assoziierten escherichia coli | |
US8062644B2 (en) | Immunogens from uropathogenic Escherichia coli | |
EP2254903B1 (de) | Escherichia-coli-immunogene mit verbesserter löslichkeit | |
EP2451833B1 (de) | Konservierte escherichia-coli-immunogene | |
US10058600B2 (en) | Detoxified Escherichia coli immunogens | |
AU2012241070A1 (en) | Immunogens from uropathogenic Escherichia Coli | |
AU2013203188A1 (en) | Detoxified Escherichia coli immunogens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2064230 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SERINO, LAURA Inventor name: PIZZA, MARIAGRAZIA Inventor name: SCORZA, FRANCESCO BERLANDA Inventor name: MORIEL, DANILO GOMES Inventor name: FONTANA, MARIA RITA Inventor name: HACKER, JOERG, DR. |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07K 14/245 20060101AFI20130708BHEP Ipc: A61K 39/00 20060101ALI20130708BHEP |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1183044 Country of ref document: HK |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20140215 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1183044 Country of ref document: HK |