[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2578970A2 - Refrigerator and controlling method thereof - Google Patents

Refrigerator and controlling method thereof Download PDF

Info

Publication number
EP2578970A2
EP2578970A2 EP12006834.1A EP12006834A EP2578970A2 EP 2578970 A2 EP2578970 A2 EP 2578970A2 EP 12006834 A EP12006834 A EP 12006834A EP 2578970 A2 EP2578970 A2 EP 2578970A2
Authority
EP
European Patent Office
Prior art keywords
defrost
evaporator
refrigerator according
sensor
refrigerant tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12006834.1A
Other languages
German (de)
French (fr)
Other versions
EP2578970B1 (en
EP2578970A3 (en
Inventor
Kyeongyun Kim
Seojung Kim
Yonghwan Eom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110100468A external-priority patent/KR101810693B1/en
Priority claimed from KR1020110100471A external-priority patent/KR20130036417A/en
Priority claimed from KR1020110101048A external-priority patent/KR20130036858A/en
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of EP2578970A2 publication Critical patent/EP2578970A2/en
Publication of EP2578970A3 publication Critical patent/EP2578970A3/en
Application granted granted Critical
Publication of EP2578970B1 publication Critical patent/EP2578970B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/006Defroster control with electronic control circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate

Definitions

  • the present disclosure relates to a refrigerator and a controlling method thereof.
  • Refrigerators are apparatuses for storing foods at a low temperature in an inner storage space covered by a door. Cool air may be continuously supplied into such a refrigerator to maintain an inner storage space of the refrigerator at a low temperature.
  • the cool air is generated by heat-exchanging with a refrigerant through a refrigeration cycle including compression, condensation, expansion, and evaporation processes.
  • the cool air supplied into the refrigerator may be uniformly transferred into the refrigerator by a convection current thereof to store foods within the refrigerator at a desired temperature.
  • An evaporator constituting the refrigeration cycle is provided in a vaporizing chamber to heat-exchange air circulating into the refrigerator with the refrigerant. Since a surface temperature of the evaporator is significantly lower than an indoor temperature, condensed water is generated on the surface of the evaporator while being heat-exchanging with the air circulating into the refrigerator. The condensed water is frozen on the surface of the evaporator or vaporizing chamber to generate frosts. If frosts are accumulated on the surface of the evaporator, heat-exchange efficiency between the evaporator and the air within the refrigerator may be reduced.
  • a technology in which a defrost heater is mounted on a side of the evaporator, or the refrigeration cycle is reversely performed for a predetermined time to melt the frosts generated on the surface of the evaporator may be utilized.
  • the condensed water generated on the surface of the evaporator or the defrost water generated by the melting of the frosts is collected into a drain pan attached to the bottom of the evaporator. Then, the water collected into the drain pan drops onto the bottom of a machine room through a drain hose.
  • a defrost sensor assembly for detecting an amount of frosts attached to the evaporator is mounted on a side of the evaporator.
  • the amount of frosts attached to the evaporator is detected by the defrost sensor assembly, and then, the detected result is transmitted into a control part.
  • the control part determines whether the value transmitted from the defrost sensor assembly reaches a previously inputted defrosting start value. When the transmitted value reaches the defrosting start value, the defrost heater is operated to start a defrosting operation.
  • frosts When the defrost sensor assembly is mounted on the evaporator, if frosts are generated on a surface of the evaporator, frosts may be generated on a surface of the defrost sensor assembly. When the frosts are generated on the surface of the defrost sensor assembly, the defrost sensor assembly may not precisely detect an amount of frosts generated on the surface of the evaporator. Thus, there is a limitation that the frosts generated on the surface of the evaporator are effectively removed. In refrigerators according to the related art, although a defrost heater for melting frosts attached on the evaporator is provided, a structure for removing frosts attached to the surface of the defrost sensor assembly is not disclosed.
  • an existing defrost logic is designed to periodically perform a defrosting operation, irrelevant to an amount of actual attached frosts.
  • the defrosting is performed in a state where an amount of attached frosts does not reach a defrosting start time or the defrosting is not properly performed at the defrosting start time.
  • the defrosting operation is not adequately finished at a defrosting finish time.
  • Embodiments provide a refrigerator which prevents frosts from being attached to a surface of a defrost sensor assembly mounted on an evaporator to precisely detect an amount of frosts attached to a surface of the evaporator and a controlling method thereof.
  • Embodiments also provide a refrigerator which includes a sensor for precisely detecting an amount of frosts attached to an evaporator to adequately start a defrosting operation at a defrosting requirement time and adequately finish the defrosting operation at a defrosting finish time.
  • a refrigerator comprises: a main body (10) providing a storage space in which foods are stored at a low temperature; a vaporizing chamber (300) defined in a side of the main body (10); an evaporator (320) received in the vaporizing chamber (300); a sensor module (400) comprising a sensing part (410) received in the vaporizing chamber (300) to detect an amount of frosts attached to the evaporator (320); a control part (500) controlling an operation of the sensor module (400); and a defrost heater (340) removing the frosts attached to the evaporator (320), wherein the sensor module (400) further comprises at least one sensor defrost part (350) removing frosts attached to the sensing part (410).
  • Fig. 1 is a side sectional view of a refrigerator according to an embodiment.
  • Fig. 2 is a control block diagram of a refrigerator according to an embodiment.
  • Fig. 3 is a view illustrating a vaporizing chamber of a refrigerator according to an embodiment.
  • Fig. 4 is a perspective view of a sensor module according to an embodiment.
  • Fig. 5 is a plan view of the sensor module.
  • Fig. 6 is a perspective of a module support according to a first embodiment.
  • Fig. 7 is a perspective of a module support according to a second embodiment.
  • Fig. 8 is a perspective of a module support according to a third embodiment.
  • Fig. 9 is a longitudinal sectional view taken along line A-A' of Fig. 3 .
  • Fig. 10 is a view illustrating a state in which a defrost sensor assembly including a module support is mounted on an evaporator according to a fourth embodiment.
  • Fig. 11 is a view illustrating a state in which a defrost sensor assembly including a module support is mounted on an evaporator according to a fifth embodiment.
  • Fig. 12 is a flowchart illustrating a process for controlling a sensor defrost part according to an embodiment.
  • Fig. 13 is a flowchart illustrating a process for controlling a sensor defrost part according to another embodiment.
  • Fig. 14 is a perspective view of an evaporator according to another embodiment.
  • Fig. 15 is a cross-sectional view taken along line E-E' of Fig. 14 .
  • Fig. 1 is a side sectional view of a refrigerator according to an embodiment.
  • a refrigerator 1 includes a main body 10 having a freezing compartment 100 and a refrigerating compartment and a freezing compartment door 20 and a refrigerating compartment door which are rotatably provided on a front surface of the main body 10 to selectively open or close the freezing compartment 100 and the refrigerating compartment, respectively. Also, the freezing compartment 100 and the refrigerating compartment are partitioned by a barrier (not shown).
  • a drawer 12 for receiving foods and a shelf 14 for placing foods thereon may be provided in the freezing compartment 100 and the refrigerating compartment.
  • a door basket 22 for receiving foods may be mounted on a back surface of the freezing compartment door 20.
  • an ice maker 24 may be mounted inside the freezing compartment 100 or on the back surface of the freezing compartment door 20.
  • ices made in the ice maker 24 are discharged through a duct 25 provided in the freezing compartment door 20 and dispensed to the outside through a dispenser 26 connected to the duct 25.
  • a user may easily receive and withdraw foods by the food storage units 12, 14, and 22.
  • an inner space of the refrigerator 1 may be efficiently utilized.
  • a vaporizing chamber 300 in which an evaporator 320 for heat-exchanging a refrigerant with air to generate cool air is received is defined in a rear side of the freezing compartment 100.
  • the vaporizing chamber 300 is coved by an evaporator cover 120.
  • a cool air duct 110 for guiding the cool air generated in the evaporator 320 is disposed above the evaporator cover 120 to extend vertically.
  • a blower fan 330 is disposed above the evaporator 320 to discharge the cool air generated in the evaporator 320 into the freezing compartment 100 through a plurality of cool air discharge holes 111 defined in the cool air duct 110.
  • a defrost sensor assembly 350 is mounted on the evaporator 320 to detect an amount of frosts attached to a surface of the evaporator 320.
  • a defrost heater 340 for melting the frosts generated on the evaporator 320 or vaporizing chamber 300 is disposed under the evaporator 320.
  • a cool air suction hole 311 through which cool air circulating into the freezing compartment 100 is introduced again into the evaporator 320 is disposed under the cool air duct 110.
  • a suction fan for smoothly suctioning the cool air into the vaporizing chamber 300 may be disposed inside the cool air suction hole 311.
  • Fig. 2 is a control block diagram of a refrigerator according to an embodiment.
  • the refrigerator 1 includes a control part 500 for controlling components.
  • the control part 500 controls a memory 510 for storing information required for operating the refrigerator 1, a power supply part 520 for supplying a power into each of the components of the refrigerator 1, a defrost sensor assembly 350 for detecting an amount of frosts attached to the evaporator 320, and a defrost heater driving part 550 for operating the defrost heater 340.
  • the defrost sensor assembly 350 detects an amount of frosts attached to the evaporator 320, and the control part 500 determines an operation of the defrost heater 340 by comparing the amount of attached frosts detected by the defrost sensor assembly 350 with a previously inputted reference value. That is, the control part 500 determines defrosting start and finish times of the defrost heater 340 for removing the frosts attached to the vaporizing chamber 300 or the evaporator 320. Anything may be used for the defrost sensor assembly 350 when one can detect an amount of frosts attached to the evaporator 320. For example, an infrared sensor may be used as the defrost sensor assembly 350.
  • the infrared sensor includes a light emitting part for emitting infrared rays and a light receiving part for detecting an amount of infrared rays emitted from the light emitting part and then reflected by the frosts.
  • an amount of attached frosts may be detected according to an amount of reflected infrared rays detected by the light receiving part.
  • An amount of attached frosts depending on an amount of received infrared rays and a sensing period of the defrost sensor depending on the amount of attached frosts may be stored in the memory 510 in a look-up table form.
  • an actually detected value detected by the frost sensor assembly 350 is compared with the look-up table to extract an amount of attached frosts.
  • the sensing period of the frost sensor assembly 350 may be reset.
  • the defrost heater driving part 550 is connected to the defrost heater 340.
  • the defrost heater driving part 550 receives a driving signal from the control part 500, the defrost heater driving part 550 operates the defrost heater 340 to melt the frosts generated on the evaporator 320.
  • the control part 500 controls a sensing operation of the defrost sensor assembly 350 according to the sensing period stored in the memory 510. Also, the control part 500 transmits a driving command into the defrost heater driving part 550 by comparing the value detected by the defrost sensor assembly 350 with the defrosting start value stored in the memory 510.
  • Fig. 3 is a view illustrating the vaporizing chamber of the refrigerator according to an embodiment.
  • the evaporator 320 may be disposed in the vaporizing chamber 300, and the defrost heater 340 may be disposed under the evaporator 320.
  • a dryer 310 for removing moisture and impurities contained in the refrigerant may be connected to an upper portion of the evaporator 320.
  • the evaporator 320 may have a structure in which the refrigerant is introduced from an upper side.
  • the evaporator 320 includes a refrigerant tube 322 through which the refrigerant flows and heat exchange fins 325 for more smoothly heat-exchanging air passing through the evaporator 300 with the refrigerant.
  • the refrigerant tube 322 forms a winding meander line.
  • the refrigerant flows along the refrigerant tube 322.
  • the refrigerant tube 322 may be doubly or multiply arranged to be spaced apart from each other in front and rear directions.
  • a temperature sensor (not shown) for measuring a temperature of the refrigerant flowing into the evaporator 320 may be disposed on the dryer 310 or an inlet of the refrigerant tube 322.
  • Frames 324 may be disposed on both sides of the evaporator 320, i.e., bent portions of the refrigerant tube 322. Both ends of the refrigerant tube 322 are fixed to the frames 324, respectively.
  • Each of the frames 324 has a vertically long length corresponding to a vertical length of the evaporator 320. Also, the frame 324 is mounted on an inner side surface of the vaporizing chamber 300 so that the evaporator 320 is fixed and mounted on the inner side surface of the vaporizing chamber 300.
  • the plurality of heat exchange fins 325 are coupled to the evaporator 320.
  • the heat exchange fins 325 may increase a surface area of the evaporator 320 to improve heat exchange efficiency between air within the vaporizing chamber 300 and the refrigerant passing through the evaporator 320.
  • Each of the heat exchange fins 325 may be formed of aluminum having superior thermal conductivity.
  • the defrost sensor assembly 350 may be mounted on the evaporator 320.
  • the defrost sensor assembly 350 detects an amount of frosts attached to the evaporator 320 to transmit the detected value into the control part 350.
  • the defrost sensor assembly 350 include a sensor module 400 (see Fig. 4 ) using infrared rays and a module support 360 (see Fig. 6 ) on which the sensor module 400 is seated.
  • Fig. 4 is a perspective view of a sensor module according to an embodiment.
  • Fig. 5 is a plan view of the sensor module.
  • the sensor module 400 includes a base 401, a sensing part 410, a support 420, and a sensor defrost part 430.
  • the sensing part 410, the support 420, and the sensor defrost part 430 may be mounted on the base 401.
  • the support 420 supports the sensing part 410 to be installed on the base 401.
  • a hole having a shape corresponding to that of the sensing part 410 is defined in the support 420.
  • the sensing part 410 may be inserted through the hole.
  • the support 420 may be integrated with the base 401 or separately manufactured with respect to the base 401.
  • the support 420 may be manufactured using a material having high thermal conductivity.
  • the base 401 may be a circuit board on which the sensing part 410 and the sensor defrost part 430 are mounted.
  • the sensing part 410 is coupled to the support 420 and thus seated on the base 401.
  • the sensing part 410 may be provided in one or plurality.
  • each of the sensing parts 410 includes a light emitting part for emitting infrared rays and a light receiving part for receiving emitted from the light emitting part and then reflected by the frosts.
  • the sensor defrost part 430 may be mounted on the base 401.
  • the sensor defrost part 430 may contact at least one side of the support 420 or be disposed spaced a predetermined distance from the support 420.
  • the sensor defrost part 430 may be disposed close to the sensing part 410.
  • the sensor defrost part 430 may be disposed adjacent to the sensing part 410 under the support 420.
  • the sensor defrost part 430 includes a resistor which emits heat when a power is applied thereto.
  • the sensor defrost part 430 may be provided in plurality according to a heating value of the resistor to improve an effect for defrosting frosts attached to the sensing part 410.
  • a power is applied to the sensor defrost part 430 according to a preset period.
  • heat generated in the resistor disposed in the sensor defrost part 430 melts the frosts attached to the sensing part 410.
  • the support 420 on which the sensing part 410 is mounted is manufactured using a material having high thermal conductivity, heat generated in the resistor of the sensor defrost part 430 may be effectively transmitted into the sensing part 410.
  • a voltage or current applied to the resistor may be adjusted to adjust a heating value.
  • circuits of the resistor may be simply designed to minimize power consumption of the resistor.
  • the sensing part 410 may precisely detect an amount of frosts attached to the surface of the evaporator 320.
  • Fig. 6 is a perspective of a module support according to a first embodiment.
  • a module support 360 includes a body 361 on which a sensor module 400 is mounted and a leg 362 extending downward from an edge of the body 361.
  • the leg 362 is mounted on an evaporator 320. That is, the leg 362 may be mounted on a refrigerant tube 322 of the evaporator 320 to fix the body 361 to the evaporator 320. Also, a tube holder 363 is disposed on the leg 362. The tube holder 363 protrudes from the leg 362 to surround an outer surface of the refrigerant tube 322.
  • Fig. 7 is a perspective of a module support according to a second embodiment.
  • a module support 360 according to the second embodiment has the same structure as that of the module support 360 according to the first embodiment in that the module support 360 includes a body 361 and a leg 362. However, the module support 360 according to the second embodiment is different from that according to the first embodiment in that the module support 360 is fixed to a refrigerant tube.
  • a bracket 364 having the same length as the leg 362 may be coupled to one surface of the leg 362. Also, a recess portion having a semicircular shape is defined in each of the leg 362 and the bracket 364. When the bracket 364 is closely attached to the leg 362, the recess portions form one cylindrical hole 365.
  • the refrigerant tube may be placed first in the recess portion defined in the leg 362. In this state, when the bracket 363 is closely attached to the leg 362, the refrigerant tube passes through the hole 365. Then, when the bracket 363 is coupled to the leg 362 using a coupling member such as a screw, the module support 360 is fixed to the refrigerant tube.
  • Fig. 8 is a perspective of a module support according to a third embodiment.
  • a module support 360 according to the third embodiment has the same structure as those of the module supports 360 according to the foregoing embodiments in that the module support 360 includes a body 361 and a leg 362.
  • the module support 360 according to the third embodiment is different from those according to the foregoing embodiments in a coupling structure of a refrigerant tube.
  • a plurality of holes 366 pass through the leg 362.
  • the holes 366 pass from one side surface of the leg 362 toward the other side surface, and the refrigerant tube of the evaporator 320 passes through the holes 366.
  • the refrigerant tube is expanded so that the refrigerant tube is tight in the holes 366.
  • the module support 360 is fixed and mounted on the evaporator 320 without being shaken.
  • Fig. 9 is a longitudinal sectional view taken along line A-A' of Fig. 3 .
  • the sensor module 400 is mounted on the body 361 of the module support 360.
  • a recess portion on which the base 401 of the sensor module 400 is seated is defined in a bottom surface of the body 361.
  • the sensing part 410 is oriented to the extension direction of the leg 362. That is, when the defrost sensor assembly 350 is mounted on the evaporator 320, the sensing part 410 emits infrared rays toward a lower side of the evaporator 320.
  • the waterproof layer 367 includes a resin solution.
  • the waterproof layer 367 may have a thickness enough to expose the sensing part 410 to the outside.
  • the waterproof layer 367 may have a thickness less than a value subtracting a thickness C of the base 401 from a depth D of the recess portion. This is done for a reason in which it prevents condensed water generated on top and side surfaces of the body 361 from flowing into the sensing part 410 along the waterproof layer 367.
  • Fig. 10 is a view illustrating a state in which a defrost sensor assembly including a module support is mounted on an evaporator according to a fourth embodiment.
  • a module support 370 according to the fourth embodiment has the same structure as those of the module supports 400 according to the foregoing embodiments in that a sensor module 400 is mounted on a bottom surface of a module support 370.
  • the module support 360 according to the fourth embodiment is different from those according to the foregoing embodiments in a configuration and mounted position of the module support 37.
  • the module support 370 may be fixed to a frame 324 of an evaporator 320.
  • the module support 370 includes a stepped portion on which a sensor module 400 is mounted and fixed parts extending horizontally from both ends of the stepped portion and respectively fixed to frames 324.
  • Fig. 11 is a view illustrating a state in which a defrost sensor assembly including a module support is mounted on an evaporator according to a fifth embodiment.
  • the defrost sensor assembly 350 may be fixed to a wall of the vaporizing chamber by the module support 380 according to the fifth embodiment.
  • the wall of the vaporizing chamber 300 includes an inner case of the refrigerator, i.e., a rear wall of the vaporizing chamber 300 and an evaporator cover 120 partitioning the vaporizing chamber 300 from the freezing compartment.
  • the defrost sensor assembly 350 may be disposed between a top surface of the evaporator 320 and the blower fan 330.
  • the module support 380 may have a housing shape with a bottom surface opened.
  • the sensor module 400 may be mounted inside the module support 380 so that a sensing part 410 is oriented downward, like the foregoing embodiments.
  • a coupling end may be disposed on each of both ends of the module support 380 so that a coupling member passes through the coupling end and is inserted into the wall of the vaporizing chamber 300.
  • Fig. 12 is a flowchart illustrating a process for controlling a sensor defrost part according to an embodiment.
  • the current embodiment is characterized in that the sensor defrost part is periodically turned on and off to prevent frosts from being generated on the sensor defrost part.
  • a control part 500 determines whether the sensor defrost part 430 reaches a preset heating period (S1). Then, when it is determined that the sensor defrost part 430 reaches the heating period, a power is applied to the sensor defrost part 430 (S2). When the power is applied to the sensor defrost part 430, the control part 500 determines whether a power apply time reaches a preset heating time (S3). When the power apply tine reaches the preset heating time, the control part 500 cuts off the power applied into the sensor defrost part 430 (S4).
  • Fig. 13 is a flowchart illustrating a process for controlling a sensor defrost part according to another embodiment.
  • the current embodiment is characterized in that when a defrosting time arrives to start an operation of a sensor module 400, a power is applied to a sensor defrost part 430 to defrost an evaporator 320 and the sensor module 400 at the same time.
  • a control part 500 determines whether to reach a sensing period for detecting an amount of frosts attached to an evaporator 320 according to a preset controlling method (S10).
  • the sensing period may be set so that a next detection time is decided by a predetermined time interval regardless of an amount of frosts detected at the present time.
  • the sensing period may be set so that a next detection time is varied according to an amount of frosts detected at the present time.
  • a power is applied to the sensing part 410 and the sensor defrost part 430 (S11).
  • a power apply time into the sensor defrost part 430 i.e., the heating time and the sensing time of the sensing part 410 may be differently set.
  • the heating time by the sensor defrost part 430 and the sensing time of the sensing part 410 may be differently set, and thus, power cut-off times may be different.
  • the heating time of the sensor defrost part 430 is shorter than the sensing time of the sensing part 410 will be described as an example.
  • control part 500 determines whether the heating time of the sensor defrost part 430 elapses (S12). When it is determined that the heating time elapses, the power applied into the sensor defrost part 430 is cut off (S13). Also, the control part 410 determines whether the sensing time of the sensing part 410 elapses (S14). When it is determined that the sensing time elapses, the power applied into the sensing part 410 is cut off (S15).
  • the sensor module 400 may precisely detect an amount of frosts attached to the surface of the evaporator 320.
  • Fig. 14 is a perspective view of an evaporator according to another embodiment.
  • Fig. 15 is a cross-sectional view taken along line E-E' of Fig. 14 .
  • the current embodiment is characterized in that a defrost heater 340 contact along an outer surface of a refrigerant tube 322.
  • a recess portion 321 for receiving the defrost heater 340 is defined in any position of the outer surface of the refrigerant tube 322.
  • the recess portion 321 is lengthily defined in a length direction of the refrigerant tube 322.
  • heat transfer efficiency may be significantly improved when compared to a structure in which the defrost heater 340 is mounted under an evaporator or at a position spaced forward or backward from the refrigerant tube 322. That is, a contact area between the refrigerant tube 322 and the defrost heater 340 may be increased to improve the heat transfer efficiency due to heat conduction.
  • frosts attached to the refrigerant tube 322 may be effectively removed.
  • a distance f from a center of the refrigerant tube 322 to an outer surface of the defrost heater 340 exposed to the outside may be equal to or less than an outer diameter of the refrigerant tube 322 to maximize the contact area therebetween.
  • the present disclosure is not limited to the number of defrost heater.
  • a plurality of defrost heaters 340 may be mounted on the outer surface of the refrigerant tube 322.
  • the defrost heaters 340 arranged in two or more lines may be mounted on positions spaced apart from each other of the outer surface of the refrigerant tube 322.
  • the defrost heater 340 may be directly attached to the refrigerant tube 322, and the most outer surface of the defrost heater 340 contact the refrigerant tube 322 to improve defrosting efficiency.
  • the defrost heater 340 does not protrude from the outer surface of the refrigerant tube 322, a flow resistance of cool air passing through the evaporator 320 may be minimized.
  • the refrigerator may prevent frosts from being attached to the surface of the defrost sensor to precisely detect an amount of frosts attached to the surface of the evaporator, thereby improving the operation and cooling efficiency of the refrigerator.
  • the defrosting operation may adequately start at the defrosting requirement time, and the defrosting operation may be immediately finished when the defrosting is completed.
  • power consumption of the refrigerator may be reduced to improve the cooling efficiency of the refrigerator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Abstract

Provided is a refrigerator. The refrigerator comprises: a main body (10) providing a storage space in which foods are stored at a low temperature; a vaporizing chamber (300) defined in a side of the main body (10); an evaporator (320) received in the vaporizing chamber (300); a sensor module (400) comprising a sensing part (410) received in the vaporizing chamber (300) to detect an amount of frosts attached to the evaporator (320); a control part (500) controlling an operation of the sensor module (400); and a defrost heater (340) removing the frosts attached to the evaporator (320), wherein the sensor module (400) further comprises at least one sensor defrost part (350) removing frosts attached to the sensing part (410).

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application claims the benefits of priority to Korean Patent Application No. 10-2011-0100468 (filed on October 4, 2011 ), 10-2011-0100471 (filed on October 4, 2011 ) and 10-2011-0101048(filed on October 5, 2011 ) which are herein incorporated by reference in their entirety.
  • BACKGROUND
  • The present disclosure relates to a refrigerator and a controlling method thereof.
  • Refrigerators are apparatuses for storing foods at a low temperature in an inner storage space covered by a door. Cool air may be continuously supplied into such a refrigerator to maintain an inner storage space of the refrigerator at a low temperature. The cool air is generated by heat-exchanging with a refrigerant through a refrigeration cycle including compression, condensation, expansion, and evaporation processes. The cool air supplied into the refrigerator may be uniformly transferred into the refrigerator by a convection current thereof to store foods within the refrigerator at a desired temperature.
  • An evaporator constituting the refrigeration cycle is provided in a vaporizing chamber to heat-exchange air circulating into the refrigerator with the refrigerant. Since a surface temperature of the evaporator is significantly lower than an indoor temperature, condensed water is generated on the surface of the evaporator while being heat-exchanging with the air circulating into the refrigerator. The condensed water is frozen on the surface of the evaporator or vaporizing chamber to generate frosts. If frosts are accumulated on the surface of the evaporator, heat-exchange efficiency between the evaporator and the air within the refrigerator may be reduced.
  • To prevent frosts from being generated on the surface of the evaporator, a technology in which a defrost heater is mounted on a side of the evaporator, or the refrigeration cycle is reversely performed for a predetermined time to melt the frosts generated on the surface of the evaporator may be utilized. The condensed water generated on the surface of the evaporator or the defrost water generated by the melting of the frosts is collected into a drain pan attached to the bottom of the evaporator. Then, the water collected into the drain pan drops onto the bottom of a machine room through a drain hose.
  • A defrost sensor assembly for detecting an amount of frosts attached to the evaporator is mounted on a side of the evaporator. In detail, the amount of frosts attached to the evaporator is detected by the defrost sensor assembly, and then, the detected result is transmitted into a control part. Also, the control part determines whether the value transmitted from the defrost sensor assembly reaches a previously inputted defrosting start value. When the transmitted value reaches the defrosting start value, the defrost heater is operated to start a defrosting operation. When the defrost sensor assembly is mounted on the evaporator, if frosts are generated on a surface of the evaporator, frosts may be generated on a surface of the defrost sensor assembly. When the frosts are generated on the surface of the defrost sensor assembly, the defrost sensor assembly may not precisely detect an amount of frosts generated on the surface of the evaporator. Thus, there is a limitation that the frosts generated on the surface of the evaporator are effectively removed. In refrigerators according to the related art, although a defrost heater for melting frosts attached on the evaporator is provided, a structure for removing frosts attached to the surface of the defrost sensor assembly is not disclosed.
  • Also, an existing defrost logic is designed to periodically perform a defrosting operation, irrelevant to an amount of actual attached frosts. Thus, there is a limitation that the defrosting is performed in a state where an amount of attached frosts does not reach a defrosting start time or the defrosting is not properly performed at the defrosting start time. Furthermore, there is a limitation that the defrosting operation is not adequately finished at a defrosting finish time.
  • SUMMARY
  • Embodiments provide a refrigerator which prevents frosts from being attached to a surface of a defrost sensor assembly mounted on an evaporator to precisely detect an amount of frosts attached to a surface of the evaporator and a controlling method thereof.
  • Embodiments also provide a refrigerator which includes a sensor for precisely detecting an amount of frosts attached to an evaporator to adequately start a defrosting operation at a defrosting requirement time and adequately finish the defrosting operation at a defrosting finish time.
  • In one embodiment, a refrigerator comprises: a main body (10) providing a storage space in which foods are stored at a low temperature; a vaporizing chamber (300) defined in a side of the main body (10); an evaporator (320) received in the vaporizing chamber (300); a sensor module (400) comprising a sensing part (410) received in the vaporizing chamber (300) to detect an amount of frosts attached to the evaporator (320); a control part (500) controlling an operation of the sensor module (400); and a defrost heater (340) removing the frosts attached to the evaporator (320), wherein the sensor module (400) further comprises at least one sensor defrost part (350) removing frosts attached to the sensing part (410).
  • The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Fig. 1 is a side sectional view of a refrigerator according to an embodiment.
  • Fig. 2 is a control block diagram of a refrigerator according to an embodiment.
  • Fig. 3 is a view illustrating a vaporizing chamber of a refrigerator according to an embodiment.
  • Fig. 4 is a perspective view of a sensor module according to an embodiment.
  • Fig. 5 is a plan view of the sensor module.
  • Fig. 6 is a perspective of a module support according to a first embodiment.
  • Fig. 7 is a perspective of a module support according to a second embodiment.
  • Fig. 8 is a perspective of a module support according to a third embodiment.
  • Fig. 9 is a longitudinal sectional view taken along line A-A' of Fig. 3.
  • Fig. 10 is a view illustrating a state in which a defrost sensor assembly including a module support is mounted on an evaporator according to a fourth embodiment.
  • Fig. 11 is a view illustrating a state in which a defrost sensor assembly including a module support is mounted on an evaporator according to a fifth embodiment.
  • Fig. 12 is a flowchart illustrating a process for controlling a sensor defrost part according to an embodiment.
  • Fig. 13 is a flowchart illustrating a process for controlling a sensor defrost part according to another embodiment.
  • Fig. 14 is a perspective view of an evaporator according to another embodiment.
  • Fig. 15 is a cross-sectional view taken along line E-E' of Fig. 14.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the invention, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
  • Hereinafter, specific embodiments for embodying the idea of the present disclosure will be described in detail with reference to the accompanying drawings.
  • Fig. 1 is a side sectional view of a refrigerator according to an embodiment.
  • Referring to Fig. 1, a refrigerator 1 according to an embodiment includes a main body 10 having a freezing compartment 100 and a refrigerating compartment and a freezing compartment door 20 and a refrigerating compartment door which are rotatably provided on a front surface of the main body 10 to selectively open or close the freezing compartment 100 and the refrigerating compartment, respectively. Also, the freezing compartment 100 and the refrigerating compartment are partitioned by a barrier (not shown).
  • A drawer 12 for receiving foods and a shelf 14 for placing foods thereon may be provided in the freezing compartment 100 and the refrigerating compartment. A door basket 22 for receiving foods may be mounted on a back surface of the freezing compartment door 20. According to the type of refrigerator, an ice maker 24 may be mounted inside the freezing compartment 100 or on the back surface of the freezing compartment door 20. Also, ices made in the ice maker 24 are discharged through a duct 25 provided in the freezing compartment door 20 and dispensed to the outside through a dispenser 26 connected to the duct 25. A user may easily receive and withdraw foods by the food storage units 12, 14, and 22. In addition, an inner space of the refrigerator 1 may be efficiently utilized.
  • A vaporizing chamber 300 in which an evaporator 320 for heat-exchanging a refrigerant with air to generate cool air is received is defined in a rear side of the freezing compartment 100. The vaporizing chamber 300 is coved by an evaporator cover 120. Also, a cool air duct 110 for guiding the cool air generated in the evaporator 320 is disposed above the evaporator cover 120 to extend vertically. Also, a blower fan 330 is disposed above the evaporator 320 to discharge the cool air generated in the evaporator 320 into the freezing compartment 100 through a plurality of cool air discharge holes 111 defined in the cool air duct 110.
  • A defrost sensor assembly 350 is mounted on the evaporator 320 to detect an amount of frosts attached to a surface of the evaporator 320. A defrost heater 340 for melting the frosts generated on the evaporator 320 or vaporizing chamber 300 is disposed under the evaporator 320.
  • Also, a cool air suction hole 311 through which cool air circulating into the freezing compartment 100 is introduced again into the evaporator 320 is disposed under the cool air duct 110. A suction fan for smoothly suctioning the cool air into the vaporizing chamber 300 may be disposed inside the cool air suction hole 311.
  • A machine room 19 in which a compressor 191 and a condenser (not shown) constituting a refrigeration cycle is provided is disposed under the refrigerator 1.
  • Fig. 2 is a control block diagram of a refrigerator according to an embodiment.
  • Referring to Fig. 2, the refrigerator 1 includes a control part 500 for controlling components. The control part 500 controls a memory 510 for storing information required for operating the refrigerator 1, a power supply part 520 for supplying a power into each of the components of the refrigerator 1, a defrost sensor assembly 350 for detecting an amount of frosts attached to the evaporator 320, and a defrost heater driving part 550 for operating the defrost heater 340.
  • The defrost sensor assembly 350 detects an amount of frosts attached to the evaporator 320, and the control part 500 determines an operation of the defrost heater 340 by comparing the amount of attached frosts detected by the defrost sensor assembly 350 with a previously inputted reference value. That is, the control part 500 determines defrosting start and finish times of the defrost heater 340 for removing the frosts attached to the vaporizing chamber 300 or the evaporator 320. Anything may be used for the defrost sensor assembly 350 when one can detect an amount of frosts attached to the evaporator 320. For example, an infrared sensor may be used as the defrost sensor assembly 350.
  • In detail, the infrared sensor includes a light emitting part for emitting infrared rays and a light receiving part for detecting an amount of infrared rays emitted from the light emitting part and then reflected by the frosts. Thus, an amount of attached frosts may be detected according to an amount of reflected infrared rays detected by the light receiving part.
  • An amount of attached frosts depending on an amount of received infrared rays and a sensing period of the defrost sensor depending on the amount of attached frosts may be stored in the memory 510 in a look-up table form. Thus, an actually detected value detected by the frost sensor assembly 350 is compared with the look-up table to extract an amount of attached frosts. As a result, the sensing period of the frost sensor assembly 350 may be reset.
  • The defrost heater driving part 550 is connected to the defrost heater 340. When the defrost heater driving part 550 receives a driving signal from the control part 500, the defrost heater driving part 550 operates the defrost heater 340 to melt the frosts generated on the evaporator 320.
  • The control part 500 controls a sensing operation of the defrost sensor assembly 350 according to the sensing period stored in the memory 510. Also, the control part 500 transmits a driving command into the defrost heater driving part 550 by comparing the value detected by the defrost sensor assembly 350 with the defrosting start value stored in the memory 510.
  • Fig. 3 is a view illustrating the vaporizing chamber of the refrigerator according to an embodiment.
  • Referring to Fig. 3, the evaporator 320 may be disposed in the vaporizing chamber 300, and the defrost heater 340 may be disposed under the evaporator 320. A dryer 310 for removing moisture and impurities contained in the refrigerant may be connected to an upper portion of the evaporator 320. In current embodiment, the evaporator 320 may have a structure in which the refrigerant is introduced from an upper side.
  • The evaporator 320 includes a refrigerant tube 322 through which the refrigerant flows and heat exchange fins 325 for more smoothly heat-exchanging air passing through the evaporator 300 with the refrigerant. The refrigerant tube 322 forms a winding meander line. The refrigerant flows along the refrigerant tube 322. As shown in Fig. 3, the refrigerant tube 322 may be doubly or multiply arranged to be spaced apart from each other in front and rear directions. A temperature sensor (not shown) for measuring a temperature of the refrigerant flowing into the evaporator 320 may be disposed on the dryer 310 or an inlet of the refrigerant tube 322.
  • Frames 324 may be disposed on both sides of the evaporator 320, i.e., bent portions of the refrigerant tube 322. Both ends of the refrigerant tube 322 are fixed to the frames 324, respectively. Each of the frames 324 has a vertically long length corresponding to a vertical length of the evaporator 320. Also, the frame 324 is mounted on an inner side surface of the vaporizing chamber 300 so that the evaporator 320 is fixed and mounted on the inner side surface of the vaporizing chamber 300.
  • The plurality of heat exchange fins 325 are coupled to the evaporator 320. The heat exchange fins 325 may increase a surface area of the evaporator 320 to improve heat exchange efficiency between air within the vaporizing chamber 300 and the refrigerant passing through the evaporator 320. Each of the heat exchange fins 325 may be formed of aluminum having superior thermal conductivity.
  • The defrost sensor assembly 350 may be mounted on the evaporator 320. The defrost sensor assembly 350 detects an amount of frosts attached to the evaporator 320 to transmit the detected value into the control part 350. The defrost sensor assembly 350 include a sensor module 400 (see Fig. 4) using infrared rays and a module support 360 (see Fig. 6) on which the sensor module 400 is seated.
  • Hereinafter, structures of the sensor module 400 and the module support 360 will be described in detail with reference to the accompanying drawings.
  • Fig. 4 is a perspective view of a sensor module according to an embodiment. Fig. 5 is a plan view of the sensor module.
  • Referring to Figs. 4 and 5, the sensor module 400 according to an embodiment includes a base 401, a sensing part 410, a support 420, and a sensor defrost part 430.
  • The sensing part 410, the support 420, and the sensor defrost part 430 may be mounted on the base 401.
  • The support 420 supports the sensing part 410 to be installed on the base 401. For example, a hole having a shape corresponding to that of the sensing part 410 is defined in the support 420. The sensing part 410 may be inserted through the hole. The support 420 may be integrated with the base 401 or separately manufactured with respect to the base 401. The support 420 may be manufactured using a material having high thermal conductivity. Also, the base 401 may be a circuit board on which the sensing part 410 and the sensor defrost part 430 are mounted.
  • The sensing part 410 is coupled to the support 420 and thus seated on the base 401. The sensing part 410 may be provided in one or plurality. Also, each of the sensing parts 410 includes a light emitting part for emitting infrared rays and a light receiving part for receiving emitted from the light emitting part and then reflected by the frosts.
  • The sensor defrost part 430 may be mounted on the base 401. The sensor defrost part 430 may contact at least one side of the support 420 or be disposed spaced a predetermined distance from the support 420. The sensor defrost part 430 may be disposed close to the sensing part 410. For example, the sensor defrost part 430 may be disposed adjacent to the sensing part 410 under the support 420. The sensor defrost part 430 includes a resistor which emits heat when a power is applied thereto. The sensor defrost part 430 may be provided in plurality according to a heating value of the resistor to improve an effect for defrosting frosts attached to the sensing part 410.
  • A power is applied to the sensor defrost part 430 according to a preset period. Thus, heat generated in the resistor disposed in the sensor defrost part 430 melts the frosts attached to the sensing part 410. In a case where the support 420 on which the sensing part 410 is mounted is manufactured using a material having high thermal conductivity, heat generated in the resistor of the sensor defrost part 430 may be effectively transmitted into the sensing part 410. Here, a voltage or current applied to the resistor may be adjusted to adjust a heating value. Also, circuits of the resistor may be simply designed to minimize power consumption of the resistor. As described above, since a power is applied to the sensor defrost part 430 according to the preset period to transmit heat into the sensing part 410, it may prevent frosts from being attached to a surface of the sensing part 410. Thus, the sensing part 410 may precisely detect an amount of frosts attached to the surface of the evaporator 320.
  • Fig. 6 is a perspective of a module support according to a first embodiment.
  • Referring to Fig. 6, a module support 360 according to the first embodiment includes a body 361 on which a sensor module 400 is mounted and a leg 362 extending downward from an edge of the body 361.
  • In detail, the leg 362 is mounted on an evaporator 320. That is, the leg 362 may be mounted on a refrigerant tube 322 of the evaporator 320 to fix the body 361 to the evaporator 320. Also, a tube holder 363 is disposed on the leg 362. The tube holder 363 protrudes from the leg 362 to surround an outer surface of the refrigerant tube 322.
  • Fig. 7 is a perspective of a module support according to a second embodiment.
  • Referring to Fig. 7, a module support 360 according to the second embodiment has the same structure as that of the module support 360 according to the first embodiment in that the module support 360 includes a body 361 and a leg 362. However, the module support 360 according to the second embodiment is different from that according to the first embodiment in that the module support 360 is fixed to a refrigerant tube.
  • In detail, a bracket 364 having the same length as the leg 362 may be coupled to one surface of the leg 362. Also, a recess portion having a semicircular shape is defined in each of the leg 362 and the bracket 364. When the bracket 364 is closely attached to the leg 362, the recess portions form one cylindrical hole 365.
  • To fix the module support 360 to the refrigerant tube of an evaporator 320, the refrigerant tube may be placed first in the recess portion defined in the leg 362. In this state, when the bracket 363 is closely attached to the leg 362, the refrigerant tube passes through the hole 365. Then, when the bracket 363 is coupled to the leg 362 using a coupling member such as a screw, the module support 360 is fixed to the refrigerant tube.
  • Fig. 8 is a perspective of a module support according to a third embodiment.
  • Referring to Fig. 8, a module support 360 according to the third embodiment has the same structure as those of the module supports 360 according to the foregoing embodiments in that the module support 360 includes a body 361 and a leg 362. However, the module support 360 according to the third embodiment is different from those according to the foregoing embodiments in a coupling structure of a refrigerant tube.
  • In detail, a plurality of holes 366 pass through the leg 362. The holes 366 pass from one side surface of the leg 362 toward the other side surface, and the refrigerant tube of the evaporator 320 passes through the holes 366. In this state, the refrigerant tube is expanded so that the refrigerant tube is tight in the holes 366. Thus, the module support 360 is fixed and mounted on the evaporator 320 without being shaken.
  • Fig. 9 is a longitudinal sectional view taken along line A-A' of Fig. 3.
  • Referring to Fig. 9, the sensor module 400 is mounted on the body 361 of the module support 360.
  • In detail, a recess portion on which the base 401 of the sensor module 400 is seated is defined in a bottom surface of the body 361. Thus, when the sensor module 400 is seated on the recess portion, the sensing part 410 is oriented to the extension direction of the leg 362. That is, when the defrost sensor assembly 350 is mounted on the evaporator 320, the sensing part 410 emits infrared rays toward a lower side of the evaporator 320.
  • In the state where the base 401 is seated on the recess portion of the body 351, a molding solution is injected into the recess portion to form a waterproof layer 367. In detail, the waterproof layer 367 includes a resin solution. The waterproof layer 367 may have a thickness enough to expose the sensing part 410 to the outside. Particularly, the waterproof layer 367 may have a thickness less than a value subtracting a thickness C of the base 401 from a depth D of the recess portion. This is done for a reason in which it prevents condensed water generated on top and side surfaces of the body 361 from flowing into the sensing part 410 along the waterproof layer 367.
  • Fig. 10 is a view illustrating a state in which a defrost sensor assembly including a module support is mounted on an evaporator according to a fourth embodiment.
  • Referring to Fig. 10, a module support 370 according to the fourth embodiment has the same structure as those of the module supports 400 according to the foregoing embodiments in that a sensor module 400 is mounted on a bottom surface of a module support 370. However, the module support 360 according to the fourth embodiment is different from those according to the foregoing embodiments in a configuration and mounted position of the module support 37.
  • In detail, the module support 370 according to the fourth embodiment may be fixed to a frame 324 of an evaporator 320. The module support 370 includes a stepped portion on which a sensor module 400 is mounted and fixed parts extending horizontally from both ends of the stepped portion and respectively fixed to frames 324.
  • Fig. 11 is a view illustrating a state in which a defrost sensor assembly including a module support is mounted on an evaporator according to a fifth embodiment.
  • Referring to Fig. 11, the defrost sensor assembly 350 according to an embodiment may be fixed to a wall of the vaporizing chamber by the module support 380 according to the fifth embodiment.
  • In detail, the wall of the vaporizing chamber 300 includes an inner case of the refrigerator, i.e., a rear wall of the vaporizing chamber 300 and an evaporator cover 120 partitioning the vaporizing chamber 300 from the freezing compartment.
  • In more detail, the defrost sensor assembly 350 may be disposed between a top surface of the evaporator 320 and the blower fan 330. The module support 380 may have a housing shape with a bottom surface opened. The sensor module 400 may be mounted inside the module support 380 so that a sensing part 410 is oriented downward, like the foregoing embodiments. Also, a coupling end may be disposed on each of both ends of the module support 380 so that a coupling member passes through the coupling end and is inserted into the wall of the vaporizing chamber 300.
  • Fig. 12 is a flowchart illustrating a process for controlling a sensor defrost part according to an embodiment.
  • The current embodiment is characterized in that the sensor defrost part is periodically turned on and off to prevent frosts from being generated on the sensor defrost part.
  • Referring to Fig. 12, a control part 500 determines whether the sensor defrost part 430 reaches a preset heating period (S1). Then, when it is determined that the sensor defrost part 430 reaches the heating period, a power is applied to the sensor defrost part 430 (S2). When the power is applied to the sensor defrost part 430, the control part 500 determines whether a power apply time reaches a preset heating time (S3). When the power apply tine reaches the preset heating time, the control part 500 cuts off the power applied into the sensor defrost part 430 (S4).
  • Fig. 13 is a flowchart illustrating a process for controlling a sensor defrost part according to another embodiment.
  • The current embodiment is characterized in that when a defrosting time arrives to start an operation of a sensor module 400, a power is applied to a sensor defrost part 430 to defrost an evaporator 320 and the sensor module 400 at the same time.
  • Referring to Fig. 13, a control part 500 determines whether to reach a sensing period for detecting an amount of frosts attached to an evaporator 320 according to a preset controlling method (S10). Here, the sensing period may be set so that a next detection time is decided by a predetermined time interval regardless of an amount of frosts detected at the present time. Also, the sensing period may be set so that a next detection time is varied according to an amount of frosts detected at the present time.
  • In detail, when the control part 500 determines that the sensing period reaches a defrost amount detection period by the sensor module 400, a power is applied to the sensing part 410 and the sensor defrost part 430 (S11). Here, a power apply time into the sensor defrost part 430, i.e., the heating time and the sensing time of the sensing part 410 may be differently set. Thus, although the power is applied into the sensing part 410 and the sensor defrost part 430 at the same time, the heating time by the sensor defrost part 430 and the sensing time of the sensing part 410 may be differently set, and thus, power cut-off times may be different. Hereinafter, a case in which the heating time of the sensor defrost part 430 is shorter than the sensing time of the sensing part 410 will be described as an example.
  • Thus, the control part 500 determines whether the heating time of the sensor defrost part 430 elapses (S12). When it is determined that the heating time elapses, the power applied into the sensor defrost part 430 is cut off (S13). Also, the control part 410 determines whether the sensing time of the sensing part 410 elapses (S14). When it is determined that the sensing time elapses, the power applied into the sensing part 410 is cut off (S15).
  • According to the above-described controlling method, it may prevent frosts from being attached to the sensor module 400. Thus, the sensor module 400 may precisely detect an amount of frosts attached to the surface of the evaporator 320.
  • Fig. 14 is a perspective view of an evaporator according to another embodiment. Fig. 15 is a cross-sectional view taken along line E-E' of Fig. 14.
  • Referring to Figs. 14 and 15, the current embodiment is characterized in that a defrost heater 340 contact along an outer surface of a refrigerant tube 322.
  • In detail, a recess portion 321 for receiving the defrost heater 340 is defined in any position of the outer surface of the refrigerant tube 322. The recess portion 321 is lengthily defined in a length direction of the refrigerant tube 322. As shown in Figs. 14 and 15, since the most outer surface of the defrost heater 340 contacts a surface of the refrigerant tube 322, heat transfer efficiency may be significantly improved when compared to a structure in which the defrost heater 340 is mounted under an evaporator or at a position spaced forward or backward from the refrigerant tube 322. That is, a contact area between the refrigerant tube 322 and the defrost heater 340 may be increased to improve the heat transfer efficiency due to heat conduction. Thus, frosts attached to the refrigerant tube 322 may be effectively removed.
  • Here, a distance f from a center of the refrigerant tube 322 to an outer surface of the defrost heater 340 exposed to the outside may be equal to or less than an outer diameter of the refrigerant tube 322 to maximize the contact area therebetween.
  • Also, the present disclosure is not limited to the number of defrost heater. For example, a plurality of defrost heaters 340 may be mounted on the outer surface of the refrigerant tube 322. For example, the defrost heaters 340 arranged in two or more lines may be mounted on positions spaced apart from each other of the outer surface of the refrigerant tube 322.
  • According to the coupling structure of the defrost heater 340 according to the foregoing embodiments, the defrost heater 340 may be directly attached to the refrigerant tube 322, and the most outer surface of the defrost heater 340 contact the refrigerant tube 322 to improve defrosting efficiency. In addition, since the defrost heater 340 does not protrude from the outer surface of the refrigerant tube 322, a flow resistance of cool air passing through the evaporator 320 may be minimized.
  • In the refrigerator according to the foregoing embodiments, it may prevent frosts from being attached to the surface of the defrost sensor to precisely detect an amount of frosts attached to the surface of the evaporator, thereby improving the operation and cooling efficiency of the refrigerator.
  • Also, the defrosting operation may adequately start at the defrosting requirement time, and the defrosting operation may be immediately finished when the defrosting is completed. Thus, power consumption of the refrigerator may be reduced to improve the cooling efficiency of the refrigerator.
  • Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.

Claims (20)

  1. A refrigerator comprising:
    a main body (10) providing a storage space in which foods are stored at a low temperature;
    a vaporizing chamber (300) defined in a side of the main body (10);
    an evaporator (320) received in the vaporizing chamber (300);
    a sensor module (400) comprising a sensing part (410) received in the vaporizing chamber (300) to detect an amount of frosts attached to the evaporator (320);
    a control part (500) controlling an operation of the sensor module (400); and
    a defrost heater (340) removing the frosts attached to the evaporator (320),
    wherein the sensor module (400) further comprises at least one sensor defrost part (350) removing frosts attached to the sensing part (410).
  2. The refrigerator according to claim 1, further comprising module supports (360, 370, 380) supporting the sensor module (400).
  3. The refrigerator according to claim 2, wherein the sensor module (400) further comprises:
    a support (420) supporting the sensing part (410); and
    a base (401) on which the support (420) and the sensor defrost part (430) are placed.
  4. The refrigerator according to claim 3, wherein the module support (360) comprises:
    a body (361) having a recess or stepped portion in which the base (401) is placed; and
    at least one leg (362) extending from an edge of the body (361) and fixed to a refrigerant tube (322) of the evaporator (320).
  5. The refrigerator according to claim 4, further comprising a holder (363) protruding from one surface of the leg (362) to surround the refrigerant tube (322).
  6. The refrigerator according to claim 4, further comprising a bracket (364) closely attached to one surface of the leg (362),
    wherein recess portions are defined in the one surface of the leg (362) and one surface of the bracket (364) closely attached to the one surface of the leg (362), respectively, and
    when the bracket (364) is closely attached to the leg (362), the recess portions are coupled to each other to define a hole (365) through which the refrigerant tube (322) passes.
  7. The refrigerator according to claim 4, further comprising a hole (366) passing through both sides surfaces of the leg (362) so that the refrigerant tube (322) passes.
  8. The refrigerator according to claim 4, further comprising a waterproof layer (367) formed by injecting a molding solution into a top surface of the base (401) in a state where the base (401) is placed on the recess or stepped portion.
  9. The refrigerator according to claim 8, wherein the waterproof layer (367) has a thickness less than a value subtracting a thickness of the base (401) from a thickness of the recess or stepped portion.
  10. The refrigerator according to claim 2, wherein the module supports (360, 370) are fixed to a refrigerant tube (322) of the evaporator (320) or a frame (324) supporting the refrigerant tube (322).
  11. The refrigerator according to claim 2, wherein the module support (380) is mounted on any position corresponding to an upper side of the evaporator (320) on a well defining the vaporizing chamber (300).
  12. The refrigerator according to claim 1, wherein the sensor part (410) comprises:
    a light emitting part emitting infrared rays; and
    a light receiving part receiving the infrared rays which are emitted from the light emitting part and then reflected by the frosts attached to the evaporator (320).
  13. The refrigerator according to claim 1, wherein the sensor defrost part (430) comprises a resistor in which a power is applied to generate heat, and
    the sensor defrost part (430) is disposed at a position close to the sensing part.
  14. The refrigerator according to claim 1, wherein the defrost heater (340) extends along a refrigerant tube (322) in a state where the defrost heater (340) contacts the refrigerant tube (322) of the evaporator (320).
  15. The refrigerator according to claim 14, wherein one or plurality of recess portions (321) in which the defrost heater (340) is received is defined in an outer surface of the refrigerant tube (322).
  16. The refrigerator according to claim 15, wherein a distance (f) from a center of the refrigerant tube (322) to the outer surface of the defrost heater (340) exposed to the outside is equal to or less than an outer diameter (F) of the refrigerant tube (322).
  17. The refrigerator according to claim 1, wherein the sensor defrost part (430) is operated for a preset time according to a preset period to melt the frosts attached to the sensing part (410).
  18. The refrigerator according to claim 17, wherein an operation period of the sensor defrost part (430) and an operation period of the sensing part (410) are independent from each other.
  19. The refrigerator according to claim 1, wherein a power is applied to the sensor defrost part (430) at an operation time of the sensing part (410).
  20. The refrigerator according to claim 19, wherein a heating time of the senor defrost part (430) is different from a sensing time of the sensing part (410).
EP12006834.1A 2011-10-04 2012-10-01 Refrigerator Active EP2578970B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020110100468A KR101810693B1 (en) 2011-10-04 2011-10-04 Refrigerator and controlling method thereof
KR1020110100471A KR20130036417A (en) 2011-10-04 2011-10-04 Heat exchanging apparatus
KR1020110101048A KR20130036858A (en) 2011-10-05 2011-10-05 Refrigerator

Publications (3)

Publication Number Publication Date
EP2578970A2 true EP2578970A2 (en) 2013-04-10
EP2578970A3 EP2578970A3 (en) 2018-04-11
EP2578970B1 EP2578970B1 (en) 2019-08-14

Family

ID=47008258

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12006834.1A Active EP2578970B1 (en) 2011-10-04 2012-10-01 Refrigerator

Country Status (2)

Country Link
US (1) US20130081415A1 (en)
EP (1) EP2578970B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106152659A (en) * 2016-06-29 2016-11-23 Tcl家用电器(合肥)有限公司 Evaporimeter Defrost method and the refrigerator using the method
US11662139B2 (en) 2018-07-17 2023-05-30 Carrier Corporation Refrigerated cargo container cargo sensor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3779335B1 (en) * 2010-02-23 2023-04-26 LG Electronics Inc. Refrigerator
US9657983B2 (en) * 2013-08-26 2017-05-23 Sinjin Enertec Co., Ltd. Apparatus for defrosting evaporator in refrigeration system using infrared emitting diode sensor
JP6426350B2 (en) * 2014-02-07 2018-11-21 東芝ライフスタイル株式会社 refrigerator
CN105402988B (en) * 2015-12-09 2018-12-25 四川长虹电器股份有限公司 A kind of information processing method and refrigerator
KR102292004B1 (en) * 2017-04-11 2021-08-23 엘지전자 주식회사 Refrigerator
US10914503B2 (en) * 2018-02-01 2021-02-09 Johnson Controls Technology Company Coil heating systems for heat pump systems
US11686523B2 (en) 2020-11-06 2023-06-27 Whirlpool Corporation Refrigeration unit

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1090441A (en) * 1976-11-10 1980-11-25 Toshibumi Kamiyama Frost detector
US4109481A (en) * 1976-12-16 1978-08-29 Gte Sylvania Incorporated Frost detector
US4860551A (en) * 1987-12-29 1989-08-29 Whirlpool Corporation Frost sensor for an appliance
US5857515A (en) * 1995-04-12 1999-01-12 David M. Skupien Heat exchanging device
JP3027726B2 (en) * 1996-06-05 2000-04-04 日本特殊陶業株式会社 Oxygen sensor with heater
JP3340330B2 (en) * 1996-11-12 2002-11-05 株式会社ユニシアジェックス Deterioration diagnostic device for oxygen sensor in engine
KR200240963Y1 (en) * 1998-12-21 2001-09-25 황한규 Structure for installing a thermo sensor for use in a Kim-Chi refrigerator
US6397609B1 (en) * 1999-08-20 2002-06-04 Denso Corporation Vehicle air-conditioning system with arrangement of electrical member
US6532751B1 (en) * 2002-03-22 2003-03-18 Whirlpool Corporation Method of maximizing ice production in a refrigeration appliance
ITPD20050160A1 (en) * 2005-05-27 2006-11-28 Giuseppe Floris ANTI-ICE DEVICE FOR REFRIGERATORS
ITRM20050634A1 (en) * 2005-12-19 2007-06-20 Ixfin S P A SYSTEM FOR THE AUTOMATED DEFROSTING OF A REFRIGERATOR SYSTEM.
JP4767053B2 (en) * 2006-03-24 2011-09-07 三菱電機株式会社 Refrigeration air conditioner
JP2008121949A (en) * 2006-11-10 2008-05-29 Matsushita Electric Ind Co Ltd Outdoor unit of air conditioner
JP4937032B2 (en) * 2007-02-19 2012-05-23 三菱電機株式会社 Cooling device and refrigerator equipped with the same
KR20090020019A (en) * 2007-08-22 2009-02-26 엘지전자 주식회사 A control method for refrigerator
US20090235679A1 (en) * 2008-03-21 2009-09-24 Jeffrey Bagley Optical frost detector with gas blow off
KR101535484B1 (en) * 2008-04-15 2015-07-09 엘지전자 주식회사 Full ice detecting apparatus of ice maker for refrigerator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106152659A (en) * 2016-06-29 2016-11-23 Tcl家用电器(合肥)有限公司 Evaporimeter Defrost method and the refrigerator using the method
US11662139B2 (en) 2018-07-17 2023-05-30 Carrier Corporation Refrigerated cargo container cargo sensor

Also Published As

Publication number Publication date
US20130081415A1 (en) 2013-04-04
EP2578970B1 (en) 2019-08-14
EP2578970A3 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
EP2578970A2 (en) Refrigerator and controlling method thereof
US9243834B2 (en) Refrigerator
US9689600B2 (en) Icemaker unit and refrigerator having the same
KR101771721B1 (en) Refrigerator and its defrost control method
US20140216706A1 (en) Humidity control sensor for a refrigerator
JP5756898B2 (en) Cold storage
US20080092569A1 (en) Cooling unit with multi-parameter defrost control
KR20160065593A (en) Refrigerator
US9772130B2 (en) Refrigerator and method for controlling a refrigerator
CN107543351B (en) Refrigerator and control method thereof
KR101771722B1 (en) Refrigerator and its defrost control method
JP2010133590A (en) Refrigerator-freezer
JP2005172303A (en) Refrigerator
JP5788264B2 (en) refrigerator
JPH11311473A (en) Method for controlling refrigerator
JP2012189287A (en) Cooler
CN107076495B (en) Frost-free refrigeration appliance
KR101810693B1 (en) Refrigerator and controlling method thereof
KR20130036858A (en) Refrigerator
JP5957761B2 (en) Cooling storage
JP2010117038A (en) Refrigerator
CN110131951B (en) Refrigerator with a door
JP5511735B2 (en) refrigerator
JP6744731B2 (en) refrigerator
US20230266047A1 (en) Method for operating a domestic refrigerator, and domestic refrigerator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F25D 21/02 20060101ALI20180306BHEP

Ipc: F25D 21/08 20060101AFI20180306BHEP

Ipc: F25D 21/00 20060101ALI20180306BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20180718

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20180828

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190312

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LG ELECTRONICS INC.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1167512

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012062878

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190814

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191216

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1167512

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191115

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012062878

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191114

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220905

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230905

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031