[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2572097A1 - Inverseur de poussée à grilles ou à cascade, pour un turboréacteur d'avion - Google Patents

Inverseur de poussée à grilles ou à cascade, pour un turboréacteur d'avion

Info

Publication number
EP2572097A1
EP2572097A1 EP11725145A EP11725145A EP2572097A1 EP 2572097 A1 EP2572097 A1 EP 2572097A1 EP 11725145 A EP11725145 A EP 11725145A EP 11725145 A EP11725145 A EP 11725145A EP 2572097 A1 EP2572097 A1 EP 2572097A1
Authority
EP
European Patent Office
Prior art keywords
thrust reverser
diaphragm
grids
jet position
direct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11725145A
Other languages
German (de)
English (en)
Inventor
Guy Bernard Vauchel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Nacelles SAS
Original Assignee
Aircelle SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aircelle SA filed Critical Aircelle SA
Publication of EP2572097A1 publication Critical patent/EP2572097A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/56Reversing jet main flow
    • F02K1/62Reversing jet main flow by blocking the rearward discharge by means of flaps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/64Reversing fan flow
    • F02K1/70Reversing fan flow using thrust reverser flaps or doors mounted on the fan housing
    • F02K1/72Reversing fan flow using thrust reverser flaps or doors mounted on the fan housing the aft end of the fan housing being movable to uncover openings in the fan housing for the reversed flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/56Reversing jet main flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/56Reversing jet main flow
    • F02K1/566Reversing jet main flow by blocking the rearward discharge by means of a translatable member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/56Reversing jet main flow
    • F02K1/62Reversing jet main flow by blocking the rearward discharge by means of flaps
    • F02K1/625Reversing jet main flow by blocking the rearward discharge by means of flaps the aft end of the engine cowling being movable to uncover openings for the reversed flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/76Control or regulation of thrust reversers
    • F02K1/763Control or regulation of thrust reversers with actuating systems or actuating devices; Arrangement of actuators for thrust reversers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/34Arrangement of components translated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/40Movement of components
    • F05D2250/41Movement of components with one degree of freedom

Definitions

  • the present invention relates to a thrust reverser grid or cascade for an aircraft turbojet.
  • An aircraft is driven by several turbojet engines each housed in a nacelle also housing a set of ancillary actuating devices related to its operation and providing various functions when the turbojet engine is in operation or stopped.
  • These ancillary actuating devices comprise in particular a mechanical thrust reversal system.
  • a nacelle generally has a tubular structure comprising an air inlet upstream of the turbojet engine, a median section intended to surround a fan of the turbojet engine, a downstream section housing the thrust reversal means and intended to surround the engine room. combustion of the turbojet, and is generally terminated by an ejection nozzle whose output is located downstream of the turbojet engine.
  • Modern nacelles are intended to house a turbofan engine capable of generating through the blades of the rotating fan a flow of hot air (also called primary flow) from the combustion chamber of the turbojet engine, and a flow of cold air (secondary flow) flowing outside the turbojet through an annular channel, also called vein, formed between a fairing of the turbojet engine and an inner wall of the nacelle.
  • the two air flows are ejected from the turbojet engine from the rear of the nacelle.
  • the role of a thrust reverser is, during the landing of an aircraft, to improve the braking capacity thereof by redirecting forward at least a portion of the thrust generated by the turbojet engine.
  • the inverter obstructs the annular channel of the cold air flow and directs the latter towards the front of the nacelle, thereby generating a counter-thrust which is added to the braking of the wheels of the aircraft .
  • an inverter comprises movable covers moved between, on the one hand, an extended position (or “reverse jet”) in which they open in the nacelle a passage for the deflected flow, and secondly, a retracted position (or “direct jet”) in which they close this passage.
  • a gate inverter also known as a cascade inverter
  • the reorientation of the air flow is performed by deflection grids, the hood being slidably mounted along the axis of the nacelle. to discover or cover these grills.
  • Complementary locking doors also called inversion flaps, activated by the sliding of the cowling, generally allow closure of the annular channel of cold air flow downstream of the grids so as to optimize the reorientation of this air flow.
  • these cylinders are fixed upstream on a fixed part of the nacelle, such as the front support frame of the deflection grilles, and downstream inside the movable cowl, through suitable fittings.
  • actuating rods of these cylinders pass through the rear support frame of the deflection grids to cooperate with the movable cowl.
  • the present invention is thus particularly intended to provide means for reducing the thickness of the rear support frame of the deflection grids.
  • a cover mounted sliding between a direct jet position in which it covers said grids and a reverse jet position in which it discovers these grids, this cover comprising a substantially annular diaphragm coming to be placed edge to edge with said front frame and radially to inside said grids when said hood is in the direct jet position, - Reversing thrust flaps mounted pivoting on the diaphragm led between a jet position d irect in which they allow the circulation of cold air downstream of the inverter, and a reverse jet position in which they direct this cold air towards said grids, and
  • the cylinders do not have to go through the rear support frame of the deflection grids, since the diaphragm is located radially inside (that is to say under) this frame.
  • the arrangement according to the invention is also suitable when the reversing gates are self-supporting, that is to say when there is no rear frame, and the gates are only fixed between them and on the front frame.
  • said cylinders are located under said grids
  • said cylinders are located between said grids;
  • said diaphragm comprises an upstream edge folded towards the inside of the nacelle, supporting fittings for fixing the downstream ends of said jacks;
  • said upstream edge also supports a seal capable of being pressed against said front frame when said movable cowling is in the direct jet position advantageously under the jack;
  • said front frame comprises an annular groove provided with a seal, and the upstream edge of said diaphragm comprises a skirt adapted to fit in this groove when said movable cover is in a direct jet position;
  • the present invention also relates to a nacelle incorporating a thrust reverser according to the above.
  • FIG. 1 shows, in axial section, the zone of the inversion gates of a thrust reverser according to the invention, when this inverter is in the direct jet position;
  • FIG. 2 represents this inverter in reverse jet position
  • FIG. 3 represents another mode of realisation of this inverter according to the invention, in the direct jet (continuous lines) and reverse jet (dotted line) positions respectively, and
  • FIG. 4 shows yet another embodiment of the inverter according to the invention, in the reverse jet position.
  • This thrust reverser comprises a plurality of deflection grids 7, fixed between a front frame 9 and a fixed rear frame 1 1.
  • Actuation of the movable cowl 13 between these two positions is effected by a plurality of jacks 19 disposed at the periphery of the nacelle, and whose body 21 is fixed upstream of the front frame 9, and whose actuating rod 23 co-operates with the inner diaphragm 17 via a fitting 25.
  • the inner diaphragm 17 comprises, in its upstream part, an edge 27 folded towards the inside of the nacelle, that is to say in the direction of the axis A of this nacelle.
  • the upstream edge 27 of the diaphragm 17 supports a seal 29 adapted to be pressed against the front frame 9 when the movable cover 13 is in the direct jet position, as shown in FIG.
  • a plurality of thrust reverser flaps 31 are moreover pivotally mounted on the diaphragm 17, between a direct jet position (FIG. 1) in which they provide continuity and dynamics with the inner wall 33 of the movable cowl 13, and a reverse jet position (Figure 2) in which they seal the cold air duct 35 delimited by the inner wall 33 of the movable cowling 13 and the fairing (often referred to as IFS: "Internai Fixed Structure") surrounding the turbojet engine (not shown).
  • IFS Internai Fixed Structure
  • This air deflection towards the front of the nacelle causes braking of the aircraft during landing.
  • the geometry of the fittings 25 is studied so that in the direct jet position they are placed just upstream of the rear frame 11, without interfering with it.
  • the axis desd its cylinders 1 9 is s itu é s s the exact extension of the inner diaphragm 17, so as to ensure an optimal distribution of efforts.
  • the front frame 9 comprises housings, that is to say openings adapted to accommodate the fitting 25 when the movable cover 13 is in the direct jet position.
  • FIG. 3 differs from the preceding one essentially in that the seal 29 is now disposed inside an annular groove formed inside the front frame 9, the upstream edge 27 of the inner diaphragm 17 then comprising in this case, a skirt 43 adapted to fit into the groove 41, and therefore to compress the seal 29 in the direct jet position.
  • the jack 19 can be arranged slightly more towards the outside of the nacelle, to the point that it interferes with the volume defined by the deflection grid 7: in this case, spaces are provided between the deflection grids 7, so as to allow the passage of the actuating rod 23 of the jack 19.
  • the fitting 25 is then of course shaped so as to allow the correct attachment of the end of the actuating rod 23 of the jack with the upstream edge 27 of the inner diaphragm 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Cet inverseur de poussée à grilles pour nacelle de turboréacteur à double flux d'avion, comprend : - un cadre avant (9) supportant une pluralité de grilles de déviation (7), - un capot (13) monté coulissant entre une position jet direct dans laquelle il recouvre lesdites grilles (7) et une position jet inverse dans laquelle il découvre ces grilles (7), ce capot (1 3) comprenant un diaphragme (17) sensiblement annulaire venant se placer bord à bord avec ledit cadre avant (9) et radialement à l'intérieur desdites grilles (7) lorsque ledit capot (13) se trouve en position jet direct, - des volets d'inversion de poussée (31 ), montés pivotants sur ledit diaphragme (17) entre une position jet direct dans laquelle ils autorisent la circulation d'air froid vers l'aval de l'inverseur, et une position jet inverse dans laquelle ils dirigent cet air froid (F2) vers lesdites grilles (7), et - des vérins (1 9) d'actionnement dud it capot (1 3) entre ses positions jet direct et jet inverse. Cet inverseur de poussée est remarquable en ce que les extrémités amont desdits vérins (19) sont destinées à être montées sur une partie fixe de ladite nacelle, et en ce que les extrémités aval de ces vérins sont montées sur le bord amont (27) dudit diaphragme (17).

Description

Inverseur de poussée à grilles ou à cascade, pour un turboréacteur d'avion
La présente invention concerne un inverseur de poussée à grilles ou à cascade, pour un turboréacteur d'avion.
Un avion est mû par plusieurs turboréacteurs logés chacun dans une nacelle abritant également un ensemble de dispositifs d'actionnement annexes liés à son fonctionnement et assurant diverses fonctions lorsque le turboréacteur est en fonctionnement ou à l'arrêt. Ces dispositifs d'actionnement annexes comprennent notamment un système mécanique d'inversion de poussée.
Plus précisément, une nacelle présente généralement une structure tubulaire comprenant une entrée d'air en amont du turboréacteur, une section médiane destinée à entourer une soufflante du turboréacteur, une section aval abritant les moyens d'inversion de poussée et destinée à entourer la chambre de combustion du turboréacteur, et est généralement terminée par une tuyère d'éjection dont la sortie est située en aval du turboréacteur.
Les nacelles modernes sont destinées à abriter un turboréacteur double flux apte à générer par l'intermédiaire des pales de la soufflante en rotation un flux d'air chaud (également appelé flux primaire) issu de la chambre de combustion du turboréacteur, et un flux d'air froid (flux secondaire) qui circule à l'extérieur du turboréacteur à travers un canal annulaire, également appelé veine, formé entre un carénage du turboréacteur et une paroi interne de la nacelle. Les deux flux d'air sont éjectés du turboréacteur par l'arrière de la nacelle.
Le rôle d'un inverseur de poussée est, lors de l'atterrissage d'un avion, d'améliorer la capacité de freinage de celui-ci en redirigeant vers l'avant au moins une partie de la poussée engendrée par le turboréacteur. Dans cette phase, l'inverseur obstrue le canal annulaire du flux d'air froid et dirige ce dernier vers l'avant de la nacelle, engendrant de ce fait une contre-poussée qui vient s'ajouter au freinage des roues de l'avion.
Les moyens mis en œuvre pour réaliser cette réorientation du flux d'air froid varient suivant le type d'inverseur. Cependant, dans tous les cas, la structure d'un inverseur comprend des capots mobiles déplaçâmes entre, d'une part, une position déployée (ou « jet inverse ») dans laquelle ils ouvrent dans la nacelle un passage destiné au flux dévié, et d'autre part, une position d'escamotage (ou « jet direct ») dans laquelle ils ferment ce passage.
Dans le cas d'un inverseur à grilles, également connu sous le nom d'inverseur à cascade, la réorientation du flux d'air est effectuée par des grilles de déviation, le capot étant monté coulissant selon l'axe de la nacelle de manière à découvrir ou recouvrir ces gril les. Des portes de blocage complémentaires, également appelées volets d'inversion, activées par le coulissement du capotage, permettent généralement une fermeture du canal annulaire de flux d'air froid en aval des grilles de manière à optimiser la réorientation de ce flux d'air.
Le coulissement du capot mobile entre ses positions « jet direct » et « jet inverse » est assuré par des vérins répartis à la périphérie de la nacelle.
Classiquement, ces vérins sont fixés en amont sur une partie fixe de la nacelle, telle que le cadre avant de support des grilles de déviation, et en aval à l'intérieur du capot mobile, par l'intermédiaire de ferrures adaptées.
Plus précisément, les tiges d'actionnement de ces vérins traversent le cadre arrière de support des grilles de déviation pour coopérer avec le capot mobile.
Ceci implique nécessairement que le cadre arrière des grilles de déviation présente un certain encombrement radial.
Or dans les nacelles modernes, où l'on cherche à réduire les pertes aérodynamiques dues aux surfaces mouillées, les lignes sont de plus en plus ramassées, et il importe donc notamment de pouvoir réduire l'épaisseur radiale du cadre arrière.
La présente invention a ainsi notamment pour but de fournir des moyens permettant de réduire l'épaisseur du cadre arrière de support des grilles de déviation.
On atteint ce but de l'invention avec un inverseur de poussée à grilles pour nacelle de turboréacteur à double flux d'avion, comprenant :
- un cadre avant supportant une pluralité de grilles de déviation,
- un capot monté coul issant entre une position jet direct dans laquelle il recouvre lesdites grilles et une position jet inverse dans laquelle il découvre ces grilles, ce capot comprenant un diaphragme sensiblement annulaire venant se placer bord à bord avec ledit cadre avant et radialement à l'intérieur desdites grilles lorsque ledit capot se trouve en position jet direct, - des volets d'inversion de poussée, montés pivotant sur led it diaphragme entre une position jet d irect dans laquel le ils autorisent la circulation d'air froid vers l'aval de l'inverseur, et une position jet inverse dans laquelle ils dirigent cet air froid vers lesdites grilles, et
- des vérins d'actionnement dudit capot entre ses positions jet direct et jet inverse,
cet inverseu r de poussée étant remarq uable en ce q ue les extrémités amont desdits vérins sont destinées à être montées sur une partie fixe de ladite nacelle, et en ce que les extrémités aval de ces vérins sont montées sur le bord amont dudit diaphragme.
Grâce à ces caractéristiques, les vérins n'ont plus à traverser le cadre arrière de support des grilles de déviation, puisque le diaphragme se trouve radialement à l'intérieur (c'est-à-dire sous) ce cadre.
On peut de la sorte minimiser l'épaisseur de ce cadre arrière, et donc réduire l'épaisseur du capot mobile.
Par ailleurs, comme les vérins se trouvent dans le prolongement du diaphragme, on n'augmente pas pour autant l'encombrement dans la zone située radialement à l'intérieur (c'est-à-dire sous) ce diaphragme.
A noter également que l'agencement selon l'invention convient également lorsque les grilles d'inversion sont autosupportées, c'est-à-dire lorsqu'il n'y a pas de cadre arrière, et que les grilles sont uniquement fixées entre elles et sur le cadre avant.
Suivant d'autres caractéristiques optionnelles de cet inverseur de poussée selon l'invention :
- lesdits vérins sont situés sous lesdites grilles ;
lesdits vérins sont situés entre lesdites grilles ;
- les axes desd its vérins sont situés dans l 'al ignement dud it diaphragme : cette disposition particulière permet une répartition optimale des efforts ;
- ledit diaphragme comporte un bord amont replié vers l'intérieur de la nacelle, supportant des ferrures de fixation des extrémités aval desdits vérins ;
- ledit bord amont supporte en outre un joint d'étanchéité apte à être plaqué contre ledit cadre avant lorsque ledit capot mobile est en position jet direct avantageusement sous le vérin ; - ledit cadre avant comporte une gorge annulaire munie d'un joint, et le bord amont dudit diaphragme comporte une jupe apte à venir s'encastrer dans cette gorge lorsque ledit capot mobile est en position jet direct ;
- led it cadre avant com porte des cavités aptes à recevoir les extrémités aval desdits vérins, et au moins une partie desdites ferrures, lorsque ledit capot mobile se trouve en position jet direct.
La présente invention se rapporte également à une nacelle incorporant un inverseur de poussée conforme à ce qui précède.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lumière de la description qui va suivre, et à l'examen des figures ci-annexées, dans lesquelles :
- la figure 1 représente, en coupe axiale, la zone des grilles d'inversion d'u n inverseur de poussée selon l 'invention , lorsque cet inverseur se trouve en position jet direct ;
- la figure 2 représente cet inverseur en position jet inverse;
- la figure 3 représente un autre mode de réal isation de cet inverseur selon l'invention, en position respectivement jet direct (traits continus), et jet inverse (pointillés), et
- la figure 4 représente encore un autre mode de réalisation de l'inverseur selon l'invention, en position jet inverse.
Sur l'ensemble de ces figures, des références identiques ou analogues désig nent des organes ou ensemble d 'organes identiques et analogues.
On se reporte à présent aux figures 1 et 2, sur lesquelles on peut voir un inverseur de poussée à grilles selon l'invention, disposé en aval du carter de soufflante 3 d'un turboréacteur à double flux, et de son capot de soufflante 5 associé.
Cet inverseu r de poussée selon l'invention comporte une plural ité de grilles de déviation 7, fixées entre un cadre avant 9 et un cadre arrière 1 1 fixe.
Un capot mobile 1 3, comportant un panneau extérieur 15 et un diaphragme intérieur 17, est monté coulissant entre une position dans laquelle ce panneau et ce diaphragme recouvrent les grilles de déviation 7 (figurel ), et une position jet inverse, dans laquelle ce panneau 1 5 et ce diaphragme 1 7 découvrent ces grilles 7 (figure 2). L'actionnement du capot mobile 13 entre ces deux positions est effectué par une pluralité de vérins 19 disposés à la périphérie de la nacelle, et dont le corps 21 est fixé en amont du cadre avant 9, et dont la tige d'actionnement 23 coopère avec le diaphragme intérieur 17 par l'intermédiaire d'une ferrure 25.
Plus précisément le diaphragme intérieur 17 comporte, dans sa partie amont, un bord 27 plié vers l'intérieur de la nacelle, c'est-à-dire en direction de l'axe A de cette nacelle.
Le bord amont 27 du diaphragme 17 supporte un joint d'étanchéité 29 apte à être plaqué contre le cadre avant 9 lorsque le capot mobile 13 se trouve en position jet direct, comme cela est représenté à la figure 1.
Une pluralité de volets d'inversion de poussée 31 sont de plus montés pivotants sur le diaphragme 17, entre une position jet direct (figure 1) dans laquelle ils réalisent la continuité et la dynamique avec la paroi intérieure 33 du capot mobile 13 , et une position en jet inverse (figure 2) dans laquelle ils obturent la veine d'air froid 35 délimitée par la paroi intérieure 33 du capot mobile 13 et le carénage (souvent désigné par IFS : « Internai Fixed Structure ») entourant le moteur du turboréacteur (non représenté).
A noter que l'actionnement des volets d'inversion de poussée
31 est effectué par des bielles 39 interposées entre ces volets et le carénage 37. De même le concept peut s'adapter à n'importe quel concept d'entraînement des volets sans bielle dans la veine.
Le mode de fonctionnement et les avantages de l'inverseur de poussée dont les principaux éléments viennent d'être décrits, sont les suivants.
En situation de jet direct (figure 1 ), le flux d'air froid circule à l'intérieur de la veine 35, selon la flèche F1 , en direction de l'aval de la nacelle, permettant de réaliser la poussée nécessaire au vol de l'avion.
En position de jet inverse (figure 2), les tiges 23 des vérins 19 sortent des corps 21 de ces vérins, faisant coulisser le capot mobile 13 vers l'aval de la nacelle, ce qui a pour effet d'une part, de découvrir les grilles d'inversion 13, et d'autre part, de faire basculer les volets d'inversion 31 vers une position dans laquelle ils obturent la veine d'air froid 35, sous l'action de leurs bielles respectives 39. Cette opération a pour effet de dévier le flux d'air froid, circulant à l'intérieur de la veine 35 à travers les grilles d'inversion 7, vers l'avant de la nacelle, comme cela est indiqué par la flèche F2.
Cette déviation d'air vers l'avant de la nacelle provoque le freinage de l'avion, lors de l'atterrissage.
Le fait que les vérins 1 9 soient placés de man ière que leurs tiges d'actionnement 23 coopèrent avec le diaphragme intérieur 1 7 du capot mobile 1 3 permet de s'affranch ir de la nécessité de faire traverser le cadre arrière 1 1 par ces tiges 23, comme c'était le cas dans la technique antérieure.
On peut de la sorte avoir un cadre arrière dont l'épaisseur radiale e est minimale, compte tenu de l'absence de nécessité de prévoir des orifices et des festonnages dans ce cadre.
On peut même envisager de se passer complètement d'un tel cadre, dans les applications particulières où les grilles de déviation 7 sont autosupportées, c'est-à-dire fixées uniquement au cadre avant 9 et entre elles.
On notera de plus que la coopération des tiges 23 des vérins 19 avec l e diaphragme interne 1 7 évite également d'encombrer par ces tiges l'espace situé sous (c'est-à-dire radialement à l'intérieur) de ce diaphragme.
Comme cela est visible à la figure 2, la géométrie des ferrures 25 est étudiée de manière qu'en position jet direct elles viennent se placer juste en amont du cadre arrière 1 1 , sans interférer avec celui-ci.
De préférence, l 'axe desd its vérins 1 9 est s itu é d a n s l e prolongement exact du diaphragme intérieur 17, de manière à assurer une répartition optimale des efforts.
Comme cela est montré sur la figure 1 , on prévoit que le cadre avant 9 comporte des logements, c'est-à-dire des ouvertures aptes à accueillir la ferrure 25 lorsque le capot mobile 13 se trouve en position jet direct.
Dans cette position, le joint 29, comprimé entre le bord amont 27 et le cadre avant 9, permet de garantir la parfaite étanchéité de la veine d'air froid 35 vis-à-vis de l'extérieur, et ainsi d'éviter toute perte de poussée.
Le mode de réalisation de la figure 3 se distingue du précédent essentiellement en ceci que le joint d'étanchéité 29 est à présent disposé à l'intérieur d'une gorge annulaire formée à l'intérieur du cadre avant 9, le bord amont 27 du diaphragme intérieur 17 comportant alors dans ce cas, une jupe 43 apte à venir s'encastrer dans la gorge 41 , et donc à venir comprimer le joint 29, en position jet direct. Dans le mode de réalisation de la figure 4, on voit que le vérin 19 peut être disposé légèrement plus vers l'extérieur de la nacelle, au point qu'il interfère avec le volume défini par la grille de déviation 7 : dans ce cas, des espaces sont prévus entre les grilles de déviation 7, de man ière à permettre le passage de la tige d'actionnement 23 du vérin 19.
La ferrure 25 est alors bien entendu conformée de manière à permettre le rattachement correct de l'extrémité de la tige d'actionnement 23 du vérin avec le bord amont 27 du diaphragme intérieur 17.
Bien entendu, la présente invention n'est nullement limitée aux modes de réal isation décrits et représentés, fourn is à titre de simples exemples.

Claims

REVENDICATIONS
1 . Inverseur de poussée à grilles pour nacelle de turboréacteur à double flux d'avion, comprenant :
- un cadre avant (9) supportant une pluralité de grilles de déviation (7),
- un capot (1 3) monté coulissant entre une position jet direct dans laquelle il recouvre lesdites grilles (7) et une position jet inverse dans laquelle il découvre ces g ril les (7), ce capot ( 1 3) comprenant u n d iaph ragme ( 1 7) sensiblement annulaire venant se placer bord à bord avec ledit cadre avant (9) et radialement à l'intérieur desdites grilles (7) lorsque ledit capot (13) se trouve en position jet direct,
- des volets d'inversion de poussée (31 ), montés pivotants sur ledit diaphragme (1 7) entre une position jet direct dans laquelle ils autorisent la circulation d'air froid (F1 ) vers l'aval de l'inverseur, et une position jet inverse dans laquelle ils dirigent cet air froid (F2) vers lesdites grilles (7), et
- des vérins ( 1 9) d 'action nement d ud it capot ( 1 3) entre ses positions jet direct et jet inverse,
cet inverseur de poussée étant caractérisé en ce que les extrémités amont desdits vérins (19) sont destinées à être montées sur une partie fixe de ladite nacelle, et en ce que les extrémités aval de ces vérins sont montées sur le bord amont (27) dudit diaphragme (17).
2. Inverseur de poussée selon la revendication 1 , caractérisé en ce que lesdits vérins (19) sont situés sous lesdites grilles (7).
3. Inverseur de poussée selon la revendication 1 , caractérisé en ce que lesdits vérins (19) sont situés entre lesdites grilles (7).
4. Inverseur de poussée selon la revendication 2, caractérisé en ce que les axes desdits vérins (19) sont situés dans l'alignement dudit diaphragme (17).
5. Inverseur de poussée selon la revendication 1 , caractérisé en ce que ledit diaphragme (17) comporte un bord amont (27) replié vers l'intérieur de la nacelle, supportant des ferrures (25) de fixation des extrémités aval desdits vérins (19).
6. Inverseur de poussée selon la revendication 5, caractérisé en ce que ledit bord amont (27) supporte en outre un joint d'étanchéité (29) apte à être plaqué contre ledit cadre avant (9) lorsque ledit capot mobile (1 3) est en position jet direct.
7. Inverseur de poussée selon la revendication 5, caractérisé en ce que ledit cadre avant (9) comporte une gorge annulaire (41 ) munie d'un joint d'étanchéité (29), et le bord amont (27) dudit diaphragme comporte une jupe (43) apte à venir s'encastrer dans cette gorge (41 ) lorsque ledit capot mobile (13) est en position jet direct.
8. Inverseur de poussée selon la revendication 1 , caractérisé en ce que ledit cadre avant (9) comporte des cavités aptes à recevoir les extrémités aval desdits vérins (19), et au moins une partie desdites ferrures (25), lorsque ledit capot mobile (13) se trouve en position jet direct.
9. Nacelle de turboréacteur à double flux d'avion, comportant un inverseur de poussée conforme à l'une quelconque des revendications précédentes.
EP11725145A 2010-05-17 2011-05-10 Inverseur de poussée à grilles ou à cascade, pour un turboréacteur d'avion Withdrawn EP2572097A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1053785A FR2960029B1 (fr) 2010-05-17 2010-05-17 Inverseur de poussee a grilles ou a cascade, pour un turboreacteur d?avion
PCT/FR2011/051046 WO2011144837A1 (fr) 2010-05-17 2011-05-10 Inverseur de poussée à grilles ou à cascade, pour un turboréacteur d'avion

Publications (1)

Publication Number Publication Date
EP2572097A1 true EP2572097A1 (fr) 2013-03-27

Family

ID=43413354

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11725145A Withdrawn EP2572097A1 (fr) 2010-05-17 2011-05-10 Inverseur de poussée à grilles ou à cascade, pour un turboréacteur d'avion

Country Status (8)

Country Link
US (1) US9109540B2 (fr)
EP (1) EP2572097A1 (fr)
CN (1) CN102893010B (fr)
BR (1) BR112012027593A2 (fr)
CA (1) CA2798484A1 (fr)
FR (1) FR2960029B1 (fr)
RU (1) RU2570482C2 (fr)
WO (1) WO2011144837A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10309343B2 (en) 2014-11-06 2019-06-04 Rohr, Inc. Split sleeve hidden door thrust reverser
US10184426B2 (en) * 2015-06-22 2019-01-22 Rohr, Inc. Thrust reverser with forward positioned blocker doors
US11022071B2 (en) * 2016-12-21 2021-06-01 The Boeing Company Load distribution panel assembly, system and method
FR3075886B1 (fr) * 2017-12-22 2019-12-27 Safran Nacelles Nacelle de turboreacteur comportant des ouvertures de capots avant d'acces a des points de fixation de la nacelle
FR3141969B1 (fr) * 2022-11-16 2024-10-04 Safran Nacelles Inverseur de poussee comprenant une membrane d’obturation equipee d’un joint d’etancheite

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3262268A (en) * 1965-06-07 1966-07-26 Gen Electric Thrust reverser
GB1150012A (en) * 1966-09-12 1969-04-30 Rolls Royce Fluid Flow Duct Including Thrust Reversing Means
US3698192A (en) * 1970-06-22 1972-10-17 United Aircraft Corp Universal joint employing a fluid bearing for a movable nozzle
US4005822A (en) * 1975-12-22 1977-02-01 Rohr Industries, Inc. Fan duct thrust reverser
FR2379705A1 (fr) * 1977-02-08 1978-09-01 Snecma Dispositif d'inversion de poussee pour turboreacteur d'avion
US4232516A (en) * 1977-10-05 1980-11-11 Rolls-Royce Limited Flow deflecting devices
US4545199A (en) * 1982-06-14 1985-10-08 Rohr Industries, Inc. Fan cascade reverser having dual blocker doors
GB2182724B (en) * 1985-10-08 1988-12-07 Rolls Royce Gas turbine engine thrust reverser
GB2189550A (en) * 1986-04-25 1987-10-28 Rolls Royce A gas turbine engine powerplant with flow control devices
RU1563310C (ru) * 1988-04-19 1994-05-15 Акционерное общество "Авиадвигатель" Реверсивное устройство наружного контура турбореактивного двухконтурного двигателя
US5778659A (en) * 1994-10-20 1998-07-14 United Technologies Corporation Variable area fan exhaust nozzle having mechanically separate sleeve and thrust reverser actuation systems
FR2742482B1 (fr) * 1995-12-19 1998-02-06 Hurel Dubois Avions Inverseur de poussee a tuyere a section reglable pour moteur d'avion a reaction
FR2758161B1 (fr) * 1997-01-09 1999-02-05 Hispano Suiza Sa Inverseur de poussee a grilles a installation de verin de commande optimisee
FR2765916B1 (fr) * 1997-07-10 1999-08-20 Hispano Suiza Sa Inverseur de poussee a resistance amelioree aux impacts
US5975237A (en) * 1997-07-30 1999-11-02 The Boeing Company Reinforcing structure for engine nacelle acoustic panel
FR2901321B1 (fr) * 2006-05-18 2011-08-12 Aircelle Sa Procede d'homogeneisation de l'air en sortie de turboreacteur pour abaisser le bruit genere
FR2914957B1 (fr) * 2007-04-13 2012-05-11 Aircelle Sa Joint notamment pour bord de deviation d'inverseur de poussee a grilles pour avion et support de joint associe
FR2920197B1 (fr) * 2007-08-20 2013-08-09 Aircelle Sa Ressort pour volet d'inverseur de poussee a grilles pour turboreacteur d'aeronef
US8006479B2 (en) * 2007-10-15 2011-08-30 United Technologies Corporation Thrust reversing variable area nozzle
US8109466B2 (en) * 2008-06-23 2012-02-07 Rohr, Inc. Thrust reverser cascade assembly and AFT cascade ring with flow deflector portion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011144837A1 *

Also Published As

Publication number Publication date
CA2798484A1 (fr) 2011-11-24
FR2960029A1 (fr) 2011-11-18
CN102893010A (zh) 2013-01-23
US9109540B2 (en) 2015-08-18
RU2570482C2 (ru) 2015-12-10
WO2011144837A1 (fr) 2011-11-24
CN102893010B (zh) 2015-12-02
RU2012153437A (ru) 2014-06-27
BR112012027593A2 (pt) 2016-08-09
FR2960029B1 (fr) 2012-06-15
US20130075493A1 (en) 2013-03-28

Similar Documents

Publication Publication Date Title
EP2205891B1 (fr) Actionneur linéaire télescopique pour déplacer un premier et un second éléments relativement à un élément fixe
EP2739841B1 (fr) Inverseur à grilles mobiles et tuyère variable par translation
EP2438286A1 (fr) Inverseur de poussee pour nacelle de turboreacteur double flux
EP2737231B1 (fr) Actionneur linéaire double action
WO2008135644A1 (fr) Inverseur de poussee pour moteur a reaction
WO2011124793A1 (fr) Ensemble propulsif pour aéronef muni de moyens d'inversion de poussée
FR2978990A1 (fr) Dispositif d'inversion de poussee
WO2013021108A1 (fr) Nacelle de turboréacteur à tuyère variable
WO2010012878A1 (fr) Dispositif d'inversion de poussée
FR2966882A1 (fr) Inverseur de poussee pour turboreacteur d'aeronef a nombre d'actionneurs reduit
EP3129631A1 (fr) Dispositif d'inversion de poussée à portes pour nacelle de turboréacteur d'aéronef
EP2572097A1 (fr) Inverseur de poussée à grilles ou à cascade, pour un turboréacteur d'avion
EP3039274B1 (fr) Nacelle à dispositif d'inversion de poussée à grilles mobiles maintenues
EP2564050A1 (fr) Nacelle de turboréacteur
EP2591224A1 (fr) Dispositif d'inversion de poussee avec jonction aerodynamique de cadre avant
EP2625413A1 (fr) Ensemble propulsif d'aéronef
WO2011117555A1 (fr) Dispositif d'inversion de poussée
WO2012035223A1 (fr) Dispositif de verrouillage/déverrouillage pour inverseur de poussée à capot coulissant et à tuyère adaptative pour nacelle de moteur d'aéronef

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20160805