EP2434839B1 - Driving circuit for light emitting elements - Google Patents
Driving circuit for light emitting elements Download PDFInfo
- Publication number
- EP2434839B1 EP2434839B1 EP11182799.4A EP11182799A EP2434839B1 EP 2434839 B1 EP2434839 B1 EP 2434839B1 EP 11182799 A EP11182799 A EP 11182799A EP 2434839 B1 EP2434839 B1 EP 2434839B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- light emitting
- terminal
- gate
- emitting element
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 claims description 7
- 230000005669 field effect Effects 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 3
- 238000010297 mechanical methods and process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/395—Linear regulators
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/10—Controlling the intensity of the light
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/395—Linear regulators
- H05B45/397—Current mirror circuits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/30—Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
Definitions
- the present invention is a driving circuit for light emitting elements.
- PWM pulse width modulation
- U.S. Patent No. 6,989,701 discloses a PWM driving apparatus for a light emitting diode (LED) includes a saw tooth wave generator for generating a saw tooth wave signal, a comparator, a field effect transistor (FET), a first resistor, a second resistor, a power supply and an LED array.
- a modulation signal is provided by a modulation signal source and the saw tooth wave signal is fed to the comparator.
- An output of the comparator is connected to a gate terminal of the FET.
- the power supply is connected to a source terminal of the FET through the first resistor.
- a drain terminal of the FET outputs a driving current through the second resistor to the LED array.
- the foregoing PWM driving apparatus easily causes a driving circuit of the white light-emitting elements produces a noise that the human ear can hear, because frequency of a PWM signal in the range 200 Hz to 20 kHz can be heard by the human ear.
- the driving circuit for light-emitting elements stops working.
- the output capacitance passes through white light-emitting elements and then discharges with the bottom resistors. Therefore, when using PWM to dim the light, the output capacitance inevitably produces large ripple.
- efficiency of a small duty cycle is lower when using PWM to control duty cycle.
- Document EP 2 257 123 A1 discloses a light-emitting diode circuit which includes an alternating current source, a rectifier, a voltage-limiting circuit and an LED module allowing to substantially reduce fluctuations of the current flowing through the LED module when the AC voltage is unstable.
- Document WO 2007/144365 A1 discloses a device with an electrical supply circuit with at least one electric and/or electronic component connected in series and supplied with a direct current, wherein the components in turn are connected in series to a current-rectifying module and current-regulating module, whereby the device permits connecting directly to an alternating current supply source without the need for transformers nor capacitors.
- a new driving circuit for light emitting elements is needed to adjust resistance of a variable resistor via a microprocessor or a mechanical method and control brightness of light emitting elements by using an analog method.
- the primary objective of the present invention is to adjust resistance of a variable resistor with a microprocessor or a mechanical method and control brightness of light emitting elements with an analog method.
- a driving circuit for light emitting elements in accordance with the present invention comprises a rectifying unit, a first constant current unit, a first driving transistor, a first voltage control unit and at least one first light emitting element as defined in claim 1.
- a driving circuit for light emitting elements (1) in accordance with the present invention comprises a rectifying unit (10), a first constant current unit (11), a first driving transistor (12), a first voltage control unit (13), at least one first light emitting element (14), an optional second constant current unit (15), an optional second driving transistor (16), an optional second voltage control unit (17), at least one optional second light emitting element (18), an optional first capacitor (19), an optional second capacitor (20), an optional third constant current unit (21), an optional third driving transistor (22), an optional third voltage control unit (23) and at least one optional third light emitting element (24).
- the rectifying unit (10) has a first terminal (100) and a second terminal (101), is connected to an external power source (2) that provides alternating current (AC) power being sinusoidal and having alternating negative and positive segments, inverts the negative segments of the AC power to positive segments and forms a pulsating direct current (DC) voltage.
- AC alternating current
- DC direct current
- the first constant current unit (11) has a first end (110) and a second end (111) and may be a bias feedback resistor or a current regulating diode.
- the bias feedback resistor has a variable resistance.
- the first driving transistor (12) comprises a first gate (120), a first drain (121) and a first source (122).
- the first gate (120) connects to the second end (111) of the first constant current unit (11).
- the first drain (121) connects to the first terminal (100) of the rectifying unit (10) and the first end (110) of the first constant current unit (11).
- the first source (122) outputs a driving current according to a voltage between the first gate (120) and the first source (122).
- the first voltage control unit (13) comprises a first variable resistor (130) and a first bias control element (131).
- the first variable resistor (130) has a variable resistance controlling the driving current of the first driving transistor (12) and has a first terminal (1300) and a second terminal (1301).
- the variable resistance of the first variable resistor (130) may be adjusted by a microprocessor or a mechanical method.
- the first terminal (1300) connects to the first source (122).
- the first bias control element (131) controls the voltage between the first gate (120) and the first source (122) according to the driving current of the first driving transistor (12), has a first end (1310) and a second end (1311) and may be a zener diode (131a) or an n type metal oxide semiconductor field effect transistor (nMOSFET) (131b).
- the first end (1310) connects to the first gate (120).
- the second end (1311) connects to the second terminal (1301) of the first variable resistor (130).
- the zener diode (131a) has an anode (1311a) and a cathode (1310a).
- the anode (1311a) connects to the second terminal (1301) of the first variable resistor (130).
- the cathode (1310a) connects to the first gate (120).
- the nMOSFET (131b) comprises a gate (1310b), a drain (1311b) and a source (1312b).
- the gate (1310b) of the nMOSFET (131b) connects to the first terminal (1300) of the first variable resistor (130).
- the drain (1311b) of the nMOSFET (131b) connects to the first gate (120).
- the source (1312b) of the nMOSFET (131b) connects to the second terminal (1301) of the first variable resistor (130).
- the first light emitting element (14) has a first end (140) and a second end (141) and may be a red light emitting element, an organic LED, an LED or an electroluminance element.
- the first end (140) connects to the second terminal (1301) of the first variable resistor (130).
- the second end (141) connects to the second terminal (101) of the rectifying unit (10).
- the second constant current unit (15) has a first end (150) and a second end (151).
- the second driving transistor (16) comprises a second gate (160), a second drain (161) and a second source (162).
- the second gate (160) connects to the second end (151) of the second constant current unit (15).
- the second drain (161) connects to the first terminal (100) of the rectifying unit (10) and the first end (150) of the second constant current unit (15).
- the second source (162) outputs a driving current according to a voltage between the second gate (160) and the second source (162).
- the second voltage control unit (17) comprises a second variable resistor (170) and a second bias control element (171).
- the second variable resistor (170) has a variable resistance controlling the driving current of the second driving transistor (16) and having a first terminal (1700) and a second terminal (1701).
- the first terminal (1700) connects to the second source (162).
- the second bias control element (171) controls the voltage between the second gate (160) and the second source (162) according to the driving current of the second driving transistor (16) and has a first end (1710) and a second end (1711).
- the first end (1710) connects to the second gate (160).
- the second end (1711) connects to the second terminal (1701) of the second variable resistor (170).
- the second light emitting element (18) has a first end (180) and a second end (181) and may be a green light emitting element, an organic LED, an LED or an electroluminance element.
- the first end (180) connects to the second terminal (1701) of the second variable resistor (170).
- the second end (181) connects to the second terminal (101) of the rectifying unit (10).
- the first capacitor (19) has a first end (190) and a second end (191).
- the first end (190) connects to the first end (110) of the first constant current unit (11).
- the second end (191) connects to the second end (111) of the first constant current unit (11).
- the second capacitor (20) has a first end (200) and a second end (201).
- the first end (200) connects to the first gate (120).
- the second end (201) connects to the second terminal (1301) of the first variable resistor (130).
- the third constant current unit (21) has a first end (210) and a second end (211).
- the third driving transistor (22) comprises a third gate (220), a third drain (221) and a third source (222).
- the third gate (220) connects to the second end (211) of the third constant current unit (21).
- the third drain (221) connects to the first terminal (100) of the rectifying unit (10) and the first end (210) of the third constant current unit (21).
- the third source (222) outputs a driving current according to a voltage between the third gate (220) and the third source (222).
- the third voltage control unit (23) comprises a third variable resistor (230) and a third bias control element (231).
- the third variable resistor (230) has a variable resistance controlling the driving current of the third driving transistor (22) and has a first terminal (2300) and a second terminal (2301).
- the first terminal (2300) connects to the third source (222).
- the third bias control element (231) controls the voltage between the third gate (220) and the third source (222) according to the driving current of the third driving transistor (22) and has a first end (2310) and a second end (2311).
- the first end (2310) connects to the third gate (220).
- the second end (2311) connects to the second terminal (2301) of the third variable resistor (230).
- the third light emitting element (24) has a first end (240) and a second end (241), may be a blue light emitting element, an organic LED, an LED or an electroluminance element.
- the first end (240) connects to the second terminal (2301) of the third variable resistor (230).
- the second end (241) connects to the second terminal (101) of the rectifying unit (10).
Landscapes
- Circuit Arrangement For Electric Light Sources In General (AREA)
- Led Devices (AREA)
- Electroluminescent Light Sources (AREA)
- Control Of El Displays (AREA)
Description
- The present invention is a driving circuit for light emitting elements.
- Prior art for dimming technology of light-emitting elements uses pulse width modulation (PWM) to convert analog signals to digital pulses, controls an on/off time ratio of light-emitting elements and then divides into some levels. Subsequently, the light-emitting elements will display the values of bright gray scale relatively. Thus, providing a width change on a digital pulse can change output current to adjust brightness of the light-emitting elements.
-
U.S. Patent No. 6,989,701 discloses a PWM driving apparatus for a light emitting diode (LED) includes a saw tooth wave generator for generating a saw tooth wave signal, a comparator, a field effect transistor (FET), a first resistor, a second resistor, a power supply and an LED array. A modulation signal is provided by a modulation signal source and the saw tooth wave signal is fed to the comparator. An output of the comparator is connected to a gate terminal of the FET. The power supply is connected to a source terminal of the FET through the first resistor. A drain terminal of the FET outputs a driving current through the second resistor to the LED array. - However, the foregoing PWM driving apparatus easily causes a driving circuit of the white light-emitting elements produces a noise that the human ear can hear, because frequency of a PWM signal in the
range 200 Hz to 20 kHz can be heard by the human ear. When the PWM signal is low, the driving circuit for light-emitting elements stops working. The output capacitance passes through white light-emitting elements and then discharges with the bottom resistors. Therefore, when using PWM to dim the light, the output capacitance inevitably produces large ripple. In addition, efficiency of a small duty cycle is lower when using PWM to control duty cycle. -
Document EP 2 257 123 A1 discloses a light-emitting diode circuit which includes an alternating current source, a rectifier, a voltage-limiting circuit and an LED module allowing to substantially reduce fluctuations of the current flowing through the LED module when the AC voltage is unstable. - Document
US 2008/0068298 A1 discloses a constant-power DC light-emitting diode driving system which comprises a plurality of LEDs, a DC voltage source for LED current generation and a constant-voltage and constant-current regulator for constant luminance control. - Document
WO 2007/144365 A1 discloses a device with an electrical supply circuit with at least one electric and/or electronic component connected in series and supplied with a direct current, wherein the components in turn are connected in series to a current-rectifying module and current-regulating module, whereby the device permits connecting directly to an alternating current supply source without the need for transformers nor capacitors. - Accordingly, a new driving circuit for light emitting elements is needed to adjust resistance of a variable resistor via a microprocessor or a mechanical method and control brightness of light emitting elements by using an analog method.
- The primary objective of the present invention is to adjust resistance of a variable resistor with a microprocessor or a mechanical method and control brightness of light emitting elements with an analog method.
- A driving circuit for light emitting elements in accordance with the present invention comprises a rectifying unit, a first constant current unit, a first driving transistor, a first voltage control unit and at least one first light emitting element as defined in
claim 1. -
-
Fig. 1 is a driving circuit for light emitting elements in accordance with the present invention; -
Fig. 2 is a circuit diagram of a first embodiment of a limiting current circuit inFig. 1 ; -
Fig. 3 is a circuit diagram of a second embodiment of a limiting current circuit inFig. 1 ; -
Fig. 4 is a circuit diagram of a third embodiment of a limiting current circuit inFig. 1 ; -
Fig. 5 is a circuit diagram of a fourth embodiment of a limiting current circuit inFig. 1 ; and -
Fig. 6 is a circuit diagram of a fifth embodiment of a limiting current circuit inFig. 1 . - With reference to
Figs. 1 to 6 , a driving circuit for light emitting elements (1) in accordance with the present invention comprises a rectifying unit (10), a first constant current unit (11), a first driving transistor (12), a first voltage control unit (13), at least one first light emitting element (14), an optional second constant current unit (15), an optional second driving transistor (16), an optional second voltage control unit (17), at least one optional second light emitting element (18), an optional first capacitor (19), an optional second capacitor (20), an optional third constant current unit (21), an optional third driving transistor (22), an optional third voltage control unit (23) and at least one optional third light emitting element (24). - The rectifying unit (10) has a first terminal (100) and a second terminal (101), is connected to an external power source (2) that provides alternating current (AC) power being sinusoidal and having alternating negative and positive segments, inverts the negative segments of the AC power to positive segments and forms a pulsating direct current (DC) voltage.
- The first constant current unit (11) has a first end (110) and a second end (111) and may be a bias feedback resistor or a current regulating diode. The bias feedback resistor has a variable resistance.
- The first driving transistor (12) comprises a first gate (120), a first drain (121) and a first source (122). The first gate (120) connects to the second end (111) of the first constant current unit (11). The first drain (121) connects to the first terminal (100) of the rectifying unit (10) and the first end (110) of the first constant current unit (11). The first source (122) outputs a driving current according to a voltage between the first gate (120) and the first source (122).
- The first voltage control unit (13) comprises a first variable resistor (130) and a first bias control element (131).
- The first variable resistor (130) has a variable resistance controlling the driving current of the first driving transistor (12) and has a first terminal (1300) and a second terminal (1301). The variable resistance of the first variable resistor (130) may be adjusted by a microprocessor or a mechanical method. The first terminal (1300) connects to the first source (122).
- The first bias control element (131) controls the voltage between the first gate (120) and the first source (122) according to the driving current of the first driving transistor (12), has a first end (1310) and a second end (1311) and may be a zener diode (131a) or an n type metal oxide semiconductor field effect transistor (nMOSFET) (131b). The first end (1310) connects to the first gate (120). The second end (1311) connects to the second terminal (1301) of the first variable resistor (130).
- The zener diode (131a) has an anode (1311a) and a cathode (1310a). The anode (1311a) connects to the second terminal (1301) of the first variable resistor (130). The cathode (1310a) connects to the first gate (120).
- The nMOSFET (131b) comprises a gate (1310b), a drain (1311b) and a source (1312b). The gate (1310b) of the nMOSFET (131b) connects to the first terminal (1300) of the first variable resistor (130). The drain (1311b) of the nMOSFET (131b) connects to the first gate (120). The source (1312b) of the nMOSFET (131b) connects to the second terminal (1301) of the first variable resistor (130).
- The first light emitting element (14) has a first end (140) and a second end (141) and may be a red light emitting element, an organic LED, an LED or an electroluminance element. The first end (140) connects to the second terminal (1301) of the first variable resistor (130). The second end (141) connects to the second terminal (101) of the rectifying unit (10).
- The second constant current unit (15) has a first end (150) and a second end (151).
- The second driving transistor (16) comprises a second gate (160), a second drain (161) and a second source (162). The second gate (160) connects to the second end (151) of the second constant current unit (15). The second drain (161) connects to the first terminal (100) of the rectifying unit (10) and the first end (150) of the second constant current unit (15). The second source (162) outputs a driving current according to a voltage between the second gate (160) and the second source (162).
- The second voltage control unit (17) comprises a second variable resistor (170) and a second bias control element (171).
- The second variable resistor (170) has a variable resistance controlling the driving current of the second driving transistor (16) and having a first terminal (1700) and a second terminal (1701). The first terminal (1700) connects to the second source (162).
- The second bias control element (171) controls the voltage between the second gate (160) and the second source (162) according to the driving current of the second driving transistor (16) and has a first end (1710) and a second end (1711). The first end (1710) connects to the second gate (160). The second end (1711) connects to the second terminal (1701) of the second variable resistor (170).
- The second light emitting element (18) has a first end (180) and a second end (181) and may be a green light emitting element, an organic LED, an LED or an electroluminance element. The first end (180) connects to the second terminal (1701) of the second variable resistor (170). The second end (181) connects to the second terminal (101) of the rectifying unit (10).
- The first capacitor (19) has a first end (190) and a second end (191). The first end (190) connects to the first end (110) of the first constant current unit (11). The second end (191) connects to the second end (111) of the first constant current unit (11).
- The second capacitor (20) has a first end (200) and a second end (201). The first end (200) connects to the first gate (120). The second end (201) connects to the second terminal (1301) of the first variable resistor (130).
- The third constant current unit (21) has a first end (210) and a second end (211).
- The third driving transistor (22) comprises a third gate (220), a third drain (221) and a third source (222). The third gate (220) connects to the second end (211) of the third constant current unit (21). The third drain (221) connects to the first terminal (100) of the rectifying unit (10) and the first end (210) of the third constant current unit (21). The third source (222) outputs a driving current according to a voltage between the third gate (220) and the third source (222).
- The third voltage control unit (23) comprises a third variable resistor (230) and a third bias control element (231).
- The third variable resistor (230) has a variable resistance controlling the driving current of the third driving transistor (22) and has a first terminal (2300) and a second terminal (2301). The first terminal (2300) connects to the third source (222).
- The third bias control element (231) controls the voltage between the third gate (220) and the third source (222) according to the driving current of the third driving transistor (22) and has a first end (2310) and a second end (2311).
- The first end (2310) connects to the third gate (220). The second end (2311) connects to the second terminal (2301) of the third variable resistor (230). The third light emitting element (24) has a first end (240) and a second end (241), may be a blue light emitting element, an organic LED, an LED or an electroluminance element. The first end (240) connects to the second terminal (2301) of the third variable resistor (230). The second end (241) connects to the second terminal (101) of the rectifying unit (10).
Claims (7)
- A driving circuit for light emitting elements (1) comprisinga rectifying unit (10) having a first terminal (100) and a second terminal (101), being connected to an external power source (2) that provides alternating current (AC) power being sinusoidal and having alternating negative and positive segments, inverting the negative segments of the AC power to positive segments and forming a pulsating direct current (DC) voltage;a first constant current unit (11) having a first end (110) and a second end (111);a first driving transistor (12) comprisinga first gate (120) connecting to the second end (111) of the first constant current unit(10);a first drain (121) connecting to the first terminal (100) of the rectifying unit (10) and the first end (110) of the first constant current unit (11); anda first source (122) outputting a driving current according to a voltage between the first gate (120) and the first source (122);a first voltage control unit (13) comprisinga first variable resistor (130) having a variable resistance controlling the driving current of the first driving transistor (12) and havinga first terminal (1300) connecting to the first source; anda second terminal (1301); anda first bias control element (131) controlling the voltage between the first gate (120) and the first source (122) according to the driving current of the first driving transistor (12) and havinga first end (1310) connecting to the first gate (120) ; anda second end (1311) connecting to the second terminal (1301) of the first variable resistor (130); andat least one first light emitting element (14) havinga first end (140) connecting to the second terminal (1301) of the first variable resistor (130); anda second end (141) connecting to the second terminal (101) of the rectifying unit (10); characterised in that:the first bias control element (131) is an n type metal oxide semiconductor field effect transistor (nMOSFET) comprisinga gate (1310b) connecting to the first terminal (1300) of the first variable resistor (130);a drain (1311b) connecting to the first gate (120); anda source (1312b) connecting to the second terminal (1301) of the first variable resistor (130);the driving circuit for light emitting elements (1) further comprisingwherein the first constant current unit (11) is a bias feedback resistor having a variable resistance, anda first capacitor (19) havinga first end (190) connecting to the first end (110) of the first constant current unit (11); anda second end (191) connecting to the second end (111) of the first constant current unit (11); anda second capacitor (20) havinga first end (200) connecting to the first gate (120); anda second end (201) connecting to the second terminal (1301) of the first variable resistor (130),
wherein the variable resistance of the first variable resistor (130) is adjusted by a microprocessor. - The driving circuit for light emitting elements (1) as claimed in claim 1, further comprisinga second constant current unit (15) having a first end (150) and a second end (151);a second driving transistor (16) comprisinga second gate (160) connecting to the second end (151) of the second constant current unit (15);a second drain (161) connecting to the first terminal (100) of the rectifying unit (10) and the first end (150) of the second constant current unit (15); anda second source (162) outputting a driving current according to a voltage between the second gate (160) and the second source (162);a second voltage (17) control unit comprisinga second variable resistor (170) having a variable resistance controlling the driving current of the second driving transistor (16) and havinga first terminal (1700) connecting to the second source (162); anda second terminal (1701); anda second bias control element (171) controlling the voltage between the second gate (160) and the second source (162) according to the driving current of the second driving transistor (16) and havinga first end (1710) connecting to the second gate (160); anda second end (1711) connecting to the second terminal (1701) of the second variable resistor (170); andat least one second light emitting element (18) havinga first end (180) connecting to the second terminal (1701) of the second variable resistor (170); anda second end (181) connecting to the second terminal (101) of the rectifying unit (10).
- The driving circuit for light emitting elements (1) as claimed in claim 1, further comprisinga third constant current unit (21) having a first end (210) and a second end (211);a third driving transistor (22) comprisinga third gate (220) connecting to the second end (211) of the third constant current unit (21);a third drain (221) connecting to the first terminal (100) of the rectifying unit (10) and the first end (210) of the third constant current unit (21); anda third source (222) outputting a driving current according to a voltage between the third gate (220) and the third source (222);a third voltage control unit (23) comprisinga third variable resistor (230) having a variable resistance controlling the driving current of the third driving transistor (22) and havinga first terminal (2300) connecting to the third source; anda second terminal (2301); anda third bias control element (231) controlling the voltage between the third gate (220) and the third source (222) according to the driving current of the third driving transistor (22) and havinga first end (2310) connecting to the third gate (220); anda second end (2311) connecting to the second terminal (2301) of the third variable resistor (230); andat least one third light emitting element (24) havinga first end (240) connecting to the second terminal (2301) of the third variable resistor (230); anda second end (241) connecting to the second terminal (101) of the rectifying unit (10).
- The driving circuit for light emitting elements (1) as claimed in claim 3, wherein the first light emitting element (14) is a red light emitting element, the second light emitting element (15) is a green light emitting element and the third light emitting element (24) is a blue light emitting element.
- The driving circuit for light emitting elements (1) as claimed in claim 3, wherein the first light emitting element (14), the second light emitting element (15) and the third light emitting element (24) are organic light emitting diodes (LEDs).
- The driving circuit for light emitting elements (1) as claimed in claim 3, wherein the first light emitting element (14), the second light emitting element (15) and the third light emitting element (24) are LEDs.
- The driving circuit for light emitting elements (1) as claimed in claim 3, wherein the first light emitting element (14), the second light emitting element (15) and the third light emitting element (24) are electroluminance elements.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099132666A TW201215230A (en) | 2010-09-27 | 2010-09-27 | Light emitting element driving circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2434839A1 EP2434839A1 (en) | 2012-03-28 |
EP2434839B1 true EP2434839B1 (en) | 2016-05-04 |
Family
ID=44677738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11182799.4A Active EP2434839B1 (en) | 2010-09-27 | 2011-09-26 | Driving circuit for light emitting elements |
Country Status (7)
Country | Link |
---|---|
US (1) | US8427065B2 (en) |
EP (1) | EP2434839B1 (en) |
JP (1) | JP2012074693A (en) |
KR (1) | KR20120031878A (en) |
CN (1) | CN102421217A (en) |
AU (1) | AU2011226896B2 (en) |
TW (1) | TW201215230A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103795661B (en) * | 2012-11-02 | 2017-06-16 | 瑞昱半导体股份有限公司 | Communicator and the estimating and measuring method being applied thereon |
KR20140058073A (en) * | 2012-11-06 | 2014-05-14 | 삼성전자주식회사 | Illumination system |
TWI552645B (en) * | 2015-03-18 | 2016-10-01 | 隆達電子股份有限公司 | Dimming circuit |
CN104883780B (en) * | 2015-05-19 | 2017-06-23 | 深圳创维-Rgb电子有限公司 | Multichannel dual mode digital controls LED drive circuit and LED |
CN111712009A (en) * | 2020-06-12 | 2020-09-25 | 深圳拓邦股份有限公司 | LED lamp with dimming function |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5814584A (en) * | 1981-07-17 | 1983-01-27 | Ricoh Co Ltd | Driving device for light-emitting element |
JPS6194386A (en) * | 1984-10-15 | 1986-05-13 | Sanyo Electric Co Ltd | High-speed apc circuit |
JPS62268321A (en) * | 1986-05-14 | 1987-11-20 | 三菱電機株式会社 | Light emitting device driving circuit |
JPH05191568A (en) | 1992-01-13 | 1993-07-30 | Rohm Co Ltd | Light emitting source |
JP2003059676A (en) | 2001-08-10 | 2003-02-28 | Japan Storage Battery Co Ltd | Power supply device of light-emitting diode |
TWI248598B (en) | 2002-12-31 | 2006-02-01 | Hon Hai Prec Ind Co Ltd | Driving apparatus of LED |
JP4845395B2 (en) * | 2004-03-19 | 2011-12-28 | シチズンホールディングス株式会社 | LED drive circuit |
WO2007071033A1 (en) * | 2005-12-20 | 2007-06-28 | Tir Technology Lp | Method and apparatus for controlling current supplied to electronic devices |
AR054478A1 (en) * | 2006-06-15 | 2007-06-27 | Andres Gabriel Moresco | POWER SUPPLY CIRCUIT PROVISION OF AT LEAST ONE ELECTRONIC AND / OR ELECTRICAL COMPONENT |
TW200816868A (en) * | 2006-09-18 | 2008-04-01 | Vast View Technology Inc | Light emitting diode (LED) driving system and method |
JP5089193B2 (en) * | 2007-02-22 | 2012-12-05 | 株式会社小糸製作所 | Light emitting device |
US7888888B2 (en) * | 2007-07-11 | 2011-02-15 | Industrial Technology Research Institute | Light source apparatus and driving apparatus thereof |
JP2009026544A (en) * | 2007-07-18 | 2009-02-05 | Showa Denko Kk | Light-control device for light-emitting diode and led lighting device |
JP2009200257A (en) * | 2008-02-21 | 2009-09-03 | Sharp Corp | Led drive circuit |
JP2010103391A (en) * | 2008-10-27 | 2010-05-06 | Toshiba Lighting & Technology Corp | Led lighting device and illuminator |
JP2010170845A (en) * | 2009-01-22 | 2010-08-05 | Panasonic Electric Works Co Ltd | Power supply and luminaire using the same |
TW201043083A (en) | 2009-05-21 | 2010-12-01 | Everlight Electronics Co Ltd | Light emitting diode circuit |
-
2010
- 2010-09-27 TW TW099132666A patent/TW201215230A/en unknown
- 2010-12-21 CN CN2010105984066A patent/CN102421217A/en active Pending
-
2011
- 2011-09-06 KR KR1020110090019A patent/KR20120031878A/en not_active Application Discontinuation
- 2011-09-07 JP JP2011195380A patent/JP2012074693A/en active Pending
- 2011-09-26 EP EP11182799.4A patent/EP2434839B1/en active Active
- 2011-09-27 AU AU2011226896A patent/AU2011226896B2/en active Active
- 2011-09-27 US US13/246,223 patent/US8427065B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US8427065B2 (en) | 2013-04-23 |
EP2434839A1 (en) | 2012-03-28 |
KR20120031878A (en) | 2012-04-04 |
AU2011226896B2 (en) | 2015-08-27 |
US20120074857A1 (en) | 2012-03-29 |
TW201215230A (en) | 2012-04-01 |
JP2012074693A (en) | 2012-04-12 |
AU2011226896A1 (en) | 2012-04-12 |
CN102421217A (en) | 2012-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8729827B2 (en) | Semiconductor light emitting element drive device and lighting fixture with the same | |
US8975825B2 (en) | Light emitting diode driver with isolated control circuits | |
US7626342B2 (en) | High efficiency power controller for solid state lighting | |
EP2515611A1 (en) | Lighting device and illumination apparatus | |
US9295119B2 (en) | Lighting device and illumination apparatus using the same | |
JP6396336B2 (en) | Power supply circuit that converts the blinking frequency of light emitting diodes | |
EP2653011B1 (en) | Linear driver for reduced perceived light flicker | |
CN105813255A (en) | Light-emitting diode lighting device with synchronized PWM dimming control | |
EP2434839B1 (en) | Driving circuit for light emitting elements | |
US8258716B2 (en) | Driving power supply system of an active type LED with multiple channels | |
JP6108143B2 (en) | Overcurrent prevention type power supply device and lighting fixture using the same | |
KR20120096326A (en) | A apparatus of smart dimming converter for led lamp | |
US9655190B2 (en) | Ripple based light emitting diode driving | |
KR20090128652A (en) | Apparatus for driving light | |
KR20150125021A (en) | Appratus for driving oled module | |
US9265106B2 (en) | Lighting device and illumination apparatus using the same | |
JP3195014U (en) | LED driving device | |
TW201438518A (en) | LED dimming control device | |
Dinis et al. | A Single-Inductor Multiple Current Output RGB LED Driver Architecture with Hybrid Dimming for Large-Scale Facilities | |
JP2017059456A (en) | Luminaire using led, driving circuit for luminaire using led and method of driving luminaire using led | |
TWM485359U (en) | Lighting device | |
KR20150131919A (en) | Device for driving light emitting diode module and method for driving light emitting diode module | |
KR20140121621A (en) | Light Emitting Module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20120928 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151120 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 797863 Country of ref document: AT Kind code of ref document: T Effective date: 20160515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011026112 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160504 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160804 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 797863 Country of ref document: AT Kind code of ref document: T Effective date: 20160504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160905 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160805 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011026112 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160504 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160926 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160930 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160930 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160504 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602011026112 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H05B0033080000 Ipc: H05B0045000000 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240906 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240923 Year of fee payment: 14 |