[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2495353A2 - Method for operating an oxygen-consuming electrode - Google Patents

Method for operating an oxygen-consuming electrode Download PDF

Info

Publication number
EP2495353A2
EP2495353A2 EP12157043A EP12157043A EP2495353A2 EP 2495353 A2 EP2495353 A2 EP 2495353A2 EP 12157043 A EP12157043 A EP 12157043A EP 12157043 A EP12157043 A EP 12157043A EP 2495353 A2 EP2495353 A2 EP 2495353A2
Authority
EP
European Patent Office
Prior art keywords
oxygen
electrolysis
process gas
gas
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12157043A
Other languages
German (de)
French (fr)
Other versions
EP2495353A3 (en
EP2495353B1 (en
Inventor
Andreas Bulan
Michael Grossholz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP2495353A2 publication Critical patent/EP2495353A2/en
Publication of EP2495353A3 publication Critical patent/EP2495353A3/en
Application granted granted Critical
Publication of EP2495353B1 publication Critical patent/EP2495353B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation

Definitions

  • the invention relates to a method for conditioning an oxygen-containing process gas in an electrochemical process, in which a gas diffusion electrode, in particular an oxygen-consuming electrode is used.
  • Electrochemical processes here are in particular the chlor-alkali and hydrochloric acid electrolysis with oxygen-consuming electrodes.
  • Oxygen-consuming electrodes are used, inter alia, in the chloralkali electrolysis, hydrochloric acid electrolysis, fuel cell technology or in metal / air batteries.
  • the invention is based on known per se oxygen-consuming electrodes, which are formed as gas diffusion electrodes and usually comprise an electrically conductive carrier and a gas diffusion layer with a catalytically active component.
  • Prior art oxygen-consuming electrodes are used in various arrangements in electrochemical processes, such as the generation of electricity in fuel cells or in the electrolytic production of chlorine from aqueous solutions of sodium chloride.
  • a more detailed description of the chlorine-alkali electrolysis with oxygen-consuming electrode is located in Journal of Applied Electrochemistry, Vol. 38 (9) pages 1177-1194 (2008 ).
  • Examples of electrolysis cells with Sauerstoffverzehrelektroden are the writings EP 1033419B1 . DE 19622744C1 and WO 2008006909A2 refer to.
  • the electrolysis of sodium chloride or hydrochloric acid is operated on an industrial scale in plants with capacities of up to more than 1 million t chlorine / year.
  • the plants also contain facilities for the treatment of chlorine and caustic soda and, if a conventional electrolysis without SVE is operated, for hydrogen. Descriptions of the work-up procedures can be found, for example, in the sections "Chlorine” and "Sodium Hydroxide” Online edition of Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KG, Weinheim ,
  • a process for recycling the unconsumed oxygen from the electrolysis into the electrolysis is known in DE10149779 A1 described.
  • the added fresh oxygen is expanded in a gas jet pump, the resulting suction pressure is used to suck the coming out of the electrolysis cell, unused oxygen.
  • the nozzle there is an intimate mixing of fresh oxygen with recycled oxygen.
  • heating and humidification of the process gas are referred to as possible embodiments of an electrochemical half-cell with SVE, but without further disclosure of accurate temperature control, concentrations, and the like.
  • the heating of process gases generally takes place in process engineering by means of a heat exchanger, which is heated by an external energy source such as steam.
  • the temperature of the process gas is controlled by appropriate control devices.
  • the control equipment requires additional investment, the use of an additional external energy source also increases the investment costs and also increases the overall energy consumption of the process.
  • the object of the present invention is to provide a process for the heating of process gas for use in electrolysis cells with oxygen-consuming electrodes, which overcomes the above disadvantages.
  • the specific object of the present invention is to provide a method which enables the heating of oxygen-containing starting gas in the electrochemical production of chlorine by means of electrolyzer with SVE with minimal equipment and control engineering effort and without additional energy input.
  • a particular object of the present invention is to provide a method which enables heating and additionally humidification of oxygen-containing educt gas in the electrochemical production of chlorine by means of electrolyzer with SVE with minimal equipment and control engineering effort and without additional energy input
  • the object is achieved by using existing heat sources for heating the oxygen-containing process gas in the electrolysis process itself or in the subsequent work-up procedure.
  • the invention relates to a method for operating an oxygen-consuming electrode as a cathode for the electrolysis of alkali chlorides or hydrochloric acid - in the case of hydrochloric acid by reacting protons and oxygen - at the electrode in an electrochemical cell, characterized in that the oxygen-containing process gas supplied to the electrode at least partially using a heat source from the electrolysis, in particular by heat exchange with a selected process stream, which is obtained from the electrolysis, or with one of the electrolysis subsequent reclaimed process stream is heated prior to contact with the oxygen-consuming electrode to a temperature which corresponds at most to the temperature of the catholyte in the cell or by less than 50 ° C, preferably less than 20 ° C, more preferably less than 10 ° C. below.
  • the oxygen is typically supplied in excess due to the process, unused oxygen is removed from the cell again.
  • the excess of oxygen can be chosen over a wide range, usually the excess is usually 5-100% of the amount required for the reaction.
  • the oxygen discharged from the cell is mixed with fresh oxygen and returned to the cell. To avoid an accumulation of undesirable foreign gases, a small part, usually 0.5-20% of the oxygen removed from the cell, is removed from the circulation in a purge stream.
  • Pure oxygen (> 99% by volume O 2 ) is preferably used for the supply of fresh oxygen. However, it is also possible to use a gas with a lower oxygen concentration (90-99% by volume O 2 ) or oxygen-enriched air (30-99% by volume). 95 vol .-% O 2 ) are used. In principle, the use of air in the chlor-alkali electrolysis with SVE conceivable, in which case especially CO 2 -free air should be used to avoid the alkali carbonate formation.
  • process gas and "reactant gas” given in the following explanations each include oxygen-containing gas mixtures, including pure oxygen.
  • Oxygen is obtained technically from air by liquefaction and subsequent distillative separation (cyrogenic separation), by selective absorption / desorption on suitable absorbents (PSA). Another, less common method is the separation by membranes.
  • the cryogenic separation usually provides a very pure oxygen of> 99.9 vol .-% O 2 , while with the pressure swing or membrane separation process usually oxygen with 90 - 95 vol .-% O 2 is produced.
  • the oxygen from such sources usually contains only small traces of water ( ⁇ 1 ppm).
  • the process gas stream entering the electrolysis cell should if possible have a temperature which corresponds to the temperature in the cell or which is only slightly below the temperature in the electrolysis cell. Otherwise, a temperature gradient occurs within the electrolysis cell and, as a consequence, an uneven distribution of the electrolysis power and material flows over the surface of the electrode, which results in reduced performance and permanent damage to the diaphragm and SVE.
  • the moisture content of the entering into the electrolysis cell oxygen should, if possible, be so high that at least the amount of water transported with the exiting oxygen is compensated. Since the water content in the purge stream is no longer returned to the cell, at least this part must be tracked, in arrangements without recycling the educt gas according to the total amount of water discharged.
  • the water must be evaporated, for which energy must be supplied.
  • the heating can be carried out in particular in such a way that only the freshly supplied to the process oxygen-containing gas is heated with a heat source from the electrolysis. In arrangements without recirculation of the excess oxygen, this is the given design, but it can also be carried out with recycling of the oxygen-containing process gas. When recycling the excess oxygen, the heating can also take place in such a way that only the reduced by a proportion of exhaust gas flow recycled oxygen-containing process gas is combined with the freshly supplied oxygen and the combined gas stream is heated with a heat source from the electrolysis.
  • the discharge of the exhaust gas stream serves to enrich the oxygen-containing process gas with undesired minor components such as. To avoid hydrogen or inert gases in a circulation of the oxygen-containing process gas.
  • the heating of the oxygen-containing process gas takes place by using process heat, which is obtained in the electrolysis process and / or a downstream processing of process streams.
  • process heat which is obtained in the electrolysis process and / or a downstream processing of process streams.
  • Preference is given to using process heat with a low energy level, ie heat sources having a temperature of ⁇ 150 ° C., preferably ⁇ 120 ° C., particularly preferably ⁇ 100 ° C., for the heating.
  • Preference is given to the use of secondary heat sources by direct heat exchange in a heat exchanger. However, it can also be an indirect heat exchange by interposing a further heat transfer medium.
  • the chlorine gas taken from the anode side of the electrochemical cell is used as the process stream for the heat exchange for heating the oxygen-containing process gas.
  • the catholyte leaving the cell and / or anolyte used to heat the oxygen-containing process gas is used as the process flow for the heat exchange.
  • the heating and humidification of the oxygen-containing process gas is particularly preferably carried out by passing the process gas through alkali lye discharged from the catholyte circuit, in particular sodium hydroxide solution.
  • the heat exchange is carried out in particular by passing the oxygen-containing process gas through the condensed vapors.
  • process heat which is obtained in the electrolysis process and / or the downstream workup simultaneously reduces the need for cooling energy, which further increases the efficiency and environmental impact of the process.
  • the secondary heat sources used in accordance with the method according to the invention can, in addition to the energy for heating the oxygen-containing process gas, additionally supply the energy which is required for preferential humidification of the oxygen-containing process gas for the evaporation of the water.
  • the humidification of the oxygen-containing process gas is carried out in a manner known to those skilled in the art, for example by passage through a water column or by a trickle column charged with water.
  • the amount of water supplied via the humidification is chosen such that at least the water discharged with the potential exhaust gas flow is replaced.
  • the chlorine gas discharged from the electrolysis can be used as a heat source.
  • the chlorine removed from the electrolysis has the temperature of the electrolytic cell and thus a temperature which is preferred for the process gas feed into the cell.
  • the chlorine discharged from the electrolysis cell it is typically cooled before further drying and purification (see Ullmann's Encyclopedia of Industrial Chemistry, chapter “Chlorine”, Wiley-VCH Verlag GmbH & Co. Kg, Weinheim ).
  • the cooling takes place with external cooling media, for example cooling tower water.
  • external cooling media for example cooling tower water.
  • the heat exchange between the oxygen-containing process gas and the chlorine is preferably carried out in a countercurrent heat exchanger.
  • the design of the heat exchanger takes place in a manner known to the expert.
  • plate heat exchangers, shell and tube heat exchangers or other embodiments can be used.
  • Suitable materials are the oxygen and chlorine resistant materials known to those skilled in the art.
  • a preferred durable material is titanium.
  • the variant described here is also characterized by the fact that no control elements for the temperature control are needed, overheating of the oxygen-containing process gas is not possible, the process gas is brought to the prevailing in the electrolytic cell temperature level.
  • Further heat sources for the heating of the oxygen-containing process gas are process streams from the anolyte and / or the catholyte circuit. Due to electrical losses in the electrolytic cell, both anolyte and catholyte process streams heat up during electrolysis. The heating increases with increasing current density. To avoid boiling of the electrolytes, the process streams in the circuits must be cooled. The cooling takes place according to the prior art with external cooling media, for example cooling tower water. The heat generated in the anolyte and / or catholyte cycle is sufficient in normal operation to bring the fresh oxygen for the SVE to the required temperature level. When starting the cells and during partial load operation with low current density, it may be necessary to use additional energy sources for warming up the oxygen in addition to the waste heat from the anolyte and / or the catholyte circuit.
  • additional secondary heat sources from the electrolysis downstream work-up processes for products from the electrolysis can be used independently of the aforementioned heat sources, for example, the waste heat resulting from chlorine work-up or evaporation of the sodium hydroxide solution.
  • the sodium hydroxide solution is concentrated in a conventional manner from the concentration of about 32% achieved in the electrolysis by distillation to the commercial concentration of 50% (cf. Ullmann's Encyclopedia of Industrial Chemistry, chapter "Sodium Hydroxides", Wiley-VCH Verlag GmbH & Co Kg, Weinheim ). In this evaporation vapors are generated, which must be condensed by cooling.
  • the concentrated caustic soda leaves the last evaporation stage, for example, at a temperature of> 150 ° C and is cooled down to a temperature of typically ⁇ 50 ° C for storage and transport.
  • Both the released for the condensation of the vapors as well as the cooling of the hot caustic soda Heat can therefore be used preferably in each case for the preheating of the oxygen-containing educt gas.
  • steam condensates or condensates which occur during the heating of the evaporation plant, can be used in particular for the preheating of the oxygen-containing educt gas.
  • the secondary heat sources to be used in accordance with the method according to the invention can additionally supply the energy which is required for wetting the oxygen-containing process gas with water for the evaporation of the water.
  • the humidification preheated water can preferably be used at a temperature which is equal to or higher than the temperature of the oxygen-containing process gas.
  • the temperature of the water can in particular be selected so that the oxygen-containing process gas after leaving the moistening apparatus already has the intended for introduction into the electrolysis cell temperature.
  • the process gas can also be brought to moistening in a further heat exchanger to the intended temperature.
  • the heating of the water is preferably carried out via a heat exchanger by using one of the aforementioned process streams as a heat source.
  • it can also be used directly for the humidification of the oxygen-containing process gas in particular in the system resulting warm condensate.
  • the sodium hydroxide solution is concentrated in an evaporation apparatus, condensed vapors form, which can be used directly for the humidification of the process gas.
  • the typically discharged from the electrolysis typically about 32 wt .-% sodium hydroxide solution for the humidification of the oxygen-containing process gas can be used. This variant has the further advantage that less water has to be evaporated in the downstream evaporation.
  • the humidification of the oxygen-containing process gas can also be done with cold water or with water having a temperature lower than the temperature of the supplied oxygen.
  • Such a method has advantages, for example, if the water content in the process gas is to be limited, or if the apparatusive effort is to be kept low.
  • the process gas cools when moistening and is then reheated.
  • one of the aforementioned heat sources is used. It may also be advantageous to preheat the water used for moistening with one of the heat sources, even if the temperature of the water is below the intended temperature of the process gas. This is especially true advantageous if a defined moisture content below the saturation limit is provided for the process gas introduced into the electrolysis cell.
  • steam with a low pressure level which is obtained, for example, in the evaporation plant, used for humidification and heating of the oxygen-containing process gas. Use is made, for example, by injecting this vapor into the process gas stream.
  • the novel process is preferably carried out such that the oxygen-containing gas mixture supplied to the electrolysis cell, in particular a mixture of fresh oxygen and recycled oxygen, reduces the temperature in the cell by less than 50 ° C., preferably by less than 20 ° C., more preferably by less than 10 ° C falls below.
  • the recycling and mixing of the oxygen can be done according to the in DE 10149779A1 described method by means of a gas jet pump.
  • the recycling and mixing of the oxygen can also be carried out in another manner known to the person skilled in the art.
  • the oxygen discharged from the electrolysis cell can be sucked off by means of a pump or a compressor, compressed and then mixed with the fresh oxygen in a mixing device.
  • the mixture can also take place immediately upon introduction into the electrode chamber.
  • the process according to the invention can be used independently of the quality of the freshly supplied oxygen.
  • the new method can be used particularly preferably in electrochemical processes with an SVE and the supply of pure oxygen (> Vol.-99% O 2 ).
  • the new method can also be used in electrochemical processes with an SVE and the supply of highly enriched oxygen (90-99 vol .-% O 2 ) or enriched oxygen (30 - 95 vol .-% O 2 ) or CO 2 -free air ( ⁇ 100 ppm CO 2 ) are used.
  • the oxygen-containing gas mixture fed to the electrode has a proportion of 30-95 vol.% Oxygen, preferably an oxygen content of 90-99 vol.%, Particularly preferably an oxygen content of > 99% by volume.
  • the oxygen-containing gas mixture supplied to the electrode has a CO 2 content of ⁇ 100 ppm.
  • the process according to the invention can be used independently of the stoichiometric excess of the oxygen introduced into the cell and also independently of the proportion of discharged exhaust gas.
  • the process can be used in particular at the usual 1, 0.05 to 2-fold stoichiometric excess and a purge gas stream of 0.5 to 20% of the recirculated educt gas.
  • the method can basically be used in all electrochemical processes with an SVE.
  • inventive method can be used in the operation of an alkaline fuel cell, in drinking water treatment, for example for the production of sodium hypochlorite or in the chlor-alkali electrolysis, in particular for the electrolysis of LiCl, KCl or NaCl.
  • the inventive method is preferably used in the use of an SVE in the chlor-alkali electrolysis and here in particular in the sodium chloride (NaC1) electrolysis or in a hydrochloric acid electrolysis.
  • FIG. 1 shows a NaCl electrolytic cell EA1 with anolyte circuit a and catholyte circuit b and a process gas circuit c with the conveying member P1.
  • Chlorine gas d is removed from the anode.
  • the anolyte is a partial stream e taken, which is used after dechlorination together with fresh water and solid sodium chloride for the preparation of a saturated NaCl solution e ', which is then introduced after cleaning back into the circuit.
  • the catholyte circuit a partial stream of sodium hydroxide solution is removed f. From the process gas cycle c, a partial stream g is removed as purge, and fresh oxygen h is supplied from a cryogenic air separation plant.
  • the temperature of the electrolysis cell is 90 ° C.
  • the anolyte and catholyte circuits are cooled via the heat exchangers WA 1 and WA 2.
  • the chlorine gas is cooled in heat exchanger WA3 to about 40 ° C.
  • a part of the water present in the chlorine gas condenses.
  • the freshly supplied oxygen h is heated via the heat exchanger WA 4.
  • the heat exchange in a not shown here other execution against the cooled chlorine gas in such a way that WA 4 corresponds to the WA 3 and the oxygen is heated in the direct heat exchange against the hot chlorine gas, the heat exchange is preferably carried out in countercurrent.
  • the heating can also be carried out in a further embodiment by means of a heat carrier circuit, preferably by means of a water cycle, so that the heat dissipated in WA3 is transferred to warm the oxygen in WA4.
  • the heat dissipated from WA 1 or WA 2 by means of a heat carrier circuit is used to heat up the process gas in WA 4.
  • the process gas c is heated to the required temperature after discharge of the purge stream g and supply of the oxygen h in the heat exchanger WA5.
  • the heat exchange takes place against the cooled chlorine gas in such a way that heat exchanger WA 5 corresponds to the heat exchanger WA 3 and the process gas is heated in direct heat exchange against the hot chlorine gas, wherein the heat exchange is preferably carried out in countercurrent.
  • the heating can also be carried out in a further embodiment by means of a heat carrier circuit, preferably by means of a water cycle, so that the dissipated in WA3 heat is transferred to the heating of the process gas in WA5.
  • the heat dissipated from heat exchanger WA 1 or heat exchanger WA2 by means of a heat carrier circuit is used to heat up the process gas in WA5.
  • FIG. 2 further embodiments are exemplified, in which additionally the process gas is moistened.
  • the freshly supplied oxygen h is heated in heat exchanger WA 1, wherein the heat energy as in the embodiments described above from one of the sources heat exchanger WA3, WA2 or WA1 comes.
  • the oxygen stream h is then passed through the moistening apparatus KA 1 and the heated and humidified oxygen is supplied to the process gas circuit c.
  • an aqueous medium i is passed through the moistening apparatus KA1, which is either deionized water, condensate or caustic soda.
  • the process gas c is passed to the purge stream (g) and feed of the oxygen h through the humidifier KA 2 and then heated in the heat exchanger WA5, wherein the energy as in the embodiments described above from one of the sources WA3 , WA2 or WA1.
  • an aqueous medium i ' is passed through the moistening apparatus KA2, which is either deionized water, condensate or caustic soda.
  • FIG. 3 further embodiments are shown in which the heating and humidification done in an apparatus.
  • the freshly supplied oxygen h in the moistening apparatus KA 1 is moistened and heated.
  • the moistening apparatus KA1 1 is charged with a hot aqueous medium i, which is hot condensate from the sodium hydroxide evaporation plant, hot caustic soda (f), another hot aqueous stream from the process or deionized water, which means one of the waste heat was heated from one of the heat exchanger WA1, WA 2 or WA3.
  • a hot aqueous medium i which is hot condensate from the sodium hydroxide evaporation plant, hot caustic soda (f), another hot aqueous stream from the process or deionized water, which means one of the waste heat was heated from one of the heat exchanger WA1, WA 2 or WA3.
  • the process gas c is humidified and heated after discharge of the purge stream g and supply of the oxygen h in the moistening apparatus KA 2.
  • the moistening apparatus KA2 is charged with a hot aqueous medium i ', wherein it is is hot condensate from the caustic soda evaporation plant, hot caustic soda f, another hot aqueous stream from the process or deionized water, which was heated by means of one of the waste heat from one of the heat exchanger WA1, WA 2 or WA3.
  • the supplied oxygen has a temperature of 80 ° C.
  • the temperature is achieved by heating the fresh oxygen in countercurrent to chlorine gas discharged from the electrolysis apparatus before it is mixed with the residual gas stream reduced by the purge gas stream by means of a heat exchanger. This corresponds to the in FIG. 1 shown embodiment with the change that the heat exchanger WA 3 and WA 4 are replaced by a single heat exchanger, which is traversed by chlorine as the heat transfer medium and the fresh oxygen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Operating oxygen consuming electrode as cathode for electrolysis of alkali chlorides or hydrochloric acid, in an electrochemical cell, comprises at least partially heating oxygen containing process gas that is supplied to electrode, using a heat source of electrolysis, preferably by heat exchange with a process stream obtained by electrolysis or with a process stream that is reprocessed subsequent to electrolysis, before contacting with the oxygen consuming electrode, to a temperature that is not > the temperature of cathode chamber in the cell or to less than 50[deg] C, preferably less than 10[deg] C.

Description

Die Erfindung betrifft ein Verfahren zur Konditionierung eines sauerstoffhaltigen Prozessgases in einem elektrochemischen Prozess, bei dem eine Gasdiffusionselektrode, insbesondere eine Sauerstoffverzehrelektrode eingesetzt wird. Elektrochemische Prozesse sind hierbei insbesondere die Chlor-Alkali- und die Salzsäure-Elektrolyse mit Sauerstoffverzehrelektroden.The invention relates to a method for conditioning an oxygen-containing process gas in an electrochemical process, in which a gas diffusion electrode, in particular an oxygen-consuming electrode is used. Electrochemical processes here are in particular the chlor-alkali and hydrochloric acid electrolysis with oxygen-consuming electrodes.

Durch den Einsatz von Gasdiffusionselektroden werden können Energieeinsparungen bei unterschiedlichen elektrochemischen Prozessen erreicht werden, darüber hinaus wird die Bildung von unerwünschten oder unwirtschaftlichen Nebenprodukten vermieden.By using gas diffusion electrodes, energy savings can be achieved with different electrochemical processes, moreover, the formation of undesirable or uneconomical by-products is avoided.

Ein Beispiel für eine Gasdiffusionselektrode ist die Sauerstoff-Verzehr-Elektrode (SVE). Sauerstoff-Verzehr-Elektroden finden Anwendung unter Anderem in der Chloralkali-Elektrolyse, der Salzsäure-Elektrolyse, der Brennstoffzellentechnik oder in Metall/Luft-Batterien.An example of a gas diffusion electrode is the Oxygen Consumption Electrode (SVE). Oxygen-consuming electrodes are used, inter alia, in the chloralkali electrolysis, hydrochloric acid electrolysis, fuel cell technology or in metal / air batteries.

Die Erfindung geht aus von an sich bekannten Sauerstoffverzehrelektroden, die als Gasdiffusionselektroden ausgebildet sind und üblicherweise einen elektrisch leitenden Träger und eine Gasdiffusionsschicht mit einer katalytisch aktiven Komponente umfassen.The invention is based on known per se oxygen-consuming electrodes, which are formed as gas diffusion electrodes and usually comprise an electrically conductive carrier and a gas diffusion layer with a catalytically active component.

Verschiedene Vorschläge zum Betrieb der Sauerstoffverzehrelektroden in Elektrolysezellen in technischer Größe sind aus dem Stand der Technik grundsätzlich bekannt. Die Grundidee dabei ist, die Wasserstoff entwickelnde Kathode der Elektrolyse (beispielsweise in der Chloralkali-Elektrolyse) durch die Sauerstoffverzehrelektrode (Kathode) zu ersetzen. Eine Übersicht über die möglichen Zelldesigns und Lösungen kann der Veröffentlichung von Moussallem et al "Chlor-Alkali Electrolysis with Oxygen Depolarized Cathodes: History, Present Status and Future Prospects", J. Appl. Electrochem. 38 (2008) 1177-1194 , entnommen werden.Various proposals for operating the oxygen-consuming electrodes in electrolytic cells in technical size are known in principle from the prior art. The basic idea is to replace the hydrogen-developing cathode of the electrolysis (for example, in the chloralkali electrolysis) by the oxygen-consuming electrode (cathode). An overview of the possible cell designs and solutions may be published by Moussallem et al "Chlor-Alkali Electrolysis with Oxygen Depolarized Cathodes: History, Present Status and Future Prospects", J. Appl. Electrochem. 38 (2008) 1177-1194 , are taken.

Sauerstoffverzehrelektroden gemäß dem Stand der Technik werden in unterschiedlichen Anordnungen bei elektrochemischen Prozessen eingesetzt, so zum Beispiel bei der Erzeugung von Strom in Brennstoffzellen oder bei der elektrolytischen Herstellung von Chlor aus wässrigen Lösungen von Natriumchlorid. Eine nähere Beschreibung der Chlor-Alkali-Elektrolyse mit Sauerstoffverzehrelektrode befindet sich in Journal of Applied Electrochemistry, Vol 38 (9) Seite 1177 -1194 (2008 ). Beispiele für Elektrolysezellen mit Sauerstoffverzehrelektroden sind den Schriften EP 1033419B1 , DE 19622744C1 und WO 2008006909A2 zu entnehmen.Prior art oxygen-consuming electrodes are used in various arrangements in electrochemical processes, such as the generation of electricity in fuel cells or in the electrolytic production of chlorine from aqueous solutions of sodium chloride. A more detailed description of the chlorine-alkali electrolysis with oxygen-consuming electrode is located in Journal of Applied Electrochemistry, Vol. 38 (9) pages 1177-1194 (2008 ). Examples of electrolysis cells with Sauerstoffverzehrelektroden are the writings EP 1033419B1 . DE 19622744C1 and WO 2008006909A2 refer to.

Die Elektrolyse von Natriumchlorid oder Salzsäure wird großtechnisch in Anlagen mit Kapazitäten bis zu über 1 Mio t Chlor/Jahr betrieben. Die Anlagen beherbergen neben den Elektrolyseapparaturen auch Einrichtungen zur Aufarbeitung von Chlor und Natronlauge und, sofern eine konventionelle Elektrolyse ohne SVE betrieben wird, für Wasserstoff. Beschreibungen der Aufarbeitungsverfahren befinden sich zum Beispiel im Abschnitten "Chlorine" und "Sodium Hydroxide" der Online-Ausgabe von Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co KG, Weinheim .The electrolysis of sodium chloride or hydrochloric acid is operated on an industrial scale in plants with capacities of up to more than 1 million t chlorine / year. In addition to the electrolyzers, the plants also contain facilities for the treatment of chlorine and caustic soda and, if a conventional electrolysis without SVE is operated, for hydrogen. Descriptions of the work-up procedures can be found, for example, in the sections "Chlorine" and "Sodium Hydroxide" Online edition of Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KG, Weinheim ,

Eine weitere Entwicklungsrichtung zur Nutzung der SVE-Technologie in der Chlor-Alkali-Elektrolyse ist die Ionenaustauschermembran, die in der Elektrolysezelle den Anoden- vom Kathodenraum trennt, ohne Natronlaugespalt direkt auf die SVE aufzulegen. Diese Anordnung wird auch als zero gap Anordnung im Stand der Technik bezeichnet. Diese Anordnung wird üblicherweise auch in der Brennstoffzellen-Technologie angewandt. Nachteilig hierbei ist, dass die sich bildenden Natronlauge durch die SVE zur Gasseite geleitet werden muss und anschließend an der SVE nach unten fließt. Hierbei darf es nicht zu einer Verstopfung der Poren in der SVE durch die Natronlauge oder zu Auskristallisation von Natronlauge in den Poren kommen. Es hat sich herausgestellt, dass hierbei auch sehr hohe Natronlauge-Konzentrationen entstehen können, wobei die Ionenaustauschermembran gegen diese hohen Konzentrationen nicht langzeitstabil ist ( Lipp et al, J. Appl. Electrochem. 35 (2005)1015 - Los Alamos National Laboratory "Peroxide formation during chlor-alkali electrolysis with carbon-based ODC ").Another development direction for the use of SVE technology in chlor-alkali electrolysis is the ion exchange membrane, which separates the anode from the cathode compartment in the electrolytic cell, without attaching sodium hydroxide solution directly to the SVE. This arrangement is also referred to as zero gap arrangement in the prior art. This arrangement is also commonly used in fuel cell technology. The disadvantage here is that the forming sodium hydroxide must be passed through the SVE to the gas side and then flows down to the SVE. It must not come to a clogging of the pores in the SVE by the sodium hydroxide or crystallization of caustic soda in the pores. It has been found that very high sodium hydroxide concentrations can also occur in this case, with the ion exchange membrane not being stable in the long term against these high concentrations ( Lipp et al, J. Appl. Electrochem. 35 (2005) 1015 - Los Alamos National Laboratory "Peroxide formation during chlorine-alkali electrolysis with carbon-based ODC ").

Ein Verfahren zur Rückführung des aus der Elektrolyse kommenden, nicht verbrauchten Sauerstoffs in die Elektrolyse ist in DE10149779 A1 beschrieben. In dem in DE10149779 A1 beschrieben Verfahren wird der zugesetzte Frischsauerstoff in einer Gasstrahlpumpe entspannt, der entstehende Saugdruck wird zum Ansaugen des aus der Elektrolysezelle kommenden, nicht verbrauchten Sauerstoffs genutzt. In der Düse erfolgt eine innige Durchmischung von Frischsauerstoff mit recycliertem Sauerstoff.A process for recycling the unconsumed oxygen from the electrolysis into the electrolysis is known in DE10149779 A1 described. In the in DE10149779 A1 described method, the added fresh oxygen is expanded in a gas jet pump, the resulting suction pressure is used to suck the coming out of the electrolysis cell, unused oxygen. In the nozzle there is an intimate mixing of fresh oxygen with recycled oxygen.

Prinzipiell kann bei allen Elektrolysen mit SVE durch Nebenreaktion eine geringe Menge Wasserstoff gebildet werden, die dann mit dem überschüssigem Sauerstoff die Elektrolysezelle verlässt. Bei der Rückführung des aus der Zelle kommenden, Wasserstoff-haltigen Sauerstoffs reichert sich der Wasserstoff an und es kann zu zündfähigen Gemischen kommen. Zur Vermeidung einer gefährlichen Anreicherung von Wasserstoff, aber auch einer störender Anreichung sonstiger Fremdgase wird ein Teil des die Zelle verlassenden Gasstroms als Purgestrom aus dem Kreislauf entfernt. Eine weitere Absicherung gegen gefährliche Anreicherungen von Wasserstoff ist die in DE 10342148 beschriebene Entfernung mittels eines katalytischer Oxidation..In principle, a small amount of hydrogen can be formed in all electrolyses with SVE by side reaction, which then leaves the electrolysis cell with the excess oxygen. In the return of the coming out of the cell, hydrogen-containing oxygen, the hydrogen accumulates and it can lead to ignitable mixtures. To avoid a dangerous accumulation of hydrogen, but also a disturbing enrichment of other foreign gases, a portion of the gas stream leaving the cell is removed from the circulation as purge gas. Another safeguard against dangerous enrichments of hydrogen is the in DE 10342148 described removal by means of a catalytic oxidation.

In DE10159372 A1 werden eine Erwärmung und eine Befeuchtung des Prozessgases als mögliche Ausführungsformen für eine elektrochemische Halbzelle mit SVE genannt, ohne aber weitere Auskünfte über genaue Temperaturführung, Konzentrationen und entsprechende Ausführungen zu offenbaren.In DE10159372 A1 For example, heating and humidification of the process gas are referred to as possible embodiments of an electrochemical half-cell with SVE, but without further disclosure of accurate temperature control, concentrations, and the like.

Die Erwärmung von Prozessgasen erfolgt in der Verfahrenstechnik allgemein durch einen Wärmetauscher, welcher mit einer externen Energiequelle wie zum Beispiel Dampf beheizt wird. Die Temperatur des Prozessgases wird durch entsprechende Regeleinrichtungen gesteuert. Die Regeleinrichtungen erfordern zusätzliche Investitionen, der Einsatz einer zusätzlichen externen Energiequelle erhöht ebenfalls die Investitionskosten und erhöht zudem den gesamten Energieverbrauch des Verfahrens.The heating of process gases generally takes place in process engineering by means of a heat exchanger, which is heated by an external energy source such as steam. The temperature of the process gas is controlled by appropriate control devices. The control equipment requires additional investment, the use of an additional external energy source also increases the investment costs and also increases the overall energy consumption of the process.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren für die Erwärmung von Prozessgas für den Einsatz in Elektrolysezellen mit Sauerstoffverzehrelektroden bereitzustellen, welches die vorstehenden Nachteile überwindet.The object of the present invention is to provide a process for the heating of process gas for use in electrolysis cells with oxygen-consuming electrodes, which overcomes the above disadvantages.

Die spezielle Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren bereitzustellen, welches mit minimalem apparativen und regelungstechnischem Aufwand und ohne zusätzlichen Energieeintrag die Erwärmung von sauerstoffhaltigem Eduktgas bei der elektrochemischen Herstellung von Chlor mittels Elektrolyseapparaten mit SVE ermöglicht.The specific object of the present invention is to provide a method which enables the heating of oxygen-containing starting gas in the electrochemical production of chlorine by means of electrolyzer with SVE with minimal equipment and control engineering effort and without additional energy input.

Eine besondere Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren bereitzustellen, welches mit minimalem apparativen und regelungstechnischem Aufwand und ohne zusätzlichen Energieeintrag die Erwärmung und zusätzlich die Befeuchtung von sauerstoffhaltigem Eduktgas bei der elektrochemischen Herstellung von Chlor mittels Elektrolyseapparaten mit SVE ermöglichtA particular object of the present invention is to provide a method which enables heating and additionally humidification of oxygen-containing educt gas in the electrochemical production of chlorine by means of electrolyzer with SVE with minimal equipment and control engineering effort and without additional energy input

Die Aufgabe wird dadurch gelöst, dass im Elektrolyseverfahren selbst oder in den nachfolgenden Aufarbeitungsverfahren vorhandene Wärmequellen für die Erwärmung des sauerstoffhaltigen Prozessgases verwendet werden.The object is achieved by using existing heat sources for heating the oxygen-containing process gas in the electrolysis process itself or in the subsequent work-up procedure.

Gegenstand der Erfindung ist ein Verfahren zum Betrieb einer Sauerstoffverzehrelektrode als Kathode zur Elektrolyse von Alkalichloriden oder Salzsäure - im Falle der Salzsäure durch Umsetzung von Protonen und Sauerstoff - an der Elektrode in einer elektrochemischen Zelle, dadurch gekennzeichnet, dass das der Elektrode zugeführte sauerstoffhaltige Prozessgas zumindest teilweise unter Nutzung einer Wärmequelle aus der Elektrolyse, insbesondere durch Wärmetausch mit einem ausgewählten Prozessstrom, der aus der Elektrolyse erhalten wird, oder mit einem der Elektrolyse nachfolgenden aufgearbeiteten Prozessstrom vor dem Kontakt mit der Sauerstoffverzehrelektrode auf eine Temperatur erwärmt wird, welche höchstens der Temperatur des Katholyt in der Zelle entspricht oder diese um weniger als 50 °C, bevorzugt um weniger als 20 °C, besonders bevorzugt um weniger als 10 °C unterschreitet.The invention relates to a method for operating an oxygen-consuming electrode as a cathode for the electrolysis of alkali chlorides or hydrochloric acid - in the case of hydrochloric acid by reacting protons and oxygen - at the electrode in an electrochemical cell, characterized in that the oxygen-containing process gas supplied to the electrode at least partially using a heat source from the electrolysis, in particular by heat exchange with a selected process stream, which is obtained from the electrolysis, or with one of the electrolysis subsequent reclaimed process stream is heated prior to contact with the oxygen-consuming electrode to a temperature which corresponds at most to the temperature of the catholyte in the cell or by less than 50 ° C, preferably less than 20 ° C, more preferably less than 10 ° C. below.

Der Sauerstoff wird verfahrensbedingt typischerweise im Überschuss zugeführt, nicht verbrauchter Sauerstoff wird wieder aus der Zelle abgeführt. Der Überschuss an Sauerstoff kann über einen breiten Bereich gewählt werden, üblicherweise beträgt der Überschuss Regel 5 - 100 % der für die Reaktion erforderlichen Menge. Der aus der Zelle abgeführte Sauerstoff wird mit frischem Sauerstoff vermischt und wieder in die Zelle zurückgeführt. Zur Vermeidung einer Anreicherung von unerwünschten Fremdgasen wird ein kleiner Teil, in der Regel 0,5 - 20 % des aus der Zelle abgeführten Sauerstoffs in einem Purgestrom aus dem Kreislauf entfernt.The oxygen is typically supplied in excess due to the process, unused oxygen is removed from the cell again. The excess of oxygen can be chosen over a wide range, usually the excess is usually 5-100% of the amount required for the reaction. The oxygen discharged from the cell is mixed with fresh oxygen and returned to the cell. To avoid an accumulation of undesirable foreign gases, a small part, usually 0.5-20% of the oxygen removed from the cell, is removed from the circulation in a purge stream.

Für die Zufuhr des frischen Sauerstoff wird bevorzugt reiner Sauerstoff (> 99 Vol.-% O2) eingesetzt: Es kann aber auch ein Gas mit geringerer Sauerstoffkonzentration (90-99 Vol.-% O2) oder mit Sauerstoff angereicherte Luft (30 - 95 Vol.-%O2) eingesetzt werden. Prinzipiell ist auch der Einsatz von Luft in der Chlor-Alkali-Elektrolyse mit SVE denkbar, wobei hier besonders CO2-freie Luft eingesetzt werden sollte, um die Alkalicarbonatbildung zu vermeiden. Bei den in den folgenden Ausführungen genannten Begriffen Prozessgas und Eduktgas sind jeweils Sauerstoff enthaltende Gasgemische einschließlich reinem Sauerstoff zu verstehen. Sauerstoff wird technisch aus Luft durch Verflüssigung und anschließende destillative Auftrennung gewonnen (cyrogenische Trennung), durch selektive Absorption / Desorption an geeigneten Absorbentien (Pressure Swing, PSA). Ein weiteres, weniger gebräuchliches Verfahren ist die Trennung durch Membranen. Die cryogene Trennung liefert in der Regel einen sehr reinen Sauerstoff von > 99,9 Vol.-% O2, während mit dem Pressure Swing- oder Membrantrennverfahren üblicherweise Sauerstoff mit 90 - 95 Vol.-% O2 hergestellt wird. Der Sauerstoff aus solchen Quellen enthält gewöhnlich jeweils nur geringe Spuren an Wasser (< 1 ppm).Pure oxygen (> 99% by volume O 2 ) is preferably used for the supply of fresh oxygen. However, it is also possible to use a gas with a lower oxygen concentration (90-99% by volume O 2 ) or oxygen-enriched air (30-99% by volume). 95 vol .-% O 2 ) are used. In principle, the use of air in the chlor-alkali electrolysis with SVE conceivable, in which case especially CO 2 -free air should be used to avoid the alkali carbonate formation. The terms "process gas" and "reactant gas" given in the following explanations each include oxygen-containing gas mixtures, including pure oxygen. Oxygen is obtained technically from air by liquefaction and subsequent distillative separation (cyrogenic separation), by selective absorption / desorption on suitable absorbents (PSA). Another, less common method is the separation by membranes. The cryogenic separation usually provides a very pure oxygen of> 99.9 vol .-% O 2 , while with the pressure swing or membrane separation process usually oxygen with 90 - 95 vol .-% O 2 is produced. The oxygen from such sources usually contains only small traces of water (<1 ppm).

Der in die Elektrolysezelle eintretende Prozessgasstrom sollte nach Möglichkeit eine Temperatur aufweisen, welche der Temperatur in der Zelle entspricht, oder welche nur unwesentlich unter der Temperatur in der Elektrolysezelle liegt. Ansonsten kommt es innerhalb der Elektrolysezelle zu einem Temperaturgradienten und in der Folge zur ungleichen Verteilung der Elektrolyseleistung und Stoffströme über der Fläche der Elektrode, welches eine verminderte Leistung und auf Dauer Schäden an Membran und SVE zur Folge hat.The process gas stream entering the electrolysis cell should if possible have a temperature which corresponds to the temperature in the cell or which is only slightly below the temperature in the electrolysis cell. Otherwise, a temperature gradient occurs within the electrolysis cell and, as a consequence, an uneven distribution of the electrolysis power and material flows over the surface of the electrode, which results in reduced performance and permanent damage to the diaphragm and SVE.

Der Feuchtegehalt des in die Elektrolysezelle eintretenden Sauerstoffs sollte nach Möglichkeit so hoch sein, dass zumindest die mit dem austretenden Sauerstoff transportierte Wassermenge kompensiert wird. Da der Wasseranteil im Purgestrom nicht mehr in die Zelle zurückgeführt wird, muss wenigstens dieser Teil nachgeführt werden, bei Anordnungen ohne Rückführung des Eduktgases entsprechend die gesamte ausgetragene Wassermenge. Bei Betrieb der Zelle in Zero Gap Anordnung, in der die SVE Kontakt zur Ionenaustauschermembran hat, ist es üblich, dass durch Befeuchten des Sauerstoffstroms zusätzliche Wassermengen in die Elektrolysezelle eingetragen werden, um eine zu hohe , für die Membran schädliche Konzentration der Alkalilauge oder gar ein Auskristallisieren des Alkalihydroxids zu vermeiden. Zur Befeuchtung des Sauerstoffs muss das Wasser verdampft werden, wofür Energie zugeführt werden muss.The moisture content of the entering into the electrolysis cell oxygen should, if possible, be so high that at least the amount of water transported with the exiting oxygen is compensated. Since the water content in the purge stream is no longer returned to the cell, at least this part must be tracked, in arrangements without recycling the educt gas according to the total amount of water discharged. When operating the cell in Zero Gap arrangement in which the SVE has contact with the ion exchange membrane, it is customary that by moistening the oxygen flow additional amounts of water are introduced into the electrolytic cell to a too high, harmful for the membrane concentration of the alkali or even a Crystallize the alkali hydroxide to avoid. To moisten the oxygen, the water must be evaporated, for which energy must be supplied.

Die Erwärmung kann insbesondere in der Weise erfolgen, dass nur das frisch dem Prozess zugeführte sauerstoffhaltige Gas mit einer Wärmequelle aus der Elektrolyse erwärmt wird. Bei Anordnungen ohne Rückführung des überschüssigen Sauerstoff ist dies die gegebene Ausführung, sie kann aber auch bei Rückführung des sauerstoffhaltigen Prozessgases durchgeführt werden. Bei Rückführung des überschüssigen Sauerstoffs kann die Erwärmung aber auch in der Weise erfolgen, dass erst das um einen Anteil Abgasstrom verminderte recyclierte sauerstoffhaltige Prozessgas mit dem frisch zugeführten Sauerstoffs vereinigt wird und der vereinigte Gasstrom mit einer Wärmequelle aus der Elektrolyse erwärmt wird. Die Ausschleusung des Abgasstroms dient dazu die Anreicherung des sauerstoffhaltigen Prozessgases mit unerwünschten Nebenbestandteilen wie z.B. Wasserstoff oder Inertgase bei einer Kreislaufführung des sauerstoffhaltigen Prozessgases zu vermeiden.The heating can be carried out in particular in such a way that only the freshly supplied to the process oxygen-containing gas is heated with a heat source from the electrolysis. In arrangements without recirculation of the excess oxygen, this is the given design, but it can also be carried out with recycling of the oxygen-containing process gas. When recycling the excess oxygen, the heating can also take place in such a way that only the reduced by a proportion of exhaust gas flow recycled oxygen-containing process gas is combined with the freshly supplied oxygen and the combined gas stream is heated with a heat source from the electrolysis. The discharge of the exhaust gas stream serves to enrich the oxygen-containing process gas with undesired minor components such as. To avoid hydrogen or inert gases in a circulation of the oxygen-containing process gas.

Erfindungsgemäß erfolgt die Erwärmung des sauerstoffhaltigen Prozessgases unter Nutzung von Prozesswärme, welche im Elektrolyseprozess und/oder einer nachgeschalteten Aufarbeitung von Prozessströmen anfällt. Bevorzugt wird Prozesswärme mit niedrigen Energieniveau, das heißt Wärmequellen mit einer Temperatur von < 150 °C, bevorzugt < 120 °C, besonders bevorzugt < 100 °C für die Erwärmung genutzt. Bevorzugt erfolgt die Nutzung der sekundären Wärmequellen durch direkten Wärmeaustausch in einem Wärmeaustauscher. Es kann jedoch auch ein indirekter Wärmeaustausch durch Zwischenschalten eines weiteren Wärmeträgermediums erfolgen.According to the invention, the heating of the oxygen-containing process gas takes place by using process heat, which is obtained in the electrolysis process and / or a downstream processing of process streams. Preference is given to using process heat with a low energy level, ie heat sources having a temperature of <150 ° C., preferably <120 ° C., particularly preferably <100 ° C., for the heating. Preference is given to the use of secondary heat sources by direct heat exchange in a heat exchanger. However, it can also be an indirect heat exchange by interposing a further heat transfer medium.

In einer bevorzugten Ausführung der Erfindung wird als Prozessstrom für den Wärmetausch das der Anodenseite der elektrochemischen Zelle entnommene Chlorgas zur Erwärmung des sauerstoffhaltigen Prozessgases genutzt.In a preferred embodiment of the invention, the chlorine gas taken from the anode side of the electrochemical cell is used as the process stream for the heat exchange for heating the oxygen-containing process gas.

In einer anderen bevorzugten Ausführung der Erfindung wird als Prozessstrom für den Wärmetausch der die Zelle verlassende Katholyt und/oder Anolyt zur Erwärmung des sauerstoffhaltigen Prozessgases genutzt.In another preferred embodiment of the invention, the catholyte leaving the cell and / or anolyte used to heat the oxygen-containing process gas is used as the process flow for the heat exchange.

Bevorzugt ist auch ein Verfahren, bei dem Kühlwässer, Kondensate oder Sekundärdampf aus einer der Elektrolysezelle nachgeschalteten Alkalilauge-Eindampfanlage zur Erwärmung des sauerstoffhaltigen Prozessgases genutzt werden.Preference is also given to a method in which cooling waters, condensates or secondary steam from an alkali metal hydroxide evaporation plant connected downstream of the electrolysis cell are used for heating the oxygen-containing process gas.

Die Erwärmung und Befeuchtung des sauerstoffhaltigen Prozessgases erfolgt besonders bevorzugt durch Hindurchleiten des Prozessgases durch aus dem Katholytkreislauf ausgeschleuste Alkalilauge, insbesondere Natronlauge.The heating and humidification of the oxygen-containing process gas is particularly preferably carried out by passing the process gas through alkali lye discharged from the catholyte circuit, in particular sodium hydroxide solution.

Insbesondere bevorzugt werden als Prozessstrom für die Erwärmung und Befeuchtung des sauerstoffhaltigen Prozessgases kondensierte Brüden aus einer der elektrochemischen Zelle nachgeschalteten Alkalilauge-, insbesondere Natronlauge-Eindampfung verwendet, wobei der Wärmetausch insbesondere durch Hindurchleiten des sauerstoffhaltigen Prozessgases durch die kondensierten Brüden erfolgt.Particular preference is given to using as the process stream for the heating and humidification of the oxygen-containing process gas condensed vapors from the electrochemical cell downstream Alkalilauge-, in particular sodium hydroxide evaporation, the heat exchange is carried out in particular by passing the oxygen-containing process gas through the condensed vapors.

Die Nutzung von Prozesswärme, welche im Elektrolyseprozess und/oder der nachgeschalteten Aufarbeitung anfällt vermindert gleichzeitig den Bedarf an Kühlenergie, was die Wirtschaftlichkeit und die Umweltverträglichkeit des Verfahrens weiter erhöht.The use of process heat, which is obtained in the electrolysis process and / or the downstream workup simultaneously reduces the need for cooling energy, which further increases the efficiency and environmental impact of the process.

Die nach dem erfindungsgemäßen Verfahren genutzten sekundären Wärmequellen können neben der Energie zur Aufheizung des sauerstoffhaltigen Prozessgases zusätzlich die Energie liefern, welche bei einer bevorzugten Befeuchtung des sauerstoffhaltigen Prozessgases für die Verdampfung des Wassers benötigt wird. Die Befeuchtung des sauerstoffhaltigen Prozessgases erfolgt in dem Fachmann bekannter Weise, zum Beispiel durch Hindurchleiten durch eine Wassersäule oder durch eine mit Wasser beaufschlagte Rieselkolonne. Die Menge des über die Befeuchtung zugeführten Wassers wird so gewählt, dass zumindest das mit dem potentiellen Abgasstrom ausgeschleuste Wasser ersetzt wird.The secondary heat sources used in accordance with the method according to the invention can, in addition to the energy for heating the oxygen-containing process gas, additionally supply the energy which is required for preferential humidification of the oxygen-containing process gas for the evaporation of the water. The humidification of the oxygen-containing process gas is carried out in a manner known to those skilled in the art, for example by passage through a water column or by a trickle column charged with water. The amount of water supplied via the humidification is chosen such that at least the water discharged with the potential exhaust gas flow is replaced.

Beim Betrieb einer SVE in einem elektrochemischen Prozess stehen für die Erwärmung des sauerstoffhaltigen Prozessgases eine Vielzahl von sekundären Wärmequellen zur Verfügung, welche im Folgenden für die Chlor-Alkali-Elektrolyse näher erläutert werden sollen, ohne jedoch die Erfindung auf diese Beispiele begrenzen zu wollen.When operating a SVE in an electrochemical process, a large number of secondary heat sources are available for heating the oxygen-containing process gas, which are to be explained in more detail below for the chlor-alkali electrolysis, but without wishing to limit the invention to these examples.

So kann das aus der Elektrolyse abgeführte Chlorgas als Wärmequelle genutzt werden. Das aus der Elektrolyse abgeführte Chlor hat die Temperatur der Elektrolysezelle und damit eine für die Prozessgas-Zufuhr in die Zelle bevorzugte Temperatur. Bei der Aufarbeitung des aus der Elektrolysezelle abgeführte Chlor wird dieses vor der weiteren Trocknung und Reinigung typischerweise abgekühlt (siehe Ullmann's Encyclopedia of Industrial Chemistry, Kapitel "Chlorine", Wiley-VCH Verlag GmbH&Co Kg, Weinheim ). In der Regel erfolgt die Kühlung mit externen Kühlmedien, zum Beispiel Kühlturmwasser. Bei Nutzung der Wärme des der Elektrolyse entnommenen Chlors zur Vorwärmung des Prozessgases wird somit zusätzlich externe Kühlenergie eingespart. Der Wärmeaustausch zwischen dem sauerstoffhaltigen Prozessgas und dem Chlor erfolgt bevorzugt in einem Wärmeaustauscher im Gegenstrom. Die Ausgestaltung des Wärmetauschers erfolgt in einer dem Fachmann bekannten Weise. So können Plattenwärmetauscher, Rohrbündelwärmetauscher oder andere Ausführungsformen eingesetzt werden. Als Werkstoff kommen die dem Fachmann grundsätzlich bekannten sauerstoff- und chlorresistenten Werkstoffe in Frage. Ein bevorzugter beständiger Werkstoff ist Titan. Die hier beschriebene Variante zeichnet sich auch dadurch aus, dass keine Regelorgane für die Temperaturregelung benötigt werden, eine Überhitzung des sauerstoffhaltigen Prozessgases ist nicht möglich, das Prozessgas wird auf das in der Elektrolysezelle herrschende Temperaturniveau gebracht.Thus, the chlorine gas discharged from the electrolysis can be used as a heat source. The chlorine removed from the electrolysis has the temperature of the electrolytic cell and thus a temperature which is preferred for the process gas feed into the cell. During the workup of the chlorine discharged from the electrolysis cell, it is typically cooled before further drying and purification (see Ullmann's Encyclopedia of Industrial Chemistry, chapter "Chlorine", Wiley-VCH Verlag GmbH & Co. Kg, Weinheim ). As a rule, the cooling takes place with external cooling media, for example cooling tower water. When using the heat of the electrolysis removed chlorine to preheat the process gas thus additional external cooling energy is saved. The heat exchange between the oxygen-containing process gas and the chlorine is preferably carried out in a countercurrent heat exchanger. The design of the heat exchanger takes place in a manner known to the expert. Thus, plate heat exchangers, shell and tube heat exchangers or other embodiments can be used. Suitable materials are the oxygen and chlorine resistant materials known to those skilled in the art. A preferred durable material is titanium. The variant described here is also characterized by the fact that no control elements for the temperature control are needed, overheating of the oxygen-containing process gas is not possible, the process gas is brought to the prevailing in the electrolytic cell temperature level.

Weitere Wärmequellen für die Aufwärmung des sauerstoffhaltigen Prozessgases sind Prozessströme aus dem Anolyt- und/oder dem Katholytkreislauf. Bedingt durch elektrische Verluste in der Elektrolysezelle erwärmen sich sowohl Anolyt- und Katholytprozessströme während der Elektrolyse. Die Erwärmung steigt mit Erhöhung der Stromdichte an. Zur Vermeidung eines Siedens der Elektrolyte müssen die Prozessströme in den Kreisläufen gekühlt werden. Die Kühlung erfolgt nach dem Stand der Technik mit externen Kühlmedien, zum Beispiel Kühlturmwasser. Die im Anolyt- und/oder Katholytkreislauf anfallende Wärme reicht im Normalbetrieb aus, um den Frischsauerstoff für die SVE auf das erforderliche Temperaturniveau zu bringen. Beim Anfahren der Zellen und bei Teillastbetrieb mit niedriger Stromdichte kann es erforderlich sein, zum Aufwärmen des Sauerstoffs neben der Abwärme aus dem Anolyt- und/oder dem Katholytkreislauf weitere Energiequellen hinzuzuziehen.Further heat sources for the heating of the oxygen-containing process gas are process streams from the anolyte and / or the catholyte circuit. Due to electrical losses in the electrolytic cell, both anolyte and catholyte process streams heat up during electrolysis. The heating increases with increasing current density. To avoid boiling of the electrolytes, the process streams in the circuits must be cooled. The cooling takes place according to the prior art with external cooling media, for example cooling tower water. The heat generated in the anolyte and / or catholyte cycle is sufficient in normal operation to bring the fresh oxygen for the SVE to the required temperature level. When starting the cells and during partial load operation with low current density, it may be necessary to use additional energy sources for warming up the oxygen in addition to the waste heat from the anolyte and / or the catholyte circuit.

Zur Aufwärmen des sauerstoffhaltigen Prozessgases können auch unabhängig von den vorgenannten Wärmequellen weitere sekundäre Wärmequellen aus den der Elektrolyse nachgeschalteten Aufarbeitungsprozessen für Produkte aus der Elektrolyse genutzt werden, zum Beispiel die bei der Chloraufarbeitung oder der Eindampfung der Natronlauge anfallende Abwärme. So wird die Natronlauge beispielsweise in an sich bekannten Verfahren von der bei der Elektrolyse erreichten Konzentration von etwa 32 % destillativ auf die handelsübliche Konzentration von 50 % konzentriert (siehe Ullmann's Encyclopedia of Industrial Chemistry, Kapitel "Sodium Hydroxide", Wiley-VCH Verlag GmbH&Co Kg, Weinheim ). Bei dieser Eindampfung werden Brüden erzeugt, welche durch Kühlung kondensiert werden müssen. Die konzentrierte Natronlauge verlässt die letzte Eindampfstufe beispielsweise mit einer Temperatur von > 150 °C und wird für Lagerung und Transport auf eine Temperatur von typischerweise < 50°C heruntergekühlt. Sowohl die für die Kondensation der Brüden als auch die bei der Kühlung der heißen Natronlauge freiwerdenden Wärme können daher jeweils für die Vorwärmung des sauerstoffhaltigen Eduktgases bevorzugt genutzt werden. Es kann auch Dampf mit niedrigem Druckniveau, wie er zum Beispiel beim Abkühlen der über 150 °C heißen Natronlauge oder durch entspannen von Kondensat generiert werden kann, zur Vorwärmung des sauerstoffhaltigen Eduktgases genutzt werden.For warming up the oxygen-containing process gas, additional secondary heat sources from the electrolysis downstream work-up processes for products from the electrolysis can be used independently of the aforementioned heat sources, for example, the waste heat resulting from chlorine work-up or evaporation of the sodium hydroxide solution. For example, the sodium hydroxide solution is concentrated in a conventional manner from the concentration of about 32% achieved in the electrolysis by distillation to the commercial concentration of 50% (cf. Ullmann's Encyclopedia of Industrial Chemistry, chapter "Sodium Hydroxides", Wiley-VCH Verlag GmbH & Co Kg, Weinheim ). In this evaporation vapors are generated, which must be condensed by cooling. The concentrated caustic soda leaves the last evaporation stage, for example, at a temperature of> 150 ° C and is cooled down to a temperature of typically <50 ° C for storage and transport. Both the released for the condensation of the vapors as well as the cooling of the hot caustic soda Heat can therefore be used preferably in each case for the preheating of the oxygen-containing educt gas. It is also possible to use steam at a low pressure level, as can be generated, for example, during cooling of the sodium hydroxide solution above 150 ° C. or by relaxing condensate, for preheating the oxygen-containing educt gas.

Ferner können Dampfkondensate oder Kondensate, welche bei der Beheizung der Eindampfanlage anfallen, insbesondere für die Vorwärmung des sauerstoffhaltigen Eduktgases genutzt werden.Furthermore, steam condensates or condensates, which occur during the heating of the evaporation plant, can be used in particular for the preheating of the oxygen-containing educt gas.

Die nach dem erfindungsgemäßen Verfahren einzusetzenden sekundären Wärmequellen können zusätzlich die Energie liefern, welche bei einer Befeuchtung des sauerstoffhaltigen Prozessgases mit Wasser für die Verdampfung des Wassers benötigt wird.The secondary heat sources to be used in accordance with the method according to the invention can additionally supply the energy which is required for wetting the oxygen-containing process gas with water for the evaporation of the water.

Für die Befeuchtung kann bevorzugt vorgewärmtes Wasser mit einer Temperatur eingesetzt werden, die gleich der oder höher als die Temperatur des sauerstoffhaltigen Prozessgases ist. Die Temperatur des Wassers kann insbesondere so gewählt werden, dass das sauerstoffhaltige Prozessgas nach Verlassen der Befeuchtungsapparatur bereits die für die Einleitung in die Elektrolysezelle vorgesehene Temperatur hat. Das Prozessgas kann aber auch nach Befeuchtung in einem weiteren Wärmetauscher auf die vorgesehene Temperatur gebracht werden.For the humidification preheated water can preferably be used at a temperature which is equal to or higher than the temperature of the oxygen-containing process gas. The temperature of the water can in particular be selected so that the oxygen-containing process gas after leaving the moistening apparatus already has the intended for introduction into the electrolysis cell temperature. The process gas can also be brought to moistening in a further heat exchanger to the intended temperature.

Die Erwärmung des Wassers erfolgt bevorzugt über einen Wärmetauscher mittels Verwendung einer der vorgenannten Prozessströme als Wärmequelle. Es kann jedoch auch insbesondere in der Anlage anfallendes warmes Kondensat direkt für die Befeuchtung des sauerstoffhaltigen Prozessgases genutzt werden. So fallen beispielsweise beim Aufkonzentrieren der Natronlauge in einer Verdampfungsapparatur kondensierte Brüden an, welche direkt für die Befeuchtung des Prozessgases eingesetzt werden können. Auch kann statt Wasser die aus der Elektrolyse abgeführte, typischerweise etwa 32 Gew.-%ige Natronlauge für die Befeuchtung des sauerstoffhaltigen Prozessgases genutzt werden. Diese Variante hat den weiteren Vorteil, dass in der nachgeschalteten Eindampfung weniger Wasser verdampft werden muss.The heating of the water is preferably carried out via a heat exchanger by using one of the aforementioned process streams as a heat source. However, it can also be used directly for the humidification of the oxygen-containing process gas in particular in the system resulting warm condensate. For example, when the sodium hydroxide solution is concentrated in an evaporation apparatus, condensed vapors form, which can be used directly for the humidification of the process gas. Also, instead of water, the typically discharged from the electrolysis, typically about 32 wt .-% sodium hydroxide solution for the humidification of the oxygen-containing process gas can be used. This variant has the further advantage that less water has to be evaporated in the downstream evaporation.

Die Befeuchtung des sauerstoffhaltigen Prozessgases kann auch mit kaltem Wasser oder mit Wasser mit einer Temperatur niedriger als der Temperatur des zugeführten Sauerstoffs erfolgen. Ein solches Verfahren hat zum Beispiel dann Vorteile, wenn der Wassergehalt im Prozessgas begrenzt werden soll, oder wenn der aparative Aufwand gering gehalten werden soll. Bei dieser Variante kühlt sich das Prozessgas beim Befeuchten ab und wird anschließen wieder erwärmt. Für die Erwärmung wird eine der vorgenannten Wärmequellen eingesetzt. Auch kann es vorteilhaft sein, das zur Befeuchtung eingesetzte Wasser mit einer der Wärmequellen vorzuwärmen, auch wenn die Temperatur des Wassers unterhalb der vorgesehenen Temperatur des Prozessgases liegt. Dies ist besonders dann vorteilhaft, wenn für das in die Elektrolysezelle eingeleitete Prozessgas ein definierter Feuchtegehalt unterhalb der Sättigungsgrenze vorgesehen ist.The humidification of the oxygen-containing process gas can also be done with cold water or with water having a temperature lower than the temperature of the supplied oxygen. Such a method has advantages, for example, if the water content in the process gas is to be limited, or if the aparative effort is to be kept low. In this variant, the process gas cools when moistening and is then reheated. For the heating, one of the aforementioned heat sources is used. It may also be advantageous to preheat the water used for moistening with one of the heat sources, even if the temperature of the water is below the intended temperature of the process gas. This is especially true advantageous if a defined moisture content below the saturation limit is provided for the process gas introduced into the electrolysis cell.

Die oben ausgeführten Varianten der Sauerstoffvorwärmung können auch mit einander frei kombiniert werden, wenn dies verfahrenstechnisch zweckmäßig erscheint.The above-described variants of the oxygen preheating can also be freely combined with each other, if this appears procedurally expedient.

In einer weiteren Ausführung wird Dampf mit niedrigem Druckniveau, welche zum Beispiel in der Eindampfanlage anfällt, zur Befeuchtung und Erwärmung des sauerstoffhaltigen Prozessgases genutzt. Die Nutzung erfolgt zum Beispiel durch Eindüsung dieses Dampfe in den Prozessgasstrom.In a further embodiment, steam with a low pressure level, which is obtained, for example, in the evaporation plant, used for humidification and heating of the oxygen-containing process gas. Use is made, for example, by injecting this vapor into the process gas stream.

Bevorzugt wird das neue Verfahren so geführt, dass das der Elektrolysezelle zugeführte sauerstoffhaltige Gasgemisch insbesondere ein Gemisch aus Frischsauerstoff und recycliertem Sauerstoff die Temperatur in der Zelle um weniger als 50 °C, bevorzugt um weniger als 20 °C, besonders bevorzugt um weniger als 10 °C unterschreitet.The novel process is preferably carried out such that the oxygen-containing gas mixture supplied to the electrolysis cell, in particular a mixture of fresh oxygen and recycled oxygen, reduces the temperature in the cell by less than 50 ° C., preferably by less than 20 ° C., more preferably by less than 10 ° C falls below.

Die Rückführung und Vermischung des Sauerstoffs kann entsprechend dem in DE 10149779A1 beschriebenen Verfahren mittels einer Gasstrahlpumpe erfolgen. Die Rückführung und Vermischung des Sauerstoffs kann jedoch auch in anderer, dem Fachmann bekannter Weise erfolgen. So kann der aus der Elektrolysezelle abgeführte Sauerstoff mittels einer Pumpe oder eines Verdichters abgesaugt, verdichtet und dann mit dem Frischsauerstoff in einem Mischorgan vermischt werden. Die Mischung kann auch unmittelbar bei Einführung in den Elektrodenraum erfolgen.The recycling and mixing of the oxygen can be done according to the in DE 10149779A1 described method by means of a gas jet pump. However, the recycling and mixing of the oxygen can also be carried out in another manner known to the person skilled in the art. Thus, the oxygen discharged from the electrolysis cell can be sucked off by means of a pump or a compressor, compressed and then mixed with the fresh oxygen in a mixing device. The mixture can also take place immediately upon introduction into the electrode chamber.

Das erfindungsgemäße Verfahren kann unabhängig von der Qualität des frisch zugeführten Sauerstoffs angewendet werden. So kann das neue Verfahren insbesondere bevorzugt bei elektrochemischen Prozessen mit einer SVE und der Zufuhr von reinem Sauerstoff (> Vol.-99% O2) angewendet werden. Das neue Verfahren kann ebenfalls bei elektrochemischen Prozessen mit einer SVE und der Zufuhr hoch angereicherter Sauerstoff (90-99 Vol.-% O2) oder angereicherter Sauerstoff (30 - 95 Vol.-%O2) oder auch CO2-freie Luft (< 100 ppm CO2) angewendet werden.The process according to the invention can be used independently of the quality of the freshly supplied oxygen. Thus, the new method can be used particularly preferably in electrochemical processes with an SVE and the supply of pure oxygen (> Vol.-99% O 2 ). The new method can also be used in electrochemical processes with an SVE and the supply of highly enriched oxygen (90-99 vol .-% O 2 ) or enriched oxygen (30 - 95 vol .-% O 2 ) or CO 2 -free air ( <100 ppm CO 2 ) are used.

Bevorzugt ist daher eine Ausführung des neuen Verfahrens, die dadurch gekennzeichnet ist, dass das der Elektrode zugeführte sauerstoffhaltige Gasgemisch einen Anteil von 30- 95 Vol.-% Sauerstoff, bevorzugt einen Sauerstoffgehalt von 90 - 99 Vol.-%, besonders bevorzugt einen Sauerstoffgehalt von > 99 Vol.-% aufweist.Preference is therefore given to an embodiment of the new method, which is characterized in that the oxygen-containing gas mixture fed to the electrode has a proportion of 30-95 vol.% Oxygen, preferably an oxygen content of 90-99 vol.%, Particularly preferably an oxygen content of > 99% by volume.

Bevorzugt ist auch ein Verfahren, bei dem das der Elektrode zugeführte sauerstoffhaltige Gasgemisch einen CO2- Gehalt von < 100 ppm aufweist.Also preferred is a process in which the oxygen-containing gas mixture supplied to the electrode has a CO 2 content of <100 ppm.

Das erfindungsgemäße Verfahren kann unabhängig vom stöchiometrischen Überschuss des in die Zelle zugeführten Sauerstoffs und auch unabhängig von dem Anteil an ausgeschleustem Abgas angewendet werden. Das Verfahren kann insbesondere bei dem üblichen 1,,05 bis 2-fachen stöchiometrischen Überschuss und einem Purgegas-Strom von 0,5 - 20 % des zurückgeführten Eduktgases angewandt werden.The process according to the invention can be used independently of the stoichiometric excess of the oxygen introduced into the cell and also independently of the proportion of discharged exhaust gas. The process can be used in particular at the usual 1, 0.05 to 2-fold stoichiometric excess and a purge gas stream of 0.5 to 20% of the recirculated educt gas.

Das Verfahren kann grundsätzlich bei allen elektrochemischen Prozessen mit einer SVE eingesetzt werden.The method can basically be used in all electrochemical processes with an SVE.

Ebenso kann das erfindungsgemäße Verfahren eingesetzt werden beim Betreiben einer alkalischen Brennstoffzelle, bei der Trinkwasseraufbereitung, beispielsweise zur Herstellung von Natriumhypochlorit oder die in der Chlor-Alkalielektrolyse, insbesondere zur Elektrolyse von LiCI, KCl oder NaCl.Likewise, the inventive method can be used in the operation of an alkaline fuel cell, in drinking water treatment, for example for the production of sodium hypochlorite or in the chlor-alkali electrolysis, in particular for the electrolysis of LiCl, KCl or NaCl.

Das erfindungsgemäße Verfahren wird bevorzugt bei dem Einsatz einer SVE in der Chlor-Alkali-Elektrolyse und hier insbesondere bei der Natriumchlorid-(NaC1)-Elektrolyse oder in einer Salzsäureelektrolyse eingesetzt.The inventive method is preferably used in the use of an SVE in the chlor-alkali electrolysis and here in particular in the sodium chloride (NaC1) electrolysis or in a hydrochloric acid electrolysis.

Die Erfindung soll in folgenden weiter beispielhaft näher erläutert werden, ohne die Erfindung auf die beschriebenen Ausführungen zu beschränken.The invention will be further explained by way of example in the following, without limiting the invention to the described embodiments.

Beispiele:Examples: Beispiel 1example 1

Figur 1 zeigt eine NaCl-Elektrolysezelle EA1 mit Anolytreislauf a und Katholytkreislauf b und einem Prozessgaskreislauf c mit dem Förderorgan P1. Aus der Anode wird Chlorgas d abgeführt. Dem Anolytkreislauf wird ein Teilstrom e entnommen, welcher nach Entchlorung zusammen mit Frischwasser und festem Natriumchlorid für die Herstellung einer gesättigten NaCL-Lösung e' genutzt wird, welche dann nach Reinigung wieder in den Kreislauf eingeschleust wird. Dem Katholytkreislauf wird ein Teilstrom Natronlauge f entnommen. Aus dem Prozessgas-Kreislauf c wird ein Teilstrom g als Purge entnommen, und es wird frischer Sauerstoff h aus einer cryogenen Luftzerlegungsanlage zugeführt. Die Temperatur der Elektrolysezelle beträgt 90 °C. Der Anolyt-und Katholytkreislauf werden über die Wärmetauscher WA 1 bzw. WA2 gekühlt. Das Chlorgas wird im Wärmetauscher WA3 auf etwa 40 °C abgekühlt. Hierbei kondensiert ein Teil des im Chlorgas vorhandenen Wassers. FIG. 1 shows a NaCl electrolytic cell EA1 with anolyte circuit a and catholyte circuit b and a process gas circuit c with the conveying member P1. Chlorine gas d is removed from the anode. The anolyte is a partial stream e taken, which is used after dechlorination together with fresh water and solid sodium chloride for the preparation of a saturated NaCl solution e ', which is then introduced after cleaning back into the circuit. The catholyte circuit, a partial stream of sodium hydroxide solution is removed f. From the process gas cycle c, a partial stream g is removed as purge, and fresh oxygen h is supplied from a cryogenic air separation plant. The temperature of the electrolysis cell is 90 ° C. The anolyte and catholyte circuits are cooled via the heat exchangers WA 1 and WA 2. The chlorine gas is cooled in heat exchanger WA3 to about 40 ° C. Here, a part of the water present in the chlorine gas condenses.

Um das Prozessgas auf die gewünschte Temperatur zu erwärmen, wird in einer Ausführung der Erfindung der frisch zugeführte Sauerstoff h über den Wärmetauscher WA 4 erwärmt. Bevorzugt erfolgt der Wärmeaustausch in einer hier nicht gezeichneten anderen Ausführung gegen das abzukühlende Chlorgas in der Weise, dass WA 4 dem WA 3 entspricht und der Sauerstoff im direkten Wärmeaustausch gegen das heiße Chlorgas erwärmt wird, wobei der Wärmeaustausch bevorzugt im Gegenstrom erfolgt. Die Erwärmung kann aber auch in einer weiteren Ausführung mittels eines Wärmeträgerkreislaufs, bevorzugt mittels eines Wasserkreislaufs erfolgen, so dass die in WA3 abgeführte Wärme zur Erwärmung des Sauerstoffs in WA4 übertragen wird. In einer weiteren Ausführung wird die aus WA 1 oder WA2 mittels eines Wärmeträgerkreislaufs abgeführte Wärme zur Aufwärmung des Prozessgases in WA4 genutzt.In order to heat the process gas to the desired temperature, in one embodiment of the invention, the freshly supplied oxygen h is heated via the heat exchanger WA 4. Preferably, the heat exchange in a not shown here other execution against the cooled chlorine gas in such a way that WA 4 corresponds to the WA 3 and the oxygen is heated in the direct heat exchange against the hot chlorine gas, the heat exchange is preferably carried out in countercurrent. However, the heating can also be carried out in a further embodiment by means of a heat carrier circuit, preferably by means of a water cycle, so that the heat dissipated in WA3 is transferred to warm the oxygen in WA4. In a further embodiment, the heat dissipated from WA 1 or WA 2 by means of a heat carrier circuit is used to heat up the process gas in WA 4.

In einer weiteren Ausführung wird das Prozessgas c nach Ausschleusung des Purge-Stroms g und Zufuhr des Sauerstoffs h in dem Wärmetauscher WA5 auf die benötigte Temperatur erwärmt. In einer hier nicht gezeichneten Variante erfolgt der Wärmeaustausch gegen das abzukühlende Chlorgas in der Weise, dass Wärmetauscher WA 5 dem Wärmetauscher WA 3 entspricht und das Prozessgas im direkten Wärmeaustausch gegen das heiße Chlorgas erwärmt wird, wobei der Wärmeaustausch bevorzugt im Gegenstrom erfolgt. Die Erwärmung kann aber auch in einer weiteren Ausführung mittels eines Wärmeträgerkreislaufs, bevorzugt mittels eines Wasserkreislaufs erfolgen, so dass die in WA3 abgeführte Wärme zur Erwärmung des Prozessgases in WA5 übertragen wird. In einer weiteren Ausführung wird die aus Wärmetauscher WA 1 oder Wärmetauscher WA2 mittels eines Wärmeträgerkreislaufs abgeführte Wärme zur Aufwärmung des Prozessgases in WA5 genutzt.In a further embodiment, the process gas c is heated to the required temperature after discharge of the purge stream g and supply of the oxygen h in the heat exchanger WA5. In a variant not shown here, the heat exchange takes place against the cooled chlorine gas in such a way that heat exchanger WA 5 corresponds to the heat exchanger WA 3 and the process gas is heated in direct heat exchange against the hot chlorine gas, wherein the heat exchange is preferably carried out in countercurrent. However, the heating can also be carried out in a further embodiment by means of a heat carrier circuit, preferably by means of a water cycle, so that the dissipated in WA3 heat is transferred to the heating of the process gas in WA5. In a further embodiment, the heat dissipated from heat exchanger WA 1 or heat exchanger WA2 by means of a heat carrier circuit is used to heat up the process gas in WA5.

Beispiel 2 Example 2

In Figur 2 sind weitere Ausführungen beispielhaft dargestellt, in welchen zusätzlich das Prozessgas befeuchtet wird.In FIG. 2 further embodiments are exemplified, in which additionally the process gas is moistened.

In einer Ausführung wird der frisch zugeführte Sauerstoff h in Wärmetauscher WA 1 erwärmt, wobei die Wärmeenergie wie in den zuvor beschriebenen Ausführungen aus einer der Quellen Wärmetauscher WA3, WA2 oder WA1 stammt. Der Sauerstoffstrom h wird dann durch die Befeuchtungsapparatur KA 1 geleitet und der erwärmte und befeuchtete Sauerstoff dem Prozessgaskreislauf c zugeführt. Zur Befeuchtung wird ein wässriges Medium i durch die Befeuchtungsapparatur KA1 geleitet, wobei es sich entweder um deionisiertes Wasser, Kondensat oder Natronlauge handelt.In one embodiment, the freshly supplied oxygen h is heated in heat exchanger WA 1, wherein the heat energy as in the embodiments described above from one of the sources heat exchanger WA3, WA2 or WA1 comes. The oxygen stream h is then passed through the moistening apparatus KA 1 and the heated and humidified oxygen is supplied to the process gas circuit c. For moistening, an aqueous medium i is passed through the moistening apparatus KA1, which is either deionized water, condensate or caustic soda.

In einer weiteren Ausführung wird das Prozessgas c nach Ausschleusung des Purge-Stroms (g) und Zufuhr des Sauerstoffs h durch die Befeuchtungsapparatur KA 2 geleitet und anschließend in dem Wärmetauscher WA5 erwärmt, wobei die Energie wie in den zuvor beschriebenen Ausführungen aus einer der Quellen WA3, WA2 oder WA1 stammt. Zur Befeuchtung wird ein wässriges Medium i' durch die Befeuchtungsapparatur KA2 geleitet, wobei es sich um wobei es sich entweder um deionisiertes Wasser, Kondensat oder Natronlauge handelt.In a further embodiment, the process gas c is passed to the purge stream (g) and feed of the oxygen h through the humidifier KA 2 and then heated in the heat exchanger WA5, wherein the energy as in the embodiments described above from one of the sources WA3 , WA2 or WA1. For moistening, an aqueous medium i 'is passed through the moistening apparatus KA2, which is either deionized water, condensate or caustic soda.

Beispiel 3 Example 3

In Figur 3 sind weitere Ausführungen dargestellt, in welchen die Erwärmung und Befeuchtung in einem Apparat erfolgen.In FIG. 3 further embodiments are shown in which the heating and humidification done in an apparatus.

In einer Ausführung wird der frisch zugeführte Sauerstoff h in der Befeuchtungsapparatur KA 1 befeuchtet und erwärmt. Die Befeuchtungsapparatur KA1 1 wird mit einen heißen wässrigen Medium i beaufschlagt, wobei es sich um heißes Kondensat aus der Natronlauge-Eindampfanlage, heißer Natronlauge (f), einem anderen heißen wässrigen Strom aus dem Prozess oder um deionisiertes Wasser handelt, welches mittel einer der Abwärme aus einem der Wärmetauscher WA1, WA 2 oder WA3 erwärmt wurde.In one embodiment, the freshly supplied oxygen h in the moistening apparatus KA 1 is moistened and heated. The moistening apparatus KA1 1 is charged with a hot aqueous medium i, which is hot condensate from the sodium hydroxide evaporation plant, hot caustic soda (f), another hot aqueous stream from the process or deionized water, which means one of the waste heat was heated from one of the heat exchanger WA1, WA 2 or WA3.

In einer weiteren Ausführung wird das Prozessgas c nach Ausschleusung des Purge-Stroms g und Zufuhr des Sauerstoffs h in der Befeuchtungsapparatur KA 2 befeuchtet und erwärmt. Die Befeuchtungsapparatur KA2 wird mit einen heißen wässrigen Medium beaufschlagt i', wobei es sich um heißes Kondensat aus der Natronlauge-Eindampfanlage, heißer Natronlauge f, einem anderen heißen wässrigen Strom aus dem Prozess oder um deionisiertes Wasser handelt, welches mittel einer der Abwärme aus einem der Wärmetauscher WA1, WA 2 oder WA3 erwärmt wurde.In a further embodiment, the process gas c is humidified and heated after discharge of the purge stream g and supply of the oxygen h in the moistening apparatus KA 2. The moistening apparatus KA2 is charged with a hot aqueous medium i ', wherein it is is hot condensate from the caustic soda evaporation plant, hot caustic soda f, another hot aqueous stream from the process or deionized water, which was heated by means of one of the waste heat from one of the heat exchanger WA1, WA 2 or WA3.

Beispiel 4 Example 4

In einer Elektrolyseapparatur mit 10 Zellenelementen ä 2,7 m2, bestückt mit Nafion-Membran N982® der Fa. Dupont und SVE wird eine NaCl-Lösung von 220 g/l mit Stromdichte von 4 kA/m2 elektrolysiert. Dabei werden dem Kathodenraum 33,8 Nm3/h reiner Sauerstoff (> 99% O2), dass heißt 50%iger Überschuss zugeführt.In an electrolysis apparatus with 10 cell elements ä 2.7 m 2 , equipped with Nafion membrane N982® the Fa. Dupont and SVE, a NaCl solution of 220 g / l with current density of 4 kA / m 2 is electrolyzed. In this case, the cathode chamber 33.8 Nm 3 / h of pure oxygen (> 99% O 2 ), that is fed to 50% excess.

Der zugeführte Sauerstoff hat eine Temperatur von 80 °C. Die Temperatur wird dadurch erreicht, dass der Frischsauerstoff vor Vermischen mit dem um den Purgegasstrom verminderten Restgasstrom mittels eines Wärmetauschers im Gegenstrom gegen aus der Elektrolyseapparatur abgeführtes Chlorgas erwärmt wird. Dies entspricht der in Figur 1 gezeigten Ausführung mit der Änderung dass die Wärmetauscher WA 3 und WA 4 durch einen einzigen Wärmetauscher ersetzt sind, der von Chlor als Wärmeträger und vom Frischsauerstoff durchströmt wird.The supplied oxygen has a temperature of 80 ° C. The temperature is achieved by heating the fresh oxygen in countercurrent to chlorine gas discharged from the electrolysis apparatus before it is mixed with the residual gas stream reduced by the purge gas stream by means of a heat exchanger. This corresponds to the in FIG. 1 shown embodiment with the change that the heat exchanger WA 3 and WA 4 are replaced by a single heat exchanger, which is traversed by chlorine as the heat transfer medium and the fresh oxygen.

Claims (10)

Verfahren zum Betrieb einer Sauerstoffverzehrelektrode als Kathode zur Elektrolyse von Alkalichloriden oder Salzsäure in einer elektrochemischen Zelle, dadurch gekennzeichnet, dass das der Elektrode zugeführte sauerstoffhaltige Prozessgas zumindest teilweise unter Nutzung einer Wärmequelle aus der Elektrolyse, insbesondere durch Wärmetausch mit einem ausgewählten Prozessstrom, der aus der Elektrolyse erhalten wird oder einem der Elektrolyse nachfolgenden aufgearbeiteten Prozessstrom vor dem Kontakt mit der Sauerstoffverzehrelektrode auf eine Temperatur erwärmt wird, welche höchstens der Temperatur des Kathodenraums in der Zelle entspricht oder diese um weniger als 50 °C, bevorzugt um weniger als 20 °C, besonders bevorzugt um weniger als 10 °C unterschreitet.A method of operating an oxygen-consuming electrode as a cathode for the electrolysis of alkali chlorides or hydrochloric acid in an electrochemical cell, characterized in that the oxygen-containing process gas supplied to the electrode at least partially using a heat source from the electrolysis, in particular by heat exchange with a selected process stream, from the electrolysis is obtained or a subsequent electrolysis refurbished process stream is heated prior to contact with the oxygen-consuming electrode to a temperature which corresponds at most to the temperature of the cathode space in the cell or by less than 50 ° C, preferably less than 20 ° C, more preferably less than 10 ° C. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Prozessstrom für den Wärmetausch das der Anodenseite der elektrochemischen Zelle entnommene Chlorgas zur Erwärmung des sauerstoffhaltigen Prozessgases genutzt wird.A method according to claim 1, characterized in that as the process stream for the heat exchange, the anode side of the electrochemical cell taken chlorine gas is used to heat the oxygen-containing process gas. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Prozessstrom für den Wärmetausch der die Zelle verlassende Katholyt und/oder Anolyt zur Erwärmung des sauerstoffhaltigen Prozessgases genutzt wird.A method according to claim 1 or 2, characterized in that is used as the process stream for the heat exchange of the cell leaving the catholyte and / or anolyte for heating the oxygen-containing process gas. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Kühlwässer, Kondensate oder Sekundärdampf aus einer der Elektrolysezelle nachgeschalteten Alkalilauge-Eindampfanlage zur Erwärmung des sauerstoffhaltigen Prozessgases genutzt werden.Method according to one of claims 1 to 3, characterized in that cooling water, condensates or secondary steam from an electrolysis cell downstream alkali lye evaporation system for heating the oxygen-containing process gas can be used. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Erwärmung des sauerstoffhaltigen Prozessgases durch Hindurchleiten des Prozessgases durch aus dem Katholytkreislauf ausgeschleuste Alkalilauge erfolgt.Method according to one of claims 1 to 4, characterized in that the heating of the oxygen-containing process gas is carried out by passing the process gas through leached from the catholyte circuit alkali hydroxide. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Prozessstrom für die Erwärmung des sauerstoffhaltigen Prozessgases kondensierte Brüden aus einer der elektrochemischen Zelle nachgeschalteten Alkalilauge-Eindampfung verwendet werden, wobei der Wärmetausch insbesondere durch Hindurchleiten des sauerstoffhaltigen Prozessgases durch die kondensierten Brüden erfolgt.A method according to claim 1, characterized in that as a process stream for the heating of the oxygen-containing process gas condensed vapors from the electrochemical cell downstream alkali hydroxide evaporation are used, the heat exchange is carried out in particular by passing the oxygen-containing process gas through the condensed vapors. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das der Elektrode zugeführte sauerstoffhaltige Gasgemisch einen Anteil von 30- 95 Vol.-% Sauerstoff, bevorzugt einen Sauerstoff -gehalt von 90 - 99 Vol.-%, besonders bevorzugt einen Sauerstoffgehalt von > 99 Vol.-% aufweist.Method according to one of claims 1 to 6, characterized in that the oxygen-containing gas mixture supplied to the electrode accounts for 30-95% by volume. Oxygen, preferably an oxygen content of 90 to 99 vol .-%, particularly preferably has an oxygen content of> 99 vol .-%. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das der Elektrode zugeführte sauerstoffhaltige Gasgemisch einen CO2- Gehalt von < 100 ppm aufweist.Method according to one of claims 1 to 7, characterized in that the oxygen-containing gas mixture supplied to the electrode has a CO 2 content of <100 ppm. Verfahren nach einem der Ansprüche 1 bis 8 dadurch gekennzeichnet, dass die Elektrolyse eine Chloralkalielektrolyse, insbesondere eine Natriumchloridelektrolyse istMethod according to one of claims 1 to 8, characterized in that the electrolysis is a chloralkali electrolysis, in particular a sodium chloride electrolysis Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Elektrolyse eine Salzsäureelektrolyse ist.Method according to one of claims 1 to 9, characterized in that the electrolysis is a hydrochloric acid electrolysis.
EP12157043.6A 2011-03-04 2012-02-27 Method for operating an oxygen-consuming electrode Not-in-force EP2495353B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011005133A DE102011005133A1 (en) 2011-03-04 2011-03-04 Method for operating an oxygen-consuming electrode

Publications (3)

Publication Number Publication Date
EP2495353A2 true EP2495353A2 (en) 2012-09-05
EP2495353A3 EP2495353A3 (en) 2014-06-25
EP2495353B1 EP2495353B1 (en) 2018-06-27

Family

ID=45756903

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12157043.6A Not-in-force EP2495353B1 (en) 2011-03-04 2012-02-27 Method for operating an oxygen-consuming electrode

Country Status (5)

Country Link
US (1) US9422631B2 (en)
EP (1) EP2495353B1 (en)
JP (1) JP6231732B2 (en)
CN (1) CN102653871B (en)
DE (1) DE102011005133A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3960903A1 (en) * 2020-08-24 2022-03-02 Covestro Deutschland AG Device and method for operating an electrolysis system
EP4339338A3 (en) * 2022-09-16 2024-08-28 Kabushiki Kaisha Toshiba Electrolytic device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013011298A1 (en) * 2013-07-08 2015-02-12 Uhdenora S.P.A. Apparatus and method for operating an electrolysis with an oxygen-consuming cathode
US9379395B2 (en) 2013-07-17 2016-06-28 Elwha Llc Active cathode temperature control for metal-air batteries
US9293776B2 (en) * 2013-07-17 2016-03-22 Elwha Llc Cathode temperature regulation for metal-air batteries
CN106321690B (en) * 2016-08-31 2019-01-11 重庆中帝机械制造股份有限公司 Aluminium alloy wedge brake assembly
EP3608444A4 (en) * 2017-03-30 2021-01-06 Kaneka Corporation Method for manufacturing sodium hydroxide and/or chlorine and 2 chamber type saltwater electrolytic cell
JP7500949B2 (en) * 2019-10-25 2024-06-18 東ソー株式会社 Method for electrolyzing an aqueous solution of alkali metal chloride
US12091992B2 (en) 2022-08-02 2024-09-17 Mitsubishi Power Americas, Inc. Electrolyzer heating system for integrated power plants

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19622744C1 (en) 1996-06-07 1997-07-31 Bayer Ag Pressure-compensated electrochemical half-cell
DE10149779A1 (en) 2001-10-09 2003-04-10 Bayer Ag Returning process gas to an electrochemical process with educt gas via gas jet pump
DE10159372A1 (en) 2001-12-04 2003-06-12 Bayer Ag Electrochemical half-cell comprises electrode chamber for an electrolyte, gas pockets for receiving gas, connecting channel for connecting two gas pockets, and gas diffusion electrode which separates the chamber from the gas pockets
DE10342148A1 (en) 2003-09-12 2005-04-07 Bayer Materialscience Ag Process for the electrolysis of an aqueous solution of hydrogen chloride or alkali chloride
EP1033419B1 (en) 1998-08-25 2006-01-11 Toagosei Co., Ltd. Soda electrolytic cell provided with gas diffusion electrode
WO2008006909A2 (en) 2006-07-14 2008-01-17 Uhdenora S.P.A. Chlor-alkali electrolyser equipped with oxygen-diffusion cathode

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3479261A (en) * 1967-05-15 1969-11-18 North American Rockwell Electrochemical method for recovery of sulfur oxides
US3963592A (en) * 1972-09-29 1976-06-15 Hooker Chemicals & Plastics Corporation Method for the electrolytic production of alkali
JPS5833312B2 (en) * 1975-10-28 1983-07-19 旭化成株式会社 caustic alkaline water
JPS534796A (en) * 1976-07-05 1978-01-17 Asahi Chem Ind Co Ltd Electrolysis of pressurized alkali halide
US4329209A (en) * 1979-02-23 1982-05-11 Ppg Industries, Inc. Process using an oxidant depolarized solid polymer electrolyte chlor-alkali cell
JPS58120788A (en) * 1982-01-08 1983-07-18 Showa Denko Kk Recovering method for heat energy in production stage for caustic soda by diaphragm electrolysis
JP2001004383A (en) * 1999-06-25 2001-01-12 Fujitsu Ten Ltd Navigation system
WO2001004383A1 (en) * 1999-07-09 2001-01-18 Toagosei Co., Ltd. Method for electrolysis of alkali chloride
FR2921390B1 (en) * 2007-09-25 2010-12-03 Commissariat Energie Atomique HIGH TEMPERATURE ELECTROLYSIS HOMOGENIZING TEMPERATURE DEVICE.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19622744C1 (en) 1996-06-07 1997-07-31 Bayer Ag Pressure-compensated electrochemical half-cell
EP1033419B1 (en) 1998-08-25 2006-01-11 Toagosei Co., Ltd. Soda electrolytic cell provided with gas diffusion electrode
DE10149779A1 (en) 2001-10-09 2003-04-10 Bayer Ag Returning process gas to an electrochemical process with educt gas via gas jet pump
DE10159372A1 (en) 2001-12-04 2003-06-12 Bayer Ag Electrochemical half-cell comprises electrode chamber for an electrolyte, gas pockets for receiving gas, connecting channel for connecting two gas pockets, and gas diffusion electrode which separates the chamber from the gas pockets
DE10342148A1 (en) 2003-09-12 2005-04-07 Bayer Materialscience Ag Process for the electrolysis of an aqueous solution of hydrogen chloride or alkali chloride
WO2008006909A2 (en) 2006-07-14 2008-01-17 Uhdenora S.P.A. Chlor-alkali electrolyser equipped with oxygen-diffusion cathode

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Ullmann's Encyclopedia of Industrial Chemistry", WILEY-VCH VERLAG GMBH & CO KG
"Ullmann's Encyclopedia of Industrial Chemistry", WILEY-VCH VERLAG GMBH&CO KG, article "Chlorine"
"Ullmann's Encyclopedia of Industrial Chemistry", WILEY-VCH VERLAG GMBH&CO KG, article "Sodium Hydroxide"
JOURNAL OF APPLIED ELECTROCHEMISTRY, vol. 38, no. 9, 2008, pages 1177 - 1194
LIPP ET AL., J. APPL. ELECTROCHEM., vol. 35, 2005, pages 1015
MOUSSALLEM ET AL.: "Chlor-Alkali Electrolysis with Oxygen Depolarized Cathodes: History, Present Status and Future Prospects", J. APPL. ELECTROCHEM., vol. 38, 2008, pages 1177 - 1194, XP019606285

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3960903A1 (en) * 2020-08-24 2022-03-02 Covestro Deutschland AG Device and method for operating an electrolysis system
WO2022043290A1 (en) * 2020-08-24 2022-03-03 Covestro Deutschland Ag Apparatus and method for performing electrolysis
EP4339338A3 (en) * 2022-09-16 2024-08-28 Kabushiki Kaisha Toshiba Electrolytic device

Also Published As

Publication number Publication date
US9422631B2 (en) 2016-08-23
JP2012184507A (en) 2012-09-27
CN102653871A (en) 2012-09-05
JP6231732B2 (en) 2017-11-15
CN102653871B (en) 2017-10-24
EP2495353A3 (en) 2014-06-25
EP2495353B1 (en) 2018-06-27
DE102011005133A1 (en) 2012-09-06
US20120222965A1 (en) 2012-09-06

Similar Documents

Publication Publication Date Title
EP2495353B1 (en) Method for operating an oxygen-consuming electrode
DE69215093T2 (en) Device and method for the electrochemical decomposition of salt solutions to form the corresponding bases and acids
EP3384069B1 (en) Method and device for the electrochemical utilization of carbon dioxide
DE3032875A1 (en) METHOD FOR CHLORALKALI ELECTROLYSIS
WO2021069470A1 (en) Method and electrolysis device for the production of chlorine, carbon monoxide and optionally hydrogen
DE2729589A1 (en) METHOD OF ALKALINE HALOGENIC ELECTROLYSIS
DE102016211155A1 (en) Arrangement and method for carbon dioxide electrolysis
EP3710617B1 (en) Electrochemical production of carbon monoxide and/or syngas
DE102013011298A1 (en) Apparatus and method for operating an electrolysis with an oxygen-consuming cathode
WO2018103769A1 (en) Electrolysis cell and method for operating such an electrolysis cell
EP2877614A1 (en) Method for producing an alkali metal
US6203692B1 (en) Electrochemical purification of chlorine
DE102020004630A1 (en) Pressure maintenance in an electrolysis plant
EP3658499A1 (en) Production and separation of phosgene by means of a combined co2 and chloride electrolysis
DE102019219302A1 (en) Process and electrolyser for carbon dioxide reduction
DE102019201153A1 (en) Process for the energy-efficient production of CO
DE102004012334A1 (en) Method for preparing metal hydroxide from sparingly soluble salt, useful particularly for making lithium hydroxide, uses an electrodialysis cell, supplied with concentrated aqueous salt solution
DE102020005254A1 (en) Process and plant for the production of carbon monoxide
DE102019217121A1 (en) Electrolysis system and method for operating an electrolysis system for the electrochemical use of carbon dioxide
EP4050126A1 (en) Co2 electrolysis with educt humidification
DE102018000213A1 (en) Production of a gas product containing at least carbon monoxide
DE10138966A1 (en) Electrochemical decomposition of an aqueous ammonium salt solution to form ammonia and an inorganic acid used in the recovery of metals is carried out in an electrochemical cell having a cation exchange membrane
WO2021069498A1 (en) Producing carbon monoxide
WO2023139074A2 (en) Integrated water treatment for water electrolysis by means of osmotic membrane distillation
DE102019211620A1 (en) Plant and process for the electrochemical use of carbon dioxide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER INTELLECTUAL PROPERTY GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C25B 15/08 20060101ALI20140521BHEP

Ipc: C25B 1/24 20060101AFI20140521BHEP

17P Request for examination filed

Effective date: 20150105

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20150910

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COVESTRO DEUTSCHLAND AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012012927

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25B0001240000

Ipc: C25B0015020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C25B 1/26 20060101ALI20180123BHEP

Ipc: C25B 15/02 20060101AFI20180123BHEP

Ipc: C25B 1/46 20060101ALI20180123BHEP

INTG Intention to grant announced

Effective date: 20180228

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1012433

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012012927

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180927

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180927

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180627

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180928

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181027

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012012927

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

26N No opposition filed

Effective date: 20190328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190227

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190227

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1012433

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200211

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181029

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210126

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012012927

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220227