[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2490988A1 - Tempered glass spacer - Google Patents

Tempered glass spacer

Info

Publication number
EP2490988A1
EP2490988A1 EP10785133A EP10785133A EP2490988A1 EP 2490988 A1 EP2490988 A1 EP 2490988A1 EP 10785133 A EP10785133 A EP 10785133A EP 10785133 A EP10785133 A EP 10785133A EP 2490988 A1 EP2490988 A1 EP 2490988A1
Authority
EP
European Patent Office
Prior art keywords
glass
spacer
spacers
object according
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10785133A
Other languages
German (de)
French (fr)
Inventor
Serge Valladeau
Xavier Brajer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP2490988A1 publication Critical patent/EP2490988A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66304Discrete spacing elements, e.g. for evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66333Section members positioned at the edges of the glazing unit of unusual substances, e.g. wood or other fibrous materials, glass or other transparent materials
    • E06B2003/66338Section members positioned at the edges of the glazing unit of unusual substances, e.g. wood or other fibrous materials, glass or other transparent materials of glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/252Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]

Definitions

  • the invention relates to the field of glass spacers.
  • Spacers are used to maintain a distance between two solid elements, in particular two walls, generally parallel, of an object such as double-glazing, a flat lamp, a solar thermal collector, etc.
  • Glass spacers are known. As documents of the state of the art, mention may be made of WO96 / 12862 and US4683154. Spacers can be metal or ceramic like zirconia. The chemical quenching technique is known to reinforce glass objects in applications where the glass is biased in tension or bending, but not in compression. The glass spacers have the advantage of being little visible given the natural transparency of the glass. In addition, they improve energy efficiency for solar collectors because they let in solar radiation. Thus, for application in a solar collector, the spacer is a transparent element at least in the wavelength ranges of solar radiation which are useful for the conversion of energy from solar radiation into thermal energy by means of solar radiation. absorption means.
  • the ion exchange imparted by chemical quenching makes it possible to obtain an improvement in the compressive strength of the spacers, in particular in the form of a sphere.
  • ion exchange at a temperature below the glass Tg can introduce compression into the surface layers of the treated glass, which causes reinforces in the case where it is subjected to a tensile stress, or bending, as is the case of aircraft cockpit glass for example.
  • This superficial compression due to the ion exchange makes it possible to compensate for a part of the stress applied on the surface which is a tension in the case of applied external forces of traction or bending.
  • the external forces are compression or crushing, it is not obvious a priori that the ion exchange makes it possible to obtain a reinforcement.
  • FR2103574 teaches chemical quenching treatment of grains to increase their tensile strength.
  • the spacer is placed between two elements (said first and second element with which it is in contact) to separate, as two walls to ensure a distance between them.
  • the space between these elements contains the spacers and gas at atmospheric pressure or reduced pressure or vacuum.
  • the free space between the elements (that is to say the free space in the immediate environment of the spacer) can therefore be at sub-atmospheric pressure (pressure below atmospheric pressure).
  • the spacer according to the invention is particularly recommended for any object comprising a vacuum or low-pressure glazing, such as for example a vacuum flat lamp, a vacuum solar collector, a vacuum insulator (freezer door, habitat, door of oven), etc. These objects are indeed under pressure because of the vacuum (pressure of the atmosphere) on their main faces that directly or indirectly compress the spacer.
  • a solar collector generally comprises a glass pane as the first outer wall, which is intended to receive the sunlight, and as the second outer wall a metal plate (which can be integrated into a window).
  • This collector generally contains absorption means traversed by a coolant, said absorption means being heated by solar energy.
  • the spacers are used to prevent crushing due to external pressure and which is communicated directly (in which case they are in contact with an external wall) or indirectly (when other elements internal to the object communicate pressure to them).
  • the spacers according to the invention may be considered to be point spacers insofar as they do not participate in the outer envelope of the object.
  • the spacer can be compressed under the effect of additional forces, in particular those due to bending deformation of the object or those due to thermal stress or those due to the manufacturing process (in some cases case, especially when the object must undergo a laminating operation with PVB (polyvinyl butyral), it must support the pressure of the autoclave).
  • PVB polyvinyl butyral
  • the invention relates to an object comprising at least one glass spacer between a first element of said object and a second element of said object, said spacer comprising a concentration gradient of alkaline ions from its surface and perpendicular to its surface.
  • the first element may be a glass wall.
  • the glass of this wall may comprise less than 200 ppm of iron. This is useful when it is desired that the glass allows the maximum of solar radiation to pass.
  • the reinforcing method used for the spacers according to the invention aims, by ion exchange (also called "chemical quenching"), to replace ions initially present in the glass with larger ions, in order to induce high stresses. surface compression.
  • ion exchange also called "chemical quenching”
  • the glass must contain before said quenching an alkaline oxide.
  • This oxide may be Na 2 O or Li 2 O, and may be present in the glass at, for example, from 1 to 20% by weight.
  • the chemical quenching treatment consists of replacing alkaline ions initially in the glass with other larger alkaline ions. If the initial oxide is Na2O, chemical quenching is applied by KNO3 treatment so as to at least partially replace Na + ions with K + ions.
  • a chemical quench is applied by treatment with NaNO 3 or KNO 3, so as to replace at least partially Li + ions as appropriate by Na + ions where K + .
  • the chemical quenching leads to a concentration gradient in alkaline ion (especially K + or Na + ) perpendicular to the treated and decreasing surfaces for one of the ions from said surface and increasing for another alkaline ion when one goes from the heart of the glass to the surface. This ion exchange alkali exists from any point on the chemically treated surface of the spacer.
  • alkaline ion gradient means that the concentration of one ion (exchanger ion) decreases from the surface towards the core, while the concentration of another ion (ion exchanged) increases from from the surface towards the heart.
  • the exchanger ion and the exchanged ion form a pair.
  • the exchange is carried out by quenching spacers in a bath of potassium salt brought to temperatures between 390 and 500 ° C.
  • the exchange parameters temperature and duration
  • the exchange depth is the depth p such that if, after chemical quenching
  • C p is the concentration in the exchanger ion at the depth p
  • C c is the concentration of the ion exchanger to the heart of the glass (thus corresponding to the concentration of the ion exchanger in the glass prior to chemical quench, this concentration may be zero),
  • Co is the concentration of the exchanger ion on the surface of the glass
  • the exchange depth is the depth at which the exchanger concentration overconcentration is only 5% of its value at the treated surface (overconcentration: additional concentration relative to the initial concentration).
  • the temperature of the chemical quenching can be chosen between 350 and 420 ° C. Ion exchange may not be assisted by an electric field, or be assisted by an electric field.
  • an electric field accelerates the exchange, which makes it possible to obtain a higher surface stress and a greater exchange depth, or a duration of lower treatment.
  • it introduces an asymmetry in the treatment of the spacer. In this way, certain surface areas may be more chemically hardened than others.
  • the use of an electric field does not appear however necessary.
  • the non-use of an electric field favors a treatment identical to the entire surface of the spacer and therefore the obtaining of an identical alkaline ion gradient from any point on the surface towards the core of the spacer. .
  • the alkaline ion exchange depth may be between 1 micron and 20 microns, and preferably from 5 to 17 microns.
  • the ion exchange can be carried out from molten liquid or pasty salts comprising the ion that it is desired to diffuse into the glass.
  • Such salts are, for example, sodium or potassium nitrate or sulfate or chloride or mixtures of these compounds.
  • the starting glass contains:
  • alkaline oxide preferably chosen from Na 2 O and K 2 O, preferably Na 2 O in large quantity (thus up to 25% by mass) in the context of Na / Na exchange; K;
  • alkaline earth oxide preferably CaO.
  • the glass may comprise at least one other oxide and in particular Al 2 O 3
  • the starting glass contains less than 200 ppm by weight of iron oxide (sum of all forms of iron oxides).
  • the starting glass preferably contains CaO, whereas usually the glasses to be chemically quenched have little or no CaO.
  • the starting glass (before chemical quenching) may comprise: balls 2 ⁇ ⁇ 7 ⁇
  • the Na / K couple for chemical quenching (exchanges of Na + ions initially in the glass with K + ions initially in the chemical quenching bath) rather than on the couple.
  • Li / Na ion exchange Li + initially in the glass by Na + ions initially in the chemical quench bath
  • the spacers it is possible to implement the spacers according to the invention up to about 400 ° C, especially between 100 and 400 ° C, without too much loss of the reinforcement provided by the chemical quenching .
  • the implementation may involve heating to hermetically seal two parts of a solar collector (for example) and be able to evacuate thereafter.
  • the presence of CaO in the starting composition is preferred because this oxide slows ion diffusion.
  • composition of the spacer does not really change by chemical quenching since this treatment produces only an alkaline ion exchange surface and a fairly moderate depth.
  • the spacer according to the invention comprises:
  • alkaline oxide 5 to 25% by weight of alkaline oxide, 1 to 20% and preferably 4 to 10% by weight of alkaline earth oxide, preferably CaO.
  • the spacer may have any suitable shape: parallelepiped, shaped like a cross, shaped like a sphere (like a ball), etc.
  • the spherical shape is particularly preferred for several reasons:
  • the contact area with the spaced walls is minimized, limiting the thermal and electrical exchanges by thermal or electrical conduction from one wall to the other,
  • the spherical shape allows the spacers to roll, which provides an ease of conveyance appreciable in the manufacturing process.
  • the spherical shape is less visible to the eye.
  • the spacer has, before chemical quenching, generally the desired shape in the final application, since it is indeed not recommended to be obliged to cut it. Indeed, a chemically tempered glass is usually not cut by conventional techniques using a diamond or a wheel at the risk of uncontrolled breakage.
  • the spacers may be glued to at least one of the elements with which they must be in contact. This bonding can take place beforehand or concomitantly with a seal and a vacuum. In particular, in the case of vacuum collectors, the spacers may be prior to the evacuation made bonded (gluing) of the absorption means.
  • the balls generally have a diameter of between 0.4mm and 15mm.
  • a small diameter of 1 to 5 mm is well suited and allows to achieve an object according to the invention thin. This is a significant advantage when the object is intended to be integrated into a roof as in the case of a solar collector.
  • one of the elements may be plane and the object may comprise between 200 and 1000 spacers per m 2 of said planar element.
  • the use of chemically quenched spacers according to the invention because of the possible reduction in their number, leads to a considerable reduction (sometimes by a factor 4) from the loss of thermal performance due to the necessary presence of the spacers.
  • the invention also relates to the use of a ball according to the invention as a spacer for supporting a pressure force between two elements pushing them towards each other.
  • FIG. 1 represents glass beads 1 according to the invention acting as a spacer between two elements 2 and 3 which are glass sheets acting as external walls, the vacuum being applied at 4 between the two glass sheets.
  • Figure 2 shows the percentage of cumulative breaks as a function of the breaking force (compressive force) in the case of 2 mm diameter glass balls quenched chemically in two different ways compared to untreated (reference) beads.
  • FIG 3 is a section of a solar collector 101 as an object according to the invention.
  • the solar collector 101 comprises a first transparent upper outer wall 102 and a second transparent outer wall 104 also transparent, formed by two identical plates of thermally tempered glass.
  • the walls 102 and 104 delimit between them and with a metal frame 105, to which they are fixed by a sealing gasket 1 10 sealed, a sealed housing 103 receiving the absorption means 106 and 107 of the collector.
  • the outer envelope of the object according to the invention is therefore formed of the walls 102, 104 and 105.
  • the absorption means comprise an absorber panel 106 and a conduit 107 for circulating a heat transfer fluid.
  • the conduit 107 is in thermal contact with the absorber panel 106 on the underside side 106A thereof.
  • the collector 101 comprises a plurality of upper spacers 108 according to the invention and a plurality of lower spacers 109 according to the invention, intended to maintain a constant distance between the upper wall 102 and the bottom wall 104 when the collector 101 is placed. under vacuum.
  • These spacers 108 and 109 are aligned in pairs along the thickness Z direction of the manifold 101, so that each upper spacer 108 is positioned between the top wall 102 and a portion 161 of the absorber panel 106 which is in thermal contact with the conduit 107, while each lower spacer 109 is positioned between the bottom wall 104 and the conduit 107.
  • the spacers 108 and 109 are in the form of glass beads reported on the walls 102 and 104, for example by gluing.
  • the glass beads are reinforced by a chemical quenching according to the invention.
  • the pressure exerted on the outer walls 102 and 104 is indeed communicated to the spacers 108 and 109 by internal elements of the solar collector, the absorption means 106 and 107.
  • the chemical quenching makes it possible to significantly increase the resistance to compression of the balls acting as spacers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

The invention relates to an object including at least one glass spacer between a first element of said object and a second element of said object, said spacer including a concentration gradient in alkaline ions from the surface thereof and perpendicular to the surface thereof. The object can be a vacuum solar collector. The invention also relates to a glass ball including a concentration gradient in alkaline ions from the surface thereof and perpendicular to the surface thereof and to the use of said ball as a spacer withstanding a pressure force between two elements, said pressure pushing the two elements towards one another.

Description

ESPACEUR EN VERRE TREMPE  TEMPERED GLASS SPACEUR
L'invention concerne le domaine des espaceurs en verre. On utilise des espaceurs pour maintenir une distance entre deux éléments solides, notamment deux parois, généralement parallèles, d'un objet tel qu'un double-vitrage, une lampe plane, un collecteur solaire thermique, etc. The invention relates to the field of glass spacers. Spacers are used to maintain a distance between two solid elements, in particular two walls, generally parallel, of an object such as double-glazing, a flat lamp, a solar thermal collector, etc.
Les espaceurs en verre sont connus. Comme documents de l'état de la technique, on peut citer les WO96/12862 et US4683154. Les espaceurs peuvent être aussi en métal ou en céramique comme la zircone. La technique de trempe chimique est connue pour renforcer des objets en verre dans des applications où le verre est sollicité en tension ou en flexion, mais pas en compression. Les espaceurs en verre présentent l'avantage d'être peu visibles compte tenu de la transparence naturelle du verre. De plus, ils améliorent l'efficacité énergétique pour les collecteurs solaires, car ils laissent passer le rayonnement solaire. Ainsi, pour l'application dans un collecteur solaire, l'espaceur est un élément transparent au moins dans les domaines de longueurs d'onde du rayonnement solaire qui sont utiles pour la conversion de l'énergie issue du rayonnement solaire en énergie thermique par des moyens d'absorption.  Glass spacers are known. As documents of the state of the art, mention may be made of WO96 / 12862 and US4683154. Spacers can be metal or ceramic like zirconia. The chemical quenching technique is known to reinforce glass objects in applications where the glass is biased in tension or bending, but not in compression. The glass spacers have the advantage of being little visible given the natural transparency of the glass. In addition, they improve energy efficiency for solar collectors because they let in solar radiation. Thus, for application in a solar collector, the spacer is a transparent element at least in the wavelength ranges of solar radiation which are useful for the conversion of energy from solar radiation into thermal energy by means of solar radiation. absorption means.
On a maintenant eu l'idée de traiter des espaceurs en verre par une trempe chimique pour une application où ils sont sollicités en compression comme c'est notamment le cas lorsque l'espace séparant les deux éléments solides est sous pression sub-atmosphérique. Les espaceurs en verre sont relativement fragiles et leur mise en œuvre dans un processus de production ou de fonctionnement dans l'application finale génère des casses. D'autre part, pour les vitrages sous vide et les collecteurs plan sous vide, la nécessaire présence des espaceurs est associée à une perte de performance thermique par conduction. Il est donc avantageux de chercher à augmenter la résistance mécanique des espaceurs pour pouvoir en réduire le nombre.  We have now had the idea of treating glass spacers by a chemical quench for an application where they are stressed in compression as is particularly the case when the space between the two solid elements is under sub-atmospheric pressure. Glass spacers are relatively fragile and their implementation in a production process or operation in the final application generates breakages. On the other hand, for vacuum glazing and vacuum planar collectors, the necessary presence of the spacers is associated with a loss of thermal performance by conduction. It is therefore advantageous to seek to increase the mechanical strength of the spacers to be able to reduce the number.
Il n'était pas évident a priori que l'échange d'ions conféré par la trempe chimique permette d'obtenir une amélioration de la résistance à la compression des espaceurs, notamment sous forme de sphère. Il est connu de l'homme de l'art que l'échange d'ions à une température inférieure à la Tg du verre peut introduire de la compression dans les couches superficielles du verre traité, ce qui le renforce dans le cas où celui-ci est soumis à une sollicitation de traction, ou de flexion, comme c'est le cas des glaces de cockpit des avions par exemple. Cette compression superficielle due à l'échange d'ion permet de compenser une partie de la contrainte appliquée sur la surface qui est une tension dans le cas d'efforts extérieurs appliqués de traction ou de flexion. En revanche, dans le cas ou les efforts extérieurs sont de compression ou d'écrasement, il n'est pas évident a priori que l'échange d'ion permette d'obtenir un renforcement. It was not obvious a priori that the ion exchange imparted by chemical quenching makes it possible to obtain an improvement in the compressive strength of the spacers, in particular in the form of a sphere. It is known to those skilled in the art that ion exchange at a temperature below the glass Tg can introduce compression into the surface layers of the treated glass, which causes reinforces in the case where it is subjected to a tensile stress, or bending, as is the case of aircraft cockpit glass for example. This superficial compression due to the ion exchange makes it possible to compensate for a part of the stress applied on the surface which is a tension in the case of applied external forces of traction or bending. On the other hand, in the case where the external forces are compression or crushing, it is not obvious a priori that the ion exchange makes it possible to obtain a reinforcement.
Le FR2103574 enseigne un traitement de trempe chimique de grains en vue d'augmenter leur résistance à la traction.  FR2103574 teaches chemical quenching treatment of grains to increase their tensile strength.
L'espaceur est placé entre deux éléments (dits premier et deuxième élément avec lesquels il est en contact) à séparer, comme deux parois pour assurer une distance entre eux. L'espace entre ces éléments contient les espaceurs et du gaz à pression atmosphérique ou à pression réduite ou du vide. L'espace libre entre les éléments (c'est-à-dire l'espace libre dans l'environnement immédiat de l'espaceur) peut donc être à pression sub-atmosphérique (pression inférieure à la pression atmosphérique). L'espaceur selon l'invention est notamment recommandé pour tout objet comprenant un vitrage sous vide ou basse pression, comme par exemple une lampes plane sous vide, un collecteur solaire sous vide, un isolant sous vide (porte de congélateur, habitat, porte de four), etc. Ces objets subissent en effet une pression du fait du vide (pression de l'atmosphère) sur leurs faces principales qui compressent directement ou indirectement l'espaceur. Si le vide est réalisé entre deux parois externes, la pression s'exerçant sur chaque paroi en direction de l'autre est d'une atmosphère et donc inférieure à 1 ,2 bar. La pression interne à l'objet est typiquement comprise entre 1 .10"8 bar et 1 ,2 bar. Cette pression externe peut être communiquée à l'espaceur selon l'invention par l'intermédiaire d'éléments internes à l'objet dont les parois participent à l'enveloppe externe. Un collecteur solaire comprend généralement une vitre en verre en tant que première paroi externe, laquelle est destinée à recevoir la lumière solaire, et en tant que deuxième paroi externe une plaque métallique (pouvant être intégré dans un caisson métallique) ou en verre. Ce collecteur contient généralement des moyens d'absorption parcouru par un fluide caloporteur, lesdits moyens d'absorption étant chauffé par l'énergie solaire. On fait généralement le vide entre ces deux parois externes. Dans ce cas, les espaceurs servent à éviter l'écrasement dû à la pression extérieure et qui leur est communiquée directement (cas ou ils sont en contact avec une paroi externe) ou indirectement (cas ou d'autres éléments internes à l'objet leur communique la pression). Les espaceurs selon l'invention peuvent être considérés comme étant des espaceurs ponctuels dans la mesure où ils ne participent pas à l'enveloppe externe de l'objet. De plus, l'espaceur peut être comprimé sous l'effet d'efforts supplémentaires, notamment ceux dus à la déformation de flexion de l'objet ou ceux dus à des contraintes d'origine thermique ou ceux dus au procédé de fabrication (dans certains cas, notamment quand l'objet doit subir une opération de feuilletage avec du PVB (polyvinylbutyral), il doit supporter en plus la pression de l'autoclave). The spacer is placed between two elements (said first and second element with which it is in contact) to separate, as two walls to ensure a distance between them. The space between these elements contains the spacers and gas at atmospheric pressure or reduced pressure or vacuum. The free space between the elements (that is to say the free space in the immediate environment of the spacer) can therefore be at sub-atmospheric pressure (pressure below atmospheric pressure). The spacer according to the invention is particularly recommended for any object comprising a vacuum or low-pressure glazing, such as for example a vacuum flat lamp, a vacuum solar collector, a vacuum insulator (freezer door, habitat, door of oven), etc. These objects are indeed under pressure because of the vacuum (pressure of the atmosphere) on their main faces that directly or indirectly compress the spacer. If the vacuum is formed between two outer walls, the pressure exerted on each wall towards the other is an atmosphere and therefore less than 1, 2 bar. The pressure internal to the object is typically between 1 .10 "8 bar and 1, 2 bar.This external pressure can be communicated to the spacer according to the invention via internal elements to the object of which the walls participate in the outer casing A solar collector generally comprises a glass pane as the first outer wall, which is intended to receive the sunlight, and as the second outer wall a metal plate (which can be integrated into a window). This collector generally contains absorption means traversed by a coolant, said absorption means being heated by solar energy. the spacers are used to prevent crushing due to external pressure and which is communicated directly (in which case they are in contact with an external wall) or indirectly (when other elements internal to the object communicate pressure to them). The spacers according to the invention may be considered to be point spacers insofar as they do not participate in the outer envelope of the object. In addition, the spacer can be compressed under the effect of additional forces, in particular those due to bending deformation of the object or those due to thermal stress or those due to the manufacturing process (in some cases case, especially when the object must undergo a laminating operation with PVB (polyvinyl butyral), it must support the pressure of the autoclave).
Ainsi, l'invention concerne un objet comprenant au moins un espaceur en verre entre un premier élément dudit objet et un deuxième élément dudit objet, ledit espaceur comprenant un gradient de concentration en ions alcalins à partir de sa surface et perpendiculairement à sa surface. Notamment, le premier élément peut être une paroi en verre. Notamment le verre de cette paroi peut comprendre moins de 200 ppm de fer. Ceci est utile lorsque l'on souhaite que le verre laisse passer le maximum de rayonnement solaire.  Thus, the invention relates to an object comprising at least one glass spacer between a first element of said object and a second element of said object, said spacer comprising a concentration gradient of alkaline ions from its surface and perpendicular to its surface. In particular, the first element may be a glass wall. In particular, the glass of this wall may comprise less than 200 ppm of iron. This is useful when it is desired that the glass allows the maximum of solar radiation to pass.
La méthode de renforcement utilisée pour les espaceurs selon l'invention vise, par échange ionique (également appelé « trempe chimique »), à remplacer des ions initialement présents dans le verre par des ions plus gros, dans le but d'induire de fortes contraintes de compression en surface. Cette technique est en elle-même connue de l'homme du métier. Pour ce traitement par trempe chimique, le verre doit contenir avant ladite trempe un oxyde d'alcalin. Cet oxyde peut être Na2Û ou Li2O, et être présent dans le verre à raison par exemple de 1 à 20% en poids. Le traitement de trempe chimique consiste à remplacer des ions alcalins initialement dans le verre par d'autres ions alcalins plus gros. Si l'oxyde initial est Na2O, on applique une trempe chimique par traitement au KNO3, de façon à remplacer au moins partiellement des ions Na+ par des ions K+. Si l'oxyde initial est Li2O, on applique une trempe chimique par traitement au NaNÛ3 ou au KNO3, de façon à remplacer au moins partiellement des ions Li+ suivant le cas par des ions Na+ où K+. La trempe chimique mène à un gradient de concentration en ion alcalin (notamment K+ ou Na+) perpendiculairement aux surfaces traitées et décroissant pour l'un des ions à partir de ladite surface et croissant pour un autre ion alcalin quand on va du cœur du verre vers la surface. Cet échange en ions alcalins existe à partir de tout point de la surface traitée chimiquement de l'espaceur. Ainsi, par « gradient en ion alcalin », on entend que la concentration en un ion (ion échangeur) diminue à partir de la surface en allant en direction du cœur, alors que la concentration en un autre ion (ion échangé) augmente à partir de la surface en allant en direction du cœur. L'ion échangeur et l'ion échangé forment un couple. Dans le cas d'un échange sodium/potassium, l'échange se réalise en trempant des espaceurs dans un bain de sel de potassium porté à des températures comprises entre 390 et 500°C. Dans le cadre de la présente invention, Les paramètres de l'échange (température et durée) sont choisis de manière à favoriser une contrainte de surface élevée et une profondeur d'échange relativement faible pour une trempe chimique. On privilégie donc l'intensité de la contrainte de surface au détriment de la profondeur d'échange. Conventionnellement, la profondeur d'échange est la profondeur p telle que si, après la trempe chimique The reinforcing method used for the spacers according to the invention aims, by ion exchange (also called "chemical quenching"), to replace ions initially present in the glass with larger ions, in order to induce high stresses. surface compression. This technique is in itself known to those skilled in the art. For this treatment by chemical quenching, the glass must contain before said quenching an alkaline oxide. This oxide may be Na 2 O or Li 2 O, and may be present in the glass at, for example, from 1 to 20% by weight. The chemical quenching treatment consists of replacing alkaline ions initially in the glass with other larger alkaline ions. If the initial oxide is Na2O, chemical quenching is applied by KNO3 treatment so as to at least partially replace Na + ions with K + ions. If the initial oxide is Li 2 O, a chemical quench is applied by treatment with NaNO 3 or KNO 3, so as to replace at least partially Li + ions as appropriate by Na + ions where K + . The chemical quenching leads to a concentration gradient in alkaline ion (especially K + or Na + ) perpendicular to the treated and decreasing surfaces for one of the ions from said surface and increasing for another alkaline ion when one goes from the heart of the glass to the surface. This ion exchange alkali exists from any point on the chemically treated surface of the spacer. Thus, the term "alkaline ion gradient" means that the concentration of one ion (exchanger ion) decreases from the surface towards the core, while the concentration of another ion (ion exchanged) increases from from the surface towards the heart. The exchanger ion and the exchanged ion form a pair. In the case of a sodium / potassium exchange, the exchange is carried out by quenching spacers in a bath of potassium salt brought to temperatures between 390 and 500 ° C. In the context of the present invention, the exchange parameters (temperature and duration) are chosen so as to favor a high surface stress and a relatively low exchange depth for chemical quenching. We therefore favor the intensity of the surface stress at the expense of the exchange depth. Conventionally, the exchange depth is the depth p such that if, after chemical quenching
Cp est la concentration en l'ion échangeur à la profondeur p, C p is the concentration in the exchanger ion at the depth p,
Cc est la concentration en l'ion échangeur au cœur du verre (correspondant donc à la concentration en l'ion échangeur dans le verre avant la trempe chimique, cette concentration pouvant être nulle), C c is the concentration of the ion exchanger to the heart of the glass (thus corresponding to the concentration of the ion exchanger in the glass prior to chemical quench, this concentration may be zero),
Co est la concentration en l'ion échangeur à la surface du verre,  Co is the concentration of the exchanger ion on the surface of the glass,
alors = 0,05  then = 0.05
Co - Cc Co - C c
Autrement dit, la profondeur d'échange est la profondeur à laquelle la surconcentration en ion échangeur n'est plus que de 5% de sa valeur à la surface traitée (surconcentration : concentration additionnelle par rapport à la concentration initiale).  In other words, the exchange depth is the depth at which the exchanger concentration overconcentration is only 5% of its value at the treated surface (overconcentration: additional concentration relative to the initial concentration).
Pour ce faire, on préfère réaliser la trempe chimique à relativement basse température. Par exemple dans le cas de l'échange d'ions Na+ par des ions K+ (trempage du verre dans un bain de nitrate de potassium), la température de la trempe chimique peut être choisie entre 350 et 420°C. L'échange ionique peut ne pas être assisté par un champ électrique, ou être assisté par champ électrique.To do this, it is preferred to perform the chemical quenching at relatively low temperature. For example, in the case of the exchange of Na + ions by K + ions (soaking of the glass in a potassium nitrate bath), the temperature of the chemical quenching can be chosen between 350 and 420 ° C. Ion exchange may not be assisted by an electric field, or be assisted by an electric field.
L'utilisation d'un champ électrique accélère l'échange, ce qui permet d'obtenir une contrainte de surface et une profondeur d'échange plus élevées, ou une durée de traitement plus faible. Il introduit par contre une dissymétrie dans le traitement de l'espaceur. De la sorte, certaine zones de surface peuvent être plus trempées chimiquement que d'autres. Sans être exclu, l'utilisation d'un champ électrique ne parait cependant pas nécessaire. La non-utilisation d'un champ électrique favorise un traitement identique à toute la surface de l'espaceur et donc l'obtention d'un gradient en ion alcalin identique à partir de tout point de la surface en direction du cœur de l'espaceur. The use of an electric field accelerates the exchange, which makes it possible to obtain a higher surface stress and a greater exchange depth, or a duration of lower treatment. On the other hand, it introduces an asymmetry in the treatment of the spacer. In this way, certain surface areas may be more chemically hardened than others. Without being excluded, the use of an electric field does not appear however necessary. The non-use of an electric field favors a treatment identical to the entire surface of the spacer and therefore the obtaining of an identical alkaline ion gradient from any point on the surface towards the core of the spacer. .
Dans le cadre de l'invention, la profondeur d'échange en ions alcalin peut être comprise entre 1 micron et 20 microns, et de préférence de 5 à 17 microns.  In the context of the invention, the alkaline ion exchange depth may be between 1 micron and 20 microns, and preferably from 5 to 17 microns.
L'échange ionique peut être réalisé à partir de sels fondus liquides ou pâteux comprenant l'ion que l'on souhaite faire diffuser dans le verre. De tels sels sont par exemple le nitrate ou sulfate ou chlorure de sodium ou de potassium ou des mélanges de ces composés.  The ion exchange can be carried out from molten liquid or pasty salts comprising the ion that it is desired to diffuse into the glass. Such salts are, for example, sodium or potassium nitrate or sulfate or chloride or mixtures of these compounds.
Généralement, le verre de départ contient :  Generally, the starting glass contains:
-50 à 80 en masse de S1O2,  -50 to 80 mass of S1O2,
- 5 à 25% en masse d'oxyde d'alcalin, choisis de préférence parmi Na2Û et K2O, préférablement Na2Û en grande quantité (pouvant donc aller jusqu'à 25% en masse) dans le cadre d'un échange Na/K ; 5 to 25% by weight of alkaline oxide, preferably chosen from Na 2 O and K 2 O, preferably Na 2 O in large quantity (thus up to 25% by mass) in the context of Na / Na exchange; K;
- 1 à 20% et de préférence 4 à 10% en masse d'oxyde d'alcalino-terreux, de préférence CaO.  1 to 20% and preferably 4 to 10% by weight of alkaline earth oxide, preferably CaO.
Le verre peut comprendre au moins un autre oxyde et notamment AI2O3 The glass may comprise at least one other oxide and in particular Al 2 O 3
Pour une application en collecteur solaire, le verre de départ (et donc le verre final également) contient moins de 200 ppm en masse d'oxyde de fer (somme de toutes formes d'oxydes de fer).  For solar collector application, the starting glass (and thus the final glass as well) contains less than 200 ppm by weight of iron oxide (sum of all forms of iron oxides).
On note que le verre de départ contient de préférence du CaO, alors qu'habituellement, les verres destinés à être trempées chimiquement ont peu ou pas de CaO.  It is noted that the starting glass preferably contains CaO, whereas usually the glasses to be chemically quenched have little or no CaO.
A titre d'exemple, le verre de départ (avant trempe chimique) peut comprendre: billes 2ηηηη±7μηη By way of example, the starting glass (before chemical quenching) may comprise: balls 2ηηηη ± 7μηη
SiO2 67,5% en masse  SiO2 67.5% by weight
Na2O 10,5% en masse Na 2 O 10.5% by weight
K2O 5,5% en masse  K2O 5.5% by weight
BaO 3,8% en masse  BaO 3.8 mass%
CaO 5,8% en masse  CaO 5.8 mass%
B2O3 0,1 % en masse  B2O3 0.1% by weight
AI2O3 0,6% en masse  AI2O3 0.6% by weight
Fe2O3 0,02% en masse  Fe2O3 0.02% by weight
Sur le plan des alcalins, on préfère jouer sur le couple Na/K pour la trempe chimique (échanges d'ions Na+ au départ dans le verre par des ions K+ au départ dans le bain de trempe chimique) plutôt que sur le couple Li/Na (échange d'ions Li+ au départ dans le verre par des ions Na+ au départ dans le bain de trempe chimique) car ce dernier couple risque d'entraîner une instabilité si le verre doit être chauffé lors de la mise en œuvre des espaceurs (comme le scellement à chaud du collecteur solaire final dans le but de faire le vide à l'intérieur). Par l'usage du couple Na/K, il est possible de mettre en œuvre les espaceurs selon l'invention jusqu'à environ 400°C, notamment entre 100 et 400°C, sans perte trop forte du renforcement apporté par la trempe chimique. En effet, la mise en œuvre peut impliquer un chauffage pour sceller hermétiquement deux parties d'un collecteur solaire (par exemple) et pouvoir faire le vide par la suite. Dans le même ordre d'idée, la présence de CaO dans la composition de départ est préférée car cet oxyde ralentit la diffusion ionique. Ainsi, malgré que sa présence ne soit pas souhaitée par l'homme du métier car il est réputé gêner la trempe chimique, dans le cadre de l'invention, il est souhaité car il stabilise en fait le gradient des ions en surface pour le cas ou les espaceurs doivent être chauffés lors de leur mise en œuvre. On the alkaline level, it is preferred to use the Na / K couple for chemical quenching (exchanges of Na + ions initially in the glass with K + ions initially in the chemical quenching bath) rather than on the couple. Li / Na (ion exchange Li + initially in the glass by Na + ions initially in the chemical quench bath) because the latter couple may cause instability if the glass has to be heated during the setting spacers (such as heat sealing the final solar collector for the purpose of evacuating the interior). By the use of the Na / K pair, it is possible to implement the spacers according to the invention up to about 400 ° C, especially between 100 and 400 ° C, without too much loss of the reinforcement provided by the chemical quenching . Indeed, the implementation may involve heating to hermetically seal two parts of a solar collector (for example) and be able to evacuate thereafter. In the same vein, the presence of CaO in the starting composition is preferred because this oxide slows ion diffusion. Thus, although its presence is not desired by those skilled in the art because it is deemed to hinder the chemical quenching, in the context of the invention, it is desired because it actually stabilizes the gradient of surface ions for the case. or the spacers must be heated during their implementation.
Globalement, la composition de l'espaceur ne change pas vraiment par la trempe chimique puisque ce traitement ne produit qu'un échange d'ion alcalin en surface et sur une profondeur assez modérée.  Overall, the composition of the spacer does not really change by chemical quenching since this treatment produces only an alkaline ion exchange surface and a fairly moderate depth.
On peut donc dire que l'espaceur selon l'invention comprend :  It can therefore be said that the spacer according to the invention comprises:
-50 à 80 en masse de S1O2,  -50 to 80 mass of S1O2,
- 5 à 25% en masse d'oxyde d'alcalin, - 1 à 20% et de préférence 4 à 10% en masse d'oxyde d'alcalino-terreux, de préférence CaO. 5 to 25% by weight of alkaline oxide, 1 to 20% and preferably 4 to 10% by weight of alkaline earth oxide, preferably CaO.
L'espaceur peut avoir toute forme adaptée : parallélépipédique, en forme de croix, en forme de sphère (cas d'une bille), etc. La forme sphérique est particulièrement préférée pour plusieurs raisons :  The spacer may have any suitable shape: parallelepiped, shaped like a cross, shaped like a sphere (like a ball), etc. The spherical shape is particularly preferred for several reasons:
l'aire de contact avec les parois espacées est réduite au minimum, limitant les échanges thermiques et électriques par conduction thermique ou électrique d'une paroi à l'autre,  the contact area with the spaced walls is minimized, limiting the thermal and electrical exchanges by thermal or electrical conduction from one wall to the other,
la forme sphérique permet aux espaceurs de rouler, ce qui procure une facilité de convoyage appréciable au niveau du procédé de fabrication.  the spherical shape allows the spacers to roll, which provides an ease of conveyance appreciable in the manufacturing process.
la forme sphérique est moins visible à l'œil.  the spherical shape is less visible to the eye.
L'espaceur a, avant la trempe chimique, généralement la forme souhaité dans l'application finale, car il est en effet pas recommandé d'être obligé de le couper. En effet, un verre trempé chimiquement n'est habituellement pas découpable par les techniques classiques utilisant un diamant ou une molette sous peine de cassure incontrôlée.  The spacer has, before chemical quenching, generally the desired shape in the final application, since it is indeed not recommended to be obliged to cut it. Indeed, a chemically tempered glass is usually not cut by conventional techniques using a diamond or a wheel at the risk of uncontrolled breakage.
Les espaceurs peuvent être collés au moins un des éléments avec lequel ils doivent être en contact. Ce collage peut intervenir préalablement ou concomitamment à un scellement et une mise sous vide. En particulier, dans le cas des collecteurs sous vide, les espaceurs peuvent être préalablement à la mise sous vide rendus solidaire (collage) des moyens d'absorption.  The spacers may be glued to at least one of the elements with which they must be in contact. This bonding can take place beforehand or concomitantly with a seal and a vacuum. In particular, in the case of vacuum collectors, the spacers may be prior to the evacuation made bonded (gluing) of the absorption means.
Les billes ont généralement un diamètre compris entre 0,4mm et 15mm. Un petit diamètre de 1 à 5 mm est bien adapté et permet de réaliser un objet selon l'invention peu épais. Ceci est un avantage appréciable lorsque l'objet est destiné à être intégré à une toiture comme dans le cas d'un collecteur solaire.  The balls generally have a diameter of between 0.4mm and 15mm. A small diameter of 1 to 5 mm is well suited and allows to achieve an object according to the invention thin. This is a significant advantage when the object is intended to be integrated into a roof as in the case of a solar collector.
Dans le cas de billes en verre de l'art antérieur (sans trempe chimique selon l'invention) devant être placées entre deux parois sous vide, on place généralement au moins 1000 billes par m2 entre les deux parois, notamment dans le cas où l'objet doit passer en autoclave. La trempe chimique selon l'invention permet de diviser ce nombre par 4, ce qui s'accompagne d'une amélioration des rendements de fabrication. Ainsi, on peut placer notamment entre 200 et 1000 billes par m2 (bien entendu rapporté à l'aire d'une seule des parois) selon l'invention entre les deux éléments leur communiquant de la pression. On peut aussi en placer plus de 250 par m2. On peut aussi en placer moins de 800 par m2. Ainsi, selon l'invention, l'un des éléments peut être plan et l'objet peut comprendre entre 200 et 1000 espaceurs par m2 dudit élément plan. De plus, dans le cas des vitrages isolants sous vide et des collecteurs solaires plan sous vide l'utilisation d'espaceurs trempés chimiquement selon l'invention, du fait de la possible réduction de leur nombre, entraîne une diminution considérable (parfois par un facteur 4) de la part de la perte de performance thermique due à la nécessaire présence des espaceurs. In the case of glass beads of the prior art (without chemical tempering according to the invention) to be placed between two walls in vacuo, generally placed at least 1000 beads per m 2 between the two walls, in particular in the case where the object must be autoclaved. The chemical quenching according to the invention makes it possible to divide this number by 4, which is accompanied by an improvement in the production yields. Thus, it is possible to place in particular between 200 and 1000 beads per m 2 (of course relative to the area of only one of the walls) according to the invention between the two elements communicating to them pressure. We can also in place more than 250 per m 2. One can also place less than 800 m 2. Thus, according to the invention, one of the elements may be plane and the object may comprise between 200 and 1000 spacers per m 2 of said planar element. In addition, in the case of vacuum insulating glazing units and vacuum planar solar collectors, the use of chemically quenched spacers according to the invention, because of the possible reduction in their number, leads to a considerable reduction (sometimes by a factor 4) from the loss of thermal performance due to the necessary presence of the spacers.
L'invention concerne également l'utilisation d'une bille selon l'invention comme espaceur pour supporter une force de pression entre deux éléments les poussant l'un vers l'autre.  The invention also relates to the use of a ball according to the invention as a spacer for supporting a pressure force between two elements pushing them towards each other.
La figure 1 représente des billes de verres 1 selon l'invention faisant office d'espaceur entre deux éléments 2 et 3 qui sont des feuilles de verre faisant office de parois externes, le vide étant appliqué en 4 entre les deux feuilles de verre.  FIG. 1 represents glass beads 1 according to the invention acting as a spacer between two elements 2 and 3 which are glass sheets acting as external walls, the vacuum being applied at 4 between the two glass sheets.
La figure 2 représente le pourcentage de casses cumulées en fonction de la force à rupture (force de compression) dans le cas de billes de verre de diamètre 2 mm trempées chimiquement de deux façons différentes comparées à des billes non-traitées (référence).  Figure 2 shows the percentage of cumulative breaks as a function of the breaking force (compressive force) in the case of 2 mm diameter glass balls quenched chemically in two different ways compared to untreated (reference) beads.
La figure 3 est une section d'un collecteur solaire 101 en tant qu'objet selon l'invention. Le collecteur solaire 101 comprend une première paroi externe supérieure 102 transparente et une seconde paroi externe inférieure 104 également transparente, formées par deux plaques identiques en verre trempé thermiquement. Les parois 102 et 104 délimitent entre elles et avec un cadre métallique 105, auquel elles sont fixées par un joint de scellement 1 10 étanche, un logement 103 étanche de réception des moyens d'absorption 106 et 107 du collecteur. L'enveloppe externe de l'objet selon l'invention est donc formée des parois 102, 104 et 105. Les moyens d'absorption comprennent un panneau absorbeur 106 et un conduit 107 de circulation d'un fluide caloporteur. Le conduit 107 est en contact thermique avec le panneau absorbeur 106 du côté de la face inférieure 106A de celui-ci. Le collecteur 101 comprend une pluralité d'espaceurs supérieurs 108 selon l'invention et une pluralité d'espaceurs inférieurs 109 selon l'invention, destinés à maintenir une distance constante entre la paroi supérieure 102 et la paroi inférieure 104 lorsque le collecteur 101 est mis sous vide. Ces espaceurs 108 et 109 sont alignés par paires selon la direction Z d'épaisseur du collecteur 101 , de telle sorte que chaque espaceur supérieur 108 est positionné entre la paroi supérieure 102 et une partie 161 du panneau absorbeur 106 qui est en contact thermique avec le conduit 107, alors que chaque espaceur inférieur 109 est positionné entre la paroi inférieure 104 et le conduit 107. Les espaceurs 108 et 109 se présentent sous forme de billes de verre rapportées sur les parois 102 et 104, par exemple par collage. Afin de résister à la force de compression exercée sur les parois 102 et 104 lorsque le vide est fait dans le logement 103, les billes de verre sont renforcées par une trempe chimique selon l'invention. La pression s'exerçant sur les parois externes 102 et 104 est en effet communiquée aux espaceurs 108 et 109 par des éléments internes du collecteur solaire, les moyens d'absorption 106 et 107. La trempe chimique permet d'augmenter significativement la résistance à la compression des billes faisant office d'espaceurs. Figure 3 is a section of a solar collector 101 as an object according to the invention. The solar collector 101 comprises a first transparent upper outer wall 102 and a second transparent outer wall 104 also transparent, formed by two identical plates of thermally tempered glass. The walls 102 and 104 delimit between them and with a metal frame 105, to which they are fixed by a sealing gasket 1 10 sealed, a sealed housing 103 receiving the absorption means 106 and 107 of the collector. The outer envelope of the object according to the invention is therefore formed of the walls 102, 104 and 105. The absorption means comprise an absorber panel 106 and a conduit 107 for circulating a heat transfer fluid. The conduit 107 is in thermal contact with the absorber panel 106 on the underside side 106A thereof. The collector 101 comprises a plurality of upper spacers 108 according to the invention and a plurality of lower spacers 109 according to the invention, intended to maintain a constant distance between the upper wall 102 and the bottom wall 104 when the collector 101 is placed. under vacuum. These spacers 108 and 109 are aligned in pairs along the thickness Z direction of the manifold 101, so that each upper spacer 108 is positioned between the top wall 102 and a portion 161 of the absorber panel 106 which is in thermal contact with the conduit 107, while each lower spacer 109 is positioned between the bottom wall 104 and the conduit 107. The spacers 108 and 109 are in the form of glass beads reported on the walls 102 and 104, for example by gluing. In order to resist the compressive force exerted on the walls 102 and 104 when the vacuum is made in the housing 103, the glass beads are reinforced by a chemical quenching according to the invention. The pressure exerted on the outer walls 102 and 104 is indeed communicated to the spacers 108 and 109 by internal elements of the solar collector, the absorption means 106 and 107. The chemical quenching makes it possible to significantly increase the resistance to compression of the balls acting as spacers.
EXEMPLES EXAMPLES
On a utilisé des billes de verre correspondant à celles décrites dans le tableau 1 . On a réalisé sur ces billes un échange ionique sodium/potassium par trempage dans un bain de nitrate de potassium à 405°C, pendant 8h.  Glass beads corresponding to those described in Table 1 were used. A sodium / potassium ion exchange was carried out on these beads by dipping in a potassium nitrate bath at 405 ° C. for 8 hours.
Le protocole opératoire pour tremper 100 billes de 2mm de diamètre était le suivant :  The operating protocol for dipping 100 balls of 2mm in diameter was as follows:
- pesée de 100 billes,  - weighing 100 balls,
- introduction des billes sur un porte-échantillon,  - introduction of the balls on a sample holder,
- mise en place du porte-échantillon dans un bain de nitrate de potassium fondu placé dans un four à température voulue (405°C ou 435°C selon les essais),  placing the sample holder in a bath of molten potassium nitrate placed in an oven at the desired temperature (405 ° C. or 435 ° C. according to the tests),
- agitation du porte-échantillon toutes les heures, pendant 8 heures, - stirring the sample holder every hour, for 8 hours,
- sortie du porte-échantillon, - output of the sample holder,
- lavage à l'eau déminéralisée,  - washing with demineralized water,
- pesée des 100 billes et détermination de la prise de poids pour contrôle de l'échange ionique, et retrempage éventuel dans le bain pour poursuivre la trempe chimique, si nécessaire.  weighing of the 100 beads and determination of the weight gain for control of the ion exchange, and possible soaking in the bath to continue the chemical quenching, if necessary.
Dans le cas d'un traitement de 8 heures à 405°C, la prise de poids est de 0,06%, la profondeur échangée mesurée au microscope électronique au balayage est d'environ 5μηη. Les billes ainsi traitées ont été soumises à un test de compression dont les résultats sont représentés à la figure 2. Le pourcentage de casses cumulées est tracé en fonction de la force à rupture (force de compression). In the case of a treatment of 8 hours at 405 ° C, the weight gain is 0.06%, the depth exchanged measured by scanning electron microscope is about 5μηη. The beads thus treated were subjected to a compression test, the results of which are shown in FIG. 2. The percentage of cumulative breaks is plotted as a function of the breaking force (compression force).
On voit que les trempes chimiques permettent d'augmenter significativement (de plus de 500 N) les valeurs moyennes de ruptures des billes. L'utilisation de ces billes renforcées chimiquement en tant qu'espaceur dans des lampes planes (entre deux feuilles de verre séparé par du vide) montre une diminution sensible du nombre de casses de ces billes lors du procédé de fabrication, augmentant sensiblement le rendement de production. D'autre part, dans ce cas de lampes planes, le nombre d'espaceurs nécessaires a pu être divisé par 4. Dans le cas de billes non trempées chimiquement, le rendement de fabrication était de 85% alors qu'il était de 99% avec les mêmes billes traitées chimiquement selon l'invention.  It can be seen that chemical quenching makes it possible to significantly increase (by more than 500 N) the average values of breakages of the balls. The use of these chemically reinforced beads as a spacer in flat lamps (between two glass sheets separated by vacuum) shows a significant decrease in the number of breakages of these beads during the manufacturing process, significantly increasing the yield of production. On the other hand, in this case of flat lamps, the number of necessary spacers could be divided by 4. In the case of non-quenched balls, the production yield was 85% whereas it was 99% with the same beads treated chemically according to the invention.

Claims

REVENDICATIONS
1 . Objet comprenant au moins un espaceur en verre entre un premier élément dudit objet et un deuxième élément dudit objet, ledit espaceur comprenant un gradient de concentration en ions alcalins à partir de sa surface et perpendiculairement à sa surface.  1. An object comprising at least one glass spacer between a first element of said object and a second element of said object, said spacer comprising a concentration gradient of alkaline ions from its surface and perpendicular to its surface.
2. Objet selon la revendication précédente caractérisé en ce que l'espaceur a la forme d'une sphère.  2. Object according to the preceding claim characterized in that the spacer has the shape of a sphere.
3. Objet selon la revendication précédente, caractérisé en ce que l'un des éléments est plan et en ce qu'il comprend entre 200 et 1000 espaceurs par m2 dudit élément plan. 3. Object according to the preceding claim, characterized in that one of the elements is flat and in that it comprises between 200 and 1000 spacers per m 2 of said planar element.
4. Objet selon l'une des revendications précédentes caractérisé en ce que la profondeur d'échange en ions alcalin est comprise entre 1 micron et 20 microns.  4. Object according to one of the preceding claims characterized in that the alkali ion exchange depth is between 1 micron and 20 microns.
5. Objet selon l'une des revendications précédentes, caractérisé en ce que le premier élément est une paroi en verre.  5. Object according to one of the preceding claims, characterized in that the first element is a glass wall.
6. Objet selon la revendication précédente caractérisé en ce que le verre de la paroi comprend moins de 200 ppm en masse d'oxyde de fer.  6. Object according to the preceding claim characterized in that the glass of the wall comprises less than 200 ppm by weight of iron oxide.
7. Objet selon l'une des deux revendications précédentes, caractérisé en ce que la paroi en verre est une paroi de l'enveloppe externe de l'objet 7. Object according to one of the two preceding claims, characterized in that the glass wall is a wall of the outer shell of the object
8. Objet selon l'une des revendications précédentes, caractérisé en ce que le gradient de concentration existe à partir de tout point de la surface et en direction du cœur du verre de l'espaceur. 8. Object according to one of the preceding claims, characterized in that the concentration gradient exists from any point on the surface and towards the heart of the spacer glass.
9. Objet selon l'une des revendications précédentes, caractérisé en ce que l'espace libre autour des espaceurs est à pression sub-atmosphérique, la pression atmosphérique s'exerçant sur l'objet étant communiquée auxdits espaceurs. 9. Object according to one of the preceding claims, characterized in that the free space around the spacers is at sub-atmospheric pressure, the atmospheric pressure exerted on the object being communicated to said spacers.
10. Objet selon l'une des revendications précédentes, caractérisé en ce qu'il est un collecteur solaire.  10. Object according to one of the preceding claims, characterized in that it is a solar collector.
1 1 . Objet selon l'une des revendications précédentes, caractérisé en ce que le verre de l'espaceur comprend moins de 200 ppm en masse d'oxyde de fer. 1 1. Object according to one of the preceding claims, characterized in that the glass of the spacer comprises less than 200 ppm by weight of iron oxide.
12. Bille en verre comprenant un gradient de concentration en ion alcalin à partir de sa surface et perpendiculairement à sa surface. 12. A glass ball comprising an alkaline ion concentration gradient from its surface and perpendicular to its surface.
13. Bille selon la revendication précédente caractérisé en ce que le verre comprend moins de 200 ppm en masse d'oxyde de fer. 13. Ball according to the preceding claim characterized in that the glass comprises less than 200 ppm by weight of iron oxide.
14. Bille selon l'une des revendications précédentes de bille caractérisé en ce que le verre comprend 50 à 80 en masse de S1O2, 5 à 25% en masse d'oxyde d'alcalin, 1 à 20% et de préférence en masse d'oxyde d'alcalino-terreux.  14. Ball according to one of the preceding claims ball characterized in that the glass comprises 50 to 80 by weight of S1O2, 5 to 25% by weight of alkaline oxide, 1 to 20% and preferably by weight of alkaline earth oxide.
15. Utilisation d'une bille selon l'une des revendications de bille précédentes comme espaceur supportant une force de pression entre deux éléments, ladite pression poussant les deux éléments l'un vers l'autre.  15. Use of a ball according to one of the preceding ball claims as a spacer supporting a pressure force between two elements, said pressure pushing the two elements towards each other.
EP10785133A 2009-10-22 2010-10-18 Tempered glass spacer Withdrawn EP2490988A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0957432A FR2951715A1 (en) 2009-10-22 2009-10-22 TEMPERED GLASS SPACEUR
PCT/FR2010/052209 WO2011048313A1 (en) 2009-10-22 2010-10-18 Tempered glass spacer

Publications (1)

Publication Number Publication Date
EP2490988A1 true EP2490988A1 (en) 2012-08-29

Family

ID=42255949

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10785133A Withdrawn EP2490988A1 (en) 2009-10-22 2010-10-18 Tempered glass spacer

Country Status (7)

Country Link
US (1) US20120202049A1 (en)
EP (1) EP2490988A1 (en)
JP (1) JP2013508250A (en)
KR (1) KR20120098642A (en)
CN (1) CN102639456A (en)
FR (1) FR2951715A1 (en)
WO (1) WO2011048313A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9071907B2 (en) 2012-04-02 2015-06-30 Whirpool Corporation Vacuum insulated structure tubular cabinet construction
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9366071B1 (en) * 2014-12-03 2016-06-14 Peter Petit Low-friction spacer system for vacuum insulated glass
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US10824022B2 (en) 2017-06-06 2020-11-03 Liqxtal Technology Inc. Liquid crystal lens and manufacturing method thereof
WO2019221128A1 (en) * 2018-05-18 2019-11-21 Agc株式会社 Glass substrate and optical component
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
WO2024112942A1 (en) * 2022-11-23 2024-05-30 LuxWall, Inc. Vacuum insulated glass containing high-strength, transmissive pillars and method of making thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU61595A1 (en) * 1970-08-28 1972-04-05
US4683154A (en) 1985-08-19 1987-07-28 The United States Of America As Represented By The United States Department Of Energy Laser sealed vacuum insulation window
AUPM888994A0 (en) 1994-10-19 1994-11-10 University Of Sydney, The Design improvement to vacuum glazing
CN1256684A (en) * 1998-03-20 2000-06-14 日本板硝子株式会社 Glass panel
CA2299349A1 (en) * 1998-06-08 1999-12-16 Tomonori Miura Spacer for glass panel
US6436492B1 (en) * 1999-11-16 2002-08-20 Guardian Industries Corp. Vacuum IG window unit with fiber spacers
US6541083B1 (en) * 2000-01-11 2003-04-01 Guardian Industries Corp. Vacuum IG unit with alkali silicate edge seal and/or spacers
FR2806075B1 (en) * 2000-03-07 2002-09-20 Saint Gobain Vitrage GLASS SPACER
FR2861720B1 (en) * 2003-10-29 2006-01-27 Saint Gobain TEMPERED GLASS FOR THERMAL INSULATION
WO2005042428A2 (en) * 2003-10-29 2005-05-12 Saint-Gobain Glass France Tempered glass for thermal insulation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011048313A1 *

Also Published As

Publication number Publication date
CN102639456A (en) 2012-08-15
US20120202049A1 (en) 2012-08-09
JP2013508250A (en) 2013-03-07
KR20120098642A (en) 2012-09-05
WO2011048313A1 (en) 2011-04-28
FR2951715A1 (en) 2011-04-29

Similar Documents

Publication Publication Date Title
WO2011048313A1 (en) Tempered glass spacer
JP7163336B2 (en) Lamination of electrochromic devices on glass substrates
FR2962682A1 (en) ELECTROCHEMICAL WINDOW WITH ELECTRONICALLY CONTROLLED OPTICAL AND / OR ENERGY PROPERTIES
EP2371778A1 (en) Method for producing toughened flat glass with anti-reflective properties
JP2003306354A (en) Method for manufacturing glass panel and glass panel manufactured by the method
US20210046736A1 (en) Composite material of laminated curved glass and manufacturing method thereof
WO2013061905A1 (en) Optical element for light-concentrating solar power generation device, method for producing same, and light-concentrating solar power generation device
EP3041797A1 (en) Textured glass sheet with rectilinear features
CN112225473B (en) Method for manufacturing curved vacuum glass
WO2017104799A1 (en) Sapphire composite base and method for producing same
US20120131882A1 (en) Method for producing a laminated vacuum-tight connection between a glass pane and a metal frame, and laminated glass pane connection
JP2002012436A (en) Method of treating glass plate end and plate glass treated thereby
EP3743396B1 (en) Laminated glazing
JPWO2018030094A1 (en) Laminated glass for vehicles
WO2003035567A1 (en) Vacuum double glazing
JP5959534B2 (en) Method for performing a frit firing cycle in the manufacture of vacuum solar panels
WO2021225069A1 (en) Laminate production method
CN108516700B (en) Processing technology of high-strength toughened glass
WO2024112942A1 (en) Vacuum insulated glass containing high-strength, transmissive pillars and method of making thereof
EP3160882A1 (en) Method for activating a layer on a glass substrate
JP4682473B2 (en) Substrate with tin oxynitride film and method for producing the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120522

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140501