[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2489039B1 - Optimized low-throughput parametric coding/decoding - Google Patents

Optimized low-throughput parametric coding/decoding Download PDF

Info

Publication number
EP2489039B1
EP2489039B1 EP10785120.6A EP10785120A EP2489039B1 EP 2489039 B1 EP2489039 B1 EP 2489039B1 EP 10785120 A EP10785120 A EP 10785120A EP 2489039 B1 EP2489039 B1 EP 2489039B1
Authority
EP
European Patent Office
Prior art keywords
parameters
signal
coding
decoding
decoded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10785120.6A
Other languages
German (de)
French (fr)
Other versions
EP2489039A1 (en
Inventor
Thi Minh Nguyet Hoang
Stéphane RAGOT
Balazs Kovesi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
Orange SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orange SA filed Critical Orange SA
Publication of EP2489039A1 publication Critical patent/EP2489039A1/en
Application granted granted Critical
Publication of EP2489039B1 publication Critical patent/EP2489039B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/02Systems employing more than two channels, e.g. quadraphonic of the matrix type, i.e. in which input signals are combined algebraically, e.g. after having been phase shifted with respect to each other
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/008Systems employing more than two channels, e.g. quadraphonic in which the audio signals are in digital form, i.e. employing more than two discrete digital channels
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/167Audio streaming, i.e. formatting and decoding of an encoded audio signal representation into a data stream for transmission or storage purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/03Application of parametric coding in stereophonic audio systems

Definitions

  • the present invention relates to the field of coding / decoding of digital signals.
  • the coding and decoding according to the invention is particularly suitable for the transmission and / or storage of digital signals such as audio-frequency signals (speech, music or other).
  • the present invention relates to the parametric encoding / decoding of multichannel audio signals.
  • This type of coding / decoding is based on the extraction of spatial information parameters so that at decoding, these spatial characteristics can be reconstructed for the listener.
  • This type of parametric encoding applies in particular for a stereo signal.
  • a coding / decoding technique is for example described in the document Breebaart, J. and van de Par, S and Kohlrausch, A. and Schuijers, titled "Parametric Coding of Stereo Audio” in EURASIP Journal on Applied Signal Processing 2005: 9, 1305-1322 .
  • This example is repeated with reference to figures 1 and 2 describing respectively an encoder and a parametric stereo decoder.
  • the figure 1 describes an encoder receiving two audio channels, a left channel (denoted L for Left in English) and a right channel (denoted R for Right in English).
  • the channels L (n) and R (n) are processed by the blocks 101, 102 and 103, 104 respectively which perform a short-term Fourier analysis.
  • the transformed signals L [j] and R [j] are thus obtained.
  • the block 105 performs a channel reduction matrix or "Downmix” in English to obtain from the left and right signals, a sum signal, a mono signal in this case, in the frequency domain.
  • An extraction of spatial information parameters is also performed in block 105.
  • the ICLD InterChannel Level Difference
  • interchannel intensity differences characterize the energy ratios per frequency subband between the left and right channels.
  • An interchannel time lag called ICTD (for "interchannel time difference") can also be defined equivalent to ICPD.
  • An interchannel coherence parameter ICC (for " InterChannel Coherence " in English) represents inter-channel correlation.
  • the mono signal is passed in the time domain (blocks 106 to 108) after short-term Fourier synthesis (inverse FFT, windowing and OverLap-Add or OLA) and a mono coding (block 109) is realized. .
  • the stereo parameters are quantized and coded in block 110.
  • the spectrum of the signals ( L [ j ], R [ j ]) is divided according to a nonlinear frequency scale of ERB ( equivalent Rectangular Bandwidth ) or Bark type, with a number of subbands typically ranging from 20 to 34. This scale defines the values of B (k) and B (k + 1) for each subband k.
  • the settings (ICLD, ICPD, ICC) are encoded by scalar quantization possibly followed by entropy coding or differential coding.
  • the ICLD is encoded by a non-uniform quantizer (ranging from -50 to +50 dB) with differential coding; the non-uniform quantization step exploits the fact that the higher the value of the ICLD, the lower the auditory sensitivity to variations of this parameter.
  • a non-uniform quantizer ranging from -50 to +50 dB
  • the mono signal is decoded (block 201), a de-correlator is used (block 202) to produce two versions M (n) and M '(n) of the decoded mono signal. These two signals passed in the frequency domain (blocks 203 to 206) and the decoded stereo parameters (block 207) are used by the stereo synthesis (block 208) to reconstruct the left and right channels in the frequency domain. These channels are finally reconstructed in the time domain (blocks 209 to 214).
  • the document WO 2006/108464 A1 describes a technique for transmitting spatial information parameters of similar type based on a prior grouping of said parameters for two consecutive frames in time and in frequency.
  • the group of parameters requiring the lowest coding rate is chosen to be transmitted to the decoder.
  • a stereo intensity coding technique ( Intensity Stereo Coding ) consists of coding the sum (M) channel as well as the ICLD energy ratios as defined above.
  • Stereo intensity coding exploits the fact that the perception of high frequency components is mainly related to the temporal (energy) envelopes of the signal.
  • MIC Coded Pulse Modulation
  • ADPCM Adaptive Differential Coded Pulse Modulation
  • ITU-T Recommendation G.722 which uses ADPCM for Adaptive Differential Pulse Code Modulation (ADPCM).
  • ADPCM Adaptive Differential Pulse Code Modulation
  • the input signal of a G.722-type encoder is in an expanded band with a minimum bandwidth of [50-7000 Hz] with a sampling frequency of 16 kHz.
  • This signal is decomposed into two sub-bands [0-4000 Hz] and [4000-8000 Hz] obtained by decomposition of the signal by so-called quadrature mirror filters.
  • Quadrature Mirror Filters (QMF) in English then each of the subbands is separately encoded by an ADPCM encoder.
  • the low band is coded by a 6, 5 and 4 bit nested code ADPCM coding while the high band is coded by a 2 bit ADPCM coder per sample.
  • the total bit rate is 64, 56 or 48 bit / s depending on the number of bits used for decoding the low band.
  • Recommendation G.722 was first used in ISDN (Integrated Services Digital Network) and then in enhanced IP voice telephony applications in HD (High Definition) or HD voice in English.
  • a quantized signal frame according to the G.722 standard consists of 6, 5 or 4 bit low band (0-4000 Hz) and 2 high band (4000-8000 Hz) coded quantization indices. Since the transmission frequency of the scalar indices is 8 kHz in each subband, the bit rate is 64, 56 or 48 kbit / s. In the G.722 standard, the 8 bits are distributed as follows: 2 bits for the high band, 6 bits for the low band. The last or last two bits of the low band can be "stolen" or replaced by data.
  • G.722 coding operates with short 5 ms frames.
  • the spatial information represented by the ICLD or other parameters requires a bit rate (additional stereo extension) all the more important as the coding frames are short.
  • This example thus illustrates the difficulty of performing a stereo extension of an encoder such as G.722 with short frames (of 5 ms).
  • Direct encoding of the ICLD gives an additional bit rate (stereo extension) around 16 kbit / s which is already the maximum possible bit rate for the G.722 extension.
  • the present invention improves the situation.
  • the invention also applies to a parametric decoding method of a multichannel digital audio signal as in claim 5.
  • the invention also relates to an encoder as in claim 8.
  • the invention also relates to a decoder as in claim 9.
  • It also relates to a computer program comprising code instructions for implementing the steps of the encoding method as described and to a computer program comprising code instructions for implementing the steps of a decoding method. as described, when these are executed by a processor.
  • This parametric stereo encoder operates in wideband with stereo signals sampled at 16 kHz with 5 ms frames.
  • Each channel (L and R) is first pre-filtered by a high pass filter (HPF for High Pass Filter English) removing components below 50 Hz (blocks 301 and 302).
  • HPF High Pass Filter English
  • This signal is encoded (block 304) by a G.722 type encoder, as described, for example, in ITU-T Recommendation G.722, 7 kHz audio-coding within 64 kbit / s , Nov. 1988.
  • the delay introduced in the G.722 type coding is 22 samples at 16 kHz.
  • the division of the signal into frames is defined with reference to the figure 5 .
  • This figure illustrates the fact that the analysis window (solid line) of 10 ms covers the current frame of index t and the future frame of index t + 1 and the fact that a recovery of 50% is used between the window of the current frame and the window (dotted line) of the previous frame.
  • the block 311 for extracting spatial information parameters is now detailed.
  • the module 314 comprises means for obtaining the spatial information parameters of the stereo signal.
  • the parameters obtained are the interchannel intensity difference parameters, ICLD.
  • This formula amounts to combining the energy of two successive frames, which corresponds to a temporal support of 10 ms (15 ms if we count the effective temporal support of two successive windows).
  • the module 314 therefore produces a series of ICLD parameters defined previously.
  • ICLD parameters are divided into the division module 315, into several blocks.
  • the module 316 then makes a selection (St.) of a block to be encoded according to the index of the current frame to be coded.
  • the coding of these blocks at 312 is carried out for example by non-uniform scalar quantization.
  • This bit rate is therefore not too great and is sufficient to efficiently transmit the stereo parameters.
  • Two successive frames suffice in this embodiment to obtain the spatial information parameters of the multichannel signal, the length of two frames being most often the length of an analysis window for a 50% overlap frequency transformation. .
  • a shorter recovery window could be used to reduce the delay introduced.
  • the encoder may operate at other frequencies (such as 32 kHz) and with different subband cutting.
  • 37 bits are used for frames of even t- index and 40 bits for frames of odd t- indexes.
  • the coding method thus described is easily generalized in the case where the parameters are divided into more than 2 blocks.
  • the coding of the ICLD parameters is then distributed over 4 successive frames with storage of the parameters decoded in the previous frames during the decoding.
  • the calculation of the ICLD must then be modified to include more than 2 frames in the calculation of the energies ⁇ The 2 t k and ⁇ R 2 t k .
  • the encoding method thus described applies to the encoding of other parameters than the ICLD parameter.
  • the coherence parameter (ICC) can be calculated and transmitted selectively in a manner similar to the ICLD.
  • the two parameters can also be calculated and coded according to the coding method described above.
  • the figure 4 illustrates a decoder in one embodiment of the invention as well as the decoding method that it implements.
  • the portion of bit stream scalable and received from the G.722 encoder is demultiplexed and decoded by a G.722 type decoder (block 401) in 56 or 64 kbit / s mode.
  • the synthesized signal obtained corresponds to the mono signal M ( n ) in the absence of transmission errors.
  • the part of the bit stream associated with the stereo extension is also demultiplexed at block 404.
  • a second block of parameters ⁇ ICLD q [ t, k ] ⁇ k 10, ..., 19 and stored in the module 412 these decoded parameters.
  • tab_ild_q ⁇ 5 31 - 50 , - 45 , - 40 , - 35 , - 30 , - 25 , - 22 , - 19 , - 16 , - 13 , - 10 , - 8 , - 6 , - 4 , - 2 , 0 , 2 , 4 , 6 , 8 , 10 , 13 , 16 , 19 , 22 , 25 , 30 , 35 , 40 , 45 , 50
  • the parameters for each of the frequency bands are thus obtained.
  • the left and right channels L ( n ) and R ( n ) are reconstructed by inverse discrete Fourier transform (blocks 406 and 409) of the respective spectra L [ j ] and R [ j ] and addition-overlap (blocks 408 and 411) with sinusoidal windowing (blocks 407 and 410).
  • the bit rate of the stereo extension is therefore reduced and obtaining these parameters makes it possible to reconstruct a stereo signal of good quality.
  • the module 314 of the parameter extraction block of the figure 3 differs.
  • This module in this embodiment makes it possible to obtain other stereo parameters by applying a principal component analysis (PCA) such as that described in the article by Manuel Briand, David Virette and Nadine Martin entitled “Parametric coding of stereo audio based principal component analysis "published in the DAFX conference, 1991.
  • PCA principal component analysis
  • a principal component analysis is performed by subbands.
  • the left and right channels thus analyzed are then rotated to obtain a main component and a qualified environment sub component.
  • the stereo analysis produces, for each sub-band, a rotation angle parameter ( ⁇ ) and an energy ratio between the main component and the ambient signal ( PCAR which means Principal Component to Ambience Energy Ratio).
  • the stereo parameters then consist of the angle of rotation parameter and the energy ratio ( ⁇ and PCAR).
  • the figure 6 illustrates another embodiment of an encoder according to the invention.
  • this operation does not necessarily allow conservation of energy.
  • the "downmix” operation here consists of the blocks 603a, 603b, 603c and 603d for the passage in the frequency domain.
  • Blocks 603f, 603g and 603h make it possible to bring the mono signal back into the time domain in order to be coded by block 304 as for the encoder illustrated in FIG. figure 3 .
  • This offset makes it possible to synchronize the time frames of the left / right channels and those of the decoded mono signal.
  • the invention has been described here in the case of a G.722 encoder / decoder. it can obviously apply in the case of a modified G.722 encoder, for example including noise reduction mechanisms ( English) or including a scalable extension of G.722 with additional information.
  • the invention can also be applied in the case of another mono encoder than the G.722 type such as for example a G.711.1 type encoder. In the latter case, the delay T must be adjusted to take into account the delay of the G.711.1 encoder.
  • the embodiment of the invention also extends to the more general case of the coding of multichannel signals (with more than 2 audio channels) starting from a mono or even stereo downmix.
  • the coding of spatial information involves the coding and transmission of spatial information parameters.
  • the spatial information parameters of the multichannel signal then take into account the differences or the coherences between the different channels.
  • Encoders and decoders as described with reference to figures 3 , 4 and 6 can be integrated in a multimedia equipment type decoder lounge, computer or communication equipment such as a mobile phone or personal electronic diary.
  • the figure 7a represents an example of such a multimedia equipment or coding device comprising an encoder according to the invention.
  • This device comprises a PROC processor cooperating with a memory block BM having a storage and / or working memory MEM.
  • the description of the figure 3 takes the steps of an algorithm of such a computer program.
  • the computer program can also be stored on a memory medium readable by a reader of the device or downloadable in the memory space of the equipment.
  • the device comprises an input module adapted to receive a multichannel signal S m representing a sound scene, either by a communication network, or by reading a content stored on a storage medium.
  • This multimedia equipment may also include means for capturing such a multichannel signal.
  • the device comprises an output module capable of transmitting the coded spatial information parameters P c and a sum signal Ss resulting from the coding of the multichannel signal.
  • figure 7b illustrates an example of multimedia equipment or decoding device comprising a decoder according to the invention.
  • This device comprises a PROC processor cooperating with a memory block BM having a storage and / or working memory MEM.
  • the description of the figure 4 takes the steps of an algorithm of such a computer program.
  • the computer program can also be stored on a memory medium readable by a reader of the device or downloadable in the memory space of the equipment.
  • the device comprises an input module able to receive the coded spatial information parameters P c and a sum signal S s originating, for example, from a communication network. These input signals can come from a reading on a storage medium.
  • the device comprises an output module capable of transmitting a multichannel signal decoded by the decoding method implemented by the equipment.
  • This multimedia equipment may also include speaker-type reproduction means or communication means capable of transmitting this multi-channel signal.
  • Such multimedia equipment may include both the encoder and the decoder according to the invention.
  • the input signal then being the original multichannel signal and the output signal, the decoded multichannel signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

La présente invention concerne le domaine du codage/décodage des signaux numériques.The present invention relates to the field of coding / decoding of digital signals.

Le codage et le décodage selon l'invention est adapté notamment pour la transmission et/ou le stockage de signaux numériques tels que des signaux audiofréquences (parole, musique ou autres).The coding and decoding according to the invention is particularly suitable for the transmission and / or storage of digital signals such as audio-frequency signals (speech, music or other).

Plus particulièrement, la présente invention se rapporte au codage/décodage paramétrique de signaux audio multicanaux.More particularly, the present invention relates to the parametric encoding / decoding of multichannel audio signals.

Ce type de codage/décodage se base sur l'extraction de paramètres d'information spatiale pour qu'au décodage, ces caractéristiques spatiales puissent être reconstituées pour l'auditeur.This type of coding / decoding is based on the extraction of spatial information parameters so that at decoding, these spatial characteristics can be reconstructed for the listener.

Ce type de codage paramétrique s'applique notamment pour un signal stéréo. Une telle technique de codage/décodage est par exemple décrite dans le document de Breebaart, J. and van de Par, S and Kohlrausch,A. and Schuijers, intitulé "Parametric Coding of Stereo Audio" dans EURASIP Journal on Applied Signal Processing 2005:9, 1305-1322 . Cet exemple est repris en référence aux figures 1 et 2 décrivant respectivement un codeur et un décodeur stéréo paramétrique.This type of parametric encoding applies in particular for a stereo signal. Such a coding / decoding technique is for example described in the document Breebaart, J. and van de Par, S and Kohlrausch, A. and Schuijers, titled "Parametric Coding of Stereo Audio" in EURASIP Journal on Applied Signal Processing 2005: 9, 1305-1322 . This example is repeated with reference to figures 1 and 2 describing respectively an encoder and a parametric stereo decoder.

Ainsi, la figure 1 décrit un codeur recevant deux canaux audio, un canal gauche (noté L pour Left en anglais) et un canal droit (noté R pour Right en anglais).So, the figure 1 describes an encoder receiving two audio channels, a left channel (denoted L for Left in English) and a right channel (denoted R for Right in English).

Les canaux L(n) et R(n) sont traités par les blocs 101, 102 et 103, 104 respectivement qui effectuent une analyse de Fourier court terme. Les signaux transformés L[j] et R[j] sont ainsi obtenus.The channels L (n) and R (n) are processed by the blocks 101, 102 and 103, 104 respectively which perform a short-term Fourier analysis. The transformed signals L [j] and R [j] are thus obtained.

Le bloc 105 effectue un matriçage de réduction de canaux ou "Downmix" en anglais pour obtenir à partir des signaux gauche et droit, un signal somme, un signal mono dans le cas présent, dans le domaine fréquentiel.The block 105 performs a channel reduction matrix or "Downmix" in English to obtain from the left and right signals, a sum signal, a mono signal in this case, in the frequency domain.

Une extraction de paramètres d'information spatiale est également effectuée dans le bloc 105.An extraction of spatial information parameters is also performed in block 105.

Les paramètres de type ICLD (pour "InterChannel Level Difference" en anglais) encore appelés différences d'intensité intercanal, caractérisent les ratios d'énergie par sous-bande fréquentielle entre les canaux gauche et droit.The ICLD ( InterChannel Level Difference ) type parameters, also called interchannel intensity differences, characterize the energy ratios per frequency subband between the left and right channels.

Ils sont définis en dB par la formule suivante: ICLD k = 10. log 10 j = B k B k + 1 - 1 L j L * j j = B k B k + 1 - 1 R j R * j dB

Figure imgb0001

où L[j] et R[j] correspondent aux coefficients spectraux (complexes) des canaux L et R, les valeurs B[k] et B[k+1], pour chaque bande de fréquence k, définissent la découpe en sous-bande du spectre et le symbole * indique le conjugué complexe.They are defined in dB by the following formula: ICLD k = 10. log 10 Σ j = B k B k + 1 - 1 The j The * j Σ j = B k B k + 1 - 1 R j R * j dB
Figure imgb0001

where L [j] and R [j] correspond to the spectral (complex) coefficients of the L and R channels, the values B [k] and B [k + 1] , for each frequency band k, define the sub-division. spectrum band and the symbol * indicates the complex conjugate.

Un paramètre de type ICPD (pour "InterChannel Phase Difference" en anglais) encore appelé différence de phase par sous-bande fréquentielle, est définie suivant la relation suivante: ICLD k = j = B k B k + 1 - 1 L j R * j

Figure imgb0002

où ∠ indique l'argument (la phase) de l'opérande complexe.A parameter of ICPD type (for " InterChannel Phase Difference " in English) also called phase difference by frequency subband, is defined according to the following relation: ICLD k = Σ j = B k B k + 1 - 1 The j R * j
Figure imgb0002

where ∠ indicates the argument (phase) of the complex operand.

On peut également définir de façon équivalente à l'ICPD, un décalage temporel intercanal appelé ICTD (pour "interchannel time différence" en anglais).An interchannel time lag called ICTD (for "interchannel time difference") can also be defined equivalent to ICPD.

Un paramètre de cohérence intercanal ICC (pour "InterChannel Coherence" en anglais) représente quant à lui, la corrélation intercanal.An interchannel coherence parameter ICC (for " InterChannel Coherence " in English) represents inter-channel correlation.

Ces paramètres ICLD, ICPD et ICC sont extraits des signaux stéréo, par le bloc 105.These ICLD, ICPD and ICC parameters are extracted from the stereo signals, by block 105.

Le signal mono est passé dans le domaine temporel (blocs 106 à 108) après synthèse de Fourier court-terme (FFT inverse, fenêtrage et addition-recouvrement dite OverLap-Add ou OLA en anglais) et un codage mono (bloc 109) est réalisé. En parallèle les paramètres stéréo sont quantifiés et codés dans le bloc 110.The mono signal is passed in the time domain (blocks 106 to 108) after short-term Fourier synthesis (inverse FFT, windowing and OverLap-Add or OLA) and a mono coding (block 109) is realized. . In parallel, the stereo parameters are quantized and coded in block 110.

En général le spectre des signaux (L[j],R[j]) est divisé suivant une échelle fréquentielle non-linéaire de type ERB (Equivalent Rectangular Bandwidth) ou Bark, avec un nombre de sous-bandes allant typiquement de 20 à 34. Cette échelle définit les valeurs de B(k) et B(k+1) pour chaque sous-bande k. Les paramètres (ICLD, ICPD, ICC) sont codés par quantification scalaire éventuellement suivie d'un codage entropique ou d'un codage différentiel. Par exemple, dans l'article précédemment cité, l'ICLD est codée par un quantificateur non-uniforme (allant de - 50 à +50 dB) avec codage différentiel ; le pas de quantification non-uniforme exploite le fait que plus la valeur de l'ICLD est grande plus la sensibilité auditive aux variations de ce paramètre est faible.In general, the spectrum of the signals ( L [ j ], R [ j ]) is divided according to a nonlinear frequency scale of ERB ( equivalent Rectangular Bandwidth ) or Bark type, with a number of subbands typically ranging from 20 to 34. This scale defines the values of B (k) and B (k + 1) for each subband k. The settings (ICLD, ICPD, ICC) are encoded by scalar quantization possibly followed by entropy coding or differential coding. For example, in the aforementioned article, the ICLD is encoded by a non-uniform quantizer (ranging from -50 to +50 dB) with differential coding; the non-uniform quantization step exploits the fact that the higher the value of the ICLD, the lower the auditory sensitivity to variations of this parameter.

Au décodeur 200, le signal mono est décodé (bloc 201), un dé-corrélateur est utilisé (bloc 202) pour produire deux versions M̂(n)et M̂'(n) du signal mono décodé. Ces deux signaux passés dans le domaine fréquentiel (blocs 203 à 206) et les paramètres stéréo décodés (bloc 207) sont utilisés par la synthèse stéréo (bloc 208) pour reconstruire les canaux gauche et droit dans le domaine fréquentiel. Ces canaux sont enfin reconstruits dans le domaine temporel (blocs 209 à 214).At the decoder 200, the mono signal is decoded (block 201), a de-correlator is used (block 202) to produce two versions M (n) and M '(n) of the decoded mono signal. These two signals passed in the frequency domain (blocks 203 to 206) and the decoded stereo parameters (block 207) are used by the stereo synthesis (block 208) to reconstruct the left and right channels in the frequency domain. These channels are finally reconstructed in the time domain (blocks 209 to 214).

A titre d'exemple alternatif, le document WO 2006/108464 A1 décrit une technique de transmission de paramètres d'information spatiale de type similaire basé sur un groupement préalable desdits paramètres pour deux trames consécutives en temps et en fréquence. Le groupe de paramètres nécessitant le débit de codage le plus faible est choisi pour être transmis au décodeur.As an alternative example, the document WO 2006/108464 A1 describes a technique for transmitting spatial information parameters of similar type based on a prior grouping of said parameters for two consecutive frames in time and in frequency. The group of parameters requiring the lowest coding rate is chosen to be transmitted to the decoder.

Dans les techniques de codage de signal stéréo, une technique de codage stéréo d'intensité (Intensity Stereo Coding en anglais) consiste à coder le canal somme (M) ainsi que les ratios d'énergie ICLD tels que définis ci-dessus.In stereo signal coding techniques, a stereo intensity coding technique ( Intensity Stereo Coding ) consists of coding the sum (M) channel as well as the ICLD energy ratios as defined above.

Le codage stéréo d'intensité exploite le fait que la perception des composantes hautes fréquences est principalement liée aux enveloppes temporelles (énergétiques) du signal.Stereo intensity coding exploits the fact that the perception of high frequency components is mainly related to the temporal (energy) envelopes of the signal.

Pour les signaux mono, il existe d'autre part des techniques de quantification avec ou sans mémoire comme le codage à "Modulation par Impulsions Codées" (MIC) ou sa version adaptative dite "Modulation par Impulsions Codées Différentielle Adaptative" (MICDA).For mono signals, there are also quantization techniques with or without memory such as "Coded Pulse Modulation" (MIC) coding or its adaptive version called "Adaptive Differential Coded Pulse Modulation" (ADPCM).

On s'intéresse ici plus particulièrement à la recommandation UIT-T G.722 qui utilise le codage MICDA à code imbriqués en sous-bandes (ou ADPCM pour "Adaptive Differential Pulse Code Modulation" en anglais). Of particular interest here is ITU-T Recommendation G.722, which uses ADPCM for Adaptive Differential Pulse Code Modulation (ADPCM).

Le signal d'entrée d'un codeur de type G.722 est en bande élargie de largeur de bande minimale de [50-7000 Hz] avec une fréquence d'échantillonnage de 16 kHz. Ce signal est décomposé en deux sous-bandes [0-4000 Hz] et [4000-8000 Hz] obtenues par décomposition du signal par des filtres miroir en quadrature dit Quadrature Mirror Filters (QMF) en anglais, puis chacune des sous-bandes est codée séparément par un codeur MICDA.The input signal of a G.722-type encoder is in an expanded band with a minimum bandwidth of [50-7000 Hz] with a sampling frequency of 16 kHz. This signal is decomposed into two sub-bands [0-4000 Hz] and [4000-8000 Hz] obtained by decomposition of the signal by so-called quadrature mirror filters. Quadrature Mirror Filters (QMF) in English, then each of the subbands is separately encoded by an ADPCM encoder.

La bande basse est codée par un codage MICDA à codes imbriqués sur 6, 5 et 4 bits tandis que la bande haute est codée par un codeur MICDA de 2 bits par échantillon. Le débit total est de 64, 56 ou 48 bit/s suivant le nombre de bits utilisé pour le décodage de la bande basse.The low band is coded by a 6, 5 and 4 bit nested code ADPCM coding while the high band is coded by a 2 bit ADPCM coder per sample. The total bit rate is 64, 56 or 48 bit / s depending on the number of bits used for decoding the low band.

La recommandation G.722 a d'abord été utilisé dans le RNIS (Réseau Numérique à Intégration de Services) puis dans les applications de téléphonie améliorée sur réseau IP de qualité voix HD (Haute Définition) ou HD voice en anglais.Recommendation G.722 was first used in ISDN (Integrated Services Digital Network) and then in enhanced IP voice telephony applications in HD (High Definition) or HD voice in English.

Une trame de signal quantifié selon la norme G.722 est constituée d'indices de quantification codés sur 6, 5 ou 4 bits en bande basse (0-4000 Hz) et 2 bits en bande haute (4000-8000 Hz). La fréquence de transmission des indices scalaires étant de 8 kHz dans chaque sous-bande, le débit est de 64, 56 ou 48 kbit/s. Dans la norme G.722, les 8 bits sont répartis de la façon suivante: 2 bits pour la bande haute, 6 bits pour la bande basse. Le dernier ou les deux derniers bits de la bande basse peuvent être « volés » ou remplacés par des données.A quantized signal frame according to the G.722 standard consists of 6, 5 or 4 bit low band (0-4000 Hz) and 2 high band (4000-8000 Hz) coded quantization indices. Since the transmission frequency of the scalar indices is 8 kHz in each subband, the bit rate is 64, 56 or 48 kbit / s. In the G.722 standard, the 8 bits are distributed as follows: 2 bits for the high band, 6 bits for the low band. The last or last two bits of the low band can be "stolen" or replaced by data.

L'UIT-T a récemment lancé une activité de normalisation appelé G.722-SWB (dans le cadre de la question Q.10/16 décrit par exemple dans le document: document UIT-T : Annex Q10.J Terms of Reference (ToR) and time schedule for the super wideband extension to ITU-T G.722 and ITU-T G.711 WB, janvier 2009, WD04_G722G711SWBToRr3.doc) qui consiste à étendre la recommandation G.722 de 2 façons:

  • Une extension de la bande acoustique de 50-7000 Hz (bande élargie) à 50-14000 Hz (bande super-élargie). En anglais la bande super-élargie est appelée Superwideband (SWB).
  • Une extension de mono à stéréo. Cette extension stéréo peut étendre un codage mono en bande élargie ou un codage mono en bande super-élargie.
ITU-T has recently launched a standardization activity called G.722-SWB (as part of the Q.10 / 16 question described for example in the document: ITU-T: Annex Q10.J ITU-T G.722 and ITU-T G.711 WB, January 2009, WD04_G722G711SWBToRr3.doc) and extending the G.722 Recommendation in two ways:
  • An extension of the acoustic band from 50-7000 Hz (wide band) to 50-14000 Hz (super-wide band). In English the super-enlarged band is called Superwideband (SWB).
  • An extension of mono to stereo. This stereo extension can extend wide-band mono coding or super-wide band mono coding.

Dans le contexte de G.722-SWB, le codage G.722 opère avec des trames courtes de 5 ms.In the context of G.722-SWB, G.722 coding operates with short 5 ms frames.

Nous nous intéressons ici plus particulièrement à l'extension stéréo du codage G.722 en bande élargieWe are particularly interested here in the stereo extension of the G.722 broadband coding

Deux modes d'extension stéréo de G.722 sont à tester dans la normalisation G.722-SWB:

  • Une extension stéréo de G.722 à 56 kbit/s avec un débit additionnel de 8 kbit/s, soit 64 kbit/s au total
  • Une extension de G.722 à 64 kbit/s avec un débit additionnel de 16 kbit/s, soit 80 kbit/s au total
Two G.722 stereo extension modes are to be tested in the G.722-SWB standardization:
  • A G.722 stereo extension at 56 kbit / s with an additional bit rate of 8 kbit / s, or 64 kbit / s in total
  • A 64 kbit / s G.722 extension with an additional bit rate of 16 kbit / s, or 80 kbit / s in total

L'information spatiale représentée par les paramètres ICLD ou autres requiert un débit (additionnel d'extension stéréo) d'autant plus important que les trames de codage sont courtes.The spatial information represented by the ICLD or other parameters requires a bit rate (additional stereo extension) all the more important as the coding frames are short.

A titre d'exemple, dans le contexte de la normalisation G.722-SWB, si l'on suppose qu'une extension stéréo de G.722 (bande élargie) est réalisée par la technique du codage d'intensité, on obtient le débit d'extension stéréo suivant.By way of example, in the context of G.722-SWB normalization, assuming that a stereo extension of G.722 (wide band) is performed by the intensity coding technique, we obtain the next stereo expansion rate.

Pour un signal somme (mono) codé par G.722 avec une trame de 5 ms et une découpe du spectre en bande élargie (0-8000 Hz) en 20 sous-bandes, on obtient 20 paramètres ICLD à transmettre toutes les 5 ms. On peut supposer que ces paramètres ICLD sont codés avec un débit (moyen) de l'ordre de 4 bits par sous-bande. Le débit d'extension stéréo de G.722 devient donc de 20 x 4 bits / 5 ms = 16 kbit/s. Ainsi l'extension stéréo de G.722 par ICLD avec 20 sous-bandes conduit à un débit additionnel de l'ordre de 16 kbit/s. Or d'après l'état de l'art le codage de l'ICLD seul n'est en général pas suffisant pour atteindre une bonne qualité stéréo.For a G.722 (mono) sum signal with a frame of 5 ms and a division of the broadband spectrum (0-8000 Hz) in 20 sub-bands, 20 ICLD parameters to be transmitted every 5 ms are obtained. It can be assumed that these ICLD parameters are coded with a bit rate (average) of the order of 4 bits per subband. The stereo extension rate of G.722 thus becomes 20 x 4 bits / 5 ms = 16 kbit / s. Thus the stereo extension of G.722 by ICLD with 20 sub-bands leads to an additional bit rate of the order of 16 kbit / s. However, according to the state of the art, the coding of the ICLD alone is not generally sufficient to achieve good stereo quality.

Cet exemple illustre donc la difficulté de réaliser une extension stéréo d'un codeur comme G.722 avec des trames courtes (de 5 ms).This example thus illustrates the difficulty of performing a stereo extension of an encoder such as G.722 with short frames (of 5 ms).

Un codage direct de l'ICLD (sans autres paramètres) donne un débit additionnel (d'extension stéréo) autour de 16 kbit/s qui est déjà le débit maximum d'extension possible pour l'extension G.722.Direct encoding of the ICLD (without other parameters) gives an additional bit rate (stereo extension) around 16 kbit / s which is already the maximum possible bit rate for the G.722 extension.

Il existe donc un besoin pour représenter un signal stéréo ou plus généralement multicanal, de façon efficace, à un débit aussi faible que possible, avec une qualité acceptable, lorsque les trames de codage sont courtes.There is therefore a need to represent a stereo signal or more generally multichannel, effectively, at a rate as low as possible, with acceptable quality, when coding frames are short.

La présente invention vient améliorer la situation.The present invention improves the situation.

A cet effet, elle propose dans un mode de réalisation, un procédé de codage paramétrique d'un signal audionumérique multicanal comme dans la revendication 1.For this purpose, it proposes in one embodiment, a parametric encoding method of a multichannel digital audio signal as in claim 1.

L'invention s'applique également à un procédé de décodage paramétrique d'un signal audionumérique multicanal comme dans la revendication 5.The invention also applies to a parametric decoding method of a multichannel digital audio signal as in claim 5.

L'invention se rapporte également à un codeur comme dans la revendication 8.The invention also relates to an encoder as in claim 8.

L'invention se rapporte aussi à un décodeur comme dans la revendication 9.The invention also relates to a decoder as in claim 9.

Elle se rapporte aussi à un programme informatique comprenant des instructions de code pour la mise en oeuvre des étapes du procédé de codage tel que décrit et à un programme informatique comprenant des instructions de code pour la mise en oeuvre des étapes d'un procédé de décodage tel que décrit, lorsque celles-ci sont exécutées par un processeur.It also relates to a computer program comprising code instructions for implementing the steps of the encoding method as described and to a computer program comprising code instructions for implementing the steps of a decoding method. as described, when these are executed by a processor.

D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessins annexés, sur lesquels:

  • la figure 1 illustre un codeur mettant en oeuvre un codage paramétrique connu de l'état de l'art et précédemment décrit;
  • la figure 2 illustre un décodeur mettant en oeuvre un décodage paramétrique connu de l'état de l'art et précédemment décrit;
  • la figure 3 illustre un codeur selon un mode de réalisation de l'invention, mettant en oeuvre un procédé de codage selon un mode de réalisation de l'invention;
  • la figure 4 illustre un décodeur selon un mode de réalisation de l'invention, mettant en oeuvre un procédé de décodage selon un mode de réalisation de l'invention;
  • la figure 5 illustre la division d'un signal audio numérique en trames dans un codeur mettant en oeuvre un procédé de codage selon un mode de réalisation de l'invention;
  • la figure 6 illustre un procédé de codage et un codeur selon un autre mode de réalisation de l'invention; et
  • les figures 7a et 7b illustrent respectivement un dispositif apte à mettre en oeuvre le procédé de codage et le procédé de décodage selon un mode de réalisation de l'invention.
Other features and advantages of the invention will appear more clearly on reading the following description, given solely by way of nonlimiting example, and with reference to the appended drawings, in which:
  • the figure 1 illustrates an encoder implementing a parametric coding known from the state of the art and previously described;
  • the figure 2 illustrates a decoder implementing a parametric decoding known from the state of the art and previously described;
  • the figure 3 illustrates an encoder according to one embodiment of the invention, implementing a coding method according to one embodiment of the invention;
  • the figure 4 illustrates a decoder according to one embodiment of the invention, implementing a decoding method according to one embodiment of the invention;
  • the figure 5 illustrates the division of a digital audio signal into frames in an encoder implementing a coding method according to an embodiment of the invention;
  • the figure 6 illustrates a coding method and an encoder according to another embodiment of the invention; and
  • the Figures 7a and 7b respectively illustrate a device adapted to implement the coding method and the decoding method according to one embodiment of the invention.

En référence à la figure 3 , un premier mode de réalisation d'un codeur de signaux stéréo mettant en oeuvre un procédé de codage selon un premier mode de réalisation est maintenant décrit.With reference to the figure 3 , a first embodiment of a stereo signal encoder implementing a coding method according to a first embodiment is now described.

Ce codeur stéréo paramétrique opère en bande élargie avec des signaux stéréo échantillonnés à 16 kHz avec des trames de 5 ms. Chaque canal (L et R) est d'abord pré-filtré par un filtre passe-haut (HPF pour High Pass Filter en anglais) éliminant les composantes en dessous 50 Hz (blocs 301 et 302). Ensuite un signal mono (M) est calculé par le bloc 303, dont un exemple de réalisation est donné sous la forme: M n = 1 2 L ʹ n + R ʹ n

Figure imgb0003
This parametric stereo encoder operates in wideband with stereo signals sampled at 16 kHz with 5 ms frames. Each channel (L and R) is first pre-filtered by a high pass filter (HPF for High Pass Filter English) removing components below 50 Hz (blocks 301 and 302). Then a mono signal (M) is calculated by the block 303, an exemplary embodiment of which is given in the form: M not = 1 2 The ' not + R ' not
Figure imgb0003

Ce signal est codé (bloc 304) par un codeur de type G.722, tel que décrit par exemple dans la recommendation UIT-T G.722, 7 kHz audio-coding within 64 kbit/s, Nov. 1988..This signal is encoded (block 304) by a G.722 type encoder, as described, for example, in ITU-T Recommendation G.722, 7 kHz audio-coding within 64 kbit / s , Nov. 1988.

Le retard introduit dans le codage de type G.722 est de 22 échantillons à 16 kHz. Les canaux L et R sont alignés dans le temps (blocs 305 et 308) avec un retard de T = 22 échantillons et analysés en fréquentiel par transformée, par exemple par transformée en Fourier discrète avec fenêtrage sinusoïdal à recouvrement qui dans l'exemple ici est de 50% (blocs 306, 307 et 309, 310). Chaque fenêtre couvre ainsi 2 trames de 5 ms soit 10 ms (160 échantillons).The delay introduced in the G.722 type coding is 22 samples at 16 kHz. The L and R channels are aligned in time (blocks 305 and 308) with a delay of T = 22 samples and analyzed in frequency per transform, for example by discrete Fourier transform with sinusoidal overlapping windowing. the example here is 50% (blocks 306, 307 and 309, 310). Each window thus covers 2 frames of 5 ms or 10 ms (160 samples).

La division du signal en trames est définie en référence à la figure 5 . Cette figure illustre le fait que la fenêtre d'analyse (en trait plein) de 10 ms couvre la trame courante d'indice t et la trame future d'indice t+1 et le fait qu'un recouvrement de 50% est utilisé entre la fenêtre de la trame courante et la fenêtre (en trait pointillé) de la trame précédente.The division of the signal into frames is defined with reference to the figure 5 . This figure illustrates the fact that the analysis window (solid line) of 10 ms covers the current frame of index t and the future frame of index t + 1 and the fact that a recovery of 50% is used between the window of the current frame and the window (dotted line) of the previous frame.

La prise en compte de la trame future induit donc un retard algorithmique supplémentaire de 5 ms au codeur.Taking into account the future frame induces an additional algorithmic delay of 5 ms to the encoder.

Pour la trame t, les spectres obtenus, L[t,j] et R[t, j] (j=0...79), en sortie des blocs 307 et 310 de la figure 3, comprennent 80 échantillons complexes, avec une résolution de 100 Hz par raie fréquentielle.For the frame t, the spectra obtained, L [ t, j ] and R [ t, j ] ( j = 0 ... 79), at the output of the blocks 307 and 310 of the figure 3 , include 80 complex samples, with a resolution of 100 Hz per frequency band.

Le bloc 311 d'extraction de paramètres d'informations spatiales est maintenant détaillé.The block 311 for extracting spatial information parameters is now detailed.

Celui-ci comprend, dans le cas du traitement dans le domaine fréquentiel, un premier module 313 de découpage des spectres L[t, j] et R[t, j] en un nombre prédéterminé de sous-bandes de fréquence, par exemple ici en 20 sous-bandes suivant l'échelle définie ci-dessous:

  • {B(k)} k=0,..,20 = [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 19, 23, 27, 31, 37, 44, 52, 61, 80]
This comprises, in the case of the processing in the frequency domain, a first module 313 for splitting the spectra L [ t, j ] and R [ t, j ] into a predetermined number of frequency subbands, for example here in 20 subbands according to the scale defined below:
  • { B (k) } k = 0, .., 20 = [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 19, 23, 27, 31, 37, 44, 52, 61, 80]

Cette échelle délimite (en nombre de coefficients de Fourier) les sous-bandes fréquentielles d'indice k = 0 à 19. Par exemple la première sous-bande (k=0) va du coefficient B(k)=0 à B(k+1)-1 = 0; elle est donc réduite à un seul coefficient (100 Hz).This scale delimits (in number of Fourier coefficients) the frequency subbands of index k = 0 to 19. For example the first sub-band ( k = 0) goes from the coefficient B (k) = 0 to B (k + 1) -1 = 0; it is therefore reduced to a single coefficient (100 Hz).

De même la dernière sous-bande (k=19) va du coefficient B(k)=61 à B(k+1)-1 = 79, elle comprend 19 coefficients (1900 Hz).Similarly, the last subband ( k = 19) goes from the coefficient B (k) = 61 to B (k + 1) - 1 = 79, it comprises 19 coefficients (1900 Hz).

Le module 314 comprend des moyens d'obtention des paramètres d'informations spatiales du signal stéréo.The module 314 comprises means for obtaining the spatial information parameters of the stereo signal.

Par exemple, les paramètres obtenus sont les paramètres de différence d'intensité intercanal, ICLD.For example, the parameters obtained are the interchannel intensity difference parameters, ICLD.

Pour chaque trame d'indice t, l'ICLD de la sous-bande k=0,...,19 est calculé suivant l'équation: ICLD k = 10. log 10 σ L 2 t k σ R 2 t k dB

Figure imgb0004

σ L 2 t k
Figure imgb0005
et σ R 2 t k
Figure imgb0006
représentent respectivement l'énergie du canal gauche (L) et du canal droit (R).For each frame of index t, the ICLD of the sub-band k = 0 , ..., 19 is calculated according to the equation: ICLD k = 10. log 10 σ The 2 t k σ R 2 t k dB
Figure imgb0004

or σ The 2 t k
Figure imgb0005
and σ R 2 t k
Figure imgb0006
represent respectively the energy of the left channel (L) and the right channel (R).

Dans un mode de réalisation particulier, ces énergies sont calculées comme suit: { σ L 2 t k = j = B k B k + 1 - 1 L t j L * t j + j = B k B k + 1 - 1 L t - 1 , j L * t - 1 , j σ R 2 t k = j = B k B k + 1 - 1 R t j R * t j + j = B k B k + 1 - 1 R t - 1 , j R * t - 1 , j

Figure imgb0007
In a particular embodiment, these energies are calculated as follows: { σ The 2 t k = Σ j = B k B k + 1 - 1 The t j The * t j + Σ j = B k B k + 1 - 1 The t - 1 , j The * t - 1 , j σ R 2 t k = Σ j = B k B k + 1 - 1 R t j R * t j + Σ j = B k B k + 1 - 1 R t - 1 , j R * t - 1 , j
Figure imgb0007

Cette formule revient à combiner l'énergie de 2 trames successives, ce qui correspond à un support temporel de 10 ms (15 ms si l'on compte le support temporel effectif de deux fenêtres successives).This formula amounts to combining the energy of two successive frames, which corresponds to a temporal support of 10 ms (15 ms if we count the effective temporal support of two successive windows).

Le module 314 produit donc une série de paramètres ICLD définis précédemment.The module 314 therefore produces a series of ICLD parameters defined previously.

Ces paramètres ICLD sont divisés dans le module 315 de division, en plusieurs blocs. Dans le mode de réalisation illustré ici, les paramètres sont divisés en deux blocs suivant les deux parties suivantes: {ICLD[t,k]} k=0,...,9 et {ICLD[t,k]} k=10,...,19.These ICLD parameters are divided into the division module 315, into several blocks. In the embodiment illustrated here, the parameters are divided into two blocks according to the following two parts: {ICLD [ t, k ]} k = 0, ..., 9 and {ICLD [ t , k ]} k = 10 , ..., 19 .

La division des paramètres ICLD en blocs contigus permet d'effectuer un codage différentiel des indices de quantification scalaire.The division of ICLD parameters into contiguous blocks makes it possible to perform a differential coding of the scalar quantization indices.

Le module 316 effectue ensuite une sélection (St.) d'un bloc à coder en fonction d'indice de la trame courante à coder.The module 316 then makes a selection (St.) of a block to be encoded according to the index of the current frame to be coded.

Dans l'exemple décrit ici, pour les trames t d'indice pair, le bloc {ICLO[t,k]} k=0,...,9 est codé en 312 et transmis, pour les trames t d'indice impair, le bloc {ICLD[t,k]} k=10,...,19 est codé en 312 et transmis.In the example described herein, for the frames t even index, the block ICLO {[t, k]} k = 0, ..., 9 is encoded at 312 and transmitted to the frame t odd index the block {ICLD [ t, k ]} k = 10, ..., 19 is coded at 312 and transmitted.

Le codage de ces blocs en 312 s'effectue par exemple par quantification scalaire non uniforme.The coding of these blocks at 312 is carried out for example by non-uniform scalar quantization.

Ainsi, le codage d'un bloc de 10 ICLD est réalisé avec:

  • 5 bits pour le premier paramètre ICLD,
  • 4 bits pour les 8 paramètres ICLD suivants,
  • 3 bits pour le dernier (dixième) paramètre ICLD.
Thus, the coding of an ICLD block is achieved with:
  • 5 bits for the first ICLD parameter,
  • 4 bits for the following 8 ICLD parameters,
  • 3 bits for the last (tenth) ICLD parameter.

Un exemple plus détaillé de réalisation est par exemple comme ci-dessous: Pour la table de quantification: tab_ild_q 5 31 = - 50 , - 45 , - 40 , - 35 , - 30 , - 25 , - 22 , - 19 , - 16 , - 13 , - 10 , - 8 , - 6 , - 4 , - 2 , 0 , 2 , 4 , 6 , 8 , 10 , 13 , 16 , 19 , 22 , 25 , 30 , 35 , 40 , 45 , 50

Figure imgb0008

la quantification à 5 bits de ICLD[t,k] consiste à trouver l'indice de quantification i tel que i = arg min_j = 0 30 ICLD t k - tab_ild_q 5 j 2
Figure imgb0009
A more detailed example of realization is for example as below: For the quantization table: tab_ild_q 5 31 = - 50 , - 45 , - 40 , - 35 , - 30 , - 25 , - 22 , - 19 , - 16 , - 13 , - 10 , - 8 , - 6 , - 4 , - 2 , 0 , 2 , 4 , 6 , 8 , 10 , 13 , 16 , 19 , 22 , 25 , 30 , 35 , 40 , 45 , 50
Figure imgb0008

the 5-bit quantization of ICLD [t, k] consists in finding the quantization index i such that i = arg min_j = 0 ... 30 ICLD t k - tab_ild_q 5 j 2
Figure imgb0009

De même pour la table de quantification: tab_ild_q 4 15 = - 16 , - 13 , - 10 , - 8 , - 6 , - 4 , - 2 , 0 , 2 , 4 , 6 , 8 , 10 , 13 , 16

Figure imgb0010

la quantification à 4 bits de ICLD[t,k] consiste à trouver l'indice de quantification i tel que i = arg min_j = 0 15 ICLD t k - tab_ild_q 4 j 2
Figure imgb0011
Likewise for the quantization table: tab_ild_q 4 15 = - 16 , - 13 , - 10 , - 8 , - 6 , - 4 , - 2 , 0 , 2 , 4 , 6 , 8 , 10 , 13 , 16
Figure imgb0010

the 4-bit quantization of ICLD [t, k] consists of finding the quantization index i such that i = arg min_j = 0 ... 15 ICLD t k - tab_ild_q 4 j 2
Figure imgb0011

Enfin pour la table de quantification tab_ild_q3[7] = { -16, -8, -4, 0,4, 8, 16 } la quantification à 3 bits de ICLD[t,k] consiste à trouver l'indice de quantification i tel que i = arg min_j = 0 15 ICLD t k - tab_ild_q 3 j 2

Figure imgb0012
Finally for the quantization table tab_ild_q3 [7] = {-16, -8, -4, 0,4, 8, 16} the 3-bit quantization of ICLD [t, k] consists of finding the quantization index i such as i = arg min_j = 0 ... 15 ICLD t k - tab_ild_q 3 j 2
Figure imgb0012

Au total 5 + 8x4 +3 = 40 bits sont donc nécessaires pour le codage d'un bloc de 10 ICLD. La trame étant de 5 ms, on obtient donc 40 bits / 5 ms = 8 kbit/s comme débit supplémentaire pour l'extension de codage stéréo.In total 5 + 8x4 +3 = 40 bits are therefore necessary for the coding of an ICLD block. The frame being 5 ms, we thus obtain 40 bits / 5 ms = 8 kbit / s as additional bit rate for the stereo coding extension.

Ce débit n'est donc pas trop important et suffit pour transmettre de façon efficace les paramètres stéréo.This bit rate is therefore not too great and is sufficient to efficiently transmit the stereo parameters.

Deux trames successives suffisent dans cet exemple de réalisation, pour obtenir les paramètres d'informations spatiales du signal multicanal, la longueur de deux trames étant la plupart du temps la longueur d'une fenêtre d'analyse pour une transformation fréquentielle à recouvrement de 50%.Two successive frames suffice in this embodiment to obtain the spatial information parameters of the multichannel signal, the length of two frames being most often the length of an analysis window for a 50% overlap frequency transformation. .

Dans une variante, une fenêtre plus courte de recouvrement pourrait être utilisée pour réduire le retard introduit.Alternatively, a shorter recovery window could be used to reduce the delay introduced.

Ainsi, le codeur décrit en référence à la figure 3 met en oeuvre un procédé de codage paramétrique d'un signal audionumérique multicanal comportant une étape de codage (G.722 Cod) d'un signal issu d'un matriçage de réduction de canaux du signal multicanal. Le procédé comporte en outre les étapes suivantes:

  • obtention (Obt.), par trame de longueur prédéterminée, de paramètres d'information spatiale du signal multicanal;
  • division (Div.) des paramètres d'information spatiale en une pluralité de blocs de paramètres;
  • sélection (St.) d'un bloc de paramètres en fonction de l'indice de la trame courante;
  • codage (Q) du bloc de paramètres sélectionné pour la trame courante.
So, the coder described with reference to the figure 3 implements a parametric encoding method of a multichannel digital audio signal comprising a coding step (G.722 Cod) of a signal resulting from a channel reduction matrix for the multichannel signal. The method further comprises the following steps:
  • obtaining (Obt.), per frame of predetermined length, spatial information parameters of the multichannel signal;
  • dividing (Div) spatial information parameters into a plurality of parameter blocks;
  • selecting (St.) a parameter block according to the index of the current frame;
  • encoding (Q) of the selected parameter block for the current frame.

Dans le mode de réalisation décrit ci-dessus, on se situait dans le contexte d'un codeur en bande élargie fonctionnant avec une fréquence d'échantillonnage de 16 kHz et une découpe en sous-bande particulière.In the embodiment described above, it was in the context of an expanded band encoder operating with a sampling frequency of 16 kHz and a particular subband cut.

Dans un autre mode de réalisation possible, le codeur peut opérer à d'autres fréquences (comme 32 kHz) et avec une découpe en sous-bandes différente.In another possible embodiment, the encoder may operate at other frequencies (such as 32 kHz) and with different subband cutting.

On peut également exploiter le fait que le paramètre ICLD[t,k] pour k=0 peut être négligé. Son calcul et donc son codage peuvent être évités. Dans ce cas le codage des paramètres ICLD devient:

  • pour les trames d'indice t pair: codage d'un bloc de 9 paramètres {ICLD [t,k]} k=1,...,9 par quantification scalaire non-uniforme avec:
    • 5 bits pour le premier paramètre ICLD[t,k] avec k=1
    • 4 bits pour les 8 paramètres ICLD suivants
  • pour les trames d'indice t impair: codage d'un bloc de 10 paramètres {ICLD[t,k]} k=10,...,19 comme présenté précédemment
    • 5 bits pour le premier paramètre ICLD,
    • 4 bits pour les 8 paramètres ICLD suivants,
    • 3 bits pour le dernier (dixième) paramètre ICLD.
One can also exploit the fact that the parameter ICLD [ t , k ] for k = 0 can be neglected. Its calculation and therefore its coding can be avoided. In this case the coding of the ICLD parameters becomes:
  • for frames of even t- index: coding of a block of 9 parameters {ICLD [ t , k ]} k = 1, ..., 9 by non-uniform scalar quantization with:
    • 5 bits for the first parameter ICLD [ t , k ] with k = 1
    • 4 bits for the following 8 ICLD parameters
  • for frames of odd t- index: coding of a block of 10 parameters {ICLD [ t , k ]} k = 10, ..., 19 as previously presented
    • 5 bits for the first ICLD parameter,
    • 4 bits for the following 8 ICLD parameters,
    • 3 bits for the last (tenth) ICLD parameter.

On utilise ainsi, dans ce mode de réalisation, 37 bits pour les trames d'indice t pair et 40 bits pour les trames d'indices t impair.Thus, in this embodiment, 37 bits are used for frames of even t- index and 40 bits for frames of odd t- indexes.

De même, dans une variante de réalisation, au lieu de diviser les paramètres ICLD en blocs contigus, on peut diviser ces paramètres différemment, par exemple en entrelacement pour obtenir 2 parties: {ICLD[t,2k]}k=0,...,9 et ICLD[t,2k+1]} k=0,...,9.Similarly, in an alternative embodiment, instead of dividing the ICLD parameters into contiguous blocks, these parameters can be divided differently, for example into interleaving to obtain 2 parts: {ICLD [ t , 2 k ]} k = 0 ,. .., 9 and ICLD [ t , 2 k +1]} k = 0, ..., 9 .

A noter que le procédé de codage ainsi décrit se généralise facilement au cas où les paramètres sont divisés en plus de 2 blocs. Dans une variante de réalisation, les 20 paramètres ICLD sont divisés en 4 blocs: ICLD t k k = 0 , , 4 , ICLD t k k = 5 , , 9 , ICLD t k k = 10 , , 14 et ICLD t k k = 15 , , 19 .

Figure imgb0013
It should be noted that the coding method thus described is easily generalized in the case where the parameters are divided into more than 2 blocks. In an alternative embodiment, the ICLD parameters are divided into 4 blocks: ICLD t k k = 0 , ... , 4 , ICLD t k k = 5 , ... , 9 , ICLD t k k = 10 , ... , 14 and ICLD t k k = 15 , ... , 19 .
Figure imgb0013

Le codage des paramètres ICLD est alors réparti sur 4 trames successives avec mémorisation des paramètres décodés dans les trames précédentes lors du décodage. Le calcul des ICLD doit alors être modifié afin d'inclure plus de 2 trames dans le calcul des énergies σ L 2 t k

Figure imgb0014
et σ R 2 t k .
Figure imgb0015
The coding of the ICLD parameters is then distributed over 4 successive frames with storage of the parameters decoded in the previous frames during the decoding. The calculation of the ICLD must then be modified to include more than 2 frames in the calculation of the energies σ The 2 t k
Figure imgb0014
and σ R 2 t k .
Figure imgb0015

Dans cette variante de réalisation, le codage des paramètres ICLD peut alors utiliser l'allocation suivante:

  • 5 bits pour le premier paramètre ICLD
  • 4 bits pour les 4 paramètres ICLD suivants
avec un total de 21 bits par trame. Le débit est donc plus faible encore que dans le mode de réalisation précédent, la contrepartie étant que les paramètres ICLD sont remis à jour dans au moins un bloc toutes les 20 ms au lieu de toutes les 10 ms. Pour certains paramètres stéréo et suivant le type de signal, cette variante peut cependant introduire des défauts de spatialisation audible.In this variant embodiment, the coding of the ICLD parameters can then use the following allocation:
  • 5 bits for the first ICLD parameter
  • 4 bits for the following 4 ICLD parameters
with a total of 21 bits per frame. The rate is therefore even lower than in the previous embodiment, the counterpart being that the ICLD parameters are updated in at least one block every 20 ms instead of every 10 ms. For some stereo parameters and depending on the type of signal, this variant may however introduce audible spatialization defects.

Cependant l'intérêt de transmettre les paramètres stéréo ou spatiaux à un rythme plus faible que celui des trames est toujours grand. On exploite ainsi la perception auditive imparfaite des variations énergétiques intercanal.However, the interest of transmitting the stereo or spatial parameters at a slower rate than that of the frames is always great. The imperfect auditory perception of interchanal energy variations is exploited.

Enfin le procédé de codage ainsi décrit s'applique au codage d'autres paramètres que le paramètre ICLD. Par exemple le paramètre de cohérence (ICC) peut être calculé et transmis de façon sélective de manière similaire à l'ICLD.Finally, the encoding method thus described applies to the encoding of other parameters than the ICLD parameter. For example, the coherence parameter (ICC) can be calculated and transmitted selectively in a manner similar to the ICLD.

Les deux paramètres peuvent également être calculés et codés selon le procédé de codage décrit précédemment.The two parameters can also be calculated and coded according to the coding method described above.

La figure 4 illustre un décodeur dans un mode de réalisation de l'invention ainsi que le procédé de décodage qu'il met en oeuvre.The figure 4 illustrates a decoder in one embodiment of the invention as well as the decoding method that it implements.

La partie du train binaire scalable en débit et reçu du codeur G.722 est démultiplexée et décodée par un décodeur de type G.722 (bloc 401) au mode de 56 ou 64 kbit/s. Le signal synthétisé obtenu correspond au signal mono (n) en l'absence d'erreurs de transmission.The portion of bit stream scalable and received from the G.722 encoder is demultiplexed and decoded by a G.722 type decoder (block 401) in 56 or 64 kbit / s mode. The synthesized signal obtained corresponds to the mono signal M ( n ) in the absence of transmission errors.

Une analyse par transformée de Fourier discrète à court-terme avec le même fenêtrage qu'au codeur est réalisée sur (n) (blocs 402 et 403) pour obtenir le spectre [j].A short-term discrete Fourier transform analysis with the same windowing as the encoder is performed on M ( n ) (blocks 402 and 403) to obtain the spectrum M [ j ].

La partie du train binaire associée à l'extension stéréo est aussi démultiplexée au bloc 404.The part of the bit stream associated with the stereo extension is also demultiplexed at block 404.

Le fonctionnement du bloc 405 de synthèse est maintenant détaillé.The operation of the synthesis block 405 is now detailed.

Pour les trames t d'indice pair, on décode dans le module 404 un premier bloc de paramètres {ICLDq[t,k]} k=0,...,9 et on mémorise dans le module 412 ces paramètres décodés. Pour les trames t d'indice impair on décode dans le module 404 un deuxième bloc de paramètres {ICLDq[t,k]} k=10,...,19 et on mémorise dans le module 412 ces paramètres décodés.For even-numbered frames t , a first parameter block {ICLD q [ t , k ]} k = 0,..., 9 is decoded in the module 404 and these decoded parameters are stored in the module 412. For the frames t of odd index is decoded in the module 404 a second block of parameters {ICLD q [ t, k ]} k = 10, ..., 19 and stored in the module 412 these decoded parameters.

Un exemple plus détaillé de réalisation est par exemple comme ci-dessous:A more detailed example of realization is for example as below:

Pour la table de quantification: tab_ild_q 5 31 = - 50 , - 45 , - 40 , - 35 , - 30 , - 25 , - 22 , - 19 , - 16 , - 13 , - 10 , - 8 , - 6 , - 4 , - 2 , 0 , 2 , 4 , 6 , 8 , 10 , 13 , 16 , 19 , 22 , 25 , 30 , 35 , 40 , 45 , 50

Figure imgb0016
For the quantization table: tab_ild_q 5 31 = - 50 , - 45 , - 40 , - 35 , - 30 , - 25 , - 22 , - 19 , - 16 , - 13 , - 10 , - 8 , - 6 , - 4 , - 2 , 0 , 2 , 4 , 6 , 8 , 10 , 13 , 16 , 19 , 22 , 25 , 30 , 35 , 40 , 45 , 50
Figure imgb0016

le décodage d'un indice i à 5 bits consiste à synthétiser le paramètre ICLDq[t,k] comme ICLD q t k = tab_ild_q 5 i

Figure imgb0017
the decoding of a 5-bit index i consists in synthesizing the ICLD parameter q [ t , k ] as ICLD q t k = tab_ild_q 5 i
Figure imgb0017

De même pour la table de quantification: tab_ild_q 4 15 = - 16 , - 13 , - 10 , - 8 , - 6 , - 4 , - 2 , 0 , 2 , 4 , 6 , 8 , 10 , 13 , 16

Figure imgb0018
le décodage d'un indice i à 4 bits consiste à synthétiser le paramètre ICLDq[t,k] comme ICLD q t k = tab_ild_q 4 i
Figure imgb0019
Likewise for the quantization table: tab_ild_q 4 15 = - 16 , - 13 , - 10 , - 8 , - 6 , - 4 , - 2 , 0 , 2 , 4 , 6 , 8 , 10 , 13 , 16
Figure imgb0018
the decoding of a 4 bit i index consists in synthesizing the ICLD parameter q [t, k] as ICLD q t k = tab_ild_q 4 i
Figure imgb0019

Enfin pour la table de quantification tab_ild_q3[7] = { -16, -8, -4, 0, 4, 8, 16 } le décodage d'un indice i à 3 bits consiste à synthétiser le paramètre ICLDq[t,k] comme ICLD q t k = tab_ild_q 3 i

Figure imgb0020
Finally for the quantization table tab_ild_q3 [7] = {-16, -8, -4, 0, 4, 8, 16} the decoding of a 3-bit index i is to synthesize the ICLD parameter q [t, k ] as ICLD q t k = tab_ild_q 3 i
Figure imgb0020

Dans les trames d'indice pair, on utilise alors dans le module 413, pour la partie manquante des paramètres, les valeurs mémorisées {ICLDq[t - l,k]} k=10,....19 dans la trame précédente, soit: ICLDq[t,k] = ICLDq[t - l,k] pour k=10...19. De façon similaire, dans les trames d'indice impair, on utilise pour la partie manquante {ICLDq[t - l, k]} k=0,...,9 les valeurs mémorisées dans la trame précédente.In even-numbered frames, then, in the module 413, for the missing part of the parameters, the stored values {ICLD q [ t -1, k]} k = 10, .... 19 in the previous frame are used. either: ICLD q [ t, k ] = ICLD q [ t - l, k ] for k = 10 ... 19. Similarly, in odd-numbered frames, for the missing part {ICLD q [ t -1, k ]} k = 0,..., 9 the values stored in the previous frame are used.

Les paramètres pour chacune des bandes de fréquences sont ainsi obtenus. Les spectres des canaux gauche et droit sont reconstruits par le module de synthèse 414 en appliquant les paramètres {ICLDq[t - l, k]}k=0,...,19 ainsi décodés par sous-bande. Cette synthèse est réalisée par exemple comme suit: { L ^ j = c 1 t k . M ^ j R ^ j = c 2 t k . M ^ j , j = B k k + 1 - 1

Figure imgb0021

avec { c 1 t k = 2 c 2 t k 1 + c 2 t k c 2 t k = 2 1 + c 2 t k
Figure imgb0022

c t k = 10 ICLD t k / 20
Figure imgb0023
The parameters for each of the frequency bands are thus obtained. The spectra of the left and right channels are reconstructed by the synthesis module 414 by applying the parameters {ICLD q [ t -1, k ]} k = 0,..., 19 thus decoded by sub-band. This synthesis is carried out for example as follows: { The ^ j = vs 1 t k . M ^ j R ^ j = vs 2 t k . M ^ j , j = B k ... k + 1 - 1
Figure imgb0021

with { vs 1 t k = 2 vs 2 t k 1 + vs 2 t k vs 2 t k = 2 1 + vs 2 t k
Figure imgb0022

or vs t k = 10 ICLD t k / 20
Figure imgb0023

A noter que le calcul des facteurs d'échelle ci-dessus est donné à titre d'exemple. D'autres moyens d'expression des facteurs d'échelle existent et peuvent être mis en oeuvre pour la présente invention.Note that the calculation of scale factors above is given as an example. Other means of expressing scale factors exist and can be implemented for the present invention.

Les canaux gauche et droit L(n) et (n) sont reconstruits par transformée de Fourier discrète inverse (blocs 406 et 409) des spectres respectifs [j] et [j] et addition-recouvrement (blocs 408 et 411) avec fenêtrage sinusoïdal (blocs 407 et 410).The left and right channels L ( n ) and R ( n ) are reconstructed by inverse discrete Fourier transform (blocks 406 and 409) of the respective spectra L [ j ] and R [ j ] and addition-overlap (blocks 408 and 411) with sinusoidal windowing (blocks 407 and 410).

Ainsi, le décodeur décrit en référence à la figure 4, dans le mode particulier de réalisation au décodage de signaux stéréo, met en oeuvre un procédé de décodage paramétrique d'un signal audionumérique multicanal comportant une étape de décodage (G.722 Dec) d'un signal issu d'un matriçage de réduction de canaux du signal multicanal. Le procédé comporte en outre les étapes suivantes:

  • décodage (Q-1) de paramètres d'information spatiale reçus pour une trame courante de longueur prédéterminée de signal décodé;
  • mémorisation (Mem) des paramètres décodés pour la trame courante;
  • obtention (Comp.P) des paramètres décodés et mémorisés d'au moins une trame précédente et association de ces paramètres à ceux décodés pour la trame courante;
  • reconstruction (Synth.) du signal multicanal à partir du signal décodé et de l'association de paramètres obtenus pour la trame courante.
So the decoder described with reference to the figure 4 , in the particular embodiment of the decoding of stereo signals, uses a parametric decoding method of a multichannel digital audio signal comprising a step of decoding (G.722 Dec) a signal resulting from a reduction matrix of multichannel signal channels. The method further comprises the following steps:
  • decoding (Q -1 ) received spatial information parameters for a current frame of predetermined length of decoded signal;
  • storing (Mem) decoded parameters for the current frame;
  • obtaining (Comp.P) decoded and stored parameters of at least one previous frame and associating these parameters with those decoded for the current frame;
  • reconstruction (Synth.) of the multichannel signal from the decoded signal and the combination of parameters obtained for the current frame.

Dans le cas d'une division en plus de deux blocs des paramètres d'informations spatiales, par exemple en 4 blocs comme dans une variante de réalisation décrite précédemment, on obtient tous les blocs de paramètres décodés pour 4 trames décodées.In the case of a division in more than two blocks spatial information parameters, for example in 4 blocks as in an embodiment variant described above, all the decoded parameter blocks for 4 decoded frames are obtained.

Le débit de l'extension stéréo est donc réduit et l'obtention de ces paramètres permet de reconstruire un signal stéréo de bonne qualité.The bit rate of the stereo extension is therefore reduced and obtaining these parameters makes it possible to reconstruct a stereo signal of good quality.

On peut aussi noter que des techniques alternatives au codage des paramètres (ICLD, ICPD, ICC) peuvent être adoptées pour mettre oeuvre le procédé de codage selon l'invention.It may also be noted that alternative techniques to parameter coding (ICLD, ICPD, ICC) can be adopted to implement the coding method according to the invention.

Ainsi dans une variante de réalisation, le module 314 du bloc d'extraction de paramètres de la figure 3 diffère.Thus, in an alternative embodiment, the module 314 of the parameter extraction block of the figure 3 differs.

Ce module dans ce mode de réalisation permet d'obtenir d'autres paramètres stéréo en appliquant une analyse en composante principale (ACP) comme celle décrite dans l'article de Manuel Briand, David Virette et Nadine Martin intitulé "Parametric coding of stereo audio based on principal component analysis" paru dans la conférence DAFX, 1991.This module in this embodiment makes it possible to obtain other stereo parameters by applying a principal component analysis (PCA) such as that described in the article by Manuel Briand, David Virette and Nadine Martin entitled "Parametric coding of stereo audio based principal component analysis "published in the DAFX conference, 1991.

Ainsi, une analyse en composante principale est effectuée par sous-bandes. Les canaux gauche et droit ainsi analysés sont ensuite modifiés par rotation afin d'obtenir un composant principal et un composant secondaire qualifié d'ambiance. L'analyse stéréo produit, pour chaque sous-bande, un paramètre d'angle de rotation (θ) et un ratio d'énergie entre le composant principal et le signal d'ambiance (PCAR qui signifie Principal Component to Ambience energy Ratio).Thus, a principal component analysis is performed by subbands. The left and right channels thus analyzed are then rotated to obtain a main component and a qualified environment sub component. The stereo analysis produces, for each sub-band, a rotation angle parameter (θ) and an energy ratio between the main component and the ambient signal ( PCAR which means Principal Component to Ambience Energy Ratio).

Les paramètres stéréo sont alors constitués du paramètre d'angle de rotation et du ratio d'énergie (θ et PCAR).The stereo parameters then consist of the angle of rotation parameter and the energy ratio (θ and PCAR).

La figure 6 illustre un autre mode de réalisation d'un codeur selon l'invention.The figure 6 illustrates another embodiment of an encoder according to the invention.

Par rapport au codeur de la figure 3, c'est ici le bloc 303 de matriçage ou "downmix" qui diffère. Dans l'exemple de la figure 3, l'opération de "downmix" a l'avantage d'être instantanée et de complexité minimale.Compared to the coder of the figure 3 here it is the block 303 for stamping or "downmix" which differs. In the example of the figure 3 the "downmix" operation has the advantage of being instantaneous and of minimal complexity.

Cependant, cette opération ne permet pas nécessairement une conservation de l'énergie. Une amélioration de cette opération de "downmix" est possible dans le domaine temporel, par exemple avec un calcul de la forme M(n) = w 1 L(n) + w 2 R(n) et des poids w 1 et w 2 adaptatifs, ou encore en fréquentiel comme représenté ici en référence à la figure 6.However, this operation does not necessarily allow conservation of energy. An improvement of this "downmix" operation is possible in the time domain, for example with a calculation of the form M ( n ) = w 1 L ( n ) + w 2 R ( n ) and weights w 1 and w 2 adaptive, or in frequency as shown here with reference to the figure 6 .

L'opération de "downmix" est ici constituée des blocs 603a, 603b, 603c et 603d pour le passage dans le domaine fréquentiel.The "downmix" operation here consists of the blocks 603a, 603b, 603c and 603d for the passage in the frequency domain.

Le calcul du signal mono s'effectue dans le bloc 603e de "downmix" dans lequel le signal est calculé dans le domaine fréquentiel par la formule suivante: M ʹ j = L ʹ j + R ʹ j 2 . e L ʹ j

Figure imgb0024

où|.| représente l'amplitude (module complexe) et ∠(.) la phase (argument complexe).The calculation of the mono signal is carried out in block 603e of "downmix" in which the signal is calculated in the frequency domain by the following formula: M ' j = The ' j + R ' j 2 . e The ' j
Figure imgb0024

where |. | represents the amplitude (complex module) and ∠ (.) the phase (complex argument).

Les blocs 603f, 603g et 603h permettent de ramener le signal mono dans le domaine temporel afin d'être codé par le bloc 304 comme pour le codeur illustré en figure 3.Blocks 603f, 603g and 603h make it possible to bring the mono signal back into the time domain in order to be coded by block 304 as for the encoder illustrated in FIG. figure 3 .

Un décalage de T' = 80+T échantillons est alors obtenu, soit un décalage de 80+80+22 = 182 échantillons.An offset of T '= 80 + T samples is then obtained, an offset of 80 + 80 + 22 = 182 samples.

Ce décalage permet de synchroniser les trames temporelles des canaux gauche/droit et ceux du signal mono décodé.This offset makes it possible to synchronize the time frames of the left / right channels and those of the decoded mono signal.

L'invention a été décrite ici dans le cas d'un codeur/décodeur G.722. elle peut bien évidemment s'appliquer dans le cas d'un codeur G.722 modifié, par exemple incluant des mécanismes de réduction de bruit ("noise feedback" en anglais) ou incluant une extension scalable de G.722 avec informations supplémentaires. L'invention peut également s'appliquer dans le cas d'un autre codeur mono que celui de type G.722 comme par exemple un codeur de type G.711.1. Dans ce dernier cas, le retard T doit être ajusté pour prendre en compte le retard du codeur G.711.1.The invention has been described here in the case of a G.722 encoder / decoder. it can obviously apply in the case of a modified G.722 encoder, for example including noise reduction mechanisms ( English) or including a scalable extension of G.722 with additional information. The invention can also be applied in the case of another mono encoder than the G.722 type such as for example a G.711.1 type encoder. In the latter case, the delay T must be adjusted to take into account the delay of the G.711.1 encoder.

De même, l'analyse temps-fréquence du mode de réalisation décrit en référence à la figure 3 pourrait être remplacée suivant différentes variantes:

  • un autre fenêtrage que le fenêtrage sinusoïdal pourrait être utilisé,
  • un autre recouvrement que le recouvrement à 50% entre fenêtres successives pourrait être utilisé
  • une autre transformée fréquentielle que la transformée de Fourier, par exemple la transformée en cosinus discret modifiée (MDCT en anglais) pourrait être utilisée.
Similarly, the time-frequency analysis of the embodiment described with reference to the figure 3 could be replaced according to different variants:
  • another windowing than sinusoidal windowing could be used,
  • another covering than the 50% overlap between successive windows could be used
  • another frequency transform than the Fourier transform, for example the modified discrete cosine transform (MDCT) could be used.

Les modes de réalisation décrit précédemment traitaient du cas d'un signal multicanal de type signal stéréo, la réalisation de l'invention s'étend également au cas plus général du codage de signaux multicanaux (avec plus de 2 canaux audio) à partir d'un "downmix" mono ou même stéréo.The embodiments described previously dealt with the case of a multichannel signal of the stereo signal type, the embodiment of the invention also extends to the more general case of the coding of multichannel signals (with more than 2 audio channels) starting from a mono or even stereo downmix.

Dans ce cas le codage de l'information spatiale implique le codage et la transmission de paramètres d'information spatiale. C'est par exemple le cas de signaux à 5.1 canaux comprenant un canal gauche (L), droit (R), centre (C), arrière gauche (Ls pour Left surround), arrière droit (Rs pour Right surround), et subwoofer (LFE pour Low Freguency Effects). Les paramètres d'information spatiale du signal multicanal prennent alors en compte les différences ou les cohérences entre les différents canaux.In this case the coding of spatial information involves the coding and transmission of spatial information parameters. This is for example the case of 5.1 channel signals including a left channel (L), right (R), center (C), left rear (Ls for Left surround), right rear (Rs for Right surround ), and subwoofer (LFE for Low Freguency Effects ). The spatial information parameters of the multichannel signal then take into account the differences or the coherences between the different channels.

Les codeurs et décodeurs tels que décrit en référence aux figures 3, 4 et 6 peuvent être intégrés à un équipement multimédia de type décodeur de salon, ordinateur ou encore équipement de communication tel qu'un téléphone mobile ou agenda électronique personnel.Encoders and decoders as described with reference to figures 3 , 4 and 6 can be integrated in a multimedia equipment type decoder lounge, computer or communication equipment such as a mobile phone or personal electronic diary.

La figure 7a représente un exemple d'un tel équipement multimédia ou dispositif de codage comportant un codeur selon l'invention. Ce dispositif comporte un processeur PROC coopérant avec un bloc mémoire BM comportant une mémoire de stockage et/ou de travail MEM.The figure 7a represents an example of such a multimedia equipment or coding device comprising an encoder according to the invention. This device comprises a PROC processor cooperating with a memory block BM having a storage and / or working memory MEM.

Le bloc mémoire peut avantageusement comporter un programme informatique comportant des instructions de code pour la mise en oeuvre des étapes du procédé de codage au sens de l'invention, lorsque ces instructions sont exécutées par le processeur PROC, et notamment les étapes:

  • d'obtention, par trame de longueur prédéterminée, de paramètres d'information spatiale du signal multicanal;
  • de division des paramètres d'information spatiale en une pluralité de blocs de paramètres;
  • de sélection d'un bloc de paramètres en fonction de l'indice de la trame courante;
  • de codage du bloc de paramètres sélectionné pour la trame courante.
The memory block may advantageously comprise a computer program comprising code instructions for implementing the steps of the coding method in the sense of the invention, when these instructions are executed by the processor PROC, and in particular the steps:
  • obtaining, by frame of predetermined length, spatial information parameters of the multichannel signal;
  • dividing the spatial information parameters into a plurality of parameter blocks;
  • selecting a parameter block according to the index of the current frame;
  • encoding the selected parameter block for the current frame.

Typiquement, la description de la figure 3 reprend les étapes d'un algorithme d'un tel programme informatique. Le programme informatique peut également être stocké sur un support mémoire lisible par un lecteur du dispositif ou téléchargeable dans l'espace mémoire de l'équipement.Typically, the description of the figure 3 takes the steps of an algorithm of such a computer program. The computer program can also be stored on a memory medium readable by a reader of the device or downloadable in the memory space of the equipment.

Le dispositif comporte un module d'entrée apte à recevoir un signal multicanal Sm représentant une scène sonore, soit par un réseau de communication, soit par lecture d'un contenu stocké sur un support de stockage. Cet équipement multimédia peut également comporter des moyens de capture d'un tel signal multicanal.The device comprises an input module adapted to receive a multichannel signal S m representing a sound scene, either by a communication network, or by reading a content stored on a storage medium. This multimedia equipment may also include means for capturing such a multichannel signal.

Le dispositif comporte un module de sortie apte à transmettre les paramètres d'informations spatiales codées Pc et un signal somme Ss issus du codage du signal multicanal.The device comprises an output module capable of transmitting the coded spatial information parameters P c and a sum signal Ss resulting from the coding of the multichannel signal.

De la même façon, la figure 7b illustre un exemple d'équipement multimédia ou dispositif de décodage comportant un décodeur selon l'invention.In the same way, figure 7b illustrates an example of multimedia equipment or decoding device comprising a decoder according to the invention.

Ce dispositif comporte un processeur PROC coopérant avec un bloc mémoire BM comportant une mémoire de stockage et/ou de travail MEM.This device comprises a PROC processor cooperating with a memory block BM having a storage and / or working memory MEM.

Le bloc mémoire peut avantageusement comporter un programme informatique comportant des instructions de code pour la mise en oeuvre des étapes du procédé de décodage au sens de l'invention, lorsque ces instructions sont exécutées par le processeur PROC, et notamment les étapes de:

  • décodage de paramètres d'information spatiale reçus pour une trame courante de longueur prédéterminée de signal décodé;
  • mémorisation des paramètres décodés pour la trame courante;
  • obtention des paramètres décodés et mémorisés d'au moins une trame précédente et association de ces paramètres à ceux décodés pour la trame courante;
  • reconstruction du signal multicanal à partir du signal décodé et de l'association de paramètres obtenus pour la trame courante.
The memory block may advantageously comprise a computer program comprising code instructions for implementing the steps of the decoding method in the sense of the invention, when these instructions are executed by the processor PROC, and in particular the steps of:
  • decoding received spatial information parameters for a current frame of predetermined length of decoded signal;
  • storing the decoded parameters for the current frame;
  • obtaining decoded and stored parameters of at least one previous frame and associating these parameters with those decoded for the current frame;
  • reconstruction of the multichannel signal from the decoded signal and the combination of parameters obtained for the current frame.

Typiquement, la description de la figure 4 reprend les étapes d'un algorithme d'un tel programme informatique. Le programme informatique peut également être stocké sur un support mémoire lisible par un lecteur du dispositif ou téléchargeable dans l'espace mémoire de l'équipement.Typically, the description of the figure 4 takes the steps of an algorithm of such a computer program. The computer program can also be stored on a memory medium readable by a reader of the device or downloadable in the memory space of the equipment.

Le dispositif comporte un module d'entrée apte à recevoir les paramètres d'information spatiale codés Pc et un signal somme Ss provenant par exemple d'un réseau de communication. Ces signaux d'entrée peuvent provenir d'une lecture sur un support de stockage.The device comprises an input module able to receive the coded spatial information parameters P c and a sum signal S s originating, for example, from a communication network. These input signals can come from a reading on a storage medium.

Le dispositif comporte un module de sortie apte à transmettre un signal multicanal décodé par le procédé de décodage mis en oeuvre par l'équipement.The device comprises an output module capable of transmitting a multichannel signal decoded by the decoding method implemented by the equipment.

Cet équipement multimédia peut également comporter des moyens de restitution de type haut-parleur ou des moyens de communication apte à transmettre ce signal multi-canal.This multimedia equipment may also include speaker-type reproduction means or communication means capable of transmitting this multi-channel signal.

Bien évidemment, un tel équipement multimédia peut comporter à la fois le codeur et le décodeur selon l'invention. Le signal d'entrée étant alors le signal multicanal original et le signal de sortie, le signal multicanal décodé.Obviously, such multimedia equipment may include both the encoder and the decoder according to the invention. The input signal then being the original multichannel signal and the output signal, the decoded multichannel signal.

Claims (9)

  1. Parametric coding method for a multichannel digital audio signal comprising a coding step (G.722 Cod) for coding a signal from a channel reduction matrixing of the multichannel signal, characterized in that it also comprises the following steps:
    - frequency transformation (Fen., FFT) of the multichannel signal to obtain the spectra of the multichannel signal, for each frame;
    - subdivision (D), for each frame, of the spectra of the multichannel signal, into a plurality of frequency sub-bands;
    - obtaining, for each frame of predetermined length and for each frequency sub-band, of spatial information parameters;
    - division (Div.) of the spatial information parameters into two blocks of parameters interleaving the parameters of the different frequency sub-bands;
    - selection of the first or of the second block of parameters to be coded out of the two blocks obtained in the division step, according to whether the current frame to be coded is of even index or of odd index;
    - coding (Q) of the spatial information parameters of the block of parameters selected for the current frame.
  2. Method according to Claim 1, characterized in that said spatial information parameters are defined as the energy ratio between the channels of the multichannel signal.
  3. Method according to Claim 1, characterized in that the coding of the spatial information parameters of a block of parameters is performed by non-uniform scalar quantization.
  4. Method according to Claim 1, characterized in that it also comprises a principal component analysis step to obtain the spatial information parameters comprising a rotation angle parameter and an energy ratio between a principal component and an ambience signal.
  5. Parametric decoding method for a multichannel digital audio signal comprising a decoding step (G.722 Dec) for decoding a signal from a channel reduction matrixing of the multichannel signal, characterized in that it also comprises the following steps:
    - decoding (Q-1) spatial information parameters received for a current frame of predetermined length of the decoded signal;
    - storing (Mem) the decoded parameters for the current frame;
    - obtaining (Comp.P) the decoded and stored parameters of at least one preceding frame and associating these parameters with those decoded for the current frame, the decoded and stored parameters of a preceding frame and the decoded parameters of the current frame corresponding to the interleaved parameters of different frequency sub-bands of the decoding frequency band;
    - reconstructing (Synth.) of the multichannel signal from the decoded signal and from the association of parameters obtained for the current frame.
  6. Computer program comprising code instructions for implementing the steps of a coding method according to one of Claims 1 to 4, when they are executed by a processor.
  7. Computer program comprising code instructions for implementing the steps of a decoding method according to Claim 5, when they are executed by a processor.
  8. Parametric coder for coding a multichannel digital audio signal comprising a coding module (304) for coding a signal from a channel reduction matrixing of the multichannel signal, characterized in that it also comprises:
    - a module for frequency transformation (307, 310) of the multichannel signal to obtain the spectra of the multichannel signal, for each frame;
    - a module for subdividing (313), for each frame, the spectra of the multichannel signal, into a plurality of frequency sub-bands,
    - a module for obtaining (314), for each frame of predetermined length, and for each frequency sub-band, spatial information parameters of the multichannel signal;
    - a module for dividing (315) the spatial information parameters into two blocks of parameters interleaving the parameters of the different frequency sub-bands;
    - a module for selecting (316) the first or the second block of parameters to be coded out of the two blocks obtained by the division module, according to whether the current frame to be coded is of even index or of odd index;
    - a coding module(312) suitable for coding the spatial information parameters of the block of parameters selected for the current frame.
  9. Parametric decoder for decoding a multichannel digital audio signal comprising a decoding module (401) for decoding a signal from a channel reduction matrixing of the multichannel signal, characterized in that it also comprises:
    - a decoding module (404) for decoding spatial information parameters received for a current frame of predetermined length of the decoded signal;
    - storage space (412) for storing the parameters for the current frame;
    - a module (413) for obtaining the decoded and stored parameters of at least one preceding frame and associating these parameters with those decoded for the current frame, the decoded and stored parameters of a preceding frame and the decoded parameters of the current frame corresponding to the interleaved parameters of different frequency sub-bands of the decoding frequency band;
    - a reconstruction module (414) for reconstructing the multichannel signal from the decoded signal and from the association of parameters obtained for the current frame.
EP10785120.6A 2009-10-15 2010-10-15 Optimized low-throughput parametric coding/decoding Active EP2489039B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0957254 2009-10-15
PCT/FR2010/052192 WO2011045548A1 (en) 2009-10-15 2010-10-15 Optimized low-throughput parametric coding/decoding

Publications (2)

Publication Number Publication Date
EP2489039A1 EP2489039A1 (en) 2012-08-22
EP2489039B1 true EP2489039B1 (en) 2015-08-12

Family

ID=42109842

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10785120.6A Active EP2489039B1 (en) 2009-10-15 2010-10-15 Optimized low-throughput parametric coding/decoding

Country Status (7)

Country Link
US (1) US9167367B2 (en)
EP (1) EP2489039B1 (en)
JP (1) JP5752134B2 (en)
KR (1) KR101646650B1 (en)
CN (1) CN102656628B (en)
BR (1) BR112012008793B1 (en)
WO (1) WO2011045548A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102812511A (en) * 2009-10-16 2012-12-05 法国电信公司 Optimized Parametric Stereo Decoding
CN103854650A (en) * 2012-11-30 2014-06-11 中兴通讯股份有限公司 Stereo audio coding method and device
WO2014108738A1 (en) * 2013-01-08 2014-07-17 Nokia Corporation Audio signal multi-channel parameter encoder
US10199044B2 (en) 2013-03-20 2019-02-05 Nokia Technologies Oy Audio signal encoder comprising a multi-channel parameter selector
US20160111100A1 (en) * 2013-05-28 2016-04-21 Nokia Technologies Oy Audio signal encoder
CN106104684A (en) 2014-01-13 2016-11-09 诺基亚技术有限公司 Multi-channel audio signal grader
EP3067885A1 (en) * 2015-03-09 2016-09-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for encoding or decoding a multi-channel signal
FR3048808A1 (en) * 2016-03-10 2017-09-15 Orange OPTIMIZED ENCODING AND DECODING OF SPATIALIZATION INFORMATION FOR PARAMETRIC CODING AND DECODING OF A MULTICANAL AUDIO SIGNAL
CN105895108B (en) * 2016-03-18 2020-01-24 南京青衿信息科技有限公司 Panoramic sound processing method
CN105895106B (en) * 2016-03-18 2020-01-24 南京青衿信息科技有限公司 Panoramic sound coding method
CN105898669B (en) * 2016-03-18 2017-10-20 南京青衿信息科技有限公司 A kind of coding method of target voice
CN107452387B (en) * 2016-05-31 2019-11-12 华为技术有限公司 A kind of extracting method and device of interchannel phase differences parameter
US20180213340A1 (en) * 2017-01-26 2018-07-26 W. L. Gore & Associates, Inc. High throughput acoustic vent structure test apparatus
EP3706119A1 (en) * 2019-03-05 2020-09-09 Orange Spatialised audio encoding with interpolation and quantifying of rotations
CN118314908A (en) * 2023-01-06 2024-07-09 华为技术有限公司 Scene audio decoding method and electronic equipment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340099A (en) * 1997-04-11 1998-12-22 Matsushita Electric Ind Co Ltd Audio decoder device and signal processor
US7006555B1 (en) * 1998-07-16 2006-02-28 Nielsen Media Research, Inc. Spectral audio encoding
JP4387001B2 (en) * 1999-08-27 2009-12-16 三菱電機株式会社 Mobile station and communication method
CN1288625C (en) * 2002-01-30 2006-12-06 松下电器产业株式会社 Audio coding and decoding equipment and method thereof
AU2003274520A1 (en) * 2002-11-28 2004-06-18 Koninklijke Philips Electronics N.V. Coding an audio signal
JP2006259291A (en) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd Audio encoder
US7991610B2 (en) 2005-04-13 2011-08-02 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Adaptive grouping of parameters for enhanced coding efficiency
KR100878371B1 (en) * 2005-04-19 2009-01-15 돌비 스웨덴 에이비 Energy dependent quantization for efficient coding of spatial audio parameters
US8214220B2 (en) * 2005-05-26 2012-07-03 Lg Electronics Inc. Method and apparatus for embedding spatial information and reproducing embedded signal for an audio signal
TWI396188B (en) * 2005-08-02 2013-05-11 Dolby Lab Licensing Corp Controlling spatial audio coding parameters as a function of auditory events
KR20070038441A (en) * 2005-10-05 2007-04-10 엘지전자 주식회사 Method and apparatus for signal processing
EP1989920B1 (en) * 2006-02-21 2010-01-20 Koninklijke Philips Electronics N.V. Audio encoding and decoding
CN101188878B (en) * 2007-12-05 2010-06-02 武汉大学 A space parameter quantification and entropy coding method for 3D audio signals and its system architecture

Also Published As

Publication number Publication date
CN102656628B (en) 2014-08-13
EP2489039A1 (en) 2012-08-22
WO2011045548A1 (en) 2011-04-21
KR20120095920A (en) 2012-08-29
BR112012008793B1 (en) 2021-02-23
US9167367B2 (en) 2015-10-20
JP2013508743A (en) 2013-03-07
BR112012008793A2 (en) 2020-09-15
KR101646650B1 (en) 2016-08-08
US20120207311A1 (en) 2012-08-16
JP5752134B2 (en) 2015-07-22
CN102656628A (en) 2012-09-05

Similar Documents

Publication Publication Date Title
EP2489039B1 (en) Optimized low-throughput parametric coding/decoding
EP2374123B1 (en) Improved encoding of multichannel digital audio signals
EP2374124B1 (en) Advanced encoding of multi-channel digital audio signals
EP2691952B1 (en) Allocation, by sub-bands, of bits for quantifying spatial information parameters for parametric encoding
EP3427260B1 (en) Optimized coding and decoding of spatialization information for the parametric coding and decoding of a multichannel audio signal
EP2002424B1 (en) Device and method for scalable encoding of a multichannel audio signal based on a principal component analysis
WO2012052676A1 (en) Improved stereo parametric encoding/decoding for channels in phase opposition
WO2017103418A1 (en) Adaptive channel-reduction processing for encoding a multi-channel audio signal
EP2319037B1 (en) Reconstruction of multi-channel audio data
EP2104936A2 (en) Low-delay transform coding using weighting windows
EP2979266B1 (en) Optimized partial mixing of audio streams encoded by sub-band encoding
WO2023165946A1 (en) Optimised encoding and decoding of an audio signal using a neural network-based autoencoder
WO2011073600A1 (en) Parametric stereo encoding/decoding having downmix optimisation
EP2126905B1 (en) Methods and devices for audio signals encoding and decoding, encoded audio signal
EP2489040A1 (en) Optimized parametric stereo decoding
FR2980620A1 (en) Method for processing decoded audio frequency signal, e.g. coded voice signal including music, involves performing spectral attenuation of residue, and combining residue and attenuated signal from spectrum of tonal components
WO2014064379A1 (en) Detection of a predefined frequency band in a piece of audio content encoded by subbands according to pulse code modulation encoding

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOANG, THI MINH NGUYET

Inventor name: RAGOT, STEPHANE

Inventor name: KOVESI, BALAZS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORANGE

17Q First examination report despatched

Effective date: 20130909

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602010026664

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G10L0019000000

Ipc: G10L0019008000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G10L 19/16 20130101ALN20150309BHEP

Ipc: G10L 19/008 20130101AFI20150309BHEP

Ipc: H04S 3/00 20060101ALI20150309BHEP

INTG Intention to grant announced

Effective date: 20150325

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 742758

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010026664

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 742758

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150812

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151113

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151112

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151214

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010026664

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151015

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

26N No opposition filed

Effective date: 20160513

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101015

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240919

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240919

Year of fee payment: 15