EP2483898B1 - Transformer core or transformer sheet having an amorphous and/or nanocrystalline microstructure and method for the production thereof - Google Patents
Transformer core or transformer sheet having an amorphous and/or nanocrystalline microstructure and method for the production thereof Download PDFInfo
- Publication number
- EP2483898B1 EP2483898B1 EP10749632.5A EP10749632A EP2483898B1 EP 2483898 B1 EP2483898 B1 EP 2483898B1 EP 10749632 A EP10749632 A EP 10749632A EP 2483898 B1 EP2483898 B1 EP 2483898B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layers
- layer
- soft magnetic
- transformer
- separating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/245—Magnetic cores made from sheets, e.g. grain-oriented
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15333—Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/12—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
- H01F10/13—Amorphous metallic alloys, e.g. glassy metals
- H01F10/131—Amorphous metallic alloys, e.g. glassy metals containing iron or nickel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/12—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
- H01F10/13—Amorphous metallic alloys, e.g. glassy metals
- H01F10/132—Amorphous metallic alloys, e.g. glassy metals containing cobalt
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/26—Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
- H01F10/265—Magnetic multilayers non exchange-coupled
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/24—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
- H01F41/26—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids using electric currents, e.g. electroplating
Definitions
- the invention relates to a transformer core, comprising soft magnetic layers of an electrically conductive core material having an amorphous and / or nanocrystalline microstructure, which are separated from one another by separating layers of an electrically insulating material. Furthermore, the invention relates to a transformer sheet, comprising a soft magnetic layer of an electrically conductive core material having an amorphous and / or nanocrystalline microstructure, which is coated with a release layer of an electrically insulating material.
- the invention also relates to a method for producing a transformer sheet or a transformer core.
- a transformer core or transformer sheet of the type specified and a method for its production is, for example, in the DE 33 26 556 C2 described. Thereafter, a transformer sheet having an amorphous microstructure can be obtained, for example, by dropping the molten metal containing a glass-forming element onto a cooled substrate, thereby causing extremely rapid cooling of the dropped metal. As a result, the metal solidifies amorphous. Subsequently, the electrically insulating layer can be applied by electrochemical means by a cathodic electrodeposition. The resulting transformer sheets can be processed by laminating or winding into a transformer core in which the layer of the metal with the amorphous crystal structure alternate with the separation layers.
- amorphous self-supporting films can be produced by electrochemical means, which have a thickness between 20 and 250 microns.
- an alloy is deposited, which has iron as the main part, as a glass former phosphorus and another transition metal as alloying shares.
- DE 33 46 659 A1 and the article " Solenoid-Type Thin-Film Micro-Transformer "by H. Kurata et al., IEEE Translation Journal on Magnetics, Japan, Vol. 9, No. 3, 1994 ) disclose transformers in which the magnetic core is formed of amorphous magnetic layers and insulating separation layers in monolithic composite with the transformer windings.
- US 5 435 903 A shows a transformer core, which is produced by the deposition of amorphous soft magnetic layers and electrically insulating separation layers.
- the object of the invention is therefore to provide transformer cores and transformer sheets and a method for their production, with which the production of transformer cores is comparatively facilitated.
- This object is achieved with the transformer core specified above according to the invention in that a plurality of said soft magnetic layers and at least separating layers lying between them form a monolithic composite.
- a monolithic composite in the sense of the invention thus means an intimately interconnected layer sequence which has at least two soft magnetic layers and at least one separating layer therebetween. Of course, the composite may also have more than these three layers.
- the individual composites can also be processed as transformer sheets, with a plurality of said soft magnetic layers forming a monolithic composite at least with the separating layers lying between them. Again, it is particularly advantageous if just as many soft magnetic layers are produced as separating layers.
- the monolithic composites are produced by the aforementioned method for producing a transformer sheet or a transformer core, in which a soft magnetic layer of an electrically conductive core material with an amorphous and / or nanocrystalline microstructure is electrochemically deposited on a base body. An electrically insulating separating layer is produced on the soft magnetic layer. Then a starting layer for a renewed electrochemical coating is then produced, then a further soft magnetic layer after the already mentioned method step and a further separating layer after the likewise described method step. This is repeated until the transformer sheet has reached the intended thickness.
- a composite is thus produced by the sequence of electrochemical coating steps, so that the layers grow on each other and thus creates an intimate connection.
- a transformer sheet can be produced which has a sufficient thickness for the further handling steps. This facilitates the manufacture of transformer cores themselves, as the brittle material is easier to handle when it is in a greater thickness.
- the layers of as Composite manufactured transformer sheets simplified because fewer of these thicker transformer sheets must be laminated to the transformer core.
- the advantage of using amorphous transformer cores or transformer plates is that they advantageously produce only small losses when used in the transformer. This is due to the low coercive field strength H C , so that hysteresis losses during remagnetization can be kept low.
- an amorphous structure of the soft-magnetic layers it is not possible to detect formation of structure grains. This is because the glass-forming alloying portion results in a vitreous structure, so that the order of the atoms is stochastic like a liquid.
- individual grains can be recognized whose size, however, is in the nanometer range, ie smaller than 100 nm, preferably even smaller than 10 nm.
- the transition between an amorphous and nanocrystalline structure of the microstructure is fluid, although crystalline regions of the microstructure with dimensions in the nanometer range may also be present within an amorphous matrix surrounding them.
- the transformer core or the transformer sheet (or the sheets in a layered transformer core) have soft magnetic layers whose thickness is between 2 and 100 ⁇ m.
- the separating layers follow one another rapidly in the sequence of layers, which advantageously results in the eddy current losses in the transformer sheet minimize.
- the formation of eddy currents is namely prevented by the electrically insulating separation layers or at least contained.
- the separating layers can advantageously have a thickness of 0.1 to 1 ⁇ m. This thickness is sufficient to achieve sufficient electrical insulation between the adjacent soft magnetic layers.
- the monolithic layer composites produced can advantageously have a thickness between 0.2 and 0.6 mm. This thickness is sufficient for the composites to have sufficient handling stability during the stacking of the transformer core from individual transformer laminations.
- the separating layers and / or the starting layers lying between the separating layers and the soft magnetic layers are doped with nanoparticles for electrochemical deposition, like the relevant layer into which they are incorporated are electrically conductive or electrically insulating.
- the chemical elements that make up the nanoparticles are selected in such a way that their incorporation into the matrix of the respective layer causes mechanical residual stresses in the respective layer due to atomic radii deviating from the layer material.
- the mechanical stresses advantageously cause magnetic anisotropies. These anisotropies may be due to the location of the doping z. B. be influenced in lines or strip shape.
- the position of the doping can be influenced by introducing the nanoparticles only partially into the layer. This can be achieved by not depositing the nanoparticles together with the metal to be deposited (dispersion with the electrolyte), but instead applying them to the substrate in a separate coating step become. This coating step must take place before the electrochemical coating and can be done, for example, by cold gas spraying of the particles used.
- the generated mechanical stresses have a positive effect on the magnetization losses in the transformer sheet.
- This can be described as a model as follows.
- the mechanical stresses in the magnetically active layer lead to the retention of the so-called Bloch walls (these are the partitions of the white areas). Due to the immobility of the Bloch walls, the magnetic moments of entire white areas are reversed when an external magnetic field is applied.
- Bloch walls these are the partitions of the white areas. Due to the immobility of the Bloch walls, the magnetic moments of entire white areas are reversed when an external magnetic field is applied.
- the magnetic field of the material of the transformer core changes more.
- the greater change in the magnetic field induces greater energy in the secondary coil of the transformer. This advantageously reduces the loss of magnetization and increases the relative permeability number.
- an electrically conductive material is provided in the transformer sheet or the transformer core as the starting layer for electrochemical coating between the separation layers and the soft magnetic layers.
- the conductive material is necessary in order to again be able to deposit a layer of the soft magnetic material on the electrically insulating separating layer. Since the separation layer itself can not serve as an electrode for the deposition of layer material, the application of the starting layer, for example by means of thermal Spraying or PVD process upstream of the electrochemical coating step.
- the already-described mechanism of generating residual stresses can be achieved as the material of the transformer core heats up during operation. This is due to the fact that the heating during operation of the transformer core is greater than during its production, for example by means of electrochemical deposition and cold gas spraying. Here is another benefit of using cold gas spraying. This means that the layers of the transformer core or transformer sheet can be largely without residual stresses and then arise during operation of the transformer by heating it. According to the mechanism already described above (use of particles with different atomic radii), the magnetization losses can advantageously be reduced and the relative permeability number increases.
- the soft magnetic layers and / or lying between the separation layers and the soft magnetic layers start layers for electrochemical deposition are doped with hard magnetic particles, wherein the magnetic field with respect to its field line at least substantially on the planned field line course in the transformer core or transformer sheet is aligned.
- This can be advantageously stabilized in the operation of the transformer, the required field line profile of the magnetic field to be generated.
- the magnetic properties of the resulting composite material between those of an amorphous layer and those of a nanocrystalline Set metal This applies to the electrochemically deposited matrix in which the magnetic particles are incorporated.
- a subsequent heat treatment of the amorphous material with which normally amorphous microstructural orders can be converted into nanocrystalline can be saved.
- the adjustment of the microstructure of the matrix between amorphous and nanocrystalline is advantageously much more accurately possible by means of the incorporated particles. It can then be further displaced by a heat treatment in the direction of nanocrystalline structural orders.
- a more effective use of material or a lesser amount of cooling is required.
- the object stated above is also achieved by a method for producing a transformer sheet or a transformer core consisting of a package of transformer laminations, in which a soft magnetic layer of an electrically conductive core material with an amorphous and / or transformer sheet is produced on a base body with an amorphous and / or or nanocrystalline microstructure is deposited electrochemically. An electrically insulating separating layer is then produced on this soft magnetic layer. Then, a starting layer for the electrochemical coating, a further soft magnetic layer after the already mentioned method step and a further separating layer after the already mentioned method step are produced repeatedly. This is repeated until the transformer sheet has the intended thickness has reached.
- This method is advantageous for the production of transformer plates or transformer cores in the manner already described above, which have the advantages already described.
- the electrochemical manufacturing method advantageously allows the production of extremely thin layers, so that the soft magnetic layers and the separating layers ensure effective prevention of eddy current losses.
- the transformer sheets produced according to the invention are easier to process, since the thicknesses of the sheets produced can be selected independently of the small thickness of the individual soft magnetic layers.
- the respective starting layers for the electrochemical coating are required because the separation layers due to their effect in the transformer plate (prevention of eddy current losses) must be electrically insulating. However, these are therefore not suitable for a further electrochemical deposition step. This can only take place if a starting layer for the electrochemical coating is again applied to the electrically insulating separating layers.
- the coating with the soft magnetic layer by a reverse pulse plating takes place.
- This per se known electrochemical deposition method involves the insertion of pulsed Abscheideströmen for the coated workpieces.
- the current pulses alternately change from cathodic to anodic currents, wherein the cathodic deposition must predominate on the workpiece as compared to the anodic dissolution to come to a deposition.
- the reverse pulse plating is particularly advantageous for the deposition of uniform layer thicknesses.
- At least one soft magnetic element in particular one or more of the elements Fe, Si, Ni or Co, and at least one glass-forming element, in particular P and / or B, are jointly deposited as a soft magnetic layer.
- the soft magnetic elements serve advantageously to produce a soft magnetic layer, wherein the glass formers are added to ensure the formation of an amorphous microstructure during the electrochemical deposition.
- An embodiment of the method according to the invention provides that the layers produced in each case correspond exactly to the longitudinal section of the transformer core to be produced with a cutting plane aligned parallel to the course of the layer.
- the orientation of the layers is exactly in the direction that is usually used to laminate transformer sheets.
- the layer planes are thus such that the two center axes of the transformer windings lie in one of these layer planes. This is advantageous because the expansion of the transformer core is the lowest across these layer planes and therefore the transformer core or, correspondingly, the transformer plates can be made with a minimum number of individual layers.
- the deposition of the starting layer takes place by atomization of powder, by thermal spraying (in particular cold gas spraying) or by PVD coating of an electrically conductive material.
- the electrically conductive material is applied to the previously applied electrically insulating release layer by atomizing, thermal spraying or PVD coating.
- This coating step can be carried out until the starting layer has the required thickness for a subsequent electrochemical coating.
- the thermal spraying since this method allows comparatively high deposition rates.
- the cold gas spraying can be used, because this goes largely without a thermal load of the deposited particles of the starting layer and the substrate of Statte.
- thermal spraying such as plasma spraying can also be used to achieve a targeted transformation of the deposited amorphous structure into a nanocrystalline structure by the thermal energy introduced in this way.
- the deposition of the starting layer can also take place in two steps.
- thermal spraying or PVD coating with the material of the starting layer and with an amount that is not sufficient for a galvanic deposition can be carried out as an intermediate step electrochemical deposition of the electrically conductive material by an electroless method until the starting layer has reached the required thickness.
- even low layer thicknesses or not yet closed layers on the electrically insulating separating layer are sufficient for currentless deposition.
- the electrically conductive material with which the starting layer is produced contains only chemical elements of the soft magnetic layer. This has the advantage that the starting layer after completion of the overlying soft magnetic layer so to speak merges with this and no longer appears as a separate layer in appearance. This will influence the product to be produced Product of transformer core or transformer sheet.
- a particular embodiment of the method according to the invention is obtained when a base body made of a soft magnetic, electrically conductive material, in particular with an amorphous and / or nanocrystalline microstructure is used.
- the base body which is always required for an electrochemical coating to provide a substrate for coating, can according to this advantageous embodiment support the function of the transformer sheet or of the transformer core in the same way as the subsequently produced soft magnetic layers.
- the base body consists of an amorphous and / or nanocrystalline structure, a performance comparable to the soft magnetic layers can be achieved.
- soft magnetic nanoparticles which can be incorporated into the soft magnetic layers and / or starter layers in order to influence the microstructure there in the manner already described.
- the microstructure can be influenced in such a way that a specific ratio of the proportions of amorphous and / or nanocrystalline microstructures can be set. This advantageously eliminates post-treatment of the layers for adjusting the microstructure (heat treatment), which, however, can optionally be carried out to correct the properties of the layers produced.
- the incorporation of soft magnetic nanoparticles can advantageously also be promoted in that they are deposited in a magnetic field or the substrate is magnetized during the deposition. In this way, the incorporation rates of nanoparticles can be influenced, wherein in addition to the concentration of the nanoparticles to be incorporated in the electrolyte, a parameter for adjusting the particle concentration available stands. This can be used in particular to shift a rate of incorporation to higher values, since the concentration of nanoparticles that can be dispersed in the electrolyte is limited (otherwise the nanoparticles precipitate out of the suspension again).
- hard-magnetic particles are incorporated into the soft-magnetic layers and / or the starting layers, during the deposition process the forming layer being exposed to a magnetic field whose field line profile at least substantially corresponds to the planned field line profile in the transformer core to be produced.
- the hard magnetic particles By means of the deposition process, the hard magnetic particles, the magnetization of which does not change during operation of the transformer, are fixed in a certain orientation in the surrounding matrix of the structure, for which reason the magnetic field generated by them during operation of the transformer superimposes the magnetic field due to the processes taking place in the transformer , As a result, the magnetic field in the transformer is stabilized and deviations from the desired field line course are attenuated. Furthermore, it is advantageously possible to carry out a targeted correction of the magnetic field generated during operation in the transformer. In order to accomplish this, deviations must be intentionally provided for the magnetic field which is used during the deposition process of the forming layers, which produces an orientation of the hard magnetic particles with intended deviations from the planned field line course in the transformer core to be produced.
- the deviating magnetic field then corrects the magnetic field actually produced in the transformer core in the desired manner, whereby, for example, unwanted deviations of the actually generated field line profile of a transformer from the desired field line course can be corrected.
- nanoparticles are incorporated in the starting layers and / or in the separating layers, which, like the relevant layer in which they are incorporated, are electrically conductive or electrically insulating.
- the chemical elements of the nanoparticles are selected such that their incorporation into the matrix of the respective layer by means of atomic radii deviating from the layer material lead to mechanical residual stresses in the relevant layer.
- an electrically conductive material whose thermal expansion coefficient differs by at least 10 and at most 30% from that of the soft magnetic layers can advantageously be deposited for the starting layers. This also makes it possible to generate residual stresses during operation due to the heating of the transformer core, which positively influence the magnetic behavior of the transformer in the manner already described.
- the production of a transformer sheet is then carried out by a sequence of the described basic steps simultaneously on both sides in order to halve the required coating time.
- the basic body is first produced by phosphating with an electrical insulation layer. Depending on the material of the base body, for example, iron phosphate or zinc phosphate is formed.
- a starting layer is applied to the electrically insulating separating layer of phosphate for a subsequent electrochemical deposition. This can be done by a first intermediate step, in which conductive iron or nickel is applied in the form of powders by atomization or cold gas spraying.
- the metal can also be applied by sputtering or vapor deposition, which is worthwhile, above all, for small workpieces.
- iron, iron phosphorous, nickel or an iron-nickel alloy is electrodeposited by electroless deposition until the layer so formed has received sufficient thickness for a subsequent electrodeposition step (i.e., applying a deposition current).
- the galvanic deposition of an amorphous iron-phosphorus alloy or a nickel-iron alloy, which forms the soft magnetic layer This can be done in detail as follows.
- the base body used is a degreased, cleaned and activated metal foil of, for example, 20 ⁇ m thick, which consists of iron, nickel or a nickel-iron alloy. This is phosphated on both sides by dipping, spraying or electrochemical. The phosphating is carried out with an iron phosphate or zinc phosphate-containing solution and subsequent Drying at below 100 ° C.
- the chemicals required for this purpose can be obtained, for example, from SurTec.
- the phosphating may also be cathodic using an electrolyte which may contain one or more of the following types of ions: Zn 2+ , Ca + , PO 4 3+ , NO 3 - or ClO 3 - or F - .
- This electrochemical deposition can be carried out at a temperature of 25 ° C a pH between 1 and 4 and a current density between 5 and 250 mA / cm 2 .
- By varying the current density and the other conventional deposition parameters it is possible to produce different layer thicknesses of up to 100 ⁇ m (preferably 1 to 20 ⁇ m).
- the layer can also be produced with pores, which in a next step serve to take up nickel, iron or nickel iron particles.
- the step of coating with said particles is preferably accomplished by atomization or by cold gas spraying. This is done by an electroless deposition of an iron phosphorus alloy or nickel with a layer thickness of preferably 0.3 microns.
- the electrolyte used contains iron sulfate, sodium hypophosphite, potassium sodium tartrate, boric acid and small amounts of sugar acid.
- a pH of 8 to 11.5 is set with 15% sodium hydroxide solution, the electroless deposition process being carried out at 50 to 85 ° C. At 80 ° C and a pH of 10.5 to obtain an iron phosphorus alloy with 94.5 wt .-% iron and 5.5 wt .-% phosphorus.
- an electrolyte containing nickel sulfate, sodium glycolate, and sodium hypophosphite may be used.
- sodium hydroxide solution With sodium hydroxide solution, the pH to 4 set to 5.
- the electroless deposition is carried out at a bath temperature between 90 and 95 ° C.
- the electrochemical deposition of the amorphous iron-phosphorus or nickel-iron alloy can now take place.
- This electrochemical deposition of the soft magnetic layer is carried out with deposition baths consisting of aqueous solutions of iron (II) salts.
- iron (II) salts For example, iron (II) chloride, iron (II) sulfate, iron (II) fluoroborate or iron (II) sulfamate can be used.
- a hypophosphite or orthophosphite is used (for example, sodium hypophosphite or sodium orthophosphite). This produces the desired iron-phosphorus alloys in the layer.
- soluble anodes of iron preferably of pure iron, or insoluble anodes, for example of platinized titanium
- the deposition takes place at temperatures between 40 and 70 ° C.
- the selected current density is 10 to 100 A / dm 2 .
- the deposition process can be carried out by a DC process or particularly advantageously by reverse pulse plating.
- an electrolyte consisting of, for example, nickel chloride, iron chloride, sodium chloride, sodium saccharin, sodium lauryl sulfate and boric acid may be used.
- the deposition takes place at 30 ° C. and a pH of 3 with a current density of 0.5 to 8 A / dm 2 .
- the anodes used are nickel or iron anodes. After reaching the required layer thicknesses (eg 0.23 mm), the phosphating process step already described above is repeated.
- transformer sheets are produced by the method described above, the required shape can be achieved in various ways. Either the transformer sheet is produced over a large area as a semifinished product, wherein the known forms for the transformer sheets in the form of an E and I are produced by separating the transformer sheet (for example punching). But it is also possible to bring the base body in the required form of the transformer sheet and then to coat, the transformer sheet is then formed immediately in its required shape. In order to guarantee the dimensional accuracy, in particular a coating after the reverse pulse plating is particularly advantageous. In this way, transformer sheets in all common configurations (M, EI, UI and LL) as well as sheet metal strips for the production of cut cores or even annular transformer sheets for the direct, gapless production of toroidal cores can be produced. Selected intermediates of the method exemplified above are described in U.S.P. FIGS. 4 to 7 described in more detail.
- FIG. 1 shows a galvanic bath 11, which is suitable for coating a base body 12 of a transformer sheet.
- This body is annular and therefore already has the shape of the transformer sheet to be installed.
- the main body 12 should be coated on both sides, which is why counter electrodes 13 are arranged on both sides and correspond in their extent to the base body 12 in order to produce the most uniform possible electric field in the electrolyte 14 used.
- the base body 12, which forms the working electrode, and the counter-electrodes 13 are connected to one another via a controller 15, it being possible to control the deposition current via the controller 15.
- FIG. 2 One possible control of the separation stream is in FIG. 2 shown.
- the deposition current density i on This is according to FIG. 2 considered over time t.
- cathodic current pulses having a deposition current density i c and anodic current pulses having a deposition current density i a are generated.
- the respective associated pulse length t c and t a is to be considered in the leadership of the reverse pulse Platings that a total of a layer structure must be made. This presupposes that the integrals of the current density i over the time t Q c of the cathodic current pulse are greater than Q a of the anodic current pulse.
- FIG. 3 Due to the current flow, a layer growth can be generated, as in FIG. 3 is shown.
- the irregularities 16 during cathodic layer growth, represented by the contour 17, can be largely corrected, since in the subsequent anodic current pulse the irregularity 16 is degraded disproportionately and the contour 18 is present after the anodic current pulse.
- the anodic dissolution of the material is less than the cathodic growth, which is why deposited material remains on the base body 12.
- FIG. 3 shown greatly exaggerated to visualize the course of the contours 17, 18.
- FIGS. 4 to 7 represented intermediates of the method according to the invention can be produced with the above-mentioned examples of the method according to the invention.
- the main body 12 is shown as a foil. This is already provided on both sides with an electrically insulating separation layer 19 by phosphating.
- On the release layer 19 further particles 20 are applied to a start layer 21, which FIG. 5 can be removed.
- the particles 20 can be, for example, by atomizing are applied to the release layer 19 and are in FIG. 5 no longer recognizable, since the starting layer 21 consists of the same material as the particles 20.
- electrochemical coating on the starting layer 21 with the material of soft magnetic layers 22 see FIG FIG. 6 ) respectively. These ensure the function of the transformer core.
- FIG. 7 It is shown how, in each case, a separation layer 19 was again formed on the base body after the application of the soft magnetic layers 22 on both sides, and in each case particles 20 for a starting layer were deposited on the separation layers 19 thus formed.
- the following can be added to FIG. 5 Repeated steps are repeated as often as desired until the desired thickness of the transformer plate or the desired shape of the transformer core is reached.
- the starting layers 19 used can in this embodiment be formed, for example, from copper. Thus, there is always a layer of copper between the separating layers 19 and the soft magnetic layers 22 in the direction of the layer formation, which corresponds to the in FIG. 7 causes layer structure.
- FIG. 6 a layer structure is shown, in which the particles 20 are made of the same material as the soft magnetic layer 22. After application of the particles 20 then forms a layer structure, the in FIG. 5 is similar. However, the separation layers 21 in the layer composite according to FIG. 6 no longer recognizable, since these together with the soft magnetic layers 22 result in a single microstructure.
- FIGS. 8 and 9 It can be seen schematically how the incorporation of particles in different layers of the layer composite according to the invention for transformer sheets can be done.
- the soft magnetic layer 22 made of nickel iron nanoparticles 23 are also made of nickel iron.
- the soft magnetic layer 22, which grows amorphous during electrochemical coating, can thus be provided in a targeted manner with a nanocrystalline structure.
- the nanoparticles 23 themselves may also be formed amorphous or crystalline. In the event that the nanoparticles 23 themselves are crystalline (as in FIG FIG.
- FIG. 8 represented by the nanoparticles further grains in the amorphous matrix of the layer 22, so that in FIG. 8 represented contours of the particles 23 also represent grain boundaries. If the particles 23 themselves were amorphous, they would fuse with the amorphous matrix of the soft magnetic layer 22 and would be virtually invisible.
- nanocrystalline particles 25 of a FeCuNbSiB alloy or of amorphous iron alloys may be introduced into the starting layer 21 of metal, which may consist for example of cobalt. These particles are dispersed in the electroless plating deposition electrode and then co-deposited with the starting layer 21.
- the concentration of the particles 25 can be adjusted by the temperature, the speed of movement of the electrolyte (agitation) and the composition of the electrolyte.
- nanoparticles 26 of Al 2 O 3 or CrO 3 can be introduced into the separating layer 19 (cf. FIG. 9 ). These nanoparticles 26 also lead to residual stresses and therefore improve the manufactured transformer sheet in the manner already mentioned above.
- the nanoparticles 26 can either be admixed to the electrolyte during an electrochemical phosphating or a precursor during the phosphating by dipping or spraying and are then automatically incorporated into the applied layer.
- Anisotropy of the microstructure due to different coefficients of expansion can also be produced by using a suitable material such as gold, silver, copper or aluminum as starting layer 21. These metals generate the residual stresses when heating the transformer sheet by their deviating from the adjacent layers expansion coefficient.
- FIG. 9 Also shown is the introduction of magnetic particles 27, which may also be designed as nanoparticles. Schematically illustrated is a magnetic field 28, which has the magnetic particle 27 and which is aligned in the direction of the desired field line course in the soft magnetic layer 22.
- a magnetic field 28 which has the magnetic particle 27 and which is aligned in the direction of the desired field line course in the soft magnetic layer 22.
- all known hard magnetic alloys can be used.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Soft Magnetic Materials (AREA)
Description
Die Erfindung betrifft einen Transformatorkern, aufweisend weichmagnetische Schichten eines elektrisch leitfähigen Kernmaterials mit einer amorphen und/oder nanokristallinen Gefügestruktur, die durch Trennschichten eines elektrisch isolierenden Materials voneinander getrennt sind. Weiterhin betrifft die Erfindung ein Transformatorblech, aufweisend eine weichmagnetische Schicht eines elektrisch leitfähigen Kernmaterials mit einer amorphen und/oder nanokristallinen Gefügestruktur, die mit einer Trennschicht eines elektrisch isolierenden Materials beschichtet ist.The invention relates to a transformer core, comprising soft magnetic layers of an electrically conductive core material having an amorphous and / or nanocrystalline microstructure, which are separated from one another by separating layers of an electrically insulating material. Furthermore, the invention relates to a transformer sheet, comprising a soft magnetic layer of an electrically conductive core material having an amorphous and / or nanocrystalline microstructure, which is coated with a release layer of an electrically insulating material.
Außerdem betrifft die Erfindung auch ein Verfahren zum Erzeugen eines Transformatorbleches oder eines Transformatorkerns.Moreover, the invention also relates to a method for producing a transformer sheet or a transformer core.
Ein Transformatorkern oder auch Transformatorblech der eingangs angegebenen Art und ein Verfahren zu dessen Herstellung ist beispielsweise in der
Gemäß der
According to the
Aufgrund der relativ geringen Dicke der so hergestellten amorphen Transformatorbleche und deren spröden Verhaltens ist das Schichten solcher Transformatorbleche zu Transformatorkernen mit erheblichem Aufwand verbunden. Die Aufgabe der Erfindung besteht daher darin, Transformatorkerne sowie Transformatorbleche sowie ein Verfahren zu deren Herstellung anzugeben, mit dem die Herstellung von Transformatorkernen vergleichsweise erleichtert wird.
Diese Aufgabe wird mit dem eingangs angegebenen Transformatorkern erfindungsgemäß dadurch gelöst, dass mehrere der besagten weichmagnetischen Schichten und zumindest zwischen ihnen liegende Trennschichten einen monolithischen Verbund bilden. Als monolithischer Verbund im Sinne der Erfindung ist damit also eine innig miteinander verbundene Schichtfolge zu verstehen, die zumindest zwei weichmagnetische Schichten aufweist und dazwischen wenigstens eine Trennschicht. Selbstverständlich kann der Verbund auch mehr als diese drei Schichten aufweisen. Bevorzugt werden genauso viele Trennschichten wie weichmagnetische Schichten in dem Verbund angeordnet, so dass mehrere dieser Verbunde gestapelt werden können und jeweils die oberste Trennschicht eines Verbundes mit der untersten weichmagnetischen Schicht des nachfolgenden Verbundes in Kontakt kommt. Hierdurch ist auch am Übergang zwischen zwei Verbunden die elektrische Isolierung benachbarter weichmagnetischer Schichten gewährleistet. Die einzelnen Verbunde können erfindungsgemäß auch als Transformatorbleche verarbeitet werden, wobei mehrere der besagten weichmagnetischen Schichten zumindest mit den zwischen ihnen liegenden Trennschichten einen monolithischen Verbund bilden. Auch hier ist es besonders günstig, wenn genauso viele weichmagnetische Schichten wie Trennschichten hergestellt werden.
Die Herstellung der monolithischen Verbunde erfolgt erfindungsgemäß durch das eingangs genannte Verfahren zum Erzeugen eines Transformatorbleches oder eines Transformatorkernes, bei dem auf einen Grundkörper eine weichmagnetische Schicht aus einem elektrisch leitfähigen Kernmaterial mit einer amorphen und/oder nanokristallinen Gefügestruktur elektrochemisch abgeschieden wird. Auf der weichmagnetischen Schicht wird eine elektrisch isolierende Trennschicht erzeugt. Dann wird wiederholt eine Startschicht für ein erneutes elektrochemisches Beschichten dann eine weitere weichmagnetische Schicht nach dem bereits genannten Verfahrensschritt und eine weitere Trennschicht nach dem ebenfalls beschriebenen Verfahrensschritt hergestellt. Dies wird wiederholt, bis das Transformatorblech die vorgesehene Dicke erreicht hat. Ein Verbund wird also durch die Abfolge elektrochemischer Beschichtungsschritte hergestellt, so dass die Schichten aufeinander aufwachsen und so eine innige Verbindung entsteht. Daher kann bei der geforderten geringen Dicke der einzelnen weichmagnetischen Schichten durch Herstellung des Verbundes ein Transformatorblech hergestellt werden, welches für die weiteren Handhabungsschritte eine genügende Dicke aufweist. Hierdurch wird die Herstellung von Transformatorkernen selbst erleichtert, da sich das spröde Material leichter handhaben lässt, wenn es in größerer Dicke vorliegt. Außerdem wird das Schichten der als Verbund hergestellten Transformatorbleche vereinfacht, weil weniger dieser dickeren Transformatorbleche zum Transformatorkern geschichtet werden müssen.
Der Vorteil beim Einsatz von amorphen Transformatorkernen oder Transformatorblechen liegt darin, dass diese beim Einsatz im Transformator vorteilhaft nur geringe Verluste erzeugen. Dies liegt an der geringen Koerzitiv-Feldstärke HC, so dass Hystereseverluste beim Ummagnetisieren kleingehalten werden können. Bei einer amorphen Struktur der weichmagnetischen Schichten ist eine Ausbildung von Gefügekörnern nicht zu erkennen. Dies liegt daran, dass der glasbildende Legierungsanteil zu einer glasartigen Struktur führt, so dass die Ordnung der Atome stochastisch wie bei einer Flüssigkeit ist. Bei einer nanokristallinen Gefügestruktur sind einzelne Körner zu erkennen, deren Größe jedoch im Nanometerbereich liegt, d. h. kleiner als 100 nm, bevorzugt sogar kleiner als 10 nm ist. Der Übergang zwischen einer amorphen und nanokristallinen Struktur des Gefüges ist fließend, wobei auch kristalline Bereiche des Gefüges mit Abmessungen im Nanometerbereich innerhalb einer diese umgebenden amorphen Matrix vorliegen können.
Gemäß einer Ausführung der Erfindung ist vorgesehen, dass der Transformatorkern oder das Transformatorblech (oder die Bleche in einem geschichteten Transformatorkern) weichmagnetische Schichten aufweisen, deren Dicke zwischen 2 und 100 µm liegt. Hierdurch kann vorteilhaft bewirkt werden, dass die Trennschichten in der Schichtfolge rasch aufeinanderfolgen, wodurch sich vorteilhaft die Wirbelstromverluste im Transformatorenblech minimieren lassen. Die Ausbildung von Wirbelströmen wird nämlich durch die elektrisch isolierenden Trennschichten verhindert oder zumindest eingedämmt. Vorteilhaft können die Trennschichten eine Dicke von 0,1 bis 1 µm aufweisen. Diese Dicke reicht aus, um eine genügende elektrische Isolation zwischen den benachbarten weichmagnetischen Schichten zu erreichen. Die erzeugten monolithischen Schichtverbunde können vorteilhaft eine Dicke zwischen 0,2 und 0,6 mm aufweisen. Diese Dicke reicht aus, damit die Verbunde eine genügende Stabilität bei der Handhabung während des Schichtens des Transformatorkerns aus einzelnen Transformatorblechen aufweisen.Due to the relatively small thickness of the amorphous transformer sheets thus produced and their brittle behavior, the layering of such transformer sheets to transformer cores is associated with considerable expense. The object of the invention is therefore to provide transformer cores and transformer sheets and a method for their production, with which the production of transformer cores is comparatively facilitated.
This object is achieved with the transformer core specified above according to the invention in that a plurality of said soft magnetic layers and at least separating layers lying between them form a monolithic composite. A monolithic composite in the sense of the invention thus means an intimately interconnected layer sequence which has at least two soft magnetic layers and at least one separating layer therebetween. Of course, the composite may also have more than these three layers. Preferably as many separating layers as soft magnetic layers are arranged in the composite, so that several of these compounds can be stacked and in each case the uppermost separating layer of a composite with the lowest soft magnetic layer of the subsequent composite comes into contact. This is also at the transition between two connected ensures the electrical insulation of adjacent soft magnetic layers. According to the invention, the individual composites can also be processed as transformer sheets, with a plurality of said soft magnetic layers forming a monolithic composite at least with the separating layers lying between them. Again, it is particularly advantageous if just as many soft magnetic layers are produced as separating layers.
According to the invention, the monolithic composites are produced by the aforementioned method for producing a transformer sheet or a transformer core, in which a soft magnetic layer of an electrically conductive core material with an amorphous and / or nanocrystalline microstructure is electrochemically deposited on a base body. An electrically insulating separating layer is produced on the soft magnetic layer. Then a starting layer for a renewed electrochemical coating is then produced, then a further soft magnetic layer after the already mentioned method step and a further separating layer after the likewise described method step. This is repeated until the transformer sheet has reached the intended thickness. A composite is thus produced by the sequence of electrochemical coating steps, so that the layers grow on each other and thus creates an intimate connection. Therefore, in the required small thickness of the individual soft magnetic layers by producing the composite, a transformer sheet can be produced which has a sufficient thickness for the further handling steps. This facilitates the manufacture of transformer cores themselves, as the brittle material is easier to handle when it is in a greater thickness. In addition, the layers of as Composite manufactured transformer sheets simplified because fewer of these thicker transformer sheets must be laminated to the transformer core.
The advantage of using amorphous transformer cores or transformer plates is that they advantageously produce only small losses when used in the transformer. This is due to the low coercive field strength H C , so that hysteresis losses during remagnetization can be kept low. In the case of an amorphous structure of the soft-magnetic layers, it is not possible to detect formation of structure grains. This is because the glass-forming alloying portion results in a vitreous structure, so that the order of the atoms is stochastic like a liquid. In the case of a nanocrystalline microstructure, individual grains can be recognized whose size, however, is in the nanometer range, ie smaller than 100 nm, preferably even smaller than 10 nm. The transition between an amorphous and nanocrystalline structure of the microstructure is fluid, although crystalline regions of the microstructure with dimensions in the nanometer range may also be present within an amorphous matrix surrounding them.
According to one embodiment of the invention, it is provided that the transformer core or the transformer sheet (or the sheets in a layered transformer core) have soft magnetic layers whose thickness is between 2 and 100 μm. In this way, it can be advantageously effected that the separating layers follow one another rapidly in the sequence of layers, which advantageously results in the eddy current losses in the transformer sheet minimize. The formation of eddy currents is namely prevented by the electrically insulating separation layers or at least contained. The separating layers can advantageously have a thickness of 0.1 to 1 μm. This thickness is sufficient to achieve sufficient electrical insulation between the adjacent soft magnetic layers. The monolithic layer composites produced can advantageously have a thickness between 0.2 and 0.6 mm. This thickness is sufficient for the composites to have sufficient handling stability during the stacking of the transformer core from individual transformer laminations.
Gemäß einer anderen Ausgestaltung der Erfindung ist vorgesehen, dass bei dem Transformatorblech oder dem Transformatorkern die Trennschichten und/oder die zwischen den Trennschichten und den weichmagnetischen Schichten liegenden Startschichten für eine elektrochemische Abscheidung mit Nanopartikeln dotiert sind, die wie die betreffende Schicht, in die sie eingebaut sind, elektrisch leitend oder elektrisch isolierend sind. Die chemischen Elemente, aus denen die Nanopartikel bestehen, sind dabei so ausgewählt, dass ihr Einbau in die Matrix der betreffenden Schicht durch vom Schichtmaterial abweichende Atomradien mechanische Eigenspannungen in der betreffenden Schicht hervorruft. Die mechanischen Spannungen rufen vorteilhaft magnetische Anisotropien hervor. Diese Anisotropien können durch die Lage der Dotierung z. B. in Linien oder Streifenform beeinflusst werden. Die Lage der Dotierung kann dadurch beeinflusst werden, dass die Nanopartikel nur partiell in die Schicht eingebracht werden. Dies kann dadurch bewerkstelligt werden, dass die Nanopartikel nicht zusammen mit dem abzuscheidenden Metall abgeschieden werden (Dispersion mit dem Elektrolyt), sondern in einem gesonderten Beschichtungsschritt auf das Substrat aufgebracht werden. Dieser Beschichtungsschritt muss vor dem elektrochemischen Beschichten stattfinden und kann beispielsweise durch Kaltgasspritzen der verwendeten Partikel erfolgen.According to another embodiment of the invention, it is provided that in the transformer sheet or the transformer core, the separating layers and / or the starting layers lying between the separating layers and the soft magnetic layers are doped with nanoparticles for electrochemical deposition, like the relevant layer into which they are incorporated are electrically conductive or electrically insulating. The chemical elements that make up the nanoparticles are selected in such a way that their incorporation into the matrix of the respective layer causes mechanical residual stresses in the respective layer due to atomic radii deviating from the layer material. The mechanical stresses advantageously cause magnetic anisotropies. These anisotropies may be due to the location of the doping z. B. be influenced in lines or strip shape. The position of the doping can be influenced by introducing the nanoparticles only partially into the layer. This can be achieved by not depositing the nanoparticles together with the metal to be deposited (dispersion with the electrolyte), but instead applying them to the substrate in a separate coating step become. This coating step must take place before the electrochemical coating and can be done, for example, by cold gas spraying of the particles used.
Die erzeugten mechanischen Spannungen wirken sich positiv auf die Magnetisierungsverluste in dem Transformatorblech aus.
Dies kann modellhaft wie folgt beschrieben werden. Die mechanischen Spannungen in der magnetisch wirksamen Schicht führen zu einem Festhalten der sogenannten Bloch-Wände (hierbei handelt es sich um die Trennwände der Weiß-Bezirke). Durch die Immobilität der Bloch-Wände klappen die magnetischen Momente ganzer Weiß-Bezirke beim Anlegen eines äußeren Magnetfeldes auf einmal um. Dadurch ändert sich bei gleicher Energie der Primärspule eines Transformators das Magnetfeld des Werkstoffes des Transformatorkerns stärker. Durch die stärkere Änderung des Magnetfeldes wird eine größere Energie in der Sekundärspule des Transformators induziert. Damit verringert sich vorteilhaft der Magnetisierungsverlust und es erhöht sich die relative Permeabilitätszahl.The generated mechanical stresses have a positive effect on the magnetization losses in the transformer sheet.
This can be described as a model as follows. The mechanical stresses in the magnetically active layer lead to the retention of the so-called Bloch walls (these are the partitions of the white areas). Due to the immobility of the Bloch walls, the magnetic moments of entire white areas are reversed when an external magnetic field is applied. As a result, with the same energy of the primary coil of a transformer, the magnetic field of the material of the transformer core changes more. The greater change in the magnetic field induces greater energy in the secondary coil of the transformer. This advantageously reduces the loss of magnetization and increases the relative permeability number.
Gemäß einer anderen besonderen Ausgestaltung der Erfindung ist vorgesehen, dass bei dem Transformatorblech oder dem Transformatorkern als Startschicht für ein elektrochemisches Beschichten zwischen den Trennschichten und den weichmagnetischen Schichten ein elektrisch leitfähiges Material vorgesehen ist, dessen thermischer Ausdehnungskoeffizient sich um mindestens 10% und höchstens 30% von dem der weichmagnetischen Schicht unterscheidet. Das leitfähige Material ist notwendig, um auf der elektrisch isolierenden Trennschicht wieder eine Schicht aus dem weichmagnetischen Material abscheiden zu können. Da die Trennschicht selbst nicht als Elektrode für die Abscheidung von Schichtmaterial dienen kann, muss das Aufbringen der Startschicht beispielsweise mittels thermischen Spritzen oder PVD-Verfahren dem elektrochemischen Beschichtungsschritt vorgelagert sein.According to another particular embodiment of the invention, it is provided that in the transformer sheet or the transformer core as the starting layer for electrochemical coating between the separation layers and the soft magnetic layers, an electrically conductive material is provided whose thermal expansion coefficient is at least 10% and at most 30% of different from that of the soft magnetic layer. The conductive material is necessary in order to again be able to deposit a layer of the soft magnetic material on the electrically insulating separating layer. Since the separation layer itself can not serve as an electrode for the deposition of layer material, the application of the starting layer, for example by means of thermal Spraying or PVD process upstream of the electrochemical coating step.
Durch Vorsehen von Startschichten aus einem Material, dessen thermischer Ausdehungskoeffizient sich von denen der weichmagnetischen Schichten unterscheidet, lässt sich der bereits beschriebene Mechanismus einer Erzeugung von Eigenspannungen erreichen, wenn sich das Material des Transformatorkerns beim Betrieb erwärmt. Dies hängt damit zusammen, dass die Erwärmung beim Betrieb des Transformatorkerns größer ist, als bei dessen Herstellung beispielsweise mittels elektrochemischer Abscheidung und Kaltgasspritzen. Hierin ist ein weiterer Vorzug der Anwendung des Kaltgasspritzens zu sehen. Dies bedeutet, dass das Schichten des Transformatorkerns bzw. Transformatorbleches weitgehend ohne Eigenspannungen erfolgen kann und diese dann beim Betrieb des Transformators durch dessen Erwärmung entstehen. Nach dem oben bereits beschriebenen Mechanismus (Verwendung von Partikeln mit abweichenden Atomradien) lassen sich vorteilhaft die Magnetisierungsverluste verringern und die relative Permeabilitätszahl erhöht sich.By providing starting layers of a material whose thermal expansion coefficient differs from that of the soft magnetic layers, the already-described mechanism of generating residual stresses can be achieved as the material of the transformer core heats up during operation. This is due to the fact that the heating during operation of the transformer core is greater than during its production, for example by means of electrochemical deposition and cold gas spraying. Here is another benefit of using cold gas spraying. This means that the layers of the transformer core or transformer sheet can be largely without residual stresses and then arise during operation of the transformer by heating it. According to the mechanism already described above (use of particles with different atomic radii), the magnetization losses can advantageously be reduced and the relative permeability number increases.
Außerdem erhält man eine vorteilhafte Ausgestaltung der Erfindung, wenn die weichmagnetischen Schichten und/oder die zwischen den Trennschichten und den weichmagnetischen Schichten liegenden Startschichten für eine elektrochemische Abscheidung mit hartmagnetischen Partikeln dotiert sind, wobei deren Magnetfeld hinsichtlich seines Feldlinienverlaufes zumindest im Wesentlichen am geplanten Feldlinienverlauf im Transformatorkern oder Transformatorblech ausgerichtet ist. Hierdurch kann vorteilhaft im Betrieb des Transformators der geforderte Feldlinienverlauf des zu erzeugenden Magnetfeldes stabilisiert werden. Außerdem lassen sich die magnetischen Eigenschaften des entstehenden Kompositwerkstoffes zwischen denen einer amorphen Schicht und denen eines nanokristallinen Metalls einstellen. Dies gilt für die elektrochemisch abgeschiedene Matrix, in die die magnetischen Partikel eingelagert werden. Damit kann eine anschließende Wärmebehandlung des amorphen Materials, mit der normalerweise amorphe Gefügeordnungen in nanokristalline überführt werden können, eingespart werden. Die Einstellung der Gefügestruktur der Matrix zwischen amorph und nanokristallin ist mittels der eingebauten Partikel vorteilhaft sehr viel genauer möglich. Sie kann anschließend durch eine Wärmebehandlung sogar weiter in Richtung nanokristalliner Gefügeordnungen verschoben werden. An sich ist es aber Ziel des erfindungsgemäßen Einbaus der Nanopartikel, dass eine anwendungsspezifisch optimierte Kombination mit dem Matrixwerkstoff zu einem Kompositwerkstoff mit kleinen Hystereseverlusten und hoher Sättigungsmagnetisierung entsteht. Dies führt bei gleicher Größe des Transformatorkerns zur Möglichkeit der Übertragung einer größeren Energie bzw. bei Übertragung der gleichen Energiemenge zu Transformatorkernen, die eine geringere Baugröße aufweisen. Vorteilhaft ist damit ein effektiverer Materialeinsatz bzw. ein geringerer Aufwand an Kühlung erforderlich.
Die oben angegebene Aufgabe wird außerdem durch ein Verfahren zum Erzeugen eines Transformatorbleches oder eines aus einem Paket von Transformatorblechen bestehenden Transformatorkernes gelöst, bei dem zur Herstellung des Transformatorbleches bzw. der Transformatorbleche auf einem Grundkörper eine weichmagnetische Schicht aus einem elektrisch leitfähigen Kernmaterial mit einer amorphen und/oder nanokristallinen Gefügestruktur elektrochemisch abgeschieden wird. Auf dieser weichmagnetischen Schicht wird dann eine elektrisch isolierende Trennschicht erzeugt. Dann wird wiederholt eine Startschicht für das elektrochemische Beschichten, eine weitere weichmagnetische Schicht nach dem bereits erwähnten Verfahrensschritt und eine weitere Trennschicht nach dem bereits erwähnten Verfahrensschritt erzeugt. Dies wird wiederholt, bis das Transformatorblech die vorgesehen Dicke erreicht hat. Dieses Verfahren dient vorteilhaft zur Herstellung von Transformatorblechen oder Transformatorkernen in der oben bereits beschriebenen Weise, welche die bereits beschriebenen Vorteile aufweisen. Das elektrochemische Herstellungsverfahren ermöglicht vorteilhaft die Herstellung extrem dünner Schichten, so dass die weichmagnetischen Schichten und die Trennschichten eine wirksame Verhinderung der Wirbelstromverluste gewährleisten. Außerdem sind die erfindungsgemäß hergestellten Transformatorbleche leichter zu verarbeiten, da die erzeugten Dicken der Bleche unabhängig von der geringen Dicke der einzelnen weichmagnetischen Schichten gewählt werden können. Die jeweiligen Startschichten für das elektrochemische Beschichten sind dabei erforderlich, da die Trennschichten aufgrund ihrer Wirkung im Transformatorblech (Verhinderung von Wirbelstromverlusten) elektrisch isolierend sein müssen. Diese eignen sich daher aber auch nicht für einen weiteren elektrochemischen Abscheideschritt. Dieser kann nur erfolgen, wenn auf den elektrisch isolierenden Trennschichten wieder eine Startschicht für das elektrochemische Beschichten aufgebracht wird.
Gemäß einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass das Beschichten mit der weichmagnetischen Schicht durch ein Reverse Pulse Plating erfolgt. Dieses an sich bekannte elektrochemische Abscheideverfahren beinhaltet das Einlegen von gepulsten Abscheideströmen für die zu beschichteten Werkstücke. Vorzugsweise wechseln die Strompulse abwechselnd von kathodischen zu anodischen Strömen, wobei die kathodische Abscheidung verglichen mit der anodischen Auflösung an dem Werkstück überwiegen muss, um zu einer Abscheidung zu kommen. Das Reverse Pulse Plating eignet sich insbesondere vorteilhaft zur Abscheidung gleichmäßiger Schichtdicken.In addition, one obtains an advantageous embodiment of the invention, when the soft magnetic layers and / or lying between the separation layers and the soft magnetic layers start layers for electrochemical deposition are doped with hard magnetic particles, wherein the magnetic field with respect to its field line at least substantially on the planned field line course in the transformer core or transformer sheet is aligned. This can be advantageously stabilized in the operation of the transformer, the required field line profile of the magnetic field to be generated. In addition, the magnetic properties of the resulting composite material between those of an amorphous layer and those of a nanocrystalline Set metal. This applies to the electrochemically deposited matrix in which the magnetic particles are incorporated. Thus, a subsequent heat treatment of the amorphous material with which normally amorphous microstructural orders can be converted into nanocrystalline can be saved. The adjustment of the microstructure of the matrix between amorphous and nanocrystalline is advantageously much more accurately possible by means of the incorporated particles. It can then be further displaced by a heat treatment in the direction of nanocrystalline structural orders. In itself, however, it is the aim of the incorporation of the nanoparticles according to the invention that an application-specific optimized combination with the matrix material results in a composite material with small hysteresis losses and high saturation magnetization. This results in the same size of the transformer core to the possibility of transmitting a larger energy or when transmitting the same amount of energy transformer cores, which have a smaller size. Advantageously, a more effective use of material or a lesser amount of cooling is required.
The object stated above is also achieved by a method for producing a transformer sheet or a transformer core consisting of a package of transformer laminations, in which a soft magnetic layer of an electrically conductive core material with an amorphous and / or transformer sheet is produced on a base body with an amorphous and / or or nanocrystalline microstructure is deposited electrochemically. An electrically insulating separating layer is then produced on this soft magnetic layer. Then, a starting layer for the electrochemical coating, a further soft magnetic layer after the already mentioned method step and a further separating layer after the already mentioned method step are produced repeatedly. This is repeated until the transformer sheet has the intended thickness has reached. This method is advantageous for the production of transformer plates or transformer cores in the manner already described above, which have the advantages already described. The electrochemical manufacturing method advantageously allows the production of extremely thin layers, so that the soft magnetic layers and the separating layers ensure effective prevention of eddy current losses. In addition, the transformer sheets produced according to the invention are easier to process, since the thicknesses of the sheets produced can be selected independently of the small thickness of the individual soft magnetic layers. The respective starting layers for the electrochemical coating are required because the separation layers due to their effect in the transformer plate (prevention of eddy current losses) must be electrically insulating. However, these are therefore not suitable for a further electrochemical deposition step. This can only take place if a starting layer for the electrochemical coating is again applied to the electrically insulating separating layers.
According to an advantageous embodiment of the method according to the invention it is provided that the coating with the soft magnetic layer by a reverse pulse plating takes place. This per se known electrochemical deposition method involves the insertion of pulsed Abscheideströmen for the coated workpieces. Preferably, the current pulses alternately change from cathodic to anodic currents, wherein the cathodic deposition must predominate on the workpiece as compared to the anodic dissolution to come to a deposition. The reverse pulse plating is particularly advantageous for the deposition of uniform layer thicknesses.
Vorteilhaft wird als weichmagnetische Schicht mindestens ein weichmagnetisches Element, insbesondere eines oder mehrere der Elemente Fe, Si, Ni oder Co, und mindestens ein glasbildendes Element, insbesondere P und/oder B, gemeinsam abgeschieden. Die weichmagnetischen Elemente dienen dabei vorteilhaft der Erzeugung einer weichmagnetischen Schicht, wobei die Glasbildner dazugegeben werden, um die Ausbildung einer amorphen Gefügestruktur während des elektrochemischen Abscheidens zu gewährleisten.Advantageously, at least one soft magnetic element, in particular one or more of the elements Fe, Si, Ni or Co, and at least one glass-forming element, in particular P and / or B, are jointly deposited as a soft magnetic layer. The soft magnetic elements serve advantageously to produce a soft magnetic layer, wherein the glass formers are added to ensure the formation of an amorphous microstructure during the electrochemical deposition.
Eine Ausbildung des erfindungsgemäßen Verfahrens sieht vor, dass jeweils hergestellte Schichten genau dem Längsschnitt des herzustellenden Transformatorkerns mit parallel zum Schichtverlauf ausgerichteter Schnittebene entsprechen. Mit anderen Worten verläuft die Ausrichtung der Schichten genau in der Richtung, wie üblicherweise Transformatorenbleche auch geschichtet werden. Die Schichtebenen liegen also derart, dass die beiden Mittelachsen der Transformatorwicklungen in einer dieser Schichtebenen liegen. Dies ist vorteilhaft, weil die Ausdehnung des Transformatorkerns quer zu diesen Schichtebenen am geringsten ist und deswegen der Transformatorkern oder entsprechend die Transformatorbleche mit einer minimalen Anzahl von Einzelschichten hergestellt werden können.An embodiment of the method according to the invention provides that the layers produced in each case correspond exactly to the longitudinal section of the transformer core to be produced with a cutting plane aligned parallel to the course of the layer. In other words, the orientation of the layers is exactly in the direction that is usually used to laminate transformer sheets. The layer planes are thus such that the two center axes of the transformer windings lie in one of these layer planes. This is advantageous because the expansion of the transformer core is the lowest across these layer planes and therefore the transformer core or, correspondingly, the transformer plates can be made with a minimum number of individual layers.
Vorteilhaft ist es, wenn das Abscheiden der Startschicht durch Verdüsen von Pulver, durch thermisches Spritzen (insbesondere Kaltgasspritzen) oder durch PVD-Beschichten eines elektrisch leitfähigen Materials erfolgt. Das elektrisch leitfähige Material wird mit anderen Worten durch Verdüsen, thermisches Spritzen oder PVD-Beschichten auf die vorher aufgebrachte elektrisch isolierende Trennschicht aufgetragen. Dieser Beschichtungsschritt kann so lange durchgeführt werden, bis die Startschicht die erforderliche Dicke für ein anschließendes elektrochemisches Beschichten aufweist. Dies ist insbesondere durch das thermische Spritzen erreichbar, da dieses Verfahren vergleichsweise hohe Abscheideraten ermöglicht. Bevorzugt kann das Kaltgasspritzen angewendet werden, weil dies weitgehend ohne eine thermische Belastung der abzuscheidenden Partikel der Startschicht und des Substrates von Statten geht. Eine thermische Belastung des Substrates sollte vermieden werden, wenn die amorphe Gefügestruktur der weichmagnetischen Schichten vollständig erhalten bleiben soll. Thermisches Spritzen wie beispielsweise das Plasmaspritzen kann aber auch eingesetzt werden, um durch die auf diesem Wege eingebrachte thermische Energie gezielt eine Umwandlung des abgeschiedenen amorphen Gefüges in ein nanokristallines Gefüge zu erreichen.It is advantageous if the deposition of the starting layer takes place by atomization of powder, by thermal spraying (in particular cold gas spraying) or by PVD coating of an electrically conductive material. In other words, the electrically conductive material is applied to the previously applied electrically insulating release layer by atomizing, thermal spraying or PVD coating. This coating step can be carried out until the starting layer has the required thickness for a subsequent electrochemical coating. This is in particular achievable by the thermal spraying, since this method allows comparatively high deposition rates. Preferably, the cold gas spraying can be used, because this goes largely without a thermal load of the deposited particles of the starting layer and the substrate of Statte. A thermal load of the substrate should be avoided if the amorphous microstructure of the soft magnetic layers is to be completely retained. However, thermal spraying such as plasma spraying can also be used to achieve a targeted transformation of the deposited amorphous structure into a nanocrystalline structure by the thermal energy introduced in this way.
Vorteilhaft kann aber das Abscheiden der Startschicht auch in zwei Schritten erfolgen. Nach dem bereits beschriebenen Verdüsen, thermischen Spritzen oder PVD-Beschichten mit dem Material der Startschicht und mit einer Menge, die für ein galvanisches Abscheiden noch nicht ausreicht, kann als Zwischenschritt ein elektrochemisches Abscheiden des elektrisch leitfähigen Materials mit einem stromlosen Verfahren erfolgen, bis die Startschicht die erforderliche Dicke erreicht hat. Für ein stromloses Abscheiden sind nämlich bereits geringe Schichtdicken bzw. noch nicht geschlossene Schichten auf der elektrisch isolierenden Trennschicht ausreichend.Advantageously, however, the deposition of the starting layer can also take place in two steps. After the above-described atomization, thermal spraying or PVD coating with the material of the starting layer and with an amount that is not sufficient for a galvanic deposition, can be carried out as an intermediate step electrochemical deposition of the electrically conductive material by an electroless method until the starting layer has reached the required thickness. In fact, even low layer thicknesses or not yet closed layers on the electrically insulating separating layer are sufficient for currentless deposition.
Besonders vorteilhaft ist es, wenn das elektrisch leitfähige Material, mit dem die Startschicht erzeugt wird, nur chemische Elemente der weichmagnetischen Schicht enthält. Dies hat den Vorteil, dass die Startschicht nach Fertigstellung der darüber liegenden weichmagnetischen Schicht sozusagen mit dieser verschmilzt und als gesonderte Schicht nicht mehr in Erscheinung tritt. Hierdurch wird Einfluss auf das herzustellende Produkt des Transformatorkerns oder des Transformatorbleches ausgeübt.It is particularly advantageous if the electrically conductive material with which the starting layer is produced contains only chemical elements of the soft magnetic layer. This has the advantage that the starting layer after completion of the overlying soft magnetic layer so to speak merges with this and no longer appears as a separate layer in appearance. This will influence the product to be produced Product of transformer core or transformer sheet.
Eine besondere Ausgestaltung des erfindungsgemäßen Verfahrens wird erhalten, wenn ein Grundkörper aus einem weichmagnetischen, elektrisch leitfähigen Material, insbesondere mit einer amorphen und/oder nanokristallinen Gefügestruktur verwendet wird. Der Grundkörper, der für ein elektrochemisches Beschichten immer erforderlich ist, um ein Substrat für das Beschichten zur Verfügung zu stellen, kann gemäß dieser vorteilhaften Ausgestaltung in gleicher Weise wie die anschließend hergestellten weichmagnetischen Schichten die Funktion des Transformatorbleches oder des Transformatorkernes unterstützen. Insbesondere, wenn der Grundkörper aus einem amorphen und/oder nanokristallinen Gefüge besteht, lässt sich eine mit den weichmagnetischen Schichten vergleichbare Performance erreichen. Ähnliches gilt auch für weichmagnetische Nanopartikel, die in die weichmagnetischen Schichten und/oder Startschichten eingebaut werden können, um dort die Gefügestruktur in der bereits beschriebenen Weise zu beeinflussen. Die Gefügestruktur kann dahingehend beeinflusst werden, dass ein bestimmtes Verhältnis der Anteile an amorphen und/oder nanokristallinen Gefügestrukturen eingestellt werden kann. Hierdurch entfällt vorteilhaft eine Nachbehandlung der Schichten zur Einstellung des Gefüges (Wärmebehandlung), die jedoch zur Korrektur der Eigenschaften der hergestellten Schichten optional durchgeführt werden kann. Der Einbau von weichmagnetischen Nanopartikeln kann vorteilhaft auch dadurch befördert werden, dass diese in einem Magnetfeld abgeschieden werden bzw. das Substrat während der Abscheidung magnetisiert wird. Hierdurch lassen sich die Einbauraten an Nanopartikeln beeinflussen, wobei zusätzlich zur Konzentration der einzubauenden Nanopartikel in dem Elektrolyt ein Parameter zur Einstellung der Partikelkonzentration zur Verfügung steht. Dieser kann insbesondere dafür genutzt werden, um eine Einbaurate zu höheren Werten zu verschieben, da die Konzentration an Nanopartikeln, die in dem Elektrolyten dispergiert werden kann, begrenzt ist (ansonsten fallen die Nanopartikel aus der Suspension wieder aus).A particular embodiment of the method according to the invention is obtained when a base body made of a soft magnetic, electrically conductive material, in particular with an amorphous and / or nanocrystalline microstructure is used. The base body, which is always required for an electrochemical coating to provide a substrate for coating, can according to this advantageous embodiment support the function of the transformer sheet or of the transformer core in the same way as the subsequently produced soft magnetic layers. In particular, if the base body consists of an amorphous and / or nanocrystalline structure, a performance comparable to the soft magnetic layers can be achieved. The same applies to soft magnetic nanoparticles which can be incorporated into the soft magnetic layers and / or starter layers in order to influence the microstructure there in the manner already described. The microstructure can be influenced in such a way that a specific ratio of the proportions of amorphous and / or nanocrystalline microstructures can be set. This advantageously eliminates post-treatment of the layers for adjusting the microstructure (heat treatment), which, however, can optionally be carried out to correct the properties of the layers produced. The incorporation of soft magnetic nanoparticles can advantageously also be promoted in that they are deposited in a magnetic field or the substrate is magnetized during the deposition. In this way, the incorporation rates of nanoparticles can be influenced, wherein in addition to the concentration of the nanoparticles to be incorporated in the electrolyte, a parameter for adjusting the particle concentration available stands. This can be used in particular to shift a rate of incorporation to higher values, since the concentration of nanoparticles that can be dispersed in the electrolyte is limited (otherwise the nanoparticles precipitate out of the suspension again).
Alternativ kann auch vorteilhaft vorgesehen werden, dass in die weichmagnetischen Schichten und/oder die Startschichten hartmagnetische Partikel eingebaut werden, wobei während des Abscheideprozesses die sich ausbildende Schicht einem Magnetfeld ausgesetzt wird, dessen Feldlinienverlauf zumindest im Wesentlichen dem geplanten Feldlinienverlauf im herzustellenden Transformatorkern entspricht. Die Vorteile einer so hergestellten weichmagnetischen Schicht bzw. so hergestellter Transformatorbleche oder Transformatorkerne ist bereits erläutert worden. Mittels des Abscheideprozesses werden die hartmagnetischen Partikel, deren Magnetisierung sich beim Betrieb des Transformators nicht ändert, in einer bestimmten Ausrichtung in der sie umgebenden Matrix des Gefüges festgelegt, weswegen das durch sie erzeugte Magnetfeld im Betrieb des Transformators das Magnetfeld aufgrund der im Transformator ablaufenden Prozesse überlagert. Hierdurch wird das Magnetfeld im Transformator stabilisiert und Abweichungen vom gewünschten Feldlinienverlauf werden abgeschwächt. Weiterhin ist es vorteilhaft möglich, eine gezielte Korrektur des beim Betrieb entstehenden Magnetfeldes im Transformator vorzunehmen. Um dies zu bewerkstelligen, muss für das Magnetfeld, welches während des Abscheideprozesses der sich ausbildenden Schichten eingesetzt wird, gezielt mit Abweichungen versehen werden, die eine Ausrichtung der hartmagnetischen Partikel mit gewollten Abweichungen von dem geplanten Feldlinienverlauf im herzustellenden Transformatorkern erzeugt. Hierdurch wird auch im späteren Betrieb des Transformators durch die eingebauten hartmagnetischen Partikel ein Magnetfeld mit abweichenden Feldlinienverlauf im Vergleich zum geplanten Feldlinienverlauf im herzustellenden Transformatorkern erzeugt. Das abweichende Magnetfeld korrigiert dann das im Transformatorkern tatsächlich entstehende Magnetfeld in der gewünschten Weise, womit vorteilhaft zum Beispiel ungewollte Abweichungen des tatsächlich erzeugten Feldlinienverlaufs eines Transformators vom an sich gewünschten Feldlinienverlauf korrigiert werden können.Alternatively, it can also be advantageously provided that hard-magnetic particles are incorporated into the soft-magnetic layers and / or the starting layers, during the deposition process the forming layer being exposed to a magnetic field whose field line profile at least substantially corresponds to the planned field line profile in the transformer core to be produced. The advantages of a soft magnetic layer or so produced transformer sheets or transformer cores thus produced has already been explained. By means of the deposition process, the hard magnetic particles, the magnetization of which does not change during operation of the transformer, are fixed in a certain orientation in the surrounding matrix of the structure, for which reason the magnetic field generated by them during operation of the transformer superimposes the magnetic field due to the processes taking place in the transformer , As a result, the magnetic field in the transformer is stabilized and deviations from the desired field line course are attenuated. Furthermore, it is advantageously possible to carry out a targeted correction of the magnetic field generated during operation in the transformer. In order to accomplish this, deviations must be intentionally provided for the magnetic field which is used during the deposition process of the forming layers, which produces an orientation of the hard magnetic particles with intended deviations from the planned field line course in the transformer core to be produced. As a result, a magnetic field with deviating in the later operation of the transformer by the built-hard magnetic particles Field line history compared to the planned field line history produced in the transformer core. The deviating magnetic field then corrects the magnetic field actually produced in the transformer core in the desired manner, whereby, for example, unwanted deviations of the actually generated field line profile of a transformer from the desired field line course can be corrected.
Weiterhin kann bei dem erfindungsgemäßen Verfahren vorteilhaft vorgesehen werden, dass in die Startschichten und/oder in die Trennschichten Nanopartikel eingebaut werden, die wie die betreffende Schicht, in die sie eingebaut werden, elektrisch leitend oder elektrisch isolierend sind. Die chemischen Elemente der Nanopartikel werden so ausgewählt, dass ihr Einbau in die Matrix der betreffenden Schicht durch vom Schichtmaterial abweichende Atomradien zu mechanischen Eigenspannungen in der betreffenden Schicht führen. Mit dieser Ausgestaltung des Verfahrens lassen sich daher in dem herzustellenden Produkt Eigenspannungen erzeugen, deren positive Auswirkungen (Verringerung des Magnetisierungsverlustes und Erhöhung der Permeabilitätszahl) vorstehend bereits beschrieben wurde. Die positive Wirkung ist auf die Immobilisierung der der Bloch-Wände zurückzuführen. Genauso kann vorteilhaft für die Startschichten ein elektrisch leitfähiges Material abgeschieden werden, dessen thermischer Ausdehnungskoeffizient sich um mindestens 10 und höchstens 30 % von dem der weichmagnetischen Schichten unterscheidet. Auch hierdurch lassen sich im Betrieb wegen der Erwärmung des Transformatorkerns Eigenspannungen erzeugen, die das magnetische Verhalten des Transformators in der bereits beschriebenen Weise positiv beeinflussen.Furthermore, it can be advantageously provided in the method according to the invention that nanoparticles are incorporated in the starting layers and / or in the separating layers, which, like the relevant layer in which they are incorporated, are electrically conductive or electrically insulating. The chemical elements of the nanoparticles are selected such that their incorporation into the matrix of the respective layer by means of atomic radii deviating from the layer material lead to mechanical residual stresses in the relevant layer. With this embodiment of the method, it is therefore possible to generate residual stresses in the product to be produced, whose positive effects (reduction of the magnetization loss and increase in the permeability number) have already been described above. The positive effect is due to the immobilization of the Bloch walls. In the same way, an electrically conductive material whose thermal expansion coefficient differs by at least 10 and at most 30% from that of the soft magnetic layers can advantageously be deposited for the starting layers. This also makes it possible to generate residual stresses during operation due to the heating of the transformer core, which positively influence the magnetic behavior of the transformer in the manner already described.
Nachfolgend werden mögliche Parameter für die Herstellung der Transformatorkerne oder Transformatorbleche mittels elektrochemischen Beschichtens beispielhaft erläutert. Die Herstellung eines Transformatorbleches erfolgt danach durch eine Abfolge der beschriebenen Grundschritte gleichzeitig auf beiden Seiten, um die erforderliche Beschichtungszeit zu halbieren. Der Grundkörper wird zunächst mit einer elektrischen Isolationsschicht durch Phosphatieren hergestellt. Je nach Material des Grundkörpers entsteht beispielsweise Eisenphosphat oder Zinkphosphat. In einem nächsten Schritt wird auf der elektrisch isolierenden Trennschicht aus Phosphat eine Startschicht für eine nachfolgende elektrochemische Abscheidung aufgebracht. Dies kann durch einen ersten Zwischenschritt erfolgen, bei dem leitfähiges Eisen oder Nickel in Form von Pulvern durch Verdüsen oder Kaltgasspritzen aufgebracht wird. Alternativ kann das Metall auch durch Sputtern oder Aufdampfen aufgebracht werden, was sich vor allen Dingen bei kleinen Werkstücken lohnt. In einem zweiten Schritt wird Eisen, Eisenphosphor, Nickel oder eine Eisennickellegierung elektrochemisch mittels stromloser Abscheidung abgeschieden, bis die so gebildete Schicht eine genügende Dicke für einen nachfolgenden galvanischen Beschichtungsschritt (d. h. unter Anlegen eines Abscheidestromes) erhalten hat. Dann erfolgt die galvanische Abscheidung einer amorphen Eisenphosphorlegierung oder einer Nickeleisenlegierung, welche die weichmagnetische Schicht bildet. Hierbei kann im Einzelnen folgendermaßen vorgegangen werden.In the following, possible parameters for the production of the transformer cores or transformer plates by means of electrochemical coating will be explained by way of example. The production of a transformer sheet is then carried out by a sequence of the described basic steps simultaneously on both sides in order to halve the required coating time. The basic body is first produced by phosphating with an electrical insulation layer. Depending on the material of the base body, for example, iron phosphate or zinc phosphate is formed. In a next step, a starting layer is applied to the electrically insulating separating layer of phosphate for a subsequent electrochemical deposition. This can be done by a first intermediate step, in which conductive iron or nickel is applied in the form of powders by atomization or cold gas spraying. Alternatively, the metal can also be applied by sputtering or vapor deposition, which is worthwhile, above all, for small workpieces. In a second step, iron, iron phosphorous, nickel or an iron-nickel alloy is electrodeposited by electroless deposition until the layer so formed has received sufficient thickness for a subsequent electrodeposition step (i.e., applying a deposition current). Then, the galvanic deposition of an amorphous iron-phosphorus alloy or a nickel-iron alloy, which forms the soft magnetic layer. This can be done in detail as follows.
Als Grundkörper wird eine entfettete, gereinigte und aktivierte Metallfolie von beispielsweise 20 µm Dicke verwendet, die aus Eisen, Nickel oder einer Nickeleisenlegierung besteht. Diese wird beidseitig durch Tauchen, Spritzen oder elektrochemisch phosphatiert. Die Phospatierung erfolgt mit einer eisenphosphat- oder zinkphosphathaltigen Lösung und anschließender Trocknung bei unter 100°C. Die hierzu notwendigen Chemikalien können beispielsweise bei der Firma SurTec bezogen werden.The base body used is a degreased, cleaned and activated metal foil of, for example, 20 μm thick, which consists of iron, nickel or a nickel-iron alloy. This is phosphated on both sides by dipping, spraying or electrochemical. The phosphating is carried out with an iron phosphate or zinc phosphate-containing solution and subsequent Drying at below 100 ° C. The chemicals required for this purpose can be obtained, for example, from SurTec.
Die Phosphatierung kann auch kathodisch unter Verwendung eines Elektrolyten erfolgen, der eine oder mehrere der folgenden Ionenarten enthalten kann: Zn2+, Ca+, PO4 3+, NO3 - oder ClO3 - oder F-. Diese elektrochemische Abscheidung kann bei einer Temperatur von 25°C einem pH-Wert zwischen 1 und 4 und einer Stromdichte zwischen 5 und 250 mA/cm2 erfolgen. Durch Variation der Stromdichte und der anderen üblichen Abscheideparameter können unterschiedliche Schichtdicken bis zu 100 µm (bevorzugt 1 bis 20 µm) erzeugt werden. Durch ein Pulse Plating kann die Schicht auch mit Poren erzeugt werden, die in einem nächsten Schritt einer Aufnahme von Nickel-, Eisen- oder Nickeleisenpartikeln dienen.The phosphating may also be cathodic using an electrolyte which may contain one or more of the following types of ions: Zn 2+ , Ca + , PO 4 3+ , NO 3 - or ClO 3 - or F - . This electrochemical deposition can be carried out at a temperature of 25 ° C a pH between 1 and 4 and a current density between 5 and 250 mA / cm 2 . By varying the current density and the other conventional deposition parameters, it is possible to produce different layer thicknesses of up to 100 μm (preferably 1 to 20 μm). By means of a pulse plating, the layer can also be produced with pores, which in a next step serve to take up nickel, iron or nickel iron particles.
Der Schritt der Beschichtung mit den genannten Partikeln wird bevorzugt durch Verdüsen oder durch Kaltgasspritzen bewerkstelligt. Dies erfolgt ihr Einbau durch eine stromlose Abscheidung einer Eisenphosphorlegierung oder Nickel mit einer Schichtdicke von bevorzugt 0,3 µm. Der verwendete Elektrolyt enthält Eisensulfat, Natriumhypophosphit, Kaliumnatriumtartrat, Borsäure und in geringen Mengen Zuckersäure. Mit 15-prozentiger Natronlauge wird ein pH-Wert von 8 bis 11,5 eingestellt, wobei der stromlose Abscheideprozess bei 50 bis 85°C erfolgt. Bei 80°C und einem pH-Wert von 10,5 erhält man eine Eisenphosphorlegierung mit 94,5 Gew.-% Eisen und 5,5 Gew.-% Phosphor.The step of coating with said particles is preferably accomplished by atomization or by cold gas spraying. This is done by an electroless deposition of an iron phosphorus alloy or nickel with a layer thickness of preferably 0.3 microns. The electrolyte used contains iron sulfate, sodium hypophosphite, potassium sodium tartrate, boric acid and small amounts of sugar acid. A pH of 8 to 11.5 is set with 15% sodium hydroxide solution, the electroless deposition process being carried out at 50 to 85 ° C. At 80 ° C and a pH of 10.5 to obtain an iron phosphorus alloy with 94.5 wt .-% iron and 5.5 wt .-% phosphorus.
Für eine Nickelabscheidung kann ein Elektrolyt verwendet werden, der Nickelsulfat, Natriumglykolat und Natriumhypophosphit enthält. Mit Natronlauge wird der pH-Wert auf 4 bis 5 eingestellt. Die stromlose Abscheidung wird bei einer Badtemperatur zwischen 90 und 95°C durchgeführt.For nickel deposition, an electrolyte containing nickel sulfate, sodium glycolate, and sodium hypophosphite may be used. With sodium hydroxide solution, the pH to 4 set to 5. The electroless deposition is carried out at a bath temperature between 90 and 95 ° C.
Sobald eine geschlossene Startschicht vorliegt, kann nun das elektrochemische Abscheiden der amorphen Eisen-Phosphor- oder Nickel-Eisenlegierung erfolgen. Diese elektrochemische Abscheidung der weichmagnetischen Schicht wird mit Abscheidebädern durchgeführt, die aus wässrigen Lösungen von Eisen(II)Salzen bestehen. Es kann beispielsweise Eisen(II)chlorid, Eisen(II)sulfat, Eisen(II)fluoroborat oder Eisen(II)sulfamat verwendet werden. Als Phosphordonator wird ein Hypophosphit oder Orthophosphit eingesetzt (beispielsweise Natriumhypophosphit oder Natriumorthophosphit). Hierdurch entstehen die gewünschten Eisenphosphorlegierungen in der Schicht. Bei dem galvanischen Abscheiden können lösliche Anoden aus Eisen, vorzugsweise aus reinem Eisen, oder unlösliche Anoden, beispielsweise aus platiniertem Titan, verwendet werden. Die Abscheidung erfolgt bei Temperaturen zwischen 40 und 70°C. Die gewählte Stromdichte liegt bei 10 bis 100 A/dm2. Der Abscheideprozess kann nach einem Gleichstromverfahren oder besonders vorteilhaft durch ein Reverse Pulse Plating durchgeführt werden.As soon as a closed starting layer is present, the electrochemical deposition of the amorphous iron-phosphorus or nickel-iron alloy can now take place. This electrochemical deposition of the soft magnetic layer is carried out with deposition baths consisting of aqueous solutions of iron (II) salts. For example, iron (II) chloride, iron (II) sulfate, iron (II) fluoroborate or iron (II) sulfamate can be used. As the phosphorus donor, a hypophosphite or orthophosphite is used (for example, sodium hypophosphite or sodium orthophosphite). This produces the desired iron-phosphorus alloys in the layer. In the electrodeposition, soluble anodes of iron, preferably of pure iron, or insoluble anodes, for example of platinized titanium, may be used. The deposition takes place at temperatures between 40 and 70 ° C. The selected current density is 10 to 100 A / dm 2 . The deposition process can be carried out by a DC process or particularly advantageously by reverse pulse plating.
Soll eine Nickel-Eisen-Abscheidung erfolgen, kann ein Elektrolyt, bestehend beispielsweise aus Nickelchlorid, Eisenchlorid, Natriumchlorid, Natriumsacharin, Natriumlaurylsulfat und Borsäure verwendet werden. Die Abscheidung erfolgt bei 30°C und einem pH-Wert von 3 mit einer Stromdichte von 0,5 bis 8 A/dm2. Als Anoden kommen Nickel- oder Eisenanoden zum Einsatz. Nach Erreichen der erforderlichen Schichtdicken (z. B. 0,23 mm) wird der oben bereits beschriebene Verfahrensschritt der Phosphatierung wiederholt.When nickel-iron deposition is to be carried out, an electrolyte consisting of, for example, nickel chloride, iron chloride, sodium chloride, sodium saccharin, sodium lauryl sulfate and boric acid may be used. The deposition takes place at 30 ° C. and a pH of 3 with a current density of 0.5 to 8 A / dm 2 . The anodes used are nickel or iron anodes. After reaching the required layer thicknesses (eg 0.23 mm), the phosphating process step already described above is repeated.
Werden mit dem oben beschriebenen Verfahren Transformatorbleche hergestellt, so kann die erforderliche Form auf verschiedene Weise erreicht werden. Entweder wird das Transformatorblech als Halbzeug großflächig hergestellt, wobei durch Trennen des Transformatorbleches (beispielsweise Ausstanzen) die bekannten Formen für die Transformatorbleche in Form eines E und I hergestellt werden. Es ist aber auch möglich, bereits den Grundkörper in die erforderliche Form des Transformatorbleches zu bringen und anschließend zu beschichten, wobei das Transformatorblech dann gleich in seiner erforderlichen Gestalt entsteht. Um hierbei die Maßhaltigkeit zu garantieren, ist insbesondere eine Beschichtung nach dem Reverse Pulse Plating besonders vorteilhaft. Auf diesem Weg können Transformatorbleche in allen gebräuchlichen Konfigurationen (M, EI, UI und LL) wie auch Blechbänder zur Herstellung von Schnittbandkernen oder auch ringförmige Transformatorbleche zur direkten spaltlosen Herstellung von Ringkernen hergestellt werden. Ausgewählte Zwischenprodukte des oben beispielhaft beschriebenen Verfahrens sind in den
Weitere Einzelheiten der Erfindung gehen nachfolgend aus der Zeichnung hervor, wobei in den Figuren gleiche oder sich entsprechende Zeichnungselemente jeweils mit den gleichen Bezugszeichen versehen sind und nur insoweit mehrfach erläutert werden, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen
- Figur 1
- eine Anordnung für das elektrochemische Beschichten eines Transformatorbleches als Ausführungsbeispiel des erfindungsgemäßen Verfahrens,
- Figur 2
- den Stromverlauf eines Reverse Pulse Platings als Ausführungsbeispiels des erfindungsgemäßen Verfahrens,
- Figur 3
- den Prozess der Schichtentstehung bei einem Verfahren gemäß
Figur 2 in einem Ausschnitt des Bauteils, - Figur 4
- bis 7 verschiedene Zustände bei der Entstehung von Ausführungsbeispielen des erfindungsgemäßen Transformatorbleches als Schnitt bei der Durchführung eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens und
- Figur 8 und 9
- die Ausschnitte VIII und IX aus den
Figuren 6 und 7 .
- FIG. 1
- an arrangement for the electrochemical coating of a transformer sheet as an embodiment of the method according to the invention,
- FIG. 2
- the current profile of a reverse pulse plate as an embodiment of the method according to the invention,
- FIG. 3
- the process of layer formation in a method according to
FIG. 2 in a section of the component, - FIG. 4
- to 7 different states in the formation of embodiments of the transformer sheet according to the invention as a section in carrying out an embodiment of the method according to the invention and
- FIGS. 8 and 9
- the excerpts VIII and IX from the
FIGS. 6 and 7 ,
Eine mögliche Steuerung des Abscheidestroms ist in
Durch die Stromführung lässt sich ein Schichtwachstum erzeugen, wie es in
Die in den
In
In
In
Den
Zur Induzierung einer Anisotropie und daraus folgend zur Induzierung von Eigenspannungen können in die Startschicht 21 aus Metall, die beispielsweise aus Kobalt bestehen kann, nanokristalline Partikel 25 einer FeCuNbSiB-Legierung oder aus amorphen Eisenlegierungen (z. B. FeSiB-Legierung) eingebracht werden. Diese Partikel werden in das chemische Abscheidebad zur stromlosen Abscheidung dispergiert und dann mit der Startschicht 21 zusammen abgeschieden. Die Konzentration der Partikel 25 kann über die Temperatur, die Bewegungsgeschwindigkeit des Elektrolyten (aufrühren) und Zusammensetzung des Elektrolyten eingestellt werden.In order to induce anisotropy and consequently to induce residual stresses,
Weiterhin können in die Trennschicht 19 Nanopartikel 26 aus Al2O3 oder CrO3 eingebracht werden (vgl. auch
Eine Anisotropie des Gefüges aufgrund unterschiedlicher Ausdehnungskoeffizienten lässt sich auch durch die Verwendung eines geeigneten Materials wie Gold, Silber, Kupfer oder Alumium als Startschicht 21 erzeugen. Diese Metalle erzeugen die Eigenspannungen bei Erwärmung des Transformatorbleches durch ihre von den benachbarten Schichten abweichenden Ausdehnungskoeffizienten.Anisotropy of the microstructure due to different coefficients of expansion can also be produced by using a suitable material such as gold, silver, copper or aluminum as starting
In
Claims (20)
- Transformer plate having a soft magnetic layer (22) of an electrically conductive core material with an amorphous and/or nanocrystalline microstructure which is coated with a separating layer (19) of an electrically insulating material,
characterized in that
multiple of said soft magnetic layers (22) form, at least with the separating layers (19) between them, a monolithic assembly. - Transformer plate according to Claim 1,
characterized in that
this has a thickness of between 0.2 mm and 0.6 mm. - Transformer core having soft magnetic layers (22) of an electrically conductive core material with an amorphous and/or nanocrystalline microstructure which are separated from one another by separating layers (19) of an electrically insulating material, wherein multiple of said soft magnetic layers (22) form, at least with the separating layers (19) between them, a monolithic assembly,
characterized in that
this assembly consists of a plate stack, wherein the transformer plates each consist entirely of a monolithic assembly of soft magnetic layers (22) and separating layers (19) . - Transformer core or transformer plate according to one of the preceding claims,
characterized in that
the soft magnetic layers (22) have a thickness of 2 µm to 100 µm. - Transformer core or transformer plate according to one of the preceding claims,
characterized in that
the separating layers (19) have a thickness of 0.1 µm to 5 µm. - Transformer core or transformer plate according to one of Claims 1 to 5,
characterized in that
the separating layers (19) and/or the start layers (21) between the separating layers (19) and the soft magnetic layers (22) are doped with nano-particles (25) for an electrochemical deposition, which particles, like the respective layer in which they are integrated, are electrically conductive or electrically insulating, and the chemical elements thereof are chosen such that their integration into the matrix of the respective layer produces residual stresses in the respective layer owing to atomic radii that differ from the layer material. - Transformer core or transformer plate according to one of Claims 1 to 6,
characterized in that
an electrically conductive material is provided as start layers (21) for electrochemical coating between the separating layers (19) and the soft magnetic layers (22), the thermal expansion coefficient of this material differing from that of the soft magnetic layers by at least 10% and at most 30%. - Transformer core or transformer plate according to one of Claims 1 to 7,
characterized in that
the soft magnetic layers (22) and/or the start layers (21) between the separating layers (19) and the soft magnetic layers (22) are doped with hard magnetic particles (27) for an electrochemical deposition, wherein the magnetic field thereof, with respect to its field line profile (28), is oriented at least substantially on the planned field line profile in the transformer core or transformer plate. - Method for producing a transformer plate or a transformer core consisting of a stack of transformer plates, in which, to produce the transformer plate(s),• a soft magnetic layer (22) of an electrically conductive core material is electrochemically deposited on a substrate (12) and obtains an amorphous and/or nanocrystalline microstructure,• an electrically insulating separating layer (19) is generated on the soft magnetic layer (22) and• a start layer (21) for the electrochemical coating, another soft magnetic layer (22) as per the above-mentioned method step and another separating layer (19) as per the above-mentioned method step are generated repeatedly until the transformer plate has reached the intended thickness.
- Method according to Claim 9,
characterized in that
coating with the soft magnetic layer (22) is done by reverse pulse plating. - Method according to either of Claims 9 and 10,
characterized in that
as the soft magnetic layer (22), at least one soft magnetic element, in particular one or more of the elements Fe, Ni or Co, and at least one glass-forming element, in particular P and/or B, are deposited together. - Method according to one of Claims 9 to 11,
characterized in that
layers generated in each case correspond exactly to the longitudinal section of the transformer core that is to be produced with a plane of section oriented parallel to the layer profile. - Method according to one of Claims 9 to 12,
characterized in that
the start layer (21) is deposited by powder atomization, by thermal spraying or by PVD coating of an electrically conductive material. - Method according to Claim 13,
characterized in that
after atomization, thermal spraying or PVD coating, a current-free, electrochemical deposition of the electrically conductive material takes place until the start layer (21) has reached the requisite thickness. - Method according to one of Claims 13 and 14,
characterized in that
the electrically conductive material contains only chemical elements of the soft magnetic layer (22). - Method according to one of Claims 9 to 15,
characterized in that
a substrate of a soft magnetic, electrically conductive material, in particular having an amorphous and/or nanocrystalline microstructure, is used. - Method according to one of Claims 9 to 16,
characterized in that
soft magnetic nano-particles (23) are integrated into the soft magnetic layers (22) and/or the start layers (21). - Method according to one of Claims 9 to 17,
characterized in that
hard magnetic particles (27) are integrated into the soft magnetic layers (22) and/or the start layers, wherein during the deposition process the layer being formed is subject to a magnetic field, whose field line profile corresponds at least substantially to the planned field line profile in the transformer core that is to be produced. - Method according to one of Claims 9 to 18,
characterized in that
nano-particles (26) are integrated into the start layers (21) and/or the separating layers (19), which particles, like the respective layer in which they are integrated, are electrically conductive or electrically insulating, and the chemical elements thereof are chosen such that their integration into the matrix of the respective layer produces residual stresses in the respective layer owing to atomic radii that differ from the layer material. - Method according to one of Claims 9 to 19,
characterized in that
an electrically conductive material is deposited as start layers (21), the thermal expansion coefficient of this material differing from that of the soft magnetic layers by at least 10% and at most 30%.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009048658A DE102009048658A1 (en) | 2009-09-29 | 2009-09-29 | Transformer core or transformer sheet with an amorphous and / or nanocrystalline microstructure and method for its production |
PCT/EP2010/062394 WO2011039001A1 (en) | 2009-09-29 | 2010-08-25 | Transformer core or transformer sheet having an amorphous and/or nanocrystalline microstructure and method for the production thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2483898A1 EP2483898A1 (en) | 2012-08-08 |
EP2483898B1 true EP2483898B1 (en) | 2018-05-02 |
Family
ID=43086225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10749632.5A Not-in-force EP2483898B1 (en) | 2009-09-29 | 2010-08-25 | Transformer core or transformer sheet having an amorphous and/or nanocrystalline microstructure and method for the production thereof |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2483898B1 (en) |
DE (1) | DE102009048658A1 (en) |
WO (1) | WO2011039001A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2540150B (en) | 2015-07-06 | 2020-01-08 | Dyson Technology Ltd | Rare earth magnet with Dysprosium treatment |
DE102016102386A1 (en) * | 2016-02-11 | 2017-08-17 | Vacuumschmelze Gmbh & Co. Kg | Hybrid magnet and method for its production |
ES2876373T3 (en) | 2017-12-20 | 2021-11-12 | Bertram Ehmann | Process and semi-finished product for the manufacture of at least one package section of a soft magnetic component |
SI3503134T1 (en) | 2017-12-20 | 2020-08-31 | Bertram Ehmann | Holding device for holding a soft-magnetic stacked core of a transformer and transformer |
CN111321408A (en) * | 2020-03-02 | 2020-06-23 | 中国科学院宁波材料技术与工程研究所 | Multi-interface amorphous nanocrystalline electromagnetic shielding composite material |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6039160B2 (en) | 1982-07-22 | 1985-09-04 | 新日本製鐵株式会社 | Magnetic amorphous alloy material with excellent insulation and corrosion resistance |
DE3346659A1 (en) * | 1983-12-23 | 1985-07-04 | Standard Elektrik Lorenz Ag, 7000 Stuttgart | Inductive component |
EP0422760A1 (en) * | 1989-10-12 | 1991-04-17 | Mitsubishi Rayon Co., Ltd | Amorphous alloy and process for preparation thereof |
JPH04345007A (en) * | 1991-05-22 | 1992-12-01 | Mitsubishi Rayon Co Ltd | Compound magnetic film and manufacture thereof as well as core using the same |
FR2842018B3 (en) * | 2002-07-02 | 2004-06-04 | Memscap | MICRO-COMPONENT INCLUDING AN INDUCTIVE ELEMENT OF THE INDUCTANCE OR TRANSFORMER TYPE |
CN1877756A (en) * | 2005-06-10 | 2006-12-13 | 富准精密工业(深圳)有限公司 | Magnetic powder |
CA2576752A1 (en) | 2007-02-02 | 2008-08-02 | Hydro-Quebec | Amorpheous fe100-a-bpamb foil, method for its preparation and use |
-
2009
- 2009-09-29 DE DE102009048658A patent/DE102009048658A1/en not_active Withdrawn
-
2010
- 2010-08-25 WO PCT/EP2010/062394 patent/WO2011039001A1/en active Application Filing
- 2010-08-25 EP EP10749632.5A patent/EP2483898B1/en not_active Not-in-force
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
WO2011039001A1 (en) | 2011-04-07 |
EP2483898A1 (en) | 2012-08-08 |
DE102009048658A1 (en) | 2011-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102012208333B4 (en) | METHOD FOR CONNECTING A METAL WITH A SUBSTRATE | |
DE69313460T3 (en) | NANOCRISTALLINE METALS | |
EP2483898B1 (en) | Transformer core or transformer sheet having an amorphous and/or nanocrystalline microstructure and method for the production thereof | |
EP2366186B1 (en) | Coated magnetic alloy material and process of manufacturing the same | |
DE3443601A1 (en) | MAGNETIC RECORDING MEDIUM | |
DE69013227T2 (en) | Magnetic core. | |
DE10340615B4 (en) | A method of producing a biaxially structured metallic layer and a layer produced by the method | |
DE10225680A1 (en) | Metal layer and manufacturing process therefor as well as laminated ceramic electronic component and manufacturing process therefor | |
DE112013002782B4 (en) | Method of manufacturing a dielectric device and dielectric device | |
EP2333133B1 (en) | Method for manufacturing a multilayer coil | |
EP4027358B1 (en) | Soft magnetic alloy and method for producing a soft magnetic alloy | |
DE69318251T2 (en) | Soft magnetic multilayer thin film for use in a thin film magnetic head and manufacturing method therefor | |
EP3414768B1 (en) | Hybrid magnet and method for the production thereof | |
DE112018005786T5 (en) | Clad material and process for its manufacture | |
DE102020107653A1 (en) | Process for producing a phosphating layer and a flat steel product provided with a phosphating layer | |
DE68919753T2 (en) | Magnetic recording medium and method for its production. | |
DE69600232T2 (en) | Sintered body with high density made of an amorphous alloy with high strength and magnetic properties and connection method for its production | |
DE69728547T2 (en) | CORROSION-RESISTANT PERMANENT MAGNET AND MANUFACTURING METHOD | |
DE675731C (en) | Process for the production of homogeneous layers or bodies from metals on a base body by cathode sputtering, thermal evaporation or thermal decomposition of metal compounds | |
EP1161570B1 (en) | Method for coating a support body with a hard magnetic se-fe-b material using plasma spraying | |
DE102022115094A1 (en) | Method of making a coated soft magnetic alloy | |
DE102013111438A1 (en) | Anodised coil and process for its production | |
EP3022336B1 (en) | Method for producing magnetic functional layers | |
DE949268C (en) | Method of making an iron layer | |
DE102009053987A1 (en) | Method and device for producing a multilayer coil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120327 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20171213 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 996096 Country of ref document: AT Kind code of ref document: T Effective date: 20180515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010014946 Country of ref document: DE Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180502 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180802 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180802 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180803 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010014946 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20190205 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180825 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 996096 Country of ref document: AT Kind code of ref document: T Effective date: 20180825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180825 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180502 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180902 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200813 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20200826 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502010014946 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20201019 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502010014946 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220301 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |