[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2480868B1 - Method for generating and for detecting a raman spectrum - Google Patents

Method for generating and for detecting a raman spectrum Download PDF

Info

Publication number
EP2480868B1
EP2480868B1 EP10763149.1A EP10763149A EP2480868B1 EP 2480868 B1 EP2480868 B1 EP 2480868B1 EP 10763149 A EP10763149 A EP 10763149A EP 2480868 B1 EP2480868 B1 EP 2480868B1
Authority
EP
European Patent Office
Prior art keywords
spectrum
wavelength
transformation
difference
intensity value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10763149.1A
Other languages
German (de)
French (fr)
Other versions
EP2480868A1 (en
Inventor
Heinar Schmidt
Daniel PÉREZ KAISER
Martin Maiwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungsverbund Berlin FVB eV
Original Assignee
Forschungsverbund Berlin FVB eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungsverbund Berlin FVB eV filed Critical Forschungsverbund Berlin FVB eV
Publication of EP2480868A1 publication Critical patent/EP2480868A1/en
Application granted granted Critical
Publication of EP2480868B1 publication Critical patent/EP2480868B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/457Correlation spectrometry, e.g. of the intensity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction

Definitions

  • the present invention relates to a method and apparatus for generating and detecting a Raman spectrum.
  • Raman spectroscopy is increasingly used in industrial process and environmental metrology due to its suitability for in situ and online analysis.
  • a disadvantage here is that some samples in practice due to fluorescence and / or due to their scattering properties provide spectra whose quality is affected by a high background, especially when working without sample preparation and with small-scale equipment.
  • shifted-excitation Raman differential spectroscopy also referred to as "SERDS” hereafter.
  • SERDS shifted-excitation Raman differential spectroscopy
  • WO 2006/130728 A2 discloses a method for generating and detecting a Raman spectrum of a medium to be examined, wherein a difference spectrum is calculated by subtracting the first and second spectrum.
  • Matousek et al. describe a linear recursive algorithm with linear interpolation between the data points ( P. Matousek, M. Towrie, and AW Parker, "Simple reconstruction algorithm for shifted excitation Raman difference spectroscopy,” Applied Spectroscopy, vol. 59, 2006 ).
  • This algorithm can be automated, but preconditions are imposed on the distribution of differential signals in the SERD spectra. Thus, this method is not universal. It also comes here to artifact formation.
  • Zhao et al. describe several integral transformations for spectral reconstruction based on the evolution of the SERD spectrum ( J. Zhao, M. Carrabba, and F. Allen, Applied Spectroscopy, vol. 56, no. 7, 2002 ). These transformations can be automated, but the resulting reconstruction spectra are also not free of artifacts.
  • Rebecca Willett describes the problem of reconstruction as an inverse Poisson problem, and uses a statistical expectation maximization (EM) algorithm ("Multiscale reconstruction for photon-limited shifted excitation Raman spectroscopy,” ICASSP 2007), but the algorithm used is not yet fully formulated there are questions about the experimental implementation in terms of choice and number of excitation frequencies open.
  • EM statistical expectation maximization
  • the inventive method for generating and detecting a Raman spectrum of a medium to be examined comprises the following method steps: irradiation of excitation radiation on the medium to be examined, wherein the medium to be examined offset in time with a first excitation radiation of a first wavelength and a second excitation radiation of a second Wavelength is irradiated, wherein the first wavelength differs from the second wavelength, spectral analysis of the first excitation radiation scattered from the medium to be examined, wherein from the scattered first excitation radiation, a first spectrum is detected, each of which assigns an intensity value to a plurality of wavelengths, spectral analysis the second excitation radiation scattered by the medium to be examined, a second spectrum being detected from the scattered second excitation radiation, the intensity of one of a plurality of wavelengths being detected in each case assigning a Raman spectrum of the medium to be examined from the first spectrum and the second spectrum, wherein the first spectrum and the second spectrum are normalized with respect to their intensity values to each other, and subsequently: a first difference spectrum from the difference of
  • the wavenumber scale is preferably after the calculation of the Raman spectrum (addition of the first transformation spectrum and the second transformation spectrum) by + or - delta / 2 (ie by half the wavelength difference), depending on which of the two output spectra the setup was calibrated for.
  • the first wavelength and the second wavelength are selected from the interval 250-1100 nm, more preferably 400-950 nm.
  • the idea of the present invention is the use of a novel reconstruction algorithm for automated shifted excitation Raman difference spectroscopy (SERDS) for online and in situ applications.
  • SERDS automated shifted excitation Raman difference spectroscopy
  • the method distinguishes itself from the prior art in that it is simple, i. can be automated without prior information about the sample (the medium to be examined) and without intervention of an operator. It has been found that the quantitative information of the spectra is retained by the method according to the invention.
  • the method according to the invention is universally suitable for all Raman apparatuses which permit multi-wavelength excitation and can also be used in other spectroscopic methods, e.g. IR absorption, atomic fluorescence for background suppression, for the reconstruction of conventional Raman derivative spectra or generally used for the reconstruction of derivative spectra.
  • the distance between the two wavelengths can be almost arbitrarily large.
  • the wavelength distance ⁇ is chosen to be greater than or equal to FWHM / 2
  • preferred intervals for the ratio ⁇ laser / FWHM peak are 0.3-10, more preferably 0.6-1.5.
  • Fig. 7 gives that Workspace of the method. It has been found that this is between 0.6 and 1.5 for the quotient of wavelength shift and half-width ⁇ laser / FWHM peak .
  • n further spectra can be constructed from the same raw data and then added together. This is approximately equivalent to n single SERDS measurements at n- fold. Noise increases by a factor of n times n off and the signal to the first approximation by the factor n .
  • the algorithm can be used as often until no further improvement of the signal / background ratio is achieved.
  • the number of repetitions is limited by the number of data points in the extrema of the difference peak (see Fig. 6 ).
  • the number of repetitions n can assume at most the number of pixels k in the range of the half width FWHM of the Raman signal.
  • the number of repetitions of the application of the algorithm n is preferably selected between 1 and k / 2.
  • the transformation parameter ⁇ is preferably varied by up to +/- k / 4 pixels starting from the half wavelength distance ⁇ laser in even-numbered steps when the algorithm is used several times.
  • the inventive method for generating and detecting a Raman spectrum of a medium to be examined comprises the following method steps: irradiation of excitation radiation on the medium to be examined, wherein the medium to be examined offset in time with a first excitation radiation of a first wavelength and a second excitation radiation of a second Wavelength is irradiated, wherein the first wavelength differs from the second wavelength; spectral analysis of the scattered from the medium to be examined first excitation radiation, wherein from the scattered first excitation radiation, a first spectrum is detected, each of which assigns an intensity value to a plurality of wavelengths; spectral analysis of the scattered by the medium to be examined second excitation radiation, wherein from the scattered second excitation radiation, a second spectrum is detected, each of which assigns an intensity value to a plurality of wavelengths; Calculating a Raman spectrum of the medium to be examined from the first spectrum and the second spectrum, wherein the first spectrum and the second spectrum are normalized relative to one another with respect to their intensity values, and in the following: a first
  • the first wavelength and the second wavelength are selected from the interval 250-1100 nm, preferably 400-950 nm.
  • the generation of electromagnetic excitation radiation by means of a laser diode with an internal frequency-selective element.
  • the laser diode for alternating generation of different excitation wavelengths by means of the voltage applied to the laser diode electric current is driven alternately with two different excitation conditions.
  • the switching back and forth between the excitation conditions preferably takes place at a frequency greater than 1 Hz.
  • the spectral analysis of the electromagnetic radiation scattered by the medium to be examined preferably takes place by coupling the scattered radiation into a spectral optical apparatus.
  • the detection of the individual Raman spectra of different excitation wavelengths is synchronized with the alternating drive of the laser diode.
  • the detection of a Raman spectrum is in each case within a time interval in which the current intensity of the current applied to the laser diode is kept constant.
  • the laser diode is driven within a time interval with at least two different excitation conditions such that it emits at least two wavelengths with a wavelength spacing of at least one third of the half width of the Raman signals (more preferably half the half width and very high preferably the half-width) corresponds.
  • the laser diode is driven within a time interval having at least two different excitation conditions such that it emits at least two wavelengths with a wavelength separation of at least 3 cm -1 (0.2 nm when excited at 785 nm), more preferably at least 4 cm -1 and more preferably at least 8 cm -1 .
  • the time interval is preferably 1 s, more preferably 0.1 s.
  • the laser diode is calibrated prior to the coupling of the excitation radiation in the medium to be examined.
  • the frequency-selective element used is a grating, an etalon or a Mach-Zehnder interferometer.
  • the excitation radiation generated by the laser diode is coupled by means of a Raman measuring head into the medium to be examined.
  • the excitation radiation generated by the laser diode is amplified prior to coupling into the medium to be examined.
  • the radiation scattered by the medium to be examined radiation is coupled by means of an optical fiber in the spectral optical system.
  • the laser diode is driven by means of a current source, wherein the output power of the current source is modulated.
  • a function generator is used for the modulation.
  • the individual Raman spectra are stored by means of a data processing device.
  • both the output power of an excitation source are modulated and a detector of the spectral optical system are synchronized to synchronize the detections of the Raman spectra and the control of the laser diode.
  • the inventive device for generating an excitation radiation and for detecting a Raman spectrum of a medium to be examined has an excitation light source, means for coupling the excitation radiation emitted by the excitation light source into the medium to be examined, means for coupling the radiation scattered by the medium to be examined into a spectral optical system and a data processing device, which is connected to the spectral optical system, wherein the data processing device from the at least two detected Raman spectra of different excitation wavelengths calculated a Raman spectrum of the medium to be examined, in which the fluorescence background is mathematically eliminated, and wherein the data processing device is configured, the first spectrum and the second spectrum in To normalize with respect to their intensity values, and subsequently: a first difference spectrum is calculated from the difference of the first spectrum and the second spectrum, a second difference spectrum is calculated from the difference of the second spectrum and the first spectrum, the first difference spectrum into a first transformation spectrum wherein an intensity value is assigned to a plurality of wavelengths, and the intensity value of a wavelength of the first transformation spectrum is
  • the excitation light source is a laser diode having an internal frequency-selective element.
  • the laser diode for generating different excitation wavelengths is connected to a modulated by a modulator current source, wherein the modulator modulates the current source alternately.
  • the switching back and forth takes place with a frequency greater than 1 Hz.
  • the spectral optical system is a spectrograph with CCD detector.
  • the spectral optical system and / or the data processing device is connected to the modulator and the detection of the individual Raman spectra of different excitation wavelengths is synchronized with the alternating drive of the laser diode.
  • the modulator is a function generator.
  • the modulator is a rectangular generator.
  • an optical amplifier is arranged between the laser diode and the medium to be examined.
  • the internal frequency-selective element is a grating, an etalon or a Mach-Zehnder interferometer.
  • the recording of SERD spectra differs from conventional Raman measurements in that, instead of a single measurement, two measurements are carried out on the same sample 9, with two excitation wavelengths ⁇ 1 and ⁇ 2, which are separated by one wavelength are shifted against each other.
  • the in Fig. 1 used construction shown.
  • the DFB diode laser 1 is driven sequentially with two different injection currents.
  • the Raman signals of both spectra shift in accordance with ⁇ against each other, whereas in the first approximation the broadband background undergoes no change ( Fig. 2 ).
  • the intensities of the two spectra 16 and 17 are different, since the laser power depends on the set current.
  • the two Raman spectra 16 and 17 are normalized in their intensity and the difference formed ( Fig. 3 ).
  • the resulting difference spectrum D1 is first converted into the transformation spectrum K1 by the reconstruction algorithm according to the invention ( Fig. 4 ), from which the Raman spectrum R1 is reconstructed by adding K2 ( Fig. 5 ).
  • n further spectra can be constructed from the same raw data and then added together. This is nearly equivalent to n single SERDS measurements when used n times. Noise increases by a factor of n times n off and the signal to the first approximation by the factor n .
  • the algorithm can be used as often until no further improvement of the signal / background ratio is achieved.
  • the number of repetitions is limited by the number of data points in the extrema of the difference peak (see Fig. 6 ). The number of repetitions can reach at most the number of pixels k in the range of the half width FWHM of the Raman signal.
  • the number of repetitions of the application of the transformation n is preferably selected between 1 and k / 2.
  • the distance ⁇ is varied in multiple use of the algorithm preferably from the half wavelength distance ⁇ laser starting in even-numbered increments by up to +/- k / 4 pixels.
  • Fig. 8 to 10 show the quantitative evaluation of a concentration measurement series using the example of copper (II) phthalocyanine tetrasulfonic acid tetrasodium salt in water conventionally and with SERDS.
  • the evaluation method according to the invention was first tested on strongly scattering chalk as a test object.
  • An improvement of the signal / background noise ratio S / ⁇ BGN by a factor of 48 could be achieved.
  • the positions and relative intensities of the signals are preserved and allow the qualitative assignment in the inventively reconstructed SERD spectrum with higher selectivity than in the conventional Raman spectrum, since the half-widths of the signals through the algorithm of observed 12 cm -1 to 9.5 cm -1 reduce. All weak Raman signals masked from the background in the conventional chalk spectrum were found in the SERD spectra at the positions known from a gypsum crystal spectrum.
  • the SERDS measurements were shown to be quantitative are evaluable.
  • the calibration curve was linear and the detection limit for the SERDS measurement series was 3 ⁇ M lower than for the Raman measurement series at 3.4 ⁇ M.
  • the limiting factor here is rather the inaccuracy in mixing the solution, which is included in the calculation of the detection limit.
  • SERDS is suitable for qualitative and quantitative measurements thanks to the new evaluation algorithm.
  • the quality of the SERD spectra was at any time significantly better than that of the conventionally recorded Raman spectra.
  • the newly developed reconstruction algorithm allows for the first time an automated and completely user-independent online analytics. Virtually every Raman system could be inexpensively adapted to SERDS with little effort.
  • the developed technology is very well suited for mobile use of miniaturized Raman systems, for example in process control. The free choice of excitation wavelength allows adjustment of the sensitivity for each application.
  • the use of SERDS in principle in combination with other Ramantechniken, such as SERS and resonance Raman spectroscopy conceivable.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur Erzeugung und zur Detektion eines Raman-Spektrums.The present invention relates to a method and apparatus for generating and detecting a Raman spectrum.

Die Raman-Spektroskopie wird aufgrund ihrer Eignung zur In-situ- und Online-Analytik zunehmend in der industriellen Prozess- und Umweltmesstechnik eingesetzt. Ein Nachteil hierbei ist jedoch, dass einige Proben in der Praxis infolge Fluoreszenz und/oder aufgrund ihrer Streueigenschaften Spektren liefern, deren Qualität durch einen hohen Untergrund beeinträchtigt wird, insbesondere, wenn ohne Probenvorbereitung und mit kleinbauenden Apparaturen gearbeitet wird.Raman spectroscopy is increasingly used in industrial process and environmental metrology due to its suitability for in situ and online analysis. A disadvantage here, however, is that some samples in practice due to fluorescence and / or due to their scattering properties provide spectra whose quality is affected by a high background, especially when working without sample preparation and with small-scale equipment.

Ein Ansatz, dieses Problem zu lösen ist die Shifted-excitation-Raman-Differenzspektroskopie (nachfolgend auch mit "SERDS" bezeichnet). Hierbei werden zwei Ramanspektren mit leicht gegeneinander verschobenen Anregungswellenlängen aufgenommen. Der breitbandige Untergrund wird durch Differenzbildung eliminiert und aus dem Differenzspektrum das Ramanspektrum rekonstruiert.One approach to solving this problem is shifted-excitation Raman differential spectroscopy (also referred to as "SERDS" hereafter). Here, two Raman spectra are recorded with slightly shifted excitation wavelengths. The broadband background is eliminated by subtraction and the Raman spectrum is reconstructed from the difference spectrum.

Seit der Entwicklung von Diodenlasern ist es üblich, die Anregungswellenlänge über die Temperatur durchzustimmen. Die Temperatur wird dabei typischer Weise thermoelektrisch geregelt und stabilisiert. Mit der Temperaturänderung lässt sich die Emissionswellenlänge um einige Nanometer verschieben. ( J. Zhao, M. M. Carraba, and F. S. Allen, Appl. Spectrosc. 56, 834 (2002 )).Since the development of diode lasers, it is common to tune the excitation wavelength over temperature. The temperature is typically thermoelectrically controlled and stabilized. With the temperature change, the emission wavelength can be shifted by a few nanometers. ( J. Zhao, MM Carraba, and FS Allen, Appl. Spectrosc. 56, 834 (2002 )).

Einfache Fabry-Perot-Diodenlaser verfügen jedoch nicht über die nötige Wellenlängenstabilität für die Ramanspektroskopie, so dass hierfür eine zusätzliche Stabilisierung erforderlich ist, z.B. ermöglichen Halbleiterlaser mit externer Kavität (ECL-Laser) eine Frequenzverschiebung durch Drehen des äußeren Gitters. ( T.F. Cooney, H.T. Skinner und S.M. Angel in Appl. Spectrosc., Vol. 49 (1995), pp1846-1851 ).However, simple Fabry-Perot diode lasers do not have the necessary wavelength stability for Raman spectroscopy, so that additional stabilization is required for this, for example, semiconductor laser with external cavity (ECL laser) enable a frequency shift by rotating the outer grating. ( TF Cooney, HT Skinner and SM Angel in Appl. Spectrosc., Vol. 49 (1995), pp1846-1851 ).

Steht keine durchstimmbare Laserquelle zur Verfügung, besteht bei den meisten dispersiven Spektrometern die Möglichkeit, das Gitter um einen kleinen Winkel zu drehen, wodurch sich das Spektrum samt Untergrund um den Betrag Δ spektral verschiebt ( Steven E. J. Bell, Elsa S. O. Bourguignon and Andrew Dennis, Analyst, Vol. 123 (1729-1734) (1998 )).If no tunable laser source is available, most dispersive spectrometers have the option of rotating the grating through a small angle, which spectrally shifts the spectrum along with the background by the amount Δ ( Steven EJ Bell, Elsa SO Bourguignon and Andrew Dennis, Analyst, Vol. 123 (1729-1734) (1998 )).

Aus WO 2006/134103 A1 und M. Maiwald, G. Erbert, A. Klehr, H.-D. Kronfeldt, H. Schmidt, B. Sumpf and G. Tränkle, Appl. Phys. B 85, 509-512 (2006 ) ist es bekannt, die direkte Modulation der Wellenlänge eines DFB-Lasers über dessen Injektionsstromstärke vorzunehmen. Durch Ansteuerung bei 785 nm mit zwei verschiedenen Stromstärken emittiert der frequenzstabile DFB-Diodenlaser entsprechend bei zwei verschiedenen Wellenlängen. Der Hauptvorteil liegt in der Möglichkeit des schnellen Wechselns zwischen zwei Wellenlängen, ohne dass bewegliche Teile benötigt werden. Somit ist diese Methode für die schnelle Onlineanalytik prädestiniert.Out WO 2006/134103 A1 and M. Maiwald, G. Erbert, A. Klehr, H.-D. Kronfeldt, H. Schmidt, B. Sumpf and G. Tränkle, Appl. Phys. B 85, 509-512 (2006 ), it is known to carry out the direct modulation of the wavelength of a DFB laser on its injection current. By driving at 785 nm with two different current intensities, the frequency-stable DFB diode laser emits correspondingly at two different wavelengths. The main advantage lies in the possibility of fast switching between two wavelengths, without requiring moving parts. Thus, this method is predestined for fast online analytics.

WO 2006/130728 A2 offenbart ein Verfahren zur Erzeugung und Detektion eines Raman-Spektrums eines zu untersuchenden Mediums, wobei ein Differenzspektrum durch Subtraktion des ersten und zweiten Spektrums berechnet wird. WO 2006/130728 A2 discloses a method for generating and detecting a Raman spectrum of a medium to be examined, wherein a difference spectrum is calculated by subtracting the first and second spectrum.

Im Stand der Technik sind verschiedene Algorithmen zur Rekonstruktion eines Raman-Spektrums aus einem Differenzspektrum bekannt.Various algorithms for reconstructing a Raman spectrum from a difference spectrum are known in the art.

Shreve et al. ( R.A. Mathies, A.P. Shreve, N.J. Cherepy, Appl. Spectrosc. 46, 707 (1992 )) beschreibt eine manuelle Anpassung von Lorentz-Kurven an das Differenzspektrum nach der Methode der kleinsten Fehlerquadrate vor. Für diese Modellierung ist jedoch Vorwissen über das Originalspektrum sowie eine Kontrolle durch einen Benutzer erforderlich, weshalb diese Technik nicht automatisierbar ist.Shreve et al. ( RA Mathies, AP Shreve, NJ Cherepy, Appl. Spectrosc. 46, 707 (1992 )) describes a manual adaptation of Lorentz curves to the difference spectrum according to the method of least squares. However, this modeling requires prior knowledge of the original spectrum as well as user control, which is why this technique can not be automated.

Aufgrund der Ähnlichkeit der SERD-Spektren zu Derivativspektren erster Ordnung ist es nahe liegend, diese zu integrieren. Dieser Vorgang ist automatisierbar, führt jedoch zu Artefaktbildung, was eine manuelle Nachbearbeitung nötig macht.Due to the similarity of the SERD spectra to first order derivative spectra, it is obvious to integrate them. This process is automatable, but results in artifact formation, which requires manual post-processing.

Matousek et al. beschreiben einen linearen rekursiven Algorithmus mit linearer Interpolation zwischen den Datenpunkten ( P. Matousek, M. Towrie, and A. W. Parker, "Simple reconstruction algorithm for shifted excitation Raman difference spectroscopy," Applied Spectroscopy, vol. 59, 2006 ). Dieser Algorithmus ist automatisierbar, es werden jedoch Vorbedingungen an die Verteilung der Differenzsignale in den SERD-Spektren gestellt. Somit ist diese Methode nicht allgemeingültig. Zudem kommt es auch hier zu Artefaktbildung. Matousek et al. describe a linear recursive algorithm with linear interpolation between the data points ( P. Matousek, M. Towrie, and AW Parker, "Simple reconstruction algorithm for shifted excitation Raman difference spectroscopy," Applied Spectroscopy, vol. 59, 2006 ). This algorithm can be automated, but preconditions are imposed on the distribution of differential signals in the SERD spectra. Thus, this method is not universal. It also comes here to artifact formation.

Zhao et al. beschreiben mehrere auf Entfaltung des SERD-Spektrums basierende Integral-transformationen zur Spektrenrekonstruktion vor ( J. Zhao, M. Carrabba, and F. Allen, Applied Spectroscopy, vol. 56, no. 7, 2002 ). Diese Transformationen sind automatisierbar, die resultierenden Rekonstruktionsspektren sind jedoch ebenfalls nicht frei von Artefakten. Zhao et al. describe several integral transformations for spectral reconstruction based on the evolution of the SERD spectrum ( J. Zhao, M. Carrabba, and F. Allen, Applied Spectroscopy, vol. 56, no. 7, 2002 ). These transformations can be automated, but the resulting reconstruction spectra are also not free of artifacts.

Rebecca Willett beschreibt die Rekonstruktionsproblematik als ein inverses Poisson-Problem, und verwendet einen statistischen Erwartungs-Maximierungs (EM) Algorithmus (Multiscale reconstruction for photon-limited shifted excitation Raman spectroscopy," ICASSP 2007). Der verwendete Algorithmus ist jedoch noch nicht vollständig ausformuliert und es bleiben Fragen bezüglich der experimentellen Durchführung hinsichtlich Wahl und Anzahl der Anregungsfrequenzen offen. Rebecca Willett describes the problem of reconstruction as an inverse Poisson problem, and uses a statistical expectation maximization (EM) algorithm ("Multiscale reconstruction for photon-limited shifted excitation Raman spectroscopy," ICASSP 2007), but the algorithm used is not yet fully formulated there are questions about the experimental implementation in terms of choice and number of excitation frequencies open.

McCain et al. beschreiben einen Expectation-Maximization Algorithmus, der Messwerte von mehr als zwei Anregungsfrequenzen verwendet ( S. T. McCain, R. M. Willett, D. J. Brady, "Multi-excitation Raman spectroscopy technique for fluorescence rejection", Optics Express, vol. 16, no. 15, 2008 ). Dieser Algorithmus erlaubt, das Ramansignal gegenüber dem Fluoreszenz-Hintergrundsignal zu filtern. McCain et al. describe an expectation-maximization algorithm that uses readings of more than two excitation frequencies ( ST McCain, RM Willett, DJ Brady, "Multi-excitation Raman spectroscopy technique for fluorescence rejection", Optics Express, vol. 16, no. 15, 2008 ). This algorithm allows the Raman signal to be filtered against the background fluorescence signal.

Die bekannten Algorithmen zur Spektrenrekonstruktion liefern rein qualitative Spektren und führen entweder zu Artefaktbildung oder setzen Vorwissen über das Raman-Spektrum bzw. Vorbedingungen an die SERD-Spektren voraus. Somit ist automatisierte und gleichzeitig qualitative und quantitative SERD-Spektroskopie (z.B. Konzentrationsmessreihen) nach dem bisherigen Stand der Technik nicht möglich.The known algorithms for spectral reconstruction provide purely qualitative spectra and either lead to artifact formation or presuppose prior knowledge of the Raman spectrum or preconditions to the SERD spectra. Thus, automated and at the same time qualitative and quantitative SERD spectroscopy (eg concentration measurement series) according to the prior art is not possible.

Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zur Erzeugung und zur Detektion eines Raman-Spektrums anzugeben, die eine automatisierte bzw. automatisierbare und gleichzeitig qualitative und quantitative SERD-Spektroskopie (z.B. Konzentrationsmessreihen) ermöglichen.It is therefore an object of the present invention to provide a method and an apparatus for generating and detecting a Raman spectrum, which enable automated and at the same time qualitative and quantitative SERD spectroscopy (for example concentration measurement series).

Diese Aufgaben werden erfindungsgemäß durch die unabhängigen Patentansprüche gelöst. Bevorzugte Ausgestaltungen der Erfindung sind in den Unteransprüchen enthalten.These objects are achieved by the independent claims. Preferred embodiments of the invention are contained in the subclaims.

Das erfindungsgemäße Verfahren zur Erzeugung und zur Detektion eines Raman-Spektrums eines zu untersuchenden Mediums weist folgende Verfahrensschritte auf: Einstrahlen von Anregungsstrahlung auf das zu untersuchende Medium, wobei das zu untersuchende Medium zeitlich versetzt mit einer ersten Anregungsstrahlung einer ersten Wellenlänge und einer zweiten Anregungsstrahlung einer zweiten Wellenlänge bestrahlt wird, wobei sich die erste Wellenlänge von der zweiten Wellenlänge unterscheidet, spektrale Analyse der vom zu untersuchenden Medium gestreuten ersten Anregungsstrahlung, wobei aus der gestreuten ersten Anregungsstrahlung ein erstes Spektrum detektiert wird, das einer Vielzahl von Wellenlängen jeweils einen Intensitätswert zuordnet, spektrale Analyse der vom zu untersuchenden Medium gestreuten zweiten Anregungsstrahlung, wobei aus der gestreuten zweiten Anregungsstrahlung ein zweites Spektrum detektiert wird, das einer Vielzahl von Wellenlängen jeweils einen Intensitätswert zuordnet, Berechnung eines Raman-Spektrums des zu untersuchenden Mediums aus dem ersten Spektrum und dem zweiten Spektrum, wobei das erste Spektrum und das zweite Spektrum in Bezug auf ihre Intensitätswerte zueinander normiert werden, und nachfolgend: ein erstes Differenzspektrum aus der Differenz des ersten Spektrums und des zweiten Spektrums berechnet wird, ein zweites Differenzspektrum aus der Differenz des zweiten Spektrums und des ersten Spektrums berechnet wird, das erste Differenzspektrum in ein erstes Transformationsspektrum überführt wird, wobei einer Vielzahl von Wellenlängen jeweils ein Intensitätswert zugeordnet wird, und sich der Intensitätswert einer Wellenlänge des ersten Transformationsspektrums durch Addition eines ersten Intensitätswertes einer ersten Wellenlänge des ersten Differenzspektrums und des Betrages eines zweiten Intensitätswertes einer zweiten Wellenlänge des ersten Differenzspektrums berechnet, wobei die erste Wellenlänge des ersten Differenzspektrums um einen vorgegebenen Transformationsparameter größer als die Wellenlänge des ersten Transformationsspektrums und die zweite Wellenlänge des ersten Differenzspektrums um den Transformationsparameter kleiner als die Wellenlänge des ersten Transformationsspektrums ist, wobei als Transformationsparameter ein Wert zwischen 0.2 und 0.8 des Betrages der Differenz der ersten Wellenlänge und der zweiten Wellenlänge verwendet wird, und das zweite Differenzspektrum in ein zweites Transformationsspektrum überführt wird, wobei einer Vielzahl von Wellenlängen jeweils ein Intensitätswert zugeordnet wird, und sich der Intensitätswert einer Wellenlänge des zweiten Transformationsspektrums durch Addition des Betrages eines ersten Intensitätswertes einer ersten Wellenlänge des zweiten Differenzspektrums und eines zweiten Intensitätswertes einer zweiten Wellenlänge des zweiten Differenzspektrums berechnet, wobei die erste Wellenlänge des zweiten Differenzspektrums um den Transformationsparameter größer als die Wellenlänge des zweiten Transformationsspektrums und die zweite Wellenlänge des zweiten Differenzspektrums um den Transformationsparameter kleiner als die Wellenlänge des zweiten Transformationsspektrums ist, und das Raman-Spektrum durch Addition des ersten Transformationsspektrums und des zweiten Transformationsspektrums berechnet wird.The inventive method for generating and detecting a Raman spectrum of a medium to be examined comprises the following method steps: irradiation of excitation radiation on the medium to be examined, wherein the medium to be examined offset in time with a first excitation radiation of a first wavelength and a second excitation radiation of a second Wavelength is irradiated, wherein the first wavelength differs from the second wavelength, spectral analysis of the first excitation radiation scattered from the medium to be examined, wherein from the scattered first excitation radiation, a first spectrum is detected, each of which assigns an intensity value to a plurality of wavelengths, spectral analysis the second excitation radiation scattered by the medium to be examined, a second spectrum being detected from the scattered second excitation radiation, the intensity of one of a plurality of wavelengths being detected in each case assigning a Raman spectrum of the medium to be examined from the first spectrum and the second spectrum, wherein the first spectrum and the second spectrum are normalized with respect to their intensity values to each other, and subsequently: a first difference spectrum from the difference of the first spectrum and is calculated from the second spectrum, a second difference spectrum from the difference of the second spectrum and the first spectrum is calculated, the first difference spectrum is converted into a first transformation spectrum, wherein a plurality of wavelengths is assigned in each case an intensity value, and the intensity value of a wavelength of the first transformation spectrum calculated by adding a first intensity value of a first wavelength of the first difference spectrum and the amount of a second intensity value of a second wavelength of the first difference spectrum, wherein the first wavelength of the first difference Pektrums by a predetermined transformation parameter greater than the wavelength of the first transformation spectrum and the second wavelength of the first difference spectrum to the transformation parameter smaller than the wavelength of first transformation spectrum, wherein as a transformation parameter, a value between 0.2 and 0.8 of the amount of the difference of the first wavelength and the second wavelength is used, and the second difference spectrum is converted into a second transformation spectrum, wherein a plurality of wavelengths is assigned in each case an intensity value, and the intensity value of a wavelength of the second transformation spectrum is calculated by adding the magnitude of a first intensity value of a first wavelength of the second difference spectrum and a second intensity value of a second wavelength of the second difference spectrum, wherein the first wavelength of the second difference spectrum around the transformation parameter is greater than the wavelength of the second transformation spectrum and the second wavelength of the second difference spectrum around the transformation parameter is smaller than the wavelength of the second transform spectrum t, and the Raman spectrum is calculated by adding the first transformation spectrum and the second transformation spectrum.

Sofern der Messaufbau vor der Messung auf eines der beiden Ausgangsspektren (erstes oder zweites Spektrum) kalibriert wurde, wird die Wellenzahlenskala vorzugsweise im Anschluss an die Berechnung des Raman-Spektrums (Addition des ersten Transformationsspektrums und des zweiten Transformationsspektrums) um + oder - Delta/2 (also um den halben Wellenlängenabstand) verschoben, je nachdem für welches der beiden Ausgangsspektren der Aufbau kalibriert wurde.If the measurement setup has been calibrated to one of the two output spectra (first or second spectrum) before the measurement, the wavenumber scale is preferably after the calculation of the Raman spectrum (addition of the first transformation spectrum and the second transformation spectrum) by + or - delta / 2 (ie by half the wavelength difference), depending on which of the two output spectra the setup was calibrated for.

Vorzugsweise wird als Transformationsparameter der halbe Betrag der Differenz der ersten Wellenlänge und der zweiten Wellenlänge verwendet. Vorzugsweise werden die erste Wellenlänge und die zweite Wellenlänge aus dem Intervall 250 - 1100 nm, sehr bevorzugt 400 - 950 nm ausgewählt.Preferably, half of the difference of the first wavelength and the second wavelength is used as the transformation parameter. Preferably, the first wavelength and the second wavelength are selected from the interval 250-1100 nm, more preferably 400-950 nm.

Die Idee der vorliegenden Erfindung besteht im Einsatz eines neuartigen Rekonstruktionsalgorithmus für die automatisierte Shifted-excitation-Raman-Differenzspektroskopie (SERDS) für Online- und In-situ-Anwendungen. Das Verfahren zeichnet sich gegenüber dem Stand der Technik dadurch aus, dass es einfach, d.h. ohne Vorinformation über die Probe (das zu untersuchende Medium) und ohne Eingriff eines Operators automatisierbar ist. Es wurde gefunden, dass mit dem erfindungsgemäßen Verfahren die quantitative Information der Spektren erhalten bleibt. Weiterhin ist das erfindungsgemäße Verfahren universell für alle Raman-Apparaturen, die eine Mehrwellenlängenanregung zulassen, geeignet und kann auch bei anderen spektroskopischen Methoden, z.B. IR-Absorption, Atom-Fluoreszenz zur Untergrundunterdrückung, zur Rekonstruktion von konventionellen Raman-Derivativspektren oder generell zur Rekonstruktion von Derivativspektren eingesetzt werden.The idea of the present invention is the use of a novel reconstruction algorithm for automated shifted excitation Raman difference spectroscopy (SERDS) for online and in situ applications. The method distinguishes itself from the prior art in that it is simple, i. can be automated without prior information about the sample (the medium to be examined) and without intervention of an operator. It has been found that the quantitative information of the spectra is retained by the method according to the invention. Furthermore, the method according to the invention is universally suitable for all Raman apparatuses which permit multi-wavelength excitation and can also be used in other spectroscopic methods, e.g. IR absorption, atomic fluorescence for background suppression, for the reconstruction of conventional Raman derivative spectra or generally used for the reconstruction of derivative spectra.

Der Abstand der beiden Wellenlängen kann nahezu beliebig groß sein. Vorzugsweise wird der Wellenlängenabstandswert Δ größer gleich FWHM/2 gewählt, bevorzugte Intervalle für das Verhältnis ΔνLaser / FWHM Peak sind 0,3-10, sehr bevorzugt 0,6-1,5. Fig. 7 gibt den Arbeitsbereich der Methode an. Es wurde gefunden, dass dieser für den Quotienten von Wellenlängenverschiebung und Halbwertsbreite Δν Laser / FWHM Peak zwischen 0,6 und 1,5 liegt.The distance between the two wavelengths can be almost arbitrarily large. Preferably, the wavelength distance Δ is chosen to be greater than or equal to FWHM / 2, preferred intervals for the ratio Δν laser / FWHM peak are 0.3-10, more preferably 0.6-1.5. Fig. 7 gives that Workspace of the method. It has been found that this is between 0.6 and 1.5 for the quotient of wavelength shift and half-width Δν laser / FWHM peak .

Ein weiterer Vorteil gegenüber den bisherigen Rekonstruktionsmethoden ist die Möglichkeit der Mehrfachanwendung des Rekonstruktionsverfahrens. Durch Variation des Transformationsparameters δ können aus denselben Rohdaten n weitere Spektren konstruiert und anschließend addiert werden. Dies ist bei n-facher Anwendung annähernd äquivalent zu n einzelnen SERDS-Messungen. Das Rauschen nimmt bei n-facher Anwendung um den Faktor n

Figure imgb0001
ab und das Signal in erster Näherung um den Faktor n zu. Der Algorithmus kann so oft angewendet werden, bis keine weitere Verbesserung des Signal/Untergrundverhältnisses mehr erreicht wird. Die Zahl der Wiederholungen ist dabei limitiert durch die Anzahl der Datenpunkte im Bereich der Extrema des Differenzpeaks (siehe Fig. 6). Die Zahl der Wiederholungen n kann maximal die Anzahl der Pixel k im Bereich der Halbwertsbreite FWHM des Ramansignals annehmen. Da Wiederholungen im Bereich kleiner Differenzintensitäten nicht mehr zur Verbesserung der SERDS-Intensität führen, wird die Zahl der Wiederholungen der Anwendung des Algorithmus n bevorzugt zwischen 1 und k/2 gewählt. Der Transformationsparameter δ wird bei Mehrfachanwendung des Algorithmus bevorzugt vom halben Wellenlängenabstand ΔLaser ausgehend in geradzahligen Schritten um bis zu +/- k/4 Pixel variiert.Another advantage over the previous reconstruction methods is the possibility of multiple use of the reconstruction method. By varying the transformation parameter δ, n further spectra can be constructed from the same raw data and then added together. This is approximately equivalent to n single SERDS measurements at n- fold. Noise increases by a factor of n times n
Figure imgb0001
off and the signal to the first approximation by the factor n . The algorithm can be used as often until no further improvement of the signal / background ratio is achieved. The number of repetitions is limited by the number of data points in the extrema of the difference peak (see Fig. 6 ). The number of repetitions n can assume at most the number of pixels k in the range of the half width FWHM of the Raman signal. Since repetitions in the range of small difference intensities no longer lead to the improvement of the SERDS intensity, the number of repetitions of the application of the algorithm n is preferably selected between 1 and k / 2. The transformation parameter δ is preferably varied by up to +/- k / 4 pixels starting from the half wavelength distance Δ laser in even-numbered steps when the algorithm is used several times.

Das erfindungsgemäße Verfahren zur Erzeugung und zur Detektion eines Raman-Spektrums eines zu untersuchenden Mediums weist folgende Verfahrensschritte auf: Einstrahlen von Anregungsstrahlung auf das zu untersuchende Medium, wobei das zu untersuchende Medium zeitlich versetzt mit einer ersten Anregungsstrahlung einer ersten Wellenlänge und einer zweiten Anregungsstrahlung einer zweiten Wellenlänge bestrahlt wird, wobei sich die erste Wellenlänge von der zweiten Wellenlänge unterscheidet; spektrale Analyse der vom zu untersuchenden Medium gestreuten ersten Anregungsstrahlung, wobei aus der gestreuten ersten Anregungsstrahlung ein erstes Spektrum detektiert wird, das einer Vielzahl von Wellenlängen jeweils einen Intensitätswert zuordnet; spektrale Analyse der vom zu untersuchenden Medium gestreuten zweiten Anregungsstrahlung, wobei aus der gestreuten zweiten Anregungsstrahlung ein zweites Spektrum detektiert wird, das einer Vielzahl von Wellenlängen jeweils einen Intensitätswert zuordnet; Berechnung eines Raman-Spektrums des zu untersuchenden Mediums aus dem ersten Spektrum und dem zweiten Spektrum, wobei das erste Spektrum und das zweite Spektrum in Bezug auf ihre Intensitätswerte zueinander normiert werden, und nachfolgend: ein erstes Differenzspektrum aus der Differenz des ersten Spektrums und des zweiten Spektrums berechnet wird, ein zweites Differenzspektrum aus der Differenz des zweiten Spektrums und des ersten Spektrums berechnet wird, das erste Differenzspektrum in ein erstes Transformationsspektrum überführt wird, wobei einer Vielzahl von Wellenlängen jeweils ein Intensitätswert zugeordnet wird, und sich der Intensitätswert einer Wellenlänge des ersten Transformationsspektrums durch Addition eines ersten Intensitätswertes einer ersten Wellenlänge des ersten Differenzspektrums und des Betrages eines zweiten Intensitätswertes einer zweiter Wellenlänge des ersten Differenzspektrums berechnet, wobei die erste Wellenlänge des ersten Differenzspektrums um einen vorgegebenen Transformationsparameter größer als die Wellenlänge des ersten Transformationsspektrums und die zweite Wellenlänge des ersten Differenzspektrums um den Transformationsparameter kleiner als die Wellenlänge des ersten Transformationsspektrums ist, das zweite Differenzspektrum in ein zweites Transformationsspektrum überführt wird, wobei einer Vielzahl von Wellenlängen jeweils ein Intensitätswert zugeordnet wird, und sich der Intensitätswert einer Wellenlänge des zweiten Transformationsspektrums durch Addition des Betrages eines ersten Intensitätswertes einer ersten Wellenlänge des zweiten Differenzspektrums und eines zweiten Intensitätswertes einer zweiter Wellenlänge des zweiten Differenzspektrums berechnet, wobei die erste Wellenlänge des zweiten Differenzspektrums um den Transformationsparameter größer als die Wellenlänge des zweiten Transformationsspektrums und die zweite Wellenlänge des zweiten Differenzspektrums um den Transformationsparameter kleiner als die Wellenlänge des zweiten Transformationsspektrums ist, und das Raman-Spektrum durch Addition des ersten Transformationsspektrums und des zweiten Transformationsspektrums berechnet wird.The inventive method for generating and detecting a Raman spectrum of a medium to be examined comprises the following method steps: irradiation of excitation radiation on the medium to be examined, wherein the medium to be examined offset in time with a first excitation radiation of a first wavelength and a second excitation radiation of a second Wavelength is irradiated, wherein the first wavelength differs from the second wavelength; spectral analysis of the scattered from the medium to be examined first excitation radiation, wherein from the scattered first excitation radiation, a first spectrum is detected, each of which assigns an intensity value to a plurality of wavelengths; spectral analysis of the scattered by the medium to be examined second excitation radiation, wherein from the scattered second excitation radiation, a second spectrum is detected, each of which assigns an intensity value to a plurality of wavelengths; Calculating a Raman spectrum of the medium to be examined from the first spectrum and the second spectrum, wherein the first spectrum and the second spectrum are normalized relative to one another with respect to their intensity values, and in the following: a first difference spectrum from the difference between the first spectrum and the second spectrum Spectrum is calculated, a second difference spectrum is calculated from the difference of the second spectrum and the first spectrum, the first difference spectrum is converted into a first transformation spectrum, wherein a plurality of wavelengths each having an intensity value and the intensity value of a wavelength of the first transformation spectrum is calculated by adding a first intensity value of a first wavelength of the first difference spectrum and the magnitude of a second intensity value of a second wavelength of the first difference spectrum, wherein the first wavelength of the first difference spectrum is greater than a predetermined transformation parameter the wavelength of the first transformation spectrum and the second wavelength of the first difference spectrum around the transformation parameter is smaller than the wavelength of the first transformation spectrum, the second difference spectrum is converted into a second transformation spectrum, wherein a plurality of wavelengths are each assigned an intensity value, and the intensity value of a Wavelength of the second transformation spectrum by adding the amount of a first intensity value of a first wavelength de The first wavelength of the second difference spectrum around the transformation parameter is greater than the wavelength of the second transformation spectrum and the second wavelength of the second difference spectrum about the transformation parameter is smaller than the wavelength of the second transformation spectrum , and the Raman spectrum is calculated by adding the first transformation spectrum and the second transformation spectrum.

Vorzugsweise wird als Transformationsparameter der halbe Betrag der Differenz der ersten Wellenlänge und der zweiten Wellenlänge verwendet. Vorzugsweise werden die erste Wellenlänge und die zweite Wellenlänge aus dem Intervall 250 - 1100 nm, bevorzugt 400 - 950 nm ausgewählt. Vorzugsweise erfolgt die Erzeugung elektromagnetischer Anregungsstrahlung mittels einer Laserdiode mit einem internen frequenzselektiven Element. Vorzugsweise wird die Laserdiode zur alternierenden Erzeugung unterschiedlicher Anregungswellenlängen mittels des an die Laserdiode angelegten elektrischen Stroms alternierend mit zwei unterschiedlichen Anregungsbedingungen angesteuert. Vorzugsweise erfolgt das Hin- und Herschalten zwischen den Anregungsbedingungen mit einer Frequenz größer als 1 Hz. Vorzugsweise erfolgt die spektrale Analyse der vom zu untersuchenden Medium gestreuten elektromagnetischen Strahlung durch Einkoppeln der gestreuten Strahlung in einen spektraloptischen Apparat. Vorzugsweise wird die Detektion der einzelnen Raman-Spektren unterschiedlicher Anregungswellenlängen mit der alternierenden Ansteuerung der Laserdiode synchronisiert. Vorzugsweise erfolgt die Detektion eines Raman-Spektrums jeweils innerhalb eines Zeitintervalls, in dem die Stromstärke des an die Laserdiode angelegten Stroms konstant gehalten wird.Preferably, half of the difference of the first wavelength and the second wavelength is used as the transformation parameter. Preferably, the first wavelength and the second wavelength are selected from the interval 250-1100 nm, preferably 400-950 nm. Preferably, the generation of electromagnetic excitation radiation by means of a laser diode with an internal frequency-selective element. Preferably, the laser diode for alternating generation of different excitation wavelengths by means of the voltage applied to the laser diode electric current is driven alternately with two different excitation conditions. The switching back and forth between the excitation conditions preferably takes place at a frequency greater than 1 Hz. The spectral analysis of the electromagnetic radiation scattered by the medium to be examined preferably takes place by coupling the scattered radiation into a spectral optical apparatus. Preferably, the detection of the individual Raman spectra of different excitation wavelengths is synchronized with the alternating drive of the laser diode. Preferably, the detection of a Raman spectrum is in each case within a time interval in which the current intensity of the current applied to the laser diode is kept constant.

Vorzugsweise wird die Laserdiode innerhalb eines Zeitintervalls mit mindestens zwei unterschiedlichen Anregungsbedingungen derart angesteuert, dass sie auf mindestens zwei Wellenlängen mit einem Wellenlängenabstand emittiert, der mindestens einem Drittel der Halbwertsbreite der Ramansignale (bevorzugter der Hälfte der Halbwertsbreite und sehr bevorzugt der Halbwertsbreite) entspricht. Vorzugsweise wird die Laserdiode innerhalb eines Zeitintervalls mit mindestens zwei unterschiedlichen Anregungsbedingungen derart angesteuert, dass sie auf mindestens zwei Wellenlängen mit einem Wellenlängenabstand emittiert, der mindestens 3 cm-1 (0,2 nm bei Anregung mit 785 nm), bevorzugter mindestens 4 cm-1 und noch bevorzugter mindestens 8 cm-1 entspricht.Preferably, the laser diode is driven within a time interval with at least two different excitation conditions such that it emits at least two wavelengths with a wavelength spacing of at least one third of the half width of the Raman signals (more preferably half the half width and very high preferably the half-width) corresponds. Preferably, the laser diode is driven within a time interval having at least two different excitation conditions such that it emits at least two wavelengths with a wavelength separation of at least 3 cm -1 (0.2 nm when excited at 785 nm), more preferably at least 4 cm -1 and more preferably at least 8 cm -1 .

Vorzugsweise beträgt das Zeitintervall 1s, bevorzugter 0,1 s. Vorzugsweise wird die Laserdiode vor dem Einkoppeln der Anregungsstrahlung in das zu untersuchende Medium kalibriert. Vorzugsweise wird als frequenzselektives Element ein Gitter, ein Etalon oder ein Mach-Zehnder-Interferometer verwendet. Vorzugsweise wird die von der Laserdiode erzeugte Anregungsstrahlung mittels eines Raman-Messkopfes in das zu untersuchende Medium eingekoppelt. Vorzugsweise wird die von der Laserdiode erzeugte Anregungsstrahlung vor dem Einkoppeln in das zu untersuchende Medium verstärkt. Vorzugsweise wird die vom zu untersuchenden Medium gestreute Strahlung mittels einer optischen Faser in das spektral-optische System eingekoppelt. Vorzugsweise wird die Laserdiode mittels einer Stromquelle angesteuert wird, wobei die Ausgangsleistung der Stromquelle moduliert wird. Vorzugsweise wird zur Modulation ein Funktionsgenerator verwendet. Vorzugsweise werden die einzelnen Raman-Spektren mittels eines Datenverarbeitungsgerätes gespeichert. Vorzugsweise werden zur Synchronisation der Detektionen der Raman-Spektren und der Ansteuerung der Laserdiode sowohl die Ausgangsleistung einer Anregungsquelle moduliert als auch ein Detektor des spektral-optischen Systems synchronisiert.The time interval is preferably 1 s, more preferably 0.1 s. Preferably, the laser diode is calibrated prior to the coupling of the excitation radiation in the medium to be examined. Preferably, the frequency-selective element used is a grating, an etalon or a Mach-Zehnder interferometer. Preferably, the excitation radiation generated by the laser diode is coupled by means of a Raman measuring head into the medium to be examined. Preferably, the excitation radiation generated by the laser diode is amplified prior to coupling into the medium to be examined. Preferably, the radiation scattered by the medium to be examined radiation is coupled by means of an optical fiber in the spectral optical system. Preferably, the laser diode is driven by means of a current source, wherein the output power of the current source is modulated. Preferably, a function generator is used for the modulation. Preferably, the individual Raman spectra are stored by means of a data processing device. Preferably, both the output power of an excitation source are modulated and a detector of the spectral optical system are synchronized to synchronize the detections of the Raman spectra and the control of the laser diode.

Die erfindungsgemäße Vorrichtung zur Erzeugung einer Anregungsstrahlung und zur Detektion eines Raman-Spektrums eines zu untersuchenden Mediums weist eine Anregungslichtquelle, Mittel zur Einkopplung der von der Anregungslichtquelle emittierten Anregungsstrahlung in das zu untersuchende Medium, Mittel zur Einkopplung der vom zu untersuchenden Medium gestreuten Strahlung in ein spektral-optisches System und ein Datenverarbeitungsgerät auf, das mit dem spektral-optischen System verbunden ist, wobei das Datenverarbeitungsgerät aus den mindestens zwei detektierten Raman-Spektren unterschiedlicher Anregungswellenlängen ein Raman-Spektrum des zu untersuchenden Mediums berechnet, in dem der Fluoreszenzuntergrund rechnerisch eliminiert ist, und wobei das Datenverarbeitungsgerät ausgebildet ist, das erste Spektrum und das zweite Spektrum in Bezug auf ihre Intensitätswerte zueinander zu normieren, und nachfolgend: ein erstes Differenzspektrum aus der Differenz des ersten Spektrums und des zweiten Spektrums berechnet wird, ein zweites Differenzspektrum aus der Differenz des zweiten Spektrums und des ersten Spektrums berechnet wird, das erste Differenzspektrum in ein erstes Transformationsspektrum überführt wird, wobei einer Vielzahl von Wellenlängen jeweils ein Intensitätswert zugeordnet wird, und sich der Intensitätswert einer Wellenlänge des ersten Transformationsspektrums durch Addition eines ersten Intensitätswertes einer ersten Wellenlänge des ersten Differenzspektrums und des Betrages eines zweiten Intensitätswertes einer zweiter Wellenlänge des ersten Differenzspektrums berechnet, wobei die erste Wellenlänge des ersten Differenzspektrums um einen vorgegebenen Transformationsparameter größer als die Wellenlänge des ersten Transformationsspektrums und die zweite Wellenlänge des ersten Differenzspektrums um den Transformationsparameter kleiner als die Wellenlänge des ersten Transformationsspektrums ist, wobei das Datenverarbeitungsgerät derart ausgebildet ist, dass als Transformationsparameter ein Wert zwischen 0.2 und 0.8 des Betrages der Differenz der ersten Wellenlänge und der zweiten Wellenlänge verwendet wird, und das zweite Differenzspektrum in ein zweites Transformationsspektrum überführt wird, wobei einer Vielzahl von Wellenlängen jeweils ein Intensitätswert zugeordnet wird, und sich der Intensitätswert einer Wellenlänge des zweiten Transformationsspektrums durch Addition des Betrages eines ersten Intensitätswertes einer ersten Wellenlänge des zweiten Differenzspektrums und eines zweiten Intensitätswertes einer zweiter Wellenlänge des zweiten Differenzspektrums berechnet, wobei die erste Wellenlänge des zweiten Differenzspektrums um den Transformationsparameter größer als die Wellenlänge des zweiten Transformationsspektrums und die zweite Wellenlänge des zweiten Differenzspektrums um den Transformationsparameter kleiner als die Wellenlänge des zweiten Transformationsspektrums ist, und das Raman-Spektrum durch Addition des ersten Transformationsspektrums und des zweiten Transformationsspektrums berechnet wird.The inventive device for generating an excitation radiation and for detecting a Raman spectrum of a medium to be examined has an excitation light source, means for coupling the excitation radiation emitted by the excitation light source into the medium to be examined, means for coupling the radiation scattered by the medium to be examined into a spectral optical system and a data processing device, which is connected to the spectral optical system, wherein the data processing device from the at least two detected Raman spectra of different excitation wavelengths calculated a Raman spectrum of the medium to be examined, in which the fluorescence background is mathematically eliminated, and wherein the data processing device is configured, the first spectrum and the second spectrum in To normalize with respect to their intensity values, and subsequently: a first difference spectrum is calculated from the difference of the first spectrum and the second spectrum, a second difference spectrum is calculated from the difference of the second spectrum and the first spectrum, the first difference spectrum into a first transformation spectrum wherein an intensity value is assigned to a plurality of wavelengths, and the intensity value of a wavelength of the first transformation spectrum is calculated by adding a first intensity value of a first wavelength of the first difference spectrum and the magnitude of a second intensity value of a second wavelength of the first difference spectrum; first wavelength of the first difference spectrum by a predetermined transformation parameter greater than the wavelength of the first transformation spectrum and the second wavelength of the first difference spectrum to the transformation parameter is smaller than the wavelength of the first transformation spectrum, wherein the data processing device is designed such that a value between 0.2 and 0.8 of the amount of the difference of the first wavelength and the second wavelength is used as a transformation parameter, and the second difference spectrum in a second transformation spectrum wherein an intensity value is assigned to a plurality of wavelengths, and the intensity value of a wavelength of the second transformation spectrum is calculated by adding the magnitude of a first intensity value of a first wavelength of the second difference spectrum and a second intensity value of a second wavelength of the second difference spectrum first wavelength of the second difference spectrum around the transformation parameter greater than the wavelength of the second transformation spectrum and the second wavelength of the second difference spectrum around the transformation parameter is smaller than the wavelength of the second transformation spectrum, and the Raman spectrum is calculated by adding the first transformation spectrum and the second transformation spectrum.

Vorzugsweise wird als Transformationsparameter der halbe Betrag der Differenz der ersten Wellenlänge und der zweiten Wellenlänge verwendet. Vorzugsweise ist die Anregungslichtquelle eine Laserdiode mit einem internen frequenz-selektiven Element. Vorzugsweise ist die Laserdiode zur Erzeugung unterschiedlicher Anregungswellenlängen mit einer von einem Modulator modulierten Stromquelle verbunden, wobei der Modulator die Stromquelle alternierend moduliert. Vorzugsweise erfolgt das Hin- und Herschalten mit einer Frequenz größer als 1 Hz. Vorzugsweise ist das spektral-optische System ein Spektrograph mit CCD-Detektor. Vorzugsweise ist das spektral-optische System und/oder das Datenverarbeitungsgerät mit dem Modulator verbunden und die Detektion der einzelnen RamanSpektren unterschiedlicher Anregungswellenlängen ist mit der alternierenden Ansteuerung der Laserdiode synchronisiert. Vorzugsweise ist der Modulator ein Funktionsgenerator. Vorzugsweise ist der Modulator ein Rechteckgenerator. Vorzugsweise weisen das Mittel zum Einkoppeln der Anregungsstrahlung in das zu untersuchende Medium und das Mittel zum Einkoppeln der vom zu untersuchenden Medium gestreuten Strahlung in das spektral-optisches System eine optische Faser und einen Raman-Messkopf auf. Vorzugsweise ist zwischen Laserdiode und zu untersuchendem Medium ein optischer Verstärker angeordnet. Vorzugsweise ist das interne frequenzselektive Element ein Gitter, ein Etalon oder ein Mach-Zehnder-Interferometer.Preferably, half of the difference of the first wavelength and the second wavelength is used as the transformation parameter. Preferably, the excitation light source is a laser diode having an internal frequency-selective element. Preferably, the laser diode for generating different excitation wavelengths is connected to a modulated by a modulator current source, wherein the modulator modulates the current source alternately. Preferably, the switching back and forth takes place with a frequency greater than 1 Hz. Preferably, the spectral optical system is a spectrograph with CCD detector. Preferably, the spectral optical system and / or the data processing device is connected to the modulator and the detection of the individual Raman spectra of different excitation wavelengths is synchronized with the alternating drive of the laser diode. Preferably, the modulator is a function generator. Preferably, the modulator is a rectangular generator. Preferably, the means for coupling the excitation radiation into the medium to be examined and the means for Coupling the radiation scattered by the medium to be examined into the spectral-optical system, an optical fiber and a Raman measuring head. Preferably, an optical amplifier is arranged between the laser diode and the medium to be examined. Preferably, the internal frequency-selective element is a grating, an etalon or a Mach-Zehnder interferometer.

Die Erfindung wird nachstehend anhand der Figuren näher erläutert. Es zeigen:

Fig. 1
eine Vorrichtung zur Erzeugung einer Anregungsstrahlung und zur Detektion eines Raman-Spektrums gemäß einer bevorzugten Ausführungsvariante der Erfindung,
Fig. 2
zwei gemessene und aufgrund unterschiedlicher Anregungswellenlängen gegeneinander verschobene Raman-Spektren,
Fig. 3
die in Fig. 2 gemessenen Raman-Spektren, nachdem diese zueinander in ihrer Intensität normiert wurden sowie ein danach daraus gebildetes Differenzspektrum,
Fig. 4
ein aus dem in Fig. 3 gezeigten Differenzspektrum mittels des erfindungsgemäßen Verfahrens erhaltenes Transformationsspektrum,
Fig. 5
zwei aus den in Fig. 2 gemessenen Raman-Spektren mittels des erfindungsgemäßen Verfahrens rekonstruierte Raman-Spektren, die nach einfacher bzw. fünffacher Rekonstruktion aus denselben Daten ermittelt wurden, im Vergleich zu einem herkömmlich gemessenen Raman-Spektrum von Kalziumsulfat,
Fig. 6
die Darstellung weiterer für die Rekonstruktion geeigneter Punkte zum Zweck der Mehrfachanwendung (Punktepaare sind durch Symbole markiert),
Fig. 7
der Arbeitsbereich der Methode, aufgetragen als Signalintensität über dem Quotienten aus Δν Laser / FWHM Peak,
Fig. 8
ein herkömmlich gemessenes Raman-Spektrum und ein mittels des erfindungsgemäßen Verfahrens ermitteltes Raman-Spektrum von 100 µM Kupfer(II)-phthalocyanin-tetrasulfonsäure Tetranatriumsalz in destilliertem Wasser,
Fig. 9
verschiedene mittels des erfindungsgemäßen Verfahrens ermittelte Raman-Spektren von Kupfer(II)-phthalocyanin-tetrasulfonsäure Tetranatriumsalz unterschiedlicher Konzentration in destilliertem Wasser, und
Fig.10
die Kalibrierkurve für das Ramansignal bei 1530 cm-1 von Fig. 9.
The invention is explained below with reference to the figures. Show it:
Fig. 1
a device for generating an excitation radiation and for detecting a Raman spectrum according to a preferred embodiment of the invention,
Fig. 2
two measured and due to different excitation wavelengths shifted from each other Raman spectra,
Fig. 3
in the Fig. 2 measured Raman spectra, after they have been normalized in intensity to each other and then a difference spectrum formed from them,
Fig. 4
one from the in Fig. 3 shown difference spectrum obtained by the method according to the invention transformation spectrum
Fig. 5
two out of the in Fig. 2 measured Raman spectra by means of the method according to the invention reconstructed Raman spectra, which were determined after simple or fivefold reconstruction of the same data, compared to a conventionally measured Raman spectrum of calcium sulfate,
Fig. 6
the presentation of further points suitable for the reconstruction for the purpose of multiple use (pairs of points are marked by symbols),
Fig. 7
the working range of the method, plotted as signal intensity over the quotient of Δν laser / FWHM peak ,
Fig. 8
a conventionally measured Raman spectrum and a Raman spectrum of 100 .mu.M copper (II) phthalocyanine tetrasulphonic tetrasodium tetrasodium salt in distilled water, determined by the process according to the invention,
Fig. 9
Various determined by the method according to the invention Raman spectra of copper (II) -phthalocyanine-tetrasulfonic tetrasodium tetrasodium salt of different concentration in distilled water, and
Figure 10
the calibration curve for the Raman signal at 1530 cm -1 of Fig. 9 ,

Die Aufnahme von SERD-Spektren unterscheidet sich von herkömmlichen Ramanmessungen dadurch, dass anstelle einer Einzelmessung zwei Messungen an derselben Probe 9, mit zwei Anregungswellenlängen λ1 und λ2 durchgeführt werden, die um eine Wellenlängendifferenz gegeneinander verschoben sind. Für die Messungen wird der in Fig. 1 gezeigte Aufbau verwendet. Der DFB-Diodenlaser 1 wird nacheinander mit zwei unterschiedlichen Injektionsströmen angesteuert. Dadurch verschieben sich die Ramansignale beider Spektren entsprechend Δ gegeneinander, wohingegen der breitbandige Untergrund in 1. Näherung keine Veränderung erfährt (Fig. 2). Die Intensitäten der beiden Spektren 16 und 17 sind unterschiedlich, da die Laserleistung von der eingestellten Stromstärke abhängt.The recording of SERD spectra differs from conventional Raman measurements in that, instead of a single measurement, two measurements are carried out on the same sample 9, with two excitation wavelengths λ1 and λ2, which are separated by one wavelength are shifted against each other. For the measurements, the in Fig. 1 used construction shown. The DFB diode laser 1 is driven sequentially with two different injection currents. As a result, the Raman signals of both spectra shift in accordance with Δ against each other, whereas in the first approximation the broadband background undergoes no change ( Fig. 2 ). The intensities of the two spectra 16 and 17 are different, since the laser power depends on the set current.

Anschließend werden die beiden Ramanspektren 16 und 17 in ihrer Intensität aufeinander normiert und die Differenz gebildet (Fig. 3). Das resultierende Differenzspektrum D1 wird durch den erfindungsgemäßen Rekonstruktionsalgorithmus zunächst in das Transformationsspektrum K1 überführt (Fig. 4), aus dem durch Addition mit K2 das Raman-Spektrum R1 rekonstruiert wird (Fig. 5).Subsequently, the two Raman spectra 16 and 17 are normalized in their intensity and the difference formed ( Fig. 3 ). The resulting difference spectrum D1 is first converted into the transformation spectrum K1 by the reconstruction algorithm according to the invention ( Fig. 4 ), from which the Raman spectrum R1 is reconstructed by adding K2 ( Fig. 5 ).

Ein weiterer Vorteil gegenüber den bisherigen Rekonstruktionsmethoden ist die Möglichkeit der Mehrfachanwendung des Rekonstruktionsverfahrens.Another advantage over the previous reconstruction methods is the possibility of multiple use of the reconstruction method.

Mehrfachanwendung des Rekonstruktionsverfahrens bedeutet gemäß der vorliegenden Erfindung, dass die Schritte:

  • das erste Differenzspektrum D1 in ein erstes Transformationsspektrum K1 überführt wird, wobei einer Vielzahl von Wellenlängen jeweils ein Intensitätswert zugeordnet wird, und sich der Intensitätswert einer Wellenlänge des ersten Transformationsspektrums K1 durch Addition eines ersten Intensitätswertes einer ersten Wellenlänge des ersten Differenzspektrums D1 und des Betrages eines zweiten Intensitätswertes einer zweiten Wellenlänge des ersten Differenzspektrums D1 berechnet, wobei die erste Wellenlänge des ersten Differenzspektrums D1 um einen vorgegebenen Transformationsparameter δ größer als die Wellenlänge des ersten Transformationsspektrums K1 und die zweite Wellenlänge des ersten Differenzspektrums D1 um den Transformationsparameter δ kleiner als die Wellenlänge des ersten Transformationsspektrums K1 ist, und
  • das zweite Differenzspektrum D2 in ein zweites Transformationsspektrum K2 überführt wird, wobei einer Vielzahl von Wellenlängen jeweils ein Intensitätswert zugeordnet wird, und sich der Intensitätswert einer Wellenlänge des zweiten Transformationsspektrums K2 durch Addition des Betrages eines ersten Intensitätswertes einer ersten Wellenlänge des zweiten Differenzspektrums D2 und eines zweiten Intensitätswertes einer zweiten Wellenlänge des zweiten Differenzspektrums D2 berechnet, wobei die erste Wellenlänge des zweiten Differenzspektrums D2 um den Transformationsparameter δ größer als die Wellenlänge des zweiten Transformationsspektrums K2 und die zweite Wellenlänge des zweiten Differenzspektrums D2 um den Transformationsparameter δ kleiner als die Wellenlänge des zweiten Transformationsspektrums K2 ist,
mehrfach durchgeführt werden, wobei bei der Mehrfachanwendung der Transformationsparameter δ zwischen 0,2 Δ und 0,8 Δ variiert wird und die so erhaltene Vielzahl von Transformationsspektren K1, K2 aufsummiert werden.Multiple use of the reconstruction method according to the present invention means that the steps:
  • the first difference spectrum D1 is converted into a first transformation spectrum K1, wherein an intensity value is assigned to a plurality of wavelengths, and the intensity value of a wavelength of the first transformation spectrum K1 is added by adding a first intensity value of a first wavelength of the first difference spectrum D1 and the amount of a second one Intensity value of a second wavelength of the first difference spectrum D1 calculated, wherein the first wavelength of the first difference spectrum D1 by a predetermined transformation parameter δ greater than the wavelength of the first transformation spectrum K1 and the second wavelength of the first difference spectrum D1 to the transformation parameter δ smaller than the wavelength of the first transformation spectrum K1 is, and
  • the second difference spectrum D2 is converted into a second transformation spectrum K2, wherein an intensity value is assigned to a plurality of wavelengths, and the intensity value of a wavelength of the second transformation spectrum K2 is calculated by adding the amount of a first intensity value of a first wavelength of the second difference spectrum D2 and a second one Intensity value of a second wavelength of the second difference spectrum D2 calculated, wherein the first wavelength of the second difference spectrum D2 to the transformation parameter δ greater than the wavelength of the second transformation spectrum K2 and the second wavelength of the second difference spectrum D2 to the Transformation parameter δ is smaller than the wavelength of the second transformation spectrum K2,
be performed multiple times, wherein in the multiple application of the transformation parameter δ between 0.2 .DELTA.A and 0.8 .DELTA.A is varied and the thus obtained plurality of transformation spectra K1, K2 are added up.

Durch Variation des Inkrements δ (bei n=1 gilt vorzugsweise δ = Δ/2) können aus denselben Rohdaten n weitere Spektren konstruiert und anschließend addiert werden. Dies ist bei n-facher Anwendung annähernd äquivalent zu n einzelnen SERDS-Messungen. Das Rauschen nimmt bei n-facher Anwendung um den Faktor n

Figure imgb0002
ab und das Signal in erster Näherung um den Faktor n zu. Der Algorithmus kann so oft angewendet werden, bis keine weitere Verbesserung des Signal/Untergrundverhältnisses mehr erreicht wird. Die Zahl der Wiederholungen ist dabei limitiert durch die Anzahl der Datenpunkte im Bereich der Extrema des Differenzpeaks (siehe Fig. 6). Die Zahl der Wiederholungen kann maximal die Anzahl der Pixel k im Bereich der Halbwertsbreite FWHM des Ramansignals annehmen. Da Wiederholungen im Bereich kleiner Differenzintensitäten nicht mehr zu Verbesserung der SERDS-Intensität führen, wird die Zahl der Wiederholungen der Anwendung der Transformation n bevorzugt zwischen 1 und k/2 gewählt. Der Abstand δ wird bei Mehrfachanwendung des Algorithmus bevorzugt vom halben Wellenlängenabstand ΔLaser ausgehend in geradzahligen Schritten um bis zu +/- k/4 Pixel variiert.By varying the increment δ (at n = 1 preferably δ = Δ / 2) n further spectra can be constructed from the same raw data and then added together. This is nearly equivalent to n single SERDS measurements when used n times. Noise increases by a factor of n times n
Figure imgb0002
off and the signal to the first approximation by the factor n . The algorithm can be used as often until no further improvement of the signal / background ratio is achieved. The number of repetitions is limited by the number of data points in the extrema of the difference peak (see Fig. 6 ). The number of repetitions can reach at most the number of pixels k in the range of the half width FWHM of the Raman signal. Since repetitions in the range of small difference intensities no longer lead to an improvement in the SERDS intensity, the number of repetitions of the application of the transformation n is preferably selected between 1 and k / 2. The distance δ is varied in multiple use of the algorithm preferably from the half wavelength distance Δ laser starting in even-numbered increments by up to +/- k / 4 pixels.

Durch fünffache Anwendung des Rekonstruktionsverfahrens kann ein deutlich verbessertes rekonstruiertes Raman-Spektrum R2 erhalten werden (Fig. 5).By using the reconstruction method five times, a significantly improved reconstructed Raman spectrum R2 can be obtained ( Fig. 5 ).

Die Fig. 8 bis 10 zeigen die quantitative Auswertung einer Konzentrationsmessreihe am Beispiel von Kupfer(II)-phthalocyanin-tetrasulfonsäure Tetranatriumsalz in Wasser konventionell und mit SERDS.The Fig. 8 to 10 show the quantitative evaluation of a concentration measurement series using the example of copper (II) phthalocyanine tetrasulfonic acid tetrasodium salt in water conventionally and with SERDS.

Das erfindungsgemäße Auswerteverfahren wurde zunächst an stark streuender Tafelkreide als Testobjekt erprobt. Dabei konnte eine Verbesserung des Signal/Untergrundrauschverhältnis S/σBGN um den Faktor 48 erreicht werden. Die Positionen und relativen Intensitäten der Signale bleiben erhalten und ermöglichen die qualitative Zuordnung im erfindungsgemäß rekonstruierten SERD-Spektrum mit höherer Trennschärfe als im konventionellen Ramanspektrum, da sich die Halbwertsbreiten der Signale durch den Algorithmus von beobachteten 12 cm-1 auf 9,5 cm-1 verringern. Alle schwachen Ramansignale, die im konventionellen Kreidespektrum vom Untergrund maskiert sind, wurden in den SERD-Spektren an den Positionen gefunden, die von einem Gipskristallspektrum bekannt sind.The evaluation method according to the invention was first tested on strongly scattering chalk as a test object. An improvement of the signal / background noise ratio S / σ BGN by a factor of 48 could be achieved. The positions and relative intensities of the signals are preserved and allow the qualitative assignment in the inventively reconstructed SERD spectrum with higher selectivity than in the conventional Raman spectrum, since the half-widths of the signals through the algorithm of observed 12 cm -1 to 9.5 cm -1 reduce. All weak Raman signals masked from the background in the conventional chalk spectrum were found in the SERD spectra at the positions known from a gypsum crystal spectrum.

Durch Aufnehmen einer Kalibrierkurve von Kupfer(II)-phthalocyanin-tetrasulfonsäure Tetranatriumsalz in destilliertem Wasser wurde gezeigt, dass die SERDS-Messungen quantitativ auswertbar sind. Die Kalibrierkurve war linear und die Nachweisgrenze lag bei der SERDS-Messreihe mit 3 µM niedriger als bei der Raman-Messreihe mit 3,4 µM. Den limitierenden Faktor stellt hier eher die Ungenauigkeit beim Anmischen der Lösung dar, der in die Berechnung der Nachweisgrenze eingeht.By recording a calibration curve of copper (II) phthalocyanine tetrasulfonic acid tetrasodium salt in distilled water, the SERDS measurements were shown to be quantitative are evaluable. The calibration curve was linear and the detection limit for the SERDS measurement series was 3 μM lower than for the Raman measurement series at 3.4 μM. The limiting factor here is rather the inaccuracy in mixing the solution, which is included in the calculation of the detection limit.

Es wurde erfolgreich demonstriert, dass SERDS durch den neuen Auswertealgorithmus für qualitative und quantitative Messungen geeignet ist. Die Qualität der SERD-Spektren war dabei zu jedem Zeitpunkt signifikant besser als die der konventionell aufgenommenen Raman-Spektren. Der neu entwickelte Rekonstruktionsalgorithmus erlaubt erstmalig eine automatisierte und vollkommen benutzerunabhängige Onlineanalytik. Nahezu jedes Ramansystem ließe sich mit geringem Aufwand kostengünstig für den Einsatz von SERDS anpassen. Zudem ist die entwickelte Technik sehr gut für mobilen Einsatz miniaturisierter Ramansysteme, beispielsweise in der Prozesskontrolle geeignet. Die freie Wahl der Anregungswellenlänge ermöglicht eine Anpassung der Empfindlichkeit für jeden Anwendungsbereich. Zusätzlich ist der Einsatz von SERDS grundsätzlich in Kombination mit anderen Ramantechniken, wie z.B. SERS und Resonanz-Ramanspektroskopie denkbar.It was successfully demonstrated that SERDS is suitable for qualitative and quantitative measurements thanks to the new evaluation algorithm. The quality of the SERD spectra was at any time significantly better than that of the conventionally recorded Raman spectra. The newly developed reconstruction algorithm allows for the first time an automated and completely user-independent online analytics. Virtually every Raman system could be inexpensively adapted to SERDS with little effort. In addition, the developed technology is very well suited for mobile use of miniaturized Raman systems, for example in process control. The free choice of excitation wavelength allows adjustment of the sensitivity for each application. In addition, the use of SERDS in principle in combination with other Ramantechniken, such as SERS and resonance Raman spectroscopy conceivable.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Laserdiodelaser diode
22
erste Linsefirst lens
33
erster Spiegelfirst mirror
44
BandpassfilterBandpass filter
55
zweiter Spiegelsecond mirror
66
Ramanfilter (Kanten- oder Notchfilter)Raman filter (edge or notch filter)
77
zweite Linsesecond lens
88th
Anregungsstrahlungexcitation radiation
99
zu untersuchendes Medium / Probe (in einem Gefäß)to be examined medium / sample (in a vessel)
1010
dritte Linsethird lens
1111
optische Faseroptical fiber
1212
spektral-optisches Systemspectral optical system
1313
CCD-DetektorCCD detector
1414
Spektrographspectrograph
1515
DatenverarbeitungsgerätComputing device
1616
gemessenes Raman-Spektrum bei Anregungswellenlänge λ1 measured Raman spectrum at excitation wavelength λ 1
1717
gemessenes Raman-Spektrum bei Anregungswellenlänge λ2 measured Raman spectrum at excitation wavelength λ 2
1818
RamanmesskopfRaman probe
1919
Stromversorgungpower supply
2020
Funktionsgeneratorfunction generator
D1D1
erstes Differenzspektrum aus 16 und 17first difference spectrum from 16 and 17
D2D2
zweites Differenzspektrum aus 17 und 16second difference spectrum from 17 and 16
K1K1
erstes Transformationsspektrumfirst transformation spectrum
K2K2
zweites Transformationsspektrumsecond transformation spectrum
R, R1R, R1
erfindungsgemäß rekonstruiertes Raman-SpektrumReconstructed Raman spectrum according to the invention
R2R2
erfindungsgemäß rekonstruiertes Raman-Spektrum nach fünffacher AnwendungReconstructed Raman spectrum according to the invention after five times application
ΔΔ
WellenlängendifferenzWavelength difference
δδ
Transformationsparametertransformation parameters

Claims (13)

  1. A method for generating and for detecting a Raman spectrum of a medium (9) to be examined, including the method steps of:
    - exposing the medium (9) to be examined to excitation radiation (8), wherein the medium (9) to be examined is exposed to a first excitation radiation having a first wavelength (λ1) and to a second excitation radiation having a second wavelength (λ2) at different times, the first wavelength (λ1) being different from the second wavelength (λ2),
    - spectral analysis of the first excitation radiation once it has been scattered by the medium (9) to be examined, wherein the scattered first excitation radiation is used to detect a first spectrum (16) that assigns an intensity value to each of a plurality of wavelengths,
    - spectral analysis of the second excitation radiation once it has been scattered by the medium (9) to be examined, wherein the scattered second excitation radiation is used to detect a second spectrum (17) that assigns an intensity value to each of a plurality of wavelengths,
    - computing a Raman spectrum (R1) of the medium (9) to be examined, based on the first spectrum (16) and the second spectrum (17),
    characterized in that
    the first spectrum (16) and the second spectrum (17) are normalized relative to each other as regards their intensity values, and subsequently:
    a) a first difference spectrum (D1) is computed based on the difference of the first spectrum (16) and the second spectrum (17),
    b) a second difference spectrum (D2) is computed based on the difference of the second spectrum (17) and the first spectrum (16),
    c) the first difference spectrum (D1) is transformed into a first transformation spectrum (K1), wherein an intensity value is assigned to each of a plurality of wavelengths and the intensity value of a wavelength of the first transformation spectrum (K1) is computed by adding a first intensity value of a first wavelength of the first difference spectrum (D1) and a second intensity value of a second wavelength of the first difference spectrum (D1), the first wavelength of the first difference spectrum (D1) exceeding the wavelength of the first transformation spectrum (K1) by a predefined transformation parameter (δ) and the second wavelength of the first difference spectrum (D1) being smaller than the wavelength of the first transformation spectrum (K1) by said transformation parameter (δ), wherein a value between 0.2 and 0.8 of the difference of the first wavelength (λ1) and the second wavelength (λ2) is used as transformation parameter (δ),
    d) the second difference spectrum (D2) is transformed into a second transformation spectrum (K2), wherein an intensity value is assigned to each of a plurality of wavelengths and the intensity value of a wavelength of the second transformation spectrum (K2) is computed by adding a first intensity value of a first wavelength of the second difference spectrum (D2) and a second intensity value of a second wavelength of the second difference spectrum (D2), the first wavelength of the second difference spectrum (D2) exceeding the wavelength of the second transformation spectrum (K2) by the transformation parameter (δ) and the second wavelength of the second difference spectrum (D2) being smaller than the wavelength of the second transformation spectrum (K2) by said transformation parameter (δ), and
    e) the Raman spectrum (R1) is computed by adding the first transformation spectrum (K1) and the second transformation spectrum (K2).
  2. The method according to claim 1,
    characterized in that
    a value between 0.4 and 0.6 of the difference of the first wavelength (λ1) and the second wavelength (λ2) is used as transformation parameter (δ).
  3. The method according to claim 2,
    characterized in that
    half of the difference Δ 2
    Figure imgb0007
    of the first wavelength (λ1) and the second wavelength (λ2) is used as transformation parameter (δ).
  4. The method according to any one of the preceding claims,
    characterized in that
    steps c) and d) are repeated several times prior to performing step e), wherein the transformation parameter (δ) is varied each time steps c) and d) are repeated, thereby obtaining a plurality of first transformation spectra (K1) and a plurality of corresponding second transformation spectra (K2), wherein in step e) the Raman spectrum (R1) is computed by adding the first transformation spectra (K1) and the second transformation spectra (K2).
  5. The method according to claim 4,
    characterized in that
    the transformation parameter (δ) is increased or reduced each time steps c) and d) are repeated.
  6. The method according to claim 5,
    characterized in that
    half of the difference Δ 2
    Figure imgb0008
    of the first wavelength (λ1) and the second wavelength (λ2) is used as transformation parameter (δ) when steps c) and d) are performed for the first time, and subsequently the transformation parameter (δ) is varied within the interval ranging from 0.2 to 0.8 of the difference of the first wavelength (λ1) and the second wavelength (λ2).
  7. A device for generating an excitation radiation and for detecting a Raman spectrum (R1) of a medium (9) to be examined, comprising:
    - an excitation light source (1),
    - means for coupling the excitation radiation emitted by the excitation light source (1) into the medium (9) to be examined,
    - means for coupling the radiation scattered by the medium (9) to be examined into a spectro-optical system (12),
    - a data processing unit (15) connected to the spectro-optical system (12), wherein the data processing unit (15) uses the at least two detected Raman spectra (16, 17) of different excitation wavelengths (λ1, λ2) to compute a Raman spectrum of the medium (9) to be examined, in which the fluorescent background is eliminated by mathematical calculation, and
    characterized in that
    the data processing unit (15) is designed to normalize the first spectrum (16) and the second spectrum (17) relative to each other as regards their intensity values, and subsequently:
    a) a first difference spectrum (D1) is computed based on the difference of the first spectrum (16) and the second spectrum (17),
    b) a second difference spectrum (D2) is computed based on the difference of the second spectrum (17) and the first spectrum (16),
    c) the first difference spectrum (D1) is transformed into a first transformation spectrum (K1), wherein an intensity value is assigned to each of a plurality of wavelengths and the intensity value of a wavelength of the first transformation spectrum (K1) is computed by adding a first intensity value of a first wavelength of the first difference spectrum (D1) and a second intensity value of a second wavelength of the first difference spectrum (D1), the first wavelength of the first difference spectrum (D1) exceeding the wavelength of the first transformation spectrum (K1) by a predefined transformation parameter (δ) and the second wavelength of the first difference spectrum (D1) being smaller than the wavelength of the first transformation spectrum (K1) by said transformation parameter (δ), wherein the data processing unit is designed such that a value between 0.2 and 0.8 of the difference of the first wavelength (λ1) and the second wavelength (λ2) is used as transformation parameter (δ),
    d) the second difference spectrum (D2) is transformed into a second transformation spectrum (K2), wherein an intensity value is assigned to each of a plurality of wavelengths and the intensity value of a wavelength of the second transformation spectrum (K2) is computed by adding a first intensity value of a first wavelength of the second difference spectrum (D2) and a second intensity value of a second wavelength of the second difference spectrum (D2), the first wavelength of the second difference spectrum (D2) exceeding the wavelength of the second transformation spectrum (K2) by the transformation parameter (δ) and the second wavelength of the second difference spectrum (D2) being smaller than the wavelength of the second transformation spectrum (K2) by said transformation parameter (δ), and
    e) the Raman spectrum (R1) is computed by adding the first transformation spectrum (K1) and the second transformation spectrum (K2).
  8. The device according to claim 7,
    characterized in that
    the data processing unit (15) is designed such that a value between 0.4 and 0.6 of the difference of the first wavelength (λ1) and the second wavelength (λ2) is used as transformation parameter (δ).
  9. The device according to claim 8,
    characterized in that
    the data processing unit (15) is designed such that half of the difference Δ 2
    Figure imgb0009
    of the first wavelength (λ1) and the second wavelength (λ2) is used as transformation parameter (δ).
  10. The device according to any one of claims 7 to 9,
    characterized in that
    the data processing unit (15) is designed such that steps c) and d) are repeated several times prior to performing step e), wherein the transformation parameter (δ) is varied each time steps c) and d) are repeated, thereby obtaining a plurality of first transformation spectra (K1) and a plurality of corresponding second transformation spectra (K2), wherein in step e) the Raman spectrum (R1) is computed by adding the obtained first transformation spectra (K1) and the obtained second transformation spectra (K2).
  11. The device according to claim 10,
    characterized in that
    the data processing unit (15) is designed such that the transformation parameter (δ) is increased or reduced each time steps c) and d) are repeated.
  12. The device according to either of claims 10 and 11,
    characterized in that
    the data processing unit (15) is designed such that half of the difference Δ 2
    Figure imgb0010
    of the first wavelength (λ1) and the second wavelength (λ2) is used as transformation parameter (δ) when steps c) and d) are performed for the first time, and subsequently the transformation parameter (δ) is varied within the interval ranging from 0.2 to 0.8 of the difference of the first wavelength (λ1) and the second wavelength (λ2).
  13. The device according to any one of claims 7 to 12,
    characterized in that
    the excitation light source is a laser diode (1) including an internal frequency-selective element.
EP10763149.1A 2009-09-21 2010-09-16 Method for generating and for detecting a raman spectrum Active EP2480868B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009029648A DE102009029648B3 (en) 2009-09-21 2009-09-21 Method for generating and detecting a Raman spectrum
PCT/EP2010/063606 WO2011033017A1 (en) 2009-09-21 2010-09-16 Method for generating and for detecting a raman spectrum

Publications (2)

Publication Number Publication Date
EP2480868A1 EP2480868A1 (en) 2012-08-01
EP2480868B1 true EP2480868B1 (en) 2014-01-08

Family

ID=43334358

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10763149.1A Active EP2480868B1 (en) 2009-09-21 2010-09-16 Method for generating and for detecting a raman spectrum

Country Status (5)

Country Link
US (1) US8310672B2 (en)
EP (1) EP2480868B1 (en)
DE (1) DE102009029648B3 (en)
DK (1) DK2480868T3 (en)
WO (1) WO2011033017A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2806263A1 (en) * 2013-05-24 2014-11-26 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Method and detector for detecting an analyte
WO2015060921A2 (en) * 2013-08-02 2015-04-30 Board Of Trustees Of Michigan State University Laser system for standoff detection
US9212996B2 (en) * 2013-08-05 2015-12-15 Tellspec, Inc. Analyzing and correlating spectra, identifying samples and their ingredients, and displaying related personalized information
US9664616B2 (en) * 2015-11-04 2017-05-30 The Boeing Company Methods and systems for non-destructive testing via hybrid spectral sensors
DE102016111747B4 (en) 2016-06-27 2020-10-01 Forschungsverbund Berlin E.V. Method and device for Raman spectroscopy
US10113953B2 (en) 2016-08-22 2018-10-30 Institut National D'optique Method and device for determining the presence of a spill of a petroleum product by the detection of a petroleum-derived volatile organic compound
GB2572662B (en) 2018-10-05 2020-06-03 Res & Innovation Uk Raman spectrometer
US20210215609A1 (en) * 2020-01-15 2021-07-15 Osram Opto Semiconductors Gmbh Apparatus, a Handheld Electronic Device, and a Method for Carrying Out Raman Spectroscopy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7002679B2 (en) * 2004-05-11 2006-02-21 Duke University Encoded excitation source Raman spectroscopy methods and systems
WO2006130728A2 (en) * 2005-05-31 2006-12-07 The Regents Of The University Of California Single-cell raman spectroscopy for the non-destructive, non-invasive analysis of cells and cellular components
DE102005028268B4 (en) 2005-06-14 2013-12-12 Forschungsverbund Berlin E.V. Method and apparatus for generating and detecting a Raman spectrum
US7760352B2 (en) * 2008-03-18 2010-07-20 Itt Manufacturing Enterprises, Inc. Dual pulse single event Raman spectroscopy

Also Published As

Publication number Publication date
DK2480868T3 (en) 2014-03-31
EP2480868A1 (en) 2012-08-01
WO2011033017A1 (en) 2011-03-24
US20120162641A1 (en) 2012-06-28
DE102009029648B3 (en) 2011-03-24
US8310672B2 (en) 2012-11-13

Similar Documents

Publication Publication Date Title
EP2480868B1 (en) Method for generating and for detecting a raman spectrum
EP1891408B1 (en) Method and device for producing and detecting a raman spectrum
EP3465165B1 (en) Method and device for raman spectroscopy
DE19630956A1 (en) Method and device for Raman correlation spectroscopy
EP2336751A1 (en) Method for determining the gender of bird eggs
DE69222425T2 (en) METHOD AND APPARATUS FOR MULTIVARIABLE CHARACTERIZATION OF THE REPLY OF AN OPTICAL INSTRUMENT
DE1939982A1 (en) Method and device for determining the fluorescence radiation emitted by a material when excited by sunlight
DE102012216164A1 (en) Device with an arrangement of optical elements
DE102015001032A1 (en) Raman spectroscopy illumination and readout system
EP3071952B1 (en) Device and method for illuminating a sample
WO2003069316A1 (en) Method for the rapid spectroscopic analysis of the concentration, temperature, and pressure of gaseous water
WO2006136281A1 (en) Raman spectroscopy analysis method and device therefor
EP3130912B1 (en) Method for determining the concentration of a gas component and spectrometer for same
DE102017104872A1 (en) ATR spectrometer and method for analyzing the chemical composition of a sample
DE19827533C2 (en) Method for determining the vapor phase composition and the temperature by means of linear Raman scattering in the presence of phase interfaces, in particular droplets, in particular in the case of engine injection processes
EP3465164B1 (en) Method for the reconstruction of a raman spectrum
EP3660474A1 (en) Apparatus and method for raman spectroscopy
AT518433B1 (en) Spectrometer and method for assaying the ingredients of a fluid
DE102021125657B4 (en) Phase-sensitive terahertz detection with non-linear frequency conversion
EP1199549A1 (en) Method and device for high resolution spectroscopy using stimulated Brillouin scattering
WO2018149607A1 (en) Micro-spectrometer, method, and controller for operating a micro-spectrometer
DE102021118559A1 (en) Method and system for analyzing a sample from data
AT518576B1 (en) spectrometer
DE3316334C2 (en)
Rix Setup and application of a combined Brillouin-Raman system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010005909

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G01J0003440000

Ipc: G01J0003280000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 21/27 20060101ALI20130613BHEP

Ipc: G01N 21/65 20060101ALI20130613BHEP

Ipc: G01J 3/28 20060101AFI20130613BHEP

Ipc: G01J 3/44 20060101ALI20130613BHEP

Ipc: G01J 3/457 20060101ALI20130613BHEP

INTG Intention to grant announced

Effective date: 20130718

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20131107

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 649021

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010005909

Country of ref document: DE

Effective date: 20140220

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140328

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140108

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140508

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010005909

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

26N No opposition filed

Effective date: 20141009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010005909

Country of ref document: DE

Effective date: 20141009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010005909

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140916

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010005909

Country of ref document: DE

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140916

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100916

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 649021

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150916

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20230323 AND 20230329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230921

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230921

Year of fee payment: 14

Ref country code: FR

Payment date: 20230918

Year of fee payment: 14

Ref country code: DK

Payment date: 20230921

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231002

Year of fee payment: 14