[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2473978B1 - Method and device for testing value documents - Google Patents

Method and device for testing value documents Download PDF

Info

Publication number
EP2473978B1
EP2473978B1 EP10747629.3A EP10747629A EP2473978B1 EP 2473978 B1 EP2473978 B1 EP 2473978B1 EP 10747629 A EP10747629 A EP 10747629A EP 2473978 B1 EP2473978 B1 EP 2473978B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
signal
coercive
low
security element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10747629.3A
Other languages
German (de)
French (fr)
Other versions
EP2473978A1 (en
Inventor
Jürgen Schützmann
Elisabeth Paul
Wolfgang Rauscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient GmbH filed Critical Giesecke and Devrient GmbH
Publication of EP2473978A1 publication Critical patent/EP2473978A1/en
Application granted granted Critical
Publication of EP2473978B1 publication Critical patent/EP2473978B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/04Testing magnetic properties of the materials thereof, e.g. by detection of magnetic imprint
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon

Definitions

  • the invention relates to a method and a device for checking value documents, such as e.g. Banknotes, checks, cards, tickets, coupons.
  • the magnetic codes known hitherto for example, two different coercive magnetic materials are used, from which two types of magnetic regions are formed, which can be arranged next to one another or one above the other.
  • the WO2009090676A1 a value document with a magnetic coding of high-coercive magnetic regions and low-coercive magnetic regions, which may be present separated from one another by gaps or may lie on one another.
  • banknotes with security threads which have a magnetic coding of different coercive materials.
  • the banknotes are transported parallel to the course of the security element and pass successively first a strong magnetic field parallel to the transport direction, which magnetizes both the high and the low-coercive magnet regions along the transport direction.
  • the remaining magnetization is checked by means of an inductive magnetic head, which is sensitive only parallel to the transport direction.
  • the banknotes then pass through a weaker magnetic field perpendicular to the transport direction, which aligns only the low-coercive magnetic regions perpendicular to the transport direction, while the high-coercive magnetic regions remain magnetized in the transport direction.
  • the remaining magnetization by means of an inductive magnetic head, which is sensitive only parallel to the transport direction, checked. With the first inductive magnetic head while the high and the low-coercive magnetic regions are detected and with the second inductive magnetic head only the high-coercive magnetic regions are detected.
  • the security element as in the WO2009090676A1 , also contains combined magnetic areas, both of which contain different coercive magnetic materials, so that the different coercive magnetic materials at the same time reach the detection range of the magnetic detector, a superposition of the magnetic signals of the different coercive magnetic materials is detected.
  • the combined magnetic regions thereby provide a reduced magnetic signal, whose signal swing lies between that of the high-coercive and the low-coercive magnetic regions.
  • the disadvantage of this method is that these combined magnetic areas only difficult to distinguish from the high coercive and low coercive magnetic regions.
  • the invention is therefore based on the object to carry out the examination of the documents of value so that the high coercive, the low coercive and the combined magnetic regions can each be reliably distinguished from each other.
  • the value document to be checked has a security element with a plurality of magnetic areas.
  • the magnetic regions include at least one high-coercive magnetic region made of a highly coercive magnetic material with a first coercive force and at least one low coercive magnetic region of a low coercive magnetic material having a second coercive force lower than the first coercive force, and at least one combined magnetic region having both the high coercive and the low coercive magnetic materials.
  • the at least one high-coercive, the at least one low-coercive and the at least one combined magnetic region on the security element are each spaced from each other by non-magnetic regions lying therebetween.
  • the at least one combined magnetic region contains both the high-coercive and the low-coercive magnetic material.
  • the combined magnetic region contains a smaller amount of the high-coercive magnetic material than the high-coercive magnetic region and a smaller one of the lower-coercive magnetic material than the low-coercive magnetic region.
  • the combined magnetic region is formed so that the high-coercive and the low-coercive magnetic material of the combined magnetic region have substantially the same remanent flux density.
  • the combined magnetic region contains the same amount of the high-coercive magnetic material as the low-coercive magnetic material.
  • the high-coercive and the low-coercive magnetic material of the combined magnetic region are arranged on each other.
  • the combined magnetic region may comprise the high coercive and low coercive magnetic material also in the form of a material mixture.
  • the high-coercive magnetic material of the high-coercive magnetic region is not designed to be the low-coercive magnetic material of the combined magnetic region or the low-coercive magnetic material of the to relocate the low-coercive magnetic field.
  • the high-coercive magnetic material of the combined magnetic region is not designed to remagnetize the low-coercive magnetic material of the combined magnetic region or the low-coercive magnetic material of the low-coercive magnetic region. This results from the fact that the magnetic field strength, which generates the respective high-coercive magnetic material at the location of the low-coercive magnetic material, is lower than the coercive field strength of the respective low-coercive magnetic material.
  • the remanent flux density of the high-coercive magnetic region and that of the low-coercive magnetic region are the same.
  • the remanent flux density of the high coercive magnetic material of the combined magnetic region is, for example, one half of the remanent flux density of the high coercive magnetic region and the remanent flux density of the low coercive magnetic material of the other magnetic region is one half of the remanent flux density of the low coercive magnetic region.
  • a resulting remanent flux density results from the sum of the two remanent flux densities of the high-coercive and low-coercive magnetic materials of the combined magnet region.
  • the resulting remanent flux density of the combined magnetic region is preferably equal to the remanent flux density of the high-coercive magnetic region and equal to the remanent flux density of the low-coercive magnetic region.
  • the value document or the security element of the value document is magnetized by a first magnetic field whose magnetic field strength is greater than the first and second coercive field strength.
  • the magnetization of the high coercive magnetic material (both of the high coercive and the combined magnetic region) and the magnetization of the low coercive magnetic material (both of the low coercive and the combined magnetic regions) are uniformly aligned in a first magnetization direction. After this first magnetization, first magnetic signals of the security element are detected by a first magnetic detector.
  • the value document or the security element is magnetized by a second magnetic field whose magnetic field strength is smaller than the first coercive field strength, but greater than the second coercive field strength.
  • the magnetization of the high-coercive magnetic material remains unchanged in the first magnetization direction.
  • the second magnetic field is oriented so that the magnetization of the low-coercive magnetic material (both the low-coercive and the combined magnetic regions) is oriented anti-parallel to the first magnetization direction.
  • the second magnetic field is anti-parallel to the first magnetic field.
  • the second magnetic signals are detected by a second magnetic detector, which is identical in construction, for example, with the first magnetic detector.
  • the second magnetic signals can also be detected by the first, that is, by the same magnetic detector as the first magnetic signals.
  • the first and second magnetic signals are analyzed to determine at which positions on the security element the magnetic areas of the security element are located and to identify each of the magnetic areas of the security element either as one of the combined magnetic areas or as one of the high or low low-coercive Magnetic regions. Since the first magnetic field magnetizes all magnetic regions of the security element in a first direction of magnetization, it can be determined from the first magnetic signal at which positions on the security element magnetic regions are located.
  • the high-coercive magnetic regions are not re-magnetized by the second magnetic field.
  • the first and the second magnetic signals of the high-coercive magnetic regions are therefore essentially the same. Since the low-coercive magnetic material is aligned by the second magnetic field in anti-parallel to the first direction of magnetization, in each case the second magnetic signal of the at least one low-coercive magnetic field from the first magnetic signal of the at least one low-coercive magnetic field.
  • the second magnetic signal of the low-coercive magnetic region is substantially inverted compared to the first magnetic signal of the low-coercive magnetic region.
  • the antiparallel magnetization of the low-coercive magnet material also causes each of the second magnetic signal of the at least one combined magnetic range from the first magnetic signal of the at least one combined magnetic region and the second magnetic signals of the high and low-coercive magnetic regions. It can be deduced from the second magnetic signal of the respective magnetic region whether the respective magnetic region is a high-coercive, a low-coercive or a combined magnetic region.
  • the at least one combined magnetic region is magnetized by the second magnetic field so that a resulting magnetization of the at least one combined magnetic region, which results from the second magnetization, at least approximately disappears.
  • the remanent flux densities of the low-coercive and the high-coercive magnetic material of the at least one combined magnetic region are selected so that a vanishing resulting magnetization of the respective combined magnetic region is set by an antiparallel magnetization of the high-coercive and low-coercive magnet material.
  • the combined magnetic regions are formed so that the low coercive magnetic material of the combined magnetic region and the high coercive magnetic material of the combined magnetic region have the same remanent flux density.
  • the first and second magnetization directions are preferably in the value document level. This is advantageous in comparison with a direction of magnetization perpendicular to the value document plane, since the magnetic material of the security element can be magnetized more easily in the value document plane than perpendicular to the value document plane. Due to the magnetization in the value document level, therefore, a more reliable examination of the value document is possible.
  • the first magnetization direction is parallel or antiparallel to the transport direction of the value document and the second direction of magnetization opposite thereto.
  • the first and second magnetization directions can also lie in the value document plane and run perpendicular or obliquely to the transport direction.
  • Each of the magnetic regions of the security element makes a contribution to the first and to the second magnetic signal of the security element.
  • the contribution which the respective magnetic area makes to the first or the second magnetic signal of the security element is referred to below as the first or second magnetic signal of the respective magnetic area.
  • the first magnetic signal and the second magnetic signal of a magnetic region are formed as the first and second magnetic signal signature.
  • the first and the second magnetic signal of the security element can therefore contain a plurality of individual magnetic signal signatures.
  • the exact shape of the magnetic signal signatures depends on the magnetic detector used as well as on the remanent flux density of the respective magnetic area and on the length of the respective magnetic area.
  • the first magnetic signal signature of the high-coercive, the low-coercive and the combined magnetic regions may each be designed as a single peak or as a double peak.
  • the second magnetic signal of the combined magnetic domain consists of a magnetic signal amplitude which has no pronounced peaks and which remains close to a second signal offset, which has the second magnetic signal.
  • the second magnetic signals of the magnetic regions are analyzed.
  • a signal processing of the second magnetic signals is used, which uses two thresholds, with which the respective second magnetic signal of the respective magnetic region is compared.
  • the two thresholds are formed by an upper threshold and by a lower threshold, the lower threshold being below the upper threshold. With respect to a positive magnetic signal amplitude of the second magnetic signal, this means that the upper threshold is at a larger magnetic signal amplitude than the lower threshold.
  • each magnetic region whose second magnetic signal exceeds the upper threshold or the second magnetic signal falls below the lower threshold identified as a high or low-coercive magnetic region.
  • the length of the individual magnetic regions along the longitudinal direction of the security element can be determined, for example, from the width of the second magnetic signal of the respective magnetic region or from a signal derived from the second magnetic signal or from one of the first and second magnetic signals of the respective magnetic region.
  • the decision as to whether a magnetic region is identified as a high-coercive or a low-magnetic magnetic region depends on the type of the magnetic detector.
  • the second magnetic signal of the high-coercive magnetic regions is formed in each case as a positive single peak and the second magnetic signal of the low-coercive magnetic regions in each case as a negative single peak.
  • each magnetic domain whose second magnetic signal exceeds the upper threshold is identified as a high-coercive magnetic domain
  • each magnetic domain whose second magnetic signal falls below the lower threshold is identified as Low-Coercive Magnetic Area.
  • the second magnetic signal of the high-coercive and the low-coercive magnetic regions is respectively formed as a double peak, wherein the double peak of the low-coercive magnetic region is formed inversely to the double peak of the high-coercive magnetic region.
  • the signal shape of the second magnetic signals of the high-coercive and the low-coercive magnetic regions is additionally analyzed in this case.
  • the second magnetic signal of the security element has a second signal offset.
  • the second magnetic signals of the magnetic regions are formed relative to this second signal offset.
  • the upper threshold is defined to be above the second signal offset and the lower threshold is defined to be below the second signal offset.
  • a signal derived from the second magnetic signal or a signal derived from the second or from the first and second magnetic signals may also be used.
  • the derived signal may be from the second magnetic signal, for example by forming a correlation of the second Magnetic signal are derived with a base signal which is characteristic of the magnetic detector which detects the second magnetic signal, and for the security element to be tested.
  • the derived signal may correspond to the maximum value of a correlation curve determined for each position along the lengthwise direction of the security element.
  • the derived signal can also directly be the maximum value of the second magnetic signal which the second magnetic detector detects at the respective position along the longitudinal direction of the security element.
  • the derived signal may also be the area under the second magnetic signal at the respective position along the security element or other characteristics of the second magnetic signal or characteristics of a signal derived from the first and second magnetic signals.
  • any magnetic region for which a signal derived from its second magnetic signal or for the signal derived from one of its first and second magnetic signals neither exceeds an upper threshold nor undershoots a lower threshold is identified as a combined magnetic region ,
  • each magnetic domain for which a signal derived from its second magnetic signal or for the signal derived from one of the first and second magnetic signals thereof exceeds the upper threshold and / or falls below the lower threshold is identified as either a high-coercive or a low-coercive magnetic domain.
  • the upper and lower thresholds are preferably defined so that the two thresholds are at a relatively large distance from each other.
  • the distance between the upper and the lower threshold is in particular at least 50%, preferably at least 75%, in particular at least 100% of a mean signal stroke H2 (cf. Fig. 2 ) of the second magnetic signal having the second magnetic signal of the high-coercive and / or the second magnetic signal of the low-coercive magnetic regions relative to the second signal offset of the second magnetic signal.
  • the mean signal deviation can be determined, for example, from empirical values that are set in the course of the calibration of the second magnetic detector in advance of the document of value verification.
  • the average signal swing can also be determined, quasi online, from the second magnetic signal, for example by averaging the signal swing of the individual magnetic signal signatures of the high-coercive and / or low-coercive magnet regions contained in the second magnetic signal.
  • the upper and / or lower threshold are selected in response to the first magnetic signal of the security element, in particular in response to a signal swing of the first magnetic signal having the first magnetic signal relative to a first signal offset.
  • the upper and / or lower threshold are selected in response to the first magnetic signal of the security element, in particular in response to a signal swing of the first magnetic signal having the first magnetic signal relative to a first signal offset.
  • the upper threshold and / or the lower threshold can be selected to be the same for all magnetic regions, so that all second magnetic signals of the magnetic regions are compared with the same upper and lower threshold, but which is dynamically selected as a function of the first magnetic signal of the security element. If the signal deviation of the first magnetic signals of the magnetic regions of the security element is relatively high or low, for example, on average, the upper threshold is also correspondingly increased or reduced.
  • different upper thresholds or different lower thresholds can be selected for the magnetic areas of the security element, so that the second magnetic signals of the magnetic areas are compared with different upper or with different lower thresholds.
  • the upper and / or lower threshold is selected individually, in dependence on the first magnetic signal of the respective magnetic region, in particular as a function of a signal stroke of the first magnetic signal of the respective magnetic region, which the first magnetic signal of the respective magnetic region relative to a first magnetic field Signal offset of the first magnetic signal has. It is particularly advantageous to select the upper and / or the lower threshold individually for all magnetic regions of the security element as a function of the signal deviation of the first magnetic signal of the respective magnetic region.
  • the upper threshold for that magnetic domain is also reduced.
  • the upper and the lower threshold are individually connected to the respective magnetic area and its nature, e.g. adjusted its length and amount of magnetic material.
  • an optimal position of the upper and lower threshold is achieved for each magnetic area.
  • the distinction of the combined magnetic regions from the high and low coercive magnetic regions is thereby further improved.
  • the invention also relates to a device for testing a value document, which has a security element with a plurality of magnetic regions, which has at least one highly coercive, at least one low coercive and at least one combined magnetic region.
  • the device includes a first magnetic detector for detecting first magnetic signals of the security element.
  • the device also has a magnetic detector for detecting second magnetic signals of the security element, wherein this magnetic detector is either the first magnetic detector or a second magnetic detector which is, for example, identical to the first magnetic detector.
  • the first and second magnetic detectors may be formed by one or more inductive elements, by Hall elements or by conventional magnetoresistive elements, GMR, AMR, TMR, SdT or spin valve elements.
  • the apparatus further includes signal processing means arranged to analyze the first and second magnetic signals.
  • the signal processing device is set up to determine at which positions on the security element magnetic areas of the security element are located, and to identify these magnetic areas. In identifying, each of the magnetic regions of the security element is identified either as one of the combined magnetic regions comprising both the high and low coercivity magnetic materials, or as one of the high or low magnetic magnetic regions, ie as one of the remaining magnetic regions which the security element may comprise ,
  • the signal processing device is set up to identify those magnetic regions whose second magnetic signal neither exceeds an upper threshold nor falls below a lower threshold than combined magnetic regions.
  • the upper threshold lies above the second signal offset and the lower threshold below the second signal offset.
  • the upper and / or the lower threshold can either be stored in the signal processing device or will be generated dynamically by the signal processing device. It can the upper and lower thresholds are selected according to the above explanations.
  • the device also includes first and second magnetization devices that are components of the device.
  • the first magnetization device of the device is designed to provide a first magnetic field, which is designed for the first magnetization of the security element.
  • the second magnetization device is designed to provide a second magnetic field, which is designed for the second magnetization of the security element.
  • the first and second magnetic field can be provided, for example, by permanent magnets or by electromagnets.
  • the first magnetic field provided by the first magnetizing means is arranged to first magnetize the high-coercive and low-coercive magnetic materials in a first magnetization direction, wherein the magnetic field strength of the first magnetic field used for the first magnetization is greater than the first coercive force.
  • the first magnetizing device is arranged so that, when operating the device, the first magnetization is performed for each of the magnetic regions before the first magnetic signal of the respective magnetic region is detected.
  • the second magnetic field provided by the second magnetizing means is arranged to second magnetize the low-coercive magnetic material in a second magnetization direction which is anti-parallel to a first magnetizing direction.
  • the magnetic field strength used for the second magnetization is smaller than the first coercive field strength but greater than the second coercive field strength.
  • the magnetization of the high-coercive magnetic material remains aligned in the first direction of magnetization in the second magnetization.
  • the second magnetization device is arranged such that, in operating the device, for each of the magnet regions the second magnetization is performed after the first and before the second magnetic signal of the respective magnetic domain is detected.
  • the magnetic field direction of the second magnetic field runs antiparallel to the magnetic field direction of the first magnetic field.
  • the first magnetization device is not a component of the device, but is formed by an external magnetization device, which is arranged outside the device and provides the first magnetic field.
  • an external magnetization device which is arranged outside the device and provides the first magnetic field.
  • a permanent magnet or an electromagnet can be used as the external magnetization device, past which the value document is passed manually or automatically in order to carry out the first magnetization of the security element.
  • the external magnetization device provides a magnetic field strength which is greater than the first coercive field strength, so that all magnetic regions can be magnetized in the first magnetization direction.
  • the second magnetization device can be embodied as part of the device in this exemplary embodiment, as described above.
  • the second magnetization device may be formed by an external magnetization device which is arranged outside the device and provides the second magnetic field.
  • an external magnetization device which is arranged outside the device and provides the second magnetic field.
  • a permanent magnet or an electromagnet is used for the second magnetization, past which the value document is passed manually or automatically in order to carry out the second magnetization of the security element.
  • the external magnetization device provides a second magnetic field strength that lies between the first and the second coercive field strength, so that the low-coercive magnetic material can be re-magnetized in an antiparallel direction.
  • the first magnetization device may be performed either as part of the device in this embodiment, or also as an external magnetization device. In the latter case, the first and second magnetizing means may be implemented as two separate external magnetizing means or as a combined external magnetizing means providing both the first and second magnetic fields.
  • FIG. 1 schematically a device for testing the magnetic properties of a value document is shown, in which a value document containing a security element 2, along a transport direction T is transported past the device (value document not shown).
  • the device is designed to test a security element 2 that runs parallel to the transport direction T of the value document.
  • the device may be part of a value-document processing machine with which value documents are checked for authenticity, type and / or condition, in particular a magnetic sensor that can be installed in such a machine.
  • the device can also be a self-sufficient measuring device for testing the magnetic properties of value documents.
  • the security element 2 is in this example designed as a security thread which contains along its longitudinal direction a first high-coercive magnetic region h, a combined magnetic region c, a low-coercive magnetic region 1 and a second high-coercive magnetic region h. Between these magnetic regions h, l, c, h is nonmagnetic material.
  • the high-coercive and low-coercive magnetic materials of the combined magnetic region c have the same remanent flux density.
  • the device has a first magnetization device 9 and a second magnetization device 19, which provide a magnetic field parallel or antiparallel to the transport direction T of the value document.
  • the first magnetization device is formed in this example for the first magnetization of the security element 2 parallel to the transport direction T and the second magnetization device 19 for the second magnetization of the security element 2 antiparallel to the transport direction T.
  • the security element 2 also antiparallel and then be magnetized parallel to the transport direction T.
  • the device also includes a first magnetic detector 10 disposed between the two magnetizing devices 9, 19 and a second magnetic detector 20, which, viewed in the direction of transport T, is disposed after the two magnetizing devices 9, 19.
  • the two magnetic detectors 10, 20 are oriented perpendicular to the longitudinal direction of the security element 2 and have a detection element which is formed at least for detecting magnetic fields parallel and antiparallel to the transport direction T.
  • the device also has a signal processing device 8, which is connected to the first and the second magnetic detector 10, 20 via the lines 7.
  • the signal processing device 8 receives measurement signals from the two magnetic detectors 10, 20 and processes and analyzes them.
  • the signal processing device 8 may e.g. be arranged together with the magnetic detectors 10,20 in the same housing. Via an interface 6 data can be sent outwards from the signal processing device 8, e.g. to a control device which processes the data, and / or to a display device which informs about the result of the value-document check.
  • the same reference numerals are used for the same elements.
  • the magnetic signals of the security element 2 are represented as a function of time, which are obtained when the security element 2 is transported past the inland transport FIG. 1 revealed device.
  • the first magnetic detector 10 the first magnetic signal M1 of the security element 2 is detected.
  • the first magnetization device 9 generates parallel to the transport direction T a first magnetic field with high magnetic field strength, through which, when passing the security element 2, all Magnetic regions h, c, l are magnetized parallel to the transport direction T.
  • the first magnetic signal M1 shows, for all magnetic regions h, l, c, h, at the beginning of the magnetic region a magnetic signal signature consisting of a positive peak at the beginning and a negative peak at the end of a magnetic region (M1 h , M1 c , M1 l ).
  • the second magnetizing device 19 generates a magnetic field with a lower field strength, the direction of which runs antiparallel to the first magnetic field of the first magnetizing device 9.
  • the field strength is dimensioned so that only the low-coercive magnetic material is re-magnetized while the magnetization of the high-coercive magnetic material is maintained.
  • the low-coercive magnetic domain 1 and the low-coercive material of the combined magnetic domain c are re-magnetized in the antiparallel direction.
  • the two high-coercive magnetic regions h and the high-coercive material of the combined magnetic region c continue to be magnetized in the first magnetization direction.
  • the second magnetic signal M2 of the security element 2 is detected.
  • the second magnetic signals M2 h of the high-coercive magnetic regions h show the same magnetic-signal signature as the first magnetic signals M1 h of the high-coercive magnetic regions h.
  • the second magnetic signal M2 l of the low-coercive magnetic field l shows a magnetic signal signature which is inverse to the observed in the first magnetic signal magnetic signal signatures, and which also inverse to the magnetic signal signature observed in the second magnetic signal high coercive magnetic regions h is (negative peak at the beginning, positive peak at the end of the magnetic region l).
  • the combined magnetic region c results in a greatly reduced magnetic signal M2 c , which relative to a second signal offset 02 of the second magnetic signal M2, has a nearly vanishing signal amplitude.
  • the signal processing device 8 determines at which positions on the security element 2 magnetic regions are present. This can already be derived, for example, from the first magnetic signal M1 alone, for example by analyzing at which positions on the security element 2 the magnetic signal signature is to be found which is expected for the magnetic regions after the first magnetization (in this case a double peak).
  • the signal processing device 8 is set up to determine the type of the respective magnetic region for each of the magnetic regions found. For this purpose, two thresholds S1 and S2 are used, with which the second magnetic signal M2 is compared. The upper threshold Sl is chosen to be above the second signal offset 02 of the second magnetic signal M2 and the lower threshold S2 is selected to be below the second signal offset 02 of the second magnetic signal M2.
  • each magnetic region whose second magnetic signal exceeds the upper threshold S1 and / or falls below the lower threshold S2 is identified as a high-coercive or low-coercive magnetic region.
  • M2 l of these magnetic regions are analyzed to see whether a positive and then a negative peak has been detected first (high-coercive magnetic regions h) or vice versa (low-magnetic magnetic region l).
  • high-coercive magnetic regions h high-coercive magnetic regions h
  • low-magnetic magnetic region l low-magnetic magnetic region l
  • the upper and / or the lower threshold S1, S2 can be selected as a function of the first magnetic signal M1 of the security element 2.
  • the upper threshold S1 to which the second magnetic signal M2 1 of the low magnetic domain 1 is compared may be individually reduced to the first threshold S1 * for the low magnetic domain 1, while the second magnetic signals of the remaining magnetic domains h, c, h are referred to the threshold S1 are compared.
  • the first threshold can be individually adapted to the relatively small signal H1 l , the first magnetic signal M1 l of the low-coercive magnetic field has l relative to the first signal offset O1 of the first magnetic signal M1.
  • FIG. 3 is sketched another embodiment in which the security element 2 is transported so that its longitudinal direction is oriented perpendicular to the transport direction T of the value document.
  • a first detector row 11 and a second detector row 21, each having a plurality of individual detection elements 12, 22, are used as first and second magnetic detectors.
  • Each of these detection elements 12, 22 supplies a magnetic signal, so that in this example, a plurality of first magnetic signals M1 are detected by means of the detection elements 12 and a plurality of second magnetic signals M2 by means of the detection elements 22.
  • Each detection element 12 of the first detector line 11 detects the same section of the transported security element 2 as a corresponding thereto detection element 22 of the second detector line 21.
  • the signal processing can, for example, analogous to the embodiment of FIGS. 1 and 2 take place, in each case the magnetic signals of two mutually corresponding detection elements 12, 22 are processed as the first and second magnetic signal.
  • FIG. 4 is sketched a further embodiment in which the security element 2, as well as in FIG. 3 is transported with its longitudinal direction perpendicular to the transport direction T.
  • the two detection elements of the magnetic detectors 10, 20 detect the first and the second magnetic signal, analogously to the example of Figures 1 and 2 , as a function of time.
  • FIGS. 5 and 6 show a further embodiment in which the device is designed as a self-sufficient measuring device, which is designed to test the magnetic properties of individual value documents 1.
  • the second magnetization device 19 and the second magnetic detector 23 are disposed adjacent to the first magnetization device 9 and the first magnetic detector 13.
  • the two magnetic detectors 13, 23 and the two magnetizing devices 9,19 are mounted on a scanning device 5, which is transportable along the direction B and is arranged at a small distance to the Trommel.3.
  • the magnetic detectors 13, 23 each have a magnetic field-sensitive region 14, 24 on their underside.
  • the value document 1 is mounted on a drum 3, which is rotatable about the axis A, which is parallel to the direction B.
  • the document of value 1 can be repeatedly transported past the magnet detectors 13, 23 and the magnetizing devices 9, 19 along the circumference of the drum 3.
  • the magnetic signals of those sections of the security element 2 can be detected, which, depending on the position of the scanning device 5, are located just in the detection range of the magnetic detectors 13 and 23, respectively.
  • the magnetic portions h, l, c of the security element 2 as in the previous embodiments, successively magnetized twice and then each detected their magnetic signals.
  • the device is shown at a time during a rotation in which the combined magnetic domain c is magnetized by the first magnetizing means 9 and the first magnetic signals M1 c of the combined magnetic domain c are detected by means of the magnetic detector 13.
  • the high-coercive and low-coercive magnet regions h, l are outside the detection range of the two magnetic detectors 13, 23 during this rotation.
  • the document of value 1 can also be fastened on the drum 3 in such a way that the security element 2 is not oriented perpendicularly but parallel to the transport direction T of the document of value.
  • the first and second magnetic signals respectively as a function of time, first detected by the first and then by the second magnetic detector.
  • first and second magnetic signals M1, M2 of the security element 2 are also processed in the following manner: first signal M1 'is derived from first magnetic signal M1, and a second signal M2' is derived from second magnetic signal M2.
  • first signal M1 ' is derived from first magnetic signal M1
  • second signal M2' is derived from second magnetic signal M2.
  • FIG. 7 Examples of such derived first and second signals M1 ', M2' are shown.
  • the derived first signal M1 'derived from the first magnetic signal M1 of the magnetic detector 10 is derived by forming a correlation of the first magnetic signal M1 with a base signal characteristic of the magnetic detector 10, 11 used and the security element 2 to be tested FIG.
  • the derived first signal M1 ' corresponds to the maximum value of the correlation curve, which was determined for each position y along the longitudinal direction of the security element 2.
  • the derived second signal M2 ' was derived from the second magnetic signal M2 of the magnetic detector 20, 21 by forming a correlation of the second magnetic signal M2 with a base signal characteristic of the magnetic detector 20, 21 and the security element 2 used.
  • the maximum value of the first magnetic signal M1 which the first magnetic detector 10, 11 or its individual detection elements 12 detect at the respective y-position of the security element 2 can also be used as the derived first signal M1 '.
  • a derived first signal M1 'but also the area under the first magnetic signal M1 at the respective y-position of the security element 2 can be used or other characteristics of the first magnetic signal M1.
  • the derived second signal M2 ' is derived analogously from the second magnetic signal M2 as the derived first signal M1' is derived from the first magnetic signal M1.
  • the derived second signal M2 ' may be derived either from the second magnetic signal M2 alone or from the first and second magnetic signals M1, M2. In the latter case, for example, first the maximum value or the area of the first and second magnetic signals M1, M2 or respectively a correlation value of the first and second magnetic signals M1, M2 are determined with the base signal, and subsequently the derived second signal M2 'is derived therefrom, eg by a linear combination or ratio formation. For example, the derived second signal M2 'is derived by adding or subtracting the maximum values of the first M1 and second magnetic signals M2 at the respective y-position or by adding or subtracting the correlation values of the first and second magnetic signals at the respective y-position.
  • the derived second signal M2 ' is then compared with an upper threshold S1 and a lower threshold S2 to identify the magnetic areas h, l, c. If the comparison with the two thresholds S1, S2 for one of the magnetic areas h, l, c found that the derived second signal M2 'of the respective magnetic area neither exceeds the upper threshold S1 nor falls below the lower threshold S2, this magnetic area is called Combined magnetic domain c identified, cf. FIG. 7 , When the upper threshold S1 is exceeded, the respective magnetic area is identified as a high-coercive magnetic area h and, when the lower threshold is undershot, as a low-magnetic area l.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Burglar Alarm Systems (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Prüfung von Wertdokumenten, wie z.B. Banknoten, Schecks, Karten, Tickets, Coupons.The invention relates to a method and a device for checking value documents, such as e.g. Banknotes, checks, cards, tickets, coupons.

Aus dem Stand der Technik ist es bekannt, Wertdokumente mit Sicherheitselementen, etwa Sicherheitsstreifen oder auch Sicherheitsfäden, auszustatten, die magnetisches Material enthalten. Das magnetische Material kann dabei entweder durchgehend oder nur bereichsweise, zum Beispiel in Form einer Kodierung auf das Sicherheitselement aufgebracht sein. Zur magnetischen Kodierung eines Sicherheitselements dient beispielsweise eine bestimmte Abfolge von magnetischen und nichtmagnetischen Bereichen, die charakteristisch für Art des zu sichernden Wertdokuments ist. Außerdem ist es bekannt, verschiedene magnetische Materialien für eine Magnetkodierung zu verwenden, beispielsweise mit unterschiedlichen Koerzitivfeldstärken. Zur Prüfung einer Magnetkodierung, die aus abwechselnd angeordneten hochkoerzitiven und niederkoerzitiven Magnetbereichen besteht, ist es aus der DE102004049999A1 bekannt, zwei antiparallele Magnetisierungsschritte durchzuführen und anschließend einen magnetischen Detektionsschritt.From the prior art it is known value documents with security elements, such as security strips or security threads to equip, containing magnetic material. The magnetic material can be applied either continuously or only partially, for example in the form of a code on the security element. For example, a specific sequence of magnetic and non-magnetic regions, which is characteristic of the type of security document to be secured, serves for the magnetic coding of a security element. In addition, it is known to use various magnetic materials for magnetic encoding, for example with different coercivities. To test a magnetic coding, which consists of alternately arranged high-coercive and low-coercive magnetic regions, it is from the DE102004049999A1 known to perform two antiparallel magnetization steps and then a magnetic detection step.

Bei den bisher bekannten magnetischen Kodierungen werden beispielsweise zwei verschieden koerzitive magnetische Materialien eingesetzt, aus welchen zwei Sorten von Magnetbereichen gebildet werden, die nebeneinander oder auch übereinander angeordnet sein können. Zum Beispiel offenbart die WO2009090676A1 ein Wertdokument mit einer Magnetkodierung aus hochkoerzitiven Magnetbereichen und niederkoerzitiven Magnetbereichen, die durch Lücken voneinander getrennt vorliegen oder auch aufeinander liegen können.In the magnetic codes known hitherto, for example, two different coercive magnetic materials are used, from which two types of magnetic regions are formed, which can be arranged next to one another or one above the other. For example, the WO2009090676A1 a value document with a magnetic coding of high-coercive magnetic regions and low-coercive magnetic regions, which may be present separated from one another by gaps or may lie on one another.

Ferner ist es aus der EP0428779A1 bekannt, Banknoten mit Sicherheitsfäden, die eine Magnetkodierung aus verschieden koerzitiven Materialien aufweisen, maschinell zu prüfen. Dabei werden die Banknoten parallel zum Verlauf des Sicherheitselements transportiert und durchlaufen nacheinander zuerst ein starkes Magnetfeld parallel zur Transportrichtung, das sowohl die hochals auch die niederkoerzitiven Magnetbereiche entlang der Transportrichtung magnetisiert. Die verbleibende Magnetisierung wird mittels eines induktiven Magnetkopfs, der ausschließlich parallel zur Transportrichtung empfindlich ist, geprüft. Anschließend durchlaufen die Banknoten ein schwächeres Magnetfeld senkrecht zur Transportrichtung, das nur die niederkoerzitiven Magnetbereiche senkrecht zur Transportrichtung ausrichtet, während die hochkoerzitiven Magnetbereiche in Transportrichtung magnetisiert bleiben. Erneut wird die verbleibende Magnetisierung mittels eines induktiven Magnetkopfs, der ausschließlich parallel zur Transportrichtung empfindlich ist, geprüft. Mit dem ersten induktiven Magnetkopf werden dabei die hoch- und die niederkoerzitiven Magnetbereiche detektiert und mit dem zweiten induktiven Magnetkopf werden nur die hochkoerzitiven Magnetbereiche detektiert.Furthermore, it is from the EP0428779A1 known to machine banknotes with security threads, which have a magnetic coding of different coercive materials. The banknotes are transported parallel to the course of the security element and pass successively first a strong magnetic field parallel to the transport direction, which magnetizes both the high and the low-coercive magnet regions along the transport direction. The remaining magnetization is checked by means of an inductive magnetic head, which is sensitive only parallel to the transport direction. The banknotes then pass through a weaker magnetic field perpendicular to the transport direction, which aligns only the low-coercive magnetic regions perpendicular to the transport direction, while the high-coercive magnetic regions remain magnetized in the transport direction. Again, the remaining magnetization by means of an inductive magnetic head, which is sensitive only parallel to the transport direction, checked. With the first inductive magnetic head while the high and the low-coercive magnetic regions are detected and with the second inductive magnetic head only the high-coercive magnetic regions are detected.

Falls das Sicherheitselement, wie in der WO2009090676A1 , jedoch auch kombinierte Magnetbereiche enthält, die beide verschieden koerzitiven Magnetmaterialien enthalten, so dass die verschieden koerzitiven Magnetmaterialien zugleich in den Detektionsbereich des Magnetdetektors gelangen, wird eine Überlagerung der Magnetsignale der verschieden koerzitiven Magnetmaterialien detektiert. Die kombinierten Magnetbereiche liefern dabei ein reduziertes Magnetsignal, dessen Signalhub zwischen dem der hochkoerzitiven und dem der niederkoerzitiven Magnetbereiche liegt. Nachteilig ist bei diesem Verfahren, dass diese kombinierten Magnetbereiche nur schwer von den hochkoerzitiven und von den niederkoerzitiven Magnetbereichen unterscheidbar sind.If the security element, as in the WO2009090676A1 , However, also contains combined magnetic areas, both of which contain different coercive magnetic materials, so that the different coercive magnetic materials at the same time reach the detection range of the magnetic detector, a superposition of the magnetic signals of the different coercive magnetic materials is detected. The combined magnetic regions thereby provide a reduced magnetic signal, whose signal swing lies between that of the high-coercive and the low-coercive magnetic regions. The disadvantage of this method is that these combined magnetic areas only difficult to distinguish from the high coercive and low coercive magnetic regions.

Der Erfindung liegt daher die Aufgabe zugrunde, die Prüfung der Wertdokumente so durchzuführen, dass die hochkoerzitiven, die niederkoerzitiven und die kombinierten Magnetbereiche jeweils zuverlässig voneinander unterschieden werden können.The invention is therefore based on the object to carry out the examination of the documents of value so that the high coercive, the low coercive and the combined magnetic regions can each be reliably distinguished from each other.

Diese Aufgabe wird durch die Gegenstände der unabhängigen Ansprüche gelöst. In davon abhängigen Ansprüchen sind vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung angegeben.This object is solved by the subject matters of the independent claims. In dependent claims advantageous developments and refinements of the invention are given.

Das zu prüfende Wertdokument weist ein Sicherheitselement mit mehreren Magnetbereichen auf. Zu den Magnetbereichen gehören mindestens ein hochkoerzitiver Magnetbereich aus einem hochkoerzitiven Magnetmaterial mit einer ersten Koerzitivfeldstärke und mindestens ein niederkoerzitiver Magnetbereich aus einem niederkoerzitiven Magnetmaterial mit einer zweiten Koerzitivfeldstärke, die geringer ist als die erste Koerzitivfeldstärke, und mindestens ein kombinierter Magnetbereich, der sowohl das hochkoerzitive als auch das niederkoerzitive Magnetmaterial aufweist. Beispielsweise sind der mindestens eine hochkoerzitive, der mindestens eine niederkoerzitive und der mindestens eine kombinierte Magnetbereich auf dem Sicherheitselement jeweils durch dazwischen liegende nicht-magnetische Bereiche voneinander beabstandet.The value document to be checked has a security element with a plurality of magnetic areas. The magnetic regions include at least one high-coercive magnetic region made of a highly coercive magnetic material with a first coercive force and at least one low coercive magnetic region of a low coercive magnetic material having a second coercive force lower than the first coercive force, and at least one combined magnetic region having both the high coercive and the low coercive magnetic materials. For example, the at least one high-coercive, the at least one low-coercive and the at least one combined magnetic region on the security element are each spaced from each other by non-magnetic regions lying therebetween.

Der mindestens eine kombinierte Magnetbereich enthält sowohl das hochkoerzitive als auch das niederkoerzitive Magnetmaterial. Vorzugsweise enthält der kombinierte Magnetbereich eine geringere Menge des hochkoerzitiven Magnetmaterials als der hochkoerzitive Magnetbereich und eine geringere des niederkoerzitiven Magnetmaterials als der niederkoerzitive Magnetbereich. Insbesondere ist der kombinierte Magnetbereich so ausgebildet, dass das hochkoerzitive und das niederkoerzitive Magnetmaterial des kombinierten Magnetbereichs im Wesentlichen die gleiche remanente Flussdichte aufweisen. Beispielsweise enthält der kombinierte Magnetbereich die gleiche Menge des hochkoerzitiven Magnetmaterials wie des niederkoerzitiven Magnetmaterials. Insbesondere sind das hochkoerzitive und das niederkoerzitive Magnetmaterial des kombinierten Magnetbereichs aufeinander angeordnet. Alternativ kann der kombinierte Magnetbereich das hochkoerzitive und des niederkoerzitive Magnetmaterial auch in Form einer Materialmischung aufweisen.
Das hochkoerzitive Magnetmaterial des hochkoerzitiven Magnetbereichs ist jedoch nicht dazu ausgebildet, das niederkoerzitive Magnetmaterial des kombinierten Magnetbereichs oder das niederkoerzitive Magnetmaterial des niederkoerzitiven Magnetbereichs umzumagnetisieren. Auch das hochkoerzitive Magnetmaterial des kombinierten Magnetbereichs ist nicht dazu ausgebildet, das niederkoerzitive Magnetmaterial des kombinierten Magnetbereichs oder das niederkoerzitive Magnetmaterial des niederkoerzitiven Magnetbereichs umzumagnetisieren. Dies resultiert daraus, dass die magnetische Feldstärke, die das jeweilige hochkoerzitive Magnetmaterial am Ort des niederkoerzitiven Magnetmaterials erzeugt, geringer ist als die Koerzitivfeldstärke des jeweiligen niederkoerzitiven Magnetmaterials.
The at least one combined magnetic region contains both the high-coercive and the low-coercive magnetic material. Preferably, the combined magnetic region contains a smaller amount of the high-coercive magnetic material than the high-coercive magnetic region and a smaller one of the lower-coercive magnetic material than the low-coercive magnetic region. In particular, the combined magnetic region is formed so that the high-coercive and the low-coercive magnetic material of the combined magnetic region have substantially the same remanent flux density. For example, the combined magnetic region contains the same amount of the high-coercive magnetic material as the low-coercive magnetic material. In particular, the high-coercive and the low-coercive magnetic material of the combined magnetic region are arranged on each other. Alternatively, the combined magnetic region may comprise the high coercive and low coercive magnetic material also in the form of a material mixture.
However, the high-coercive magnetic material of the high-coercive magnetic region is not designed to be the low-coercive magnetic material of the combined magnetic region or the low-coercive magnetic material of the to relocate the low-coercive magnetic field. Also, the high-coercive magnetic material of the combined magnetic region is not designed to remagnetize the low-coercive magnetic material of the combined magnetic region or the low-coercive magnetic material of the low-coercive magnetic region. This results from the fact that the magnetic field strength, which generates the respective high-coercive magnetic material at the location of the low-coercive magnetic material, is lower than the coercive field strength of the respective low-coercive magnetic material.

In einem speziellen Ausführungsbeispiel sind die remanente Flussdichte des hochkoerzitiven Magnetbereichs und die des niederkoerzitiven Magnetbereichs gleich. Außerdem beträgt die remanente Flussdichte des hochkoerzitiven Magnetmaterials des kombinierten Magnetbereichs beispielsweise die Hälfte der remanenten Flussdichte des hochkoerzitiven Magnetbereichs und die remanente Flussdichte des niederkoerzitiven Magnetmaterials des weiteren Magnetbereichs beträgt die Hälfte der remanenten Flussdichte des niederkoerzitiven Magnetbereichs. Für den kombinierten Magnetbereich ergibt sich eine resultierende remanente Flussdichte aus der Summe der beiden remanenten Flussdichten des hochkoerzitiven und des niederkoerzitiven Magnetmaterials des kombinierten Magnetbereichs. Insbesondere ist die resultierende remanente Flussdichte des kombinierten Magnetbereichs vorzugsweise gleich der remanenten Flussdichte des hochkoerzitiven Magnetbereichs und gleich der remanenten Flussdichte des niederkoerzitiven Magnetbereichs.In a specific embodiment, the remanent flux density of the high-coercive magnetic region and that of the low-coercive magnetic region are the same. In addition, the remanent flux density of the high coercive magnetic material of the combined magnetic region is, for example, one half of the remanent flux density of the high coercive magnetic region and the remanent flux density of the low coercive magnetic material of the other magnetic region is one half of the remanent flux density of the low coercive magnetic region. For the combined magnetic region, a resulting remanent flux density results from the sum of the two remanent flux densities of the high-coercive and low-coercive magnetic materials of the combined magnet region. In particular, the resulting remanent flux density of the combined magnetic region is preferably equal to the remanent flux density of the high-coercive magnetic region and equal to the remanent flux density of the low-coercive magnetic region.

Zur Prüfung des Wertdokuments werden folgende Schritte durchgeführt: Das Wertdokument bzw. das Sicherheitselement des Wertdokuments wird durch ein erstes Magnetfeld magnetisiert, dessen Magnetfeldstärke größer ist als die erste und als die zweite Koerzitivfeldstärke. Die Magnetisierung des hochkoerzitiven Magnetmaterials (sowohl des hochkoerzitiven als auch des kombinierten Magnetbereichs) und die Magnetisierung des niederkoerzitiven Magnetmaterials (sowohl des niederkoerzitiven als auch des kombinierten Magnetbereichs) werden dabei einheitlich in eine erste Magnetisierungsrichtung ausgerichtet. Nach diesem ersten Magnetisieren werden durch einen ersten Magnetdetektor erste Magnetsignale des Sicherheitselements detektiert. Anschließend wird das Wertdokument bzw. das Sicherheitselement durch ein zweites Magnetfeld magnetisiert, dessen Magnetfeldstärke kleiner ist als die erste Koerzitivfeldstärke, aber größer ist als die zweite Koerzitivfeldstärke. Die Magnetisierung des hochkoerzitiven Magnetmaterials (sowohl des hochkoerzitiven als auch des kombinierten Magnetbereichs) bleibt dabei unverändert in der ersten Magnetisierungsrichtung ausgerichtet. Das zweite Magnetfeld ist so orientiert, dass die Magnetisierung des niederkoerzitiven Magnetmaterials (sowohl des niederkoerzitiven als auch des kombinierten Magnetbereichs) antiparallel zur ersten Magnetisierungsrichtung ausgerichtet ist. Beispielsweise verläuft das zweite Magnetfeld antiparallel zum ersten Magnetfeld. Nach diesem zweiten Magnetisieren werden zweite Magnetsignale des Sicherheitselements durch den ersten oder durch einen zweiten Magnetdetektor detektiert. In den Ausführungsbeispielen werden die zweiten Magnetsignale durch einen zweiten Magnetdetektor detektiert, der z.B. mit dem ersten Magnetdetektor baugleich ist. Alternativ können die zweiten Magnetsignale aber auch durch den ersten, also durch denselben Magnetdetektor detektiert werden wie die ersten Magnetsignale. Des Weiteren werden die ersten und die zweiten Magnetsignale analysiert, um zu ermitteln, an welchen Positionen auf dem Sicherheitselement die Magnetbereiche des Sicherheitselements lokalisiert sind, und um jeden der Magnetbereiche des Sicherheitselements entweder als einen der kombinierten Magnetbereiche zu identifizieren oder als einen der hoch- oder niederkoerzitiven Magnetbereiche. Da das erste Magnetfeld alle Magnetbereiche des Sicherheitselements in eine erste Magnetisierungsrichtung magnetisiert, lässt sich aus dem ersten Magnetsignal ermitteln, an welchen Positionen auf dem Sicherheitselement Magnetbereiche lokalisiert sind.To check the value document, the following steps are performed: The value document or the security element of the value document is magnetized by a first magnetic field whose magnetic field strength is greater than the first and second coercive field strength. The magnetization of the high coercive magnetic material (both of the high coercive and the combined magnetic region) and the magnetization of the low coercive magnetic material (both of the low coercive and the combined magnetic regions) are uniformly aligned in a first magnetization direction. After this first magnetization, first magnetic signals of the security element are detected by a first magnetic detector. Subsequently, the value document or the security element is magnetized by a second magnetic field whose magnetic field strength is smaller than the first coercive field strength, but greater than the second coercive field strength. The magnetization of the high-coercive magnetic material (both of the high-coercive and the combined magnetic region) remains unchanged in the first magnetization direction. The second magnetic field is oriented so that the magnetization of the low-coercive magnetic material (both the low-coercive and the combined magnetic regions) is oriented anti-parallel to the first magnetization direction. For example, the second magnetic field is anti-parallel to the first magnetic field. After this second magnetization, second magnetic signals of the security element are detected by the first or by a second magnetic detector. In the embodiments, the second magnetic signals are detected by a second magnetic detector, which is identical in construction, for example, with the first magnetic detector. Alternatively, however, the second magnetic signals can also be detected by the first, that is, by the same magnetic detector as the first magnetic signals. Furthermore, the first and second magnetic signals are analyzed to determine at which positions on the security element the magnetic areas of the security element are located and to identify each of the magnetic areas of the security element either as one of the combined magnetic areas or as one of the high or low low-coercive Magnetic regions. Since the first magnetic field magnetizes all magnetic regions of the security element in a first direction of magnetization, it can be determined from the first magnetic signal at which positions on the security element magnetic regions are located.

Da die Magnetfeldstärke des zweiten Magnetfelds geringer ist als die erste Koerzitivfeldstärke, werden die hochkoerzitiven Magnetbereiche durch das zweite Magnetfeld nicht ummagnetisiert. Bei Verwendung baugleicher oder identischer Magnetdetektoren zur Detektion des ersten und zweiten Magnetsignals, sind die ersten und die zweiten Magnetsignale der hochkoerzitiven Magnetbereiche daher im Wesentlichen gleich. Da das niederkoerzitive Magnetmaterial durch das zweite Magnetfeld antiparallel zur ersten Magnetisierungsrichtung ausgerichtet wird, unterscheiden sich jeweils das zweite Magnetsignal des mindestens einen niederkoerzitiven Magnetbereichs von dem ersten Magnetsignal des mindestens einen niederkoerzitiven Magnetbereichs. Beispielsweise ist das zweite Magnetsignal des niederkoerzitiven Magnetbereichs im Vergleich zum ersten Magnetsignal des niederkoerzitiven Magnetbereichs im Wesentlichen invertiert. Außerdem führt die antiparallele Magnetisierung des niederkoerzitiven Magnetmaterials auch dazu, dass sich jeweils das zweite Magnetsignal des mindestens einen kombinierten Magnetbereichs von dem ersten Magnetsignal des mindestens einen kombinierten Magnetbereichs und von den zweiten Magnetsignalen der hoch- und niederkoerzitiven Magnetbereiche unterscheidet. Aus dem zweiten Magnetsignal des jeweiligen Magnetbereichs kann abgeleitet werden, ob der jeweilige Magnetbereich ein hochkoerzitiver, ein niederkoerzitiver oder ein kombinierter Magnetbereich ist.Since the magnetic field strength of the second magnetic field is less than the first coercive field strength, the high-coercive magnetic regions are not re-magnetized by the second magnetic field. When using identically constructed or identical magnetic detectors for detecting the first and second magnetic signals, the first and the second magnetic signals of the high-coercive magnetic regions are therefore essentially the same. Since the low-coercive magnetic material is aligned by the second magnetic field in anti-parallel to the first direction of magnetization, in each case the second magnetic signal of the at least one low-coercive magnetic field from the first magnetic signal of the at least one low-coercive magnetic field. For example, the second magnetic signal of the low-coercive magnetic region is substantially inverted compared to the first magnetic signal of the low-coercive magnetic region. In addition, the antiparallel magnetization of the low-coercive magnet material also causes each of the second magnetic signal of the at least one combined magnetic range from the first magnetic signal of the at least one combined magnetic region and the second magnetic signals of the high and low-coercive magnetic regions. It can be deduced from the second magnetic signal of the respective magnetic region whether the respective magnetic region is a high-coercive, a low-coercive or a combined magnetic region.

Der mindestens eine kombinierte Magnetbereich wird durch das zweite Magnetfeld so magnetisiert, dass eine resultierende Magnetisierung des mindestens einen kombinierten Magnetbereichs, die sich durch das zweite Magnetisieren ergibt, zumindest näherungsweise verschwindet. Insbesondere sind die remanenten Flussdichten des niederkoerzitiven und des hochkoerzitiven Magnetmaterials der mindestens einen kombinierten Magnetbereichs so gewählt, dass durch eine zueinander antiparallele Magnetisierung des hoch- und des niederkoerzitiven Magnetmaterials, eine verschwindende resultierende Magnetisierung des jeweiligen kombinierten Magnetbereichs eingestellt wird. Beispielsweise sind die kombinierten Magnetbereiche so ausgebildet, dass das niederkoerzitive Magnetmaterial des kombinierten Magnetbereichs und das hochkoerzitive Magnetmaterial des kombinierten Magnetbereichs die gleiche remanente Flussdichte aufweisen. Wenn in diesem Fall das niederkoerzitive Magnetmaterial des kombinierten Magnetbereichs durch das zweite Magnetfeld antiparallel zum hochkoerzitiven Magnetmaterial des kombinierten Magnetbereichs magnetisiert wird, wird eine verschwindende resultierende Magnetisierung des jeweiligen kombinierten Magnetbereichs erreicht. Dadurch dass die resultierende Magnetisierung der kombinierten Magnetbereiche nahezu verschwindet, ist es möglich, die zweiten Magnetsignale der hochkoerzitiven und der niederkoerzitiven Magnetbereiche sehr zuverlässig von den zweiten Magnetsignalen der kombinierten Magnetbereiche zu unterscheiden.The at least one combined magnetic region is magnetized by the second magnetic field so that a resulting magnetization of the at least one combined magnetic region, which results from the second magnetization, at least approximately disappears. In particular, the remanent flux densities of the low-coercive and the high-coercive magnetic material of the at least one combined magnetic region are selected so that a vanishing resulting magnetization of the respective combined magnetic region is set by an antiparallel magnetization of the high-coercive and low-coercive magnet material. For example, the combined magnetic regions are formed so that the low coercive magnetic material of the combined magnetic region and the high coercive magnetic material of the combined magnetic region have the same remanent flux density. In this case, when the low-coercive magnetic material of the combined magnetic region is magnetized by the second magnetic field antiparallel to the high-coercive magnetic material of the combined magnetic region, a vanishing resultant magnetization of the respective combined magnetic region is achieved. By almost eliminating the resultant magnetization of the combined magnetic regions, it is possible to very reliably distinguish the second magnetic signals of the high-coercive and low-coercive magnetic regions from the second magnetic signals of the combined magnetic regions.

Die erste und zweite Magnetisierungsrichtung liegen vorzugsweise in der Wertdokumentebene. Im Vergleich zu einer Magnetisierungsrichtung senkrecht zur Wertdokumentebene ist dies vorteilhaft, da sich das Magnetmaterial des Sicherheitselements leichter in der Wertdokumentebene magnetisierbar ist als senkrecht zur Wertdokumentebene. Durch die Magnetisierung in der Wertdokumentebene ist daher eine zuverlässigere Prüfung des Wertdokuments möglich. In einigen Ausführungsbeispielen verläuft die erste Magnetisierungsrichtung parallel oder antiparallel zur Transportrichtung des Wertdokuments und die zweite Magnetisierungsrichtung entgegengesetzt dazu. Die erste und zweite Magnetisierungsrichtung können aber auch in der Wertdokumentebene liegen und senkrecht oder schräg zur Transportrichtung verlaufen.The first and second magnetization directions are preferably in the value document level. This is advantageous in comparison with a direction of magnetization perpendicular to the value document plane, since the magnetic material of the security element can be magnetized more easily in the value document plane than perpendicular to the value document plane. Due to the magnetization in the value document level, therefore, a more reliable examination of the value document is possible. In some embodiments, the first magnetization direction is parallel or antiparallel to the transport direction of the value document and the second direction of magnetization opposite thereto. However, the first and second magnetization directions can also lie in the value document plane and run perpendicular or obliquely to the transport direction.

Jeder der Magnetbereiche des Sicherheitselements liefert einen Beitrag zum ersten und zum zweiten Magnetsignal des Sicherheitselements. Der Beitrag, den der jeweilige Magnetbereich zum ersten bzw. zum zweiten Magnetsignal des Sicherheitselements leistet, wird im Folgenden als erstes bzw. zweites Magnetsignal des jeweiligen Magnetbereichs bezeichnet. Beispielsweise sind das erste Magnetsignal bzw. das zweite Magnetsignal eines Magnetbereichs als erste bzw. als zweite Magnetsignal-Signatur ausgebildet. Das erste und das zweite Magnetsignal des Sicherheitselements können demzufolge eine Vielzahl einzelner Magnetsignal-Signaturen enthalten. Die genaue Form der Magnetsignal-Signaturen hängt jedoch von dem verwendeten Magnetdetektor sowie von der remanenten Flussdichte des jeweiligen Magnetbereichs und von der Länge des jeweiligen Magnetbereichs ab. Beispielsweise kann die erste Magnetsignal-Signatur der hochkoerzitiven, der niederkoerzitiven und der kombinierten Magnetbereiche jeweils als Einfachpeak oder als Doppelpeak ausgebildet sein. Bei verschwindender resultierender Magnetisierung, wie sie bei den kombinierten Magnetbereichen durch das antiparallele zweite Magnetisieren erzeugt werden kann, besteht das zweite Magnetsignal des kombinierten Magnetbereichs aus einer Magnetsignalamplitude, die keine ausgeprägten Peaks aufweist und die nahe eines zweiten Signaloffsets bleibt, den das zweiten Magnetsignal aufweist.Each of the magnetic regions of the security element makes a contribution to the first and to the second magnetic signal of the security element. The contribution which the respective magnetic area makes to the first or the second magnetic signal of the security element is referred to below as the first or second magnetic signal of the respective magnetic area. For example, the first magnetic signal and the second magnetic signal of a magnetic region are formed as the first and second magnetic signal signature. The first and the second magnetic signal of the security element can therefore contain a plurality of individual magnetic signal signatures. However, the exact shape of the magnetic signal signatures depends on the magnetic detector used as well as on the remanent flux density of the respective magnetic area and on the length of the respective magnetic area. For example, the first magnetic signal signature of the high-coercive, the low-coercive and the combined magnetic regions may each be designed as a single peak or as a double peak. With vanishing resulting magnetization, as can be generated in the combined magnetic areas by the antiparallel second magnetization, the second magnetic signal of the combined magnetic domain consists of a magnetic signal amplitude which has no pronounced peaks and which remains close to a second signal offset, which has the second magnetic signal.

Zum Identifizieren der Magnetbereiche werden die zweiten Magnetsignale der Magnetbereiche analysiert. Vorzugsweise wird dazu eine Signalverarbeitung der zweiten Magnetsignale durchgeführt, die zwei Schwellen verwendet, mit denen das jeweilige zweite Magnetsignal des jeweiligen Magnetbereichs verglichen wird. Die zwei Schwellen werden durch eine obere Schwelle und durch eine untere Schwelle gebildet, wobei die untere Schwelle unterhalb der oberen Schwelle liegt. In Bezug auf eine positive Magnetsignalamplitude des zweiten Magnetsignals bedeutet dies, dass die obere Schwelle bei einer größeren Magnetsignalamplitude liegt als die untere Schwelle. Beim Identifizieren der Magnetbereiche werden all diejenigen Magnetbereiche, deren zweites Magnetsignal weder die obere Schwelle überschreitet noch die untere Schwelle unterschreitet, als kombinierte Magnetbereiche identifiziert. Außerdem wird jeder Magnetbereich, dessen zweites Magnetsignal die obere Schwelle überschreitet oder dessen zweites Magnetsignal die untere Schwelle unterschreitet, als hoch- oder niederkoerzitiver Magnetbereich identifiziert. Die Länge der einzelnen Magnetbereiche entlang der Längsrichtung des Sicherheitselements kann z.B. aus der Breite des zweiten Magnetsignals des jeweiligen Magnetbereichs bestimmt werden oder aus einem von dem zweiten Magnetsignal oder aus einem von dem ersten und zweiten Magnetsignal des jeweiligen Magnetbereichs abgeleiteten Signal.To identify the magnetic regions, the second magnetic signals of the magnetic regions are analyzed. Preferably, a signal processing of the second magnetic signals is used, which uses two thresholds, with which the respective second magnetic signal of the respective magnetic region is compared. The two thresholds are formed by an upper threshold and by a lower threshold, the lower threshold being below the upper threshold. With respect to a positive magnetic signal amplitude of the second magnetic signal, this means that the upper threshold is at a larger magnetic signal amplitude than the lower threshold. When identifying the magnetic areas, all magnetic areas whose second magnetic signal neither exceeds the upper threshold nor falls below the lower threshold are identified as combined magnetic areas. In addition, each magnetic region whose second magnetic signal exceeds the upper threshold or the second magnetic signal falls below the lower threshold, identified as a high or low-coercive magnetic region. The length of the individual magnetic regions along the longitudinal direction of the security element can be determined, for example, from the width of the second magnetic signal of the respective magnetic region or from a signal derived from the second magnetic signal or from one of the first and second magnetic signals of the respective magnetic region.

Da die Magnetsignal-Signaturen der hoch- und niederkoerzitven Magnetbereiche, je nach Art des verwendeten Magnetdetektors, verschieden ausgebildet sein können, hängt auch die Entscheidung, ob ein Magnetbereich als hochkoerzitiver oder als niederkoerzitiver Magnetbereich identifiziert wird, von der Art des Magnetdetektors ab. Bei manchen Magnetdetektoren ist das zweite Magnetsignal der hochkoerzitiven Magnetbereiche jeweils als positiver Einfachpeak ausgebildet und das zweite Magnetsignal der niederkoerzitiven Magnetbereiche jeweils als negativer Einfachpeak. In diesem Fall wird jeder Magnetbereich, dessen zweites Magnetsignal die obere Schwelle überschreitet, als hochkoerzitiver Magnetbereich identifiziert und jeder Magnetbereich, dessen zweites Magnetsignal die untere Schwelle unterschreitet, als niederkoerzitiver Magnetbereich. In einem Ausführungsbeispiel ist das zweite Magnetsignal der hochkoerzitiven und der niederkoerzitiven Magnetbereiche jeweils als Doppelpeak ausgebildet, wobei der Doppelpeak des niederkoerzitiven Magnetbereichs invers zum Doppelpeak des hochkoerzitiven Magnetbereichs ausgebildet ist. Zur Unterscheidung der hochkoerzitiven von den niederkoerzitiven Magnetbereiche wird in diesem Fall zusätzlich die Signalform der zweiten Magnetsignale der hochkoerzitiven und der niederkoerzitiven Magnetbereiche analysiert.Since the magnetic signal signatures of the high and low magnetic regions, depending on the type of magnetic detector used, may be formed differently, the decision as to whether a magnetic region is identified as a high-coercive or a low-magnetic magnetic region depends on the type of the magnetic detector. In some magnetic detectors, the second magnetic signal of the high-coercive magnetic regions is formed in each case as a positive single peak and the second magnetic signal of the low-coercive magnetic regions in each case as a negative single peak. In this case, each magnetic domain whose second magnetic signal exceeds the upper threshold is identified as a high-coercive magnetic domain, and each magnetic domain whose second magnetic signal falls below the lower threshold is identified as Low-Coercive Magnetic Area. In one embodiment, the second magnetic signal of the high-coercive and the low-coercive magnetic regions is respectively formed as a double peak, wherein the double peak of the low-coercive magnetic region is formed inversely to the double peak of the high-coercive magnetic region. In order to distinguish between the high-coercive and the low-coercive magnetic regions, the signal shape of the second magnetic signals of the high-coercive and the low-coercive magnetic regions is additionally analyzed in this case.

Das zweite Magnetsignal des Sicherheitselements weist einen zweiten Signaloffset auf. Die zweiten Magnetsignale der Magnetbereiche sind relativ zu diesem zweiten Signaloffset ausgebildet. Die obere Schwelle wird so definiert, dass sie oberhalb des zweiten Signaloffsets liegt und die untere Schwelle wird so definiert, dass sie unterhalb des zweiten Signaloffsets liegt. Beim Identifizieren der Magnetbereiche werden all diejenigen Magnetbereiche, deren zweites Magnetsignal weder die oberhalb des zweiten Signaloffsets liegende obere Schwelle überschreitet noch die unterhalb des zweiten Signaloffsets liegende untere Schwelle unterschreitet, als kombinierte Magnetbereiche identifiziert. Dadurch dass die obere und untere Schwelle auf einander gegenüberliegenden Seiten des zweiten Signaloffsets angeordnet werden, führt das Vergleichen des zweiten Magnetsignals mit diesen beiden Schwellen zu einer sehr zuverlässigen Unterscheidung der kombinierten Magnetbereiche von den hoch- und niederkoerzitiven Magnetbereichen.The second magnetic signal of the security element has a second signal offset. The second magnetic signals of the magnetic regions are formed relative to this second signal offset. The upper threshold is defined to be above the second signal offset and the lower threshold is defined to be below the second signal offset. When identifying the magnetic regions, all magnetic regions whose second magnetic signal neither exceeds the upper threshold above the second signal offset nor below the lower threshold below the second signal offset are identified as combined magnetic regions. By placing the upper and lower thresholds on opposite sides of the second signal offset, comparing the second magnetic signal with these two thresholds results in a very reliable discrimination of the combined magnetic regions from the high and low coercive magnetic regions.

Zur Identifizierung der Magnetbereiche kann, an Stelle des zweiten Magnetsignals, auch ein von dem zweiten Magnetsignal abgeleitetes Signal verwendet werden oder ein Signal, das von dem zweiten oder von dem ersten und zweiten Magnetsignal abgeleitet wurde. Das abgeleitete Signal kann von dem zweiten Magnetsignal z.B. durch Bildung einer Korrelation des zweiten Magnetsignals mit einem Basissignal abgeleitet werden, das charakteristisch ist für den Magnetdetektor, der das zweite Magnetsignal detektiert, und für das zu prüfende Sicherheitselement. Das abgeleitete Signal kann z.B. dem Maximalwert einer Korrelationskurve entsprechen, die für jede Position entlang der Längsrichtung des Sicherheitselements bestimmt wurde. Es können aber auch andere Charakteristika der Korrelationskurve verwendet werden. Das abgeleitete Signal kann aber auch direkt der Maximalwert des zweiten Magnetsignals sein, den der zweite Magnetdetektor an der jeweiligen Position entlang der Längsrichtung des Sicherheitselements detektiert. Das abgeleitete Signal kann aber auch die Fläche unter dem zweiten Magnetsignal an der jeweiligen Position entlang des Sicherheitselements sein oder andere Charakteristika des zweiten Magnetsignals oder Charakteristika eines Signals, das von dem ersten und zweiten Magnetsignal abgeleitet wurde.In order to identify the magnetic regions, instead of the second magnetic signal, a signal derived from the second magnetic signal or a signal derived from the second or from the first and second magnetic signals may also be used. The derived signal may be from the second magnetic signal, for example by forming a correlation of the second Magnetic signal are derived with a base signal which is characteristic of the magnetic detector which detects the second magnetic signal, and for the security element to be tested. For example, the derived signal may correspond to the maximum value of a correlation curve determined for each position along the lengthwise direction of the security element. However, other characteristics of the correlation curve can also be used. However, the derived signal can also directly be the maximum value of the second magnetic signal which the second magnetic detector detects at the respective position along the longitudinal direction of the security element. However, the derived signal may also be the area under the second magnetic signal at the respective position along the security element or other characteristics of the second magnetic signal or characteristics of a signal derived from the first and second magnetic signals.

Bei Verwendung eines abgeleiteten Signals zur Identifizierung der Magnetbereiche wird jeder Magnetbereich, für den ein von dessen zweiten Magnetsignal abgeleitetes Signal oder für den ein von dessen ersten und dessen zweiten Magnetsignal abgeleitetes Signal weder eine obere Schwelle überschreitet noch eine untere Schwelle unterschreitet, als kombinierter Magnetbereich identifiziert. Und jeder Magnetbereich, für den ein von dessen zweiten Magnetsignal abgeleitetes Signal oder für den ein von dessen ersten und dessen zweiten Magnetsignal abgeleitetes Signal die obere Schwelle überschreitet und/ oder die untere Schwelle unterschreitet, wird entweder als hochkoerzitiver oder als niederkoerzitiver Magnetbereich identifiziert.When a derived signal is used to identify the magnetic regions, any magnetic region for which a signal derived from its second magnetic signal or for the signal derived from one of its first and second magnetic signals neither exceeds an upper threshold nor undershoots a lower threshold is identified as a combined magnetic region , And each magnetic domain for which a signal derived from its second magnetic signal or for the signal derived from one of the first and second magnetic signals thereof exceeds the upper threshold and / or falls below the lower threshold is identified as either a high-coercive or a low-coercive magnetic domain.

Um die Identifizierung der kombinierten Magnetbereiche zu optimieren werden die obere und untere Schwelle vorzugsweise so definiert, dass die beiden Schwellen einen relativ großen Abstand voneinander aufweisen. Der Abstand zwischen der oberen und der unteren Schwelle beträgt insbesondere mindestens 50%, vorzugsweise mindestens 75%, insbesondere mindestens 100% eines mittleren Signalhubs H2 (vgl. Fig. 2) des zweiten Magnetsignals, den das zweite Magnetsignal der hochkoerzitiven und/ oder das zweite Magnetsignal der niederkoerzitiven Magnetbereiche relativ zu dem zweiten Signaloffset des zweiten Magnetsignals aufweisen. Der mittlere Signalhub kann z.B. aus Erfahrungswerten bestimmt werden, die bei der Kalibrierung des zweiten Magnetdetektors, im Vorfeld der Wertdokumentprüfung eingestellt werden. Alternativ kann der mittlere Signalhub auch, quasi online, aus dem zweiten Magnetsignal ermittelt werden, z.B. durch Mittelung des Signalhubs der einzelnen Magnetsignal-Signaturen der hochkoerzitiven und/ oder der niederkoerzitiven Magnetbereiche, die in dem zweiten Magnetsignal enthalten sind.In order to optimize the identification of the combined magnetic areas, the upper and lower thresholds are preferably defined so that the two thresholds are at a relatively large distance from each other. The distance between the upper and the lower threshold is in particular at least 50%, preferably at least 75%, in particular at least 100% of a mean signal stroke H2 (cf. Fig. 2 ) of the second magnetic signal having the second magnetic signal of the high-coercive and / or the second magnetic signal of the low-coercive magnetic regions relative to the second signal offset of the second magnetic signal. The mean signal deviation can be determined, for example, from empirical values that are set in the course of the calibration of the second magnetic detector in advance of the document of value verification. Alternatively, the average signal swing can also be determined, quasi online, from the second magnetic signal, for example by averaging the signal swing of the individual magnetic signal signatures of the high-coercive and / or low-coercive magnet regions contained in the second magnetic signal.

In einigen Ausführungsbeispielen werden die obere und/ oder die untere Schwelle in Abhängigkeit des ersten Magnetsignals des Sicherheitselements gewählt, insbesondere in Abhängigkeit eines Signalhubs des ersten Magnetsignals, den das erste Magnetsignal relativ zu einem ersten Signaloffset aufweist. Damit kann z.B. auf Transportschwankungen des Wertdokuments oder auf herstellungsbedingte Schwankungen der Magnetmaterialmenge in den Magnetbereichen reagiert werden.In some embodiments, the upper and / or lower threshold are selected in response to the first magnetic signal of the security element, in particular in response to a signal swing of the first magnetic signal having the first magnetic signal relative to a first signal offset. Thus, e.g. be reacted to transport fluctuations of the value document or production-related fluctuations in the amount of magnetic material in the magnetic areas.

Die obere Schwelle und/ oder die untere Schwelle kann dabei für alle Magnetbereiche gleich gewählt sein, so dass alle zweiten Magnetsignale der Magnetbereiche mit derselben oberen und mit derselben unteren Schwelle verglichen werden, die jedoch dynamisch in Abhängigkeit des ersten Magnetsignals des Sicherheitselements gewählt wird. Liegt der Signalhub der ersten Magnetsignale der Magnetbereiche des Sicherheitselements beispielsweise im Mittel relativ hoch bzw. niedrig, so wird auch die obere Schwelle entsprechend erhöht bzw. reduziert.The upper threshold and / or the lower threshold can be selected to be the same for all magnetic regions, so that all second magnetic signals of the magnetic regions are compared with the same upper and lower threshold, but which is dynamically selected as a function of the first magnetic signal of the security element. If the signal deviation of the first magnetic signals of the magnetic regions of the security element is relatively high or low, for example, on average, the upper threshold is also correspondingly increased or reduced.

Alternativ können für die Magnetbereiche des Sicherheitselements auch verschiedene obere Schwellen bzw. verschiedene untere Schwellen gewählt werden, so dass die zweiten Magnetsignale der Magnetbereiche mit verschiedenen oberen bzw. mit verschiedenen unteren Schwellen verglichen werden. Insbesondere wird für mindestens einen der Magnetbereiche die obere und/ oder die untere Schwelle individuell, in Abhängigkeit des ersten Magnetsignals des jeweiligen Magnetbereichs gewählt, insbesondere in Abhängigkeit eines Signalhubs des ersten Magnetsignals des jeweiligen Magnetbereichs, den das erste Magnetsignal des jeweiligen Magnetbereichs relativ zum einem ersten Signaloffset des ersten Magnetsignals aufweist. Besonders vorteilhaft ist es, für alle Magnetbereiche des Sicherheitselements die obere und/oder die untere Schwelle individuell, in Abhängigkeit des Signalhubs des ersten Magnetsignals des jeweiligen Magnetbereichs zu wählen. Liegt der Signalhub des ersten Magnetsignals eines Magnetbereichs beispielsweise niedriger als ein hinterlegter Referenz-Signalhub, so wird auch die obere Schwelle für diesen Magnetbereich reduziert. Durch die individuelle Wahl der oberen bzw. unteren Schwelle wird die obere bzw. die untere Schwelle individuell an den jeweiligen Magnetbereich und dessen Beschaffenheit, z.B. dessen Länge und Magnetmaterialmenge angepasst. Damit wird für jeden Magnetbereich eine optimale Lage der oberen und unteren Schwelle erreicht. Die Unterscheidung der kombinierten Magnetbereiche von den hoch- und niederkoerzitiven Magnetbereichen wird dadurch noch weiter verbessert.Alternatively, different upper thresholds or different lower thresholds can be selected for the magnetic areas of the security element, so that the second magnetic signals of the magnetic areas are compared with different upper or with different lower thresholds. In particular, for at least one of the magnetic regions, the upper and / or lower threshold is selected individually, in dependence on the first magnetic signal of the respective magnetic region, in particular as a function of a signal stroke of the first magnetic signal of the respective magnetic region, which the first magnetic signal of the respective magnetic region relative to a first magnetic field Signal offset of the first magnetic signal has. It is particularly advantageous to select the upper and / or the lower threshold individually for all magnetic regions of the security element as a function of the signal deviation of the first magnetic signal of the respective magnetic region. For example, if the signal swing of the first magnetic signal of a magnetic domain is lower than a stored reference signal swing, the upper threshold for that magnetic domain is also reduced. By the individual choice of the upper or lower threshold, the upper and the lower threshold are individually connected to the respective magnetic area and its nature, e.g. adjusted its length and amount of magnetic material. Thus, an optimal position of the upper and lower threshold is achieved for each magnetic area. The distinction of the combined magnetic regions from the high and low coercive magnetic regions is thereby further improved.

Die Erfindung betrifft außerdem eine Vorrichtung zur Prüfung eines Wertdokuments, das ein Sicherheitselement mit mehreren Magnetbereichen aufweist, die mindestens einen hochkoerzitiven, mindestens einen niederkoerzitiven und mindestens einen kombinierten Magnetbereich aufweist. Die Vorrichtung weist einen ersten Magnetdetektor zum Detektieren von ersten Magnetsignalen des Sicherheitselements auf. Die Vorrichtung weist außerdem einen Magnetdetektor zum Detektieren von zweiten Magnetsignalen des Sicherheitselements auf, wobei dieser Magnetdetektor entweder der erste Magnetdetektor ist oder aber ein zweiter Magnetdetektor, der z.B. baugleich mit dem ersten Magnetdetektor ist. Der erste und der zweite Magnetdetektor können durch eines oder mehrere induktive Elemente, durch Hallelemente oder durch konventionelle magnetoresistive Elemente, GMR-, AMR-, TMR-, SdT- oder Spinventil-Elemente gebildet sein.The invention also relates to a device for testing a value document, which has a security element with a plurality of magnetic regions, which has at least one highly coercive, at least one low coercive and at least one combined magnetic region. The device includes a first magnetic detector for detecting first magnetic signals of the security element. The device also has a magnetic detector for detecting second magnetic signals of the security element, wherein this magnetic detector is either the first magnetic detector or a second magnetic detector which is, for example, identical to the first magnetic detector. The first and second magnetic detectors may be formed by one or more inductive elements, by Hall elements or by conventional magnetoresistive elements, GMR, AMR, TMR, SdT or spin valve elements.

Die Vorrichtung enthält ferner eine Signalverarbeitungseinrichtung, die zum Analysieren der ersten und der zweiten Magnetsignale eingerichtet ist. Die Signalverarbeitungseinrichtung ist dazu eingerichtet, zu ermitteln, an welchen Positionen auf dem Sicherheitselement Magnetbereiche des Sicherheitselements lokalisiert sind, und diese Magnetbereiche zu identifizieren. Beim Identifizieren wird jeder der Magnetbereiche des Sicherheitselements entweder als einer der kombinierten Magnetbereiche identifiziert, der sowohl das hochkoerzitive als auch das niederkoerzitive Magnetmaterial aufweist, oder als einer der hoch- oder der niederkoerzitiven Magnetbereiche, d.h. als einer der übrigen Magnetbereiche, die das Sicherheitselement aufweisen kann. Die Signalverarbeitungseinrichtung ist dazu eingerichtet, all diejenigen Magnetbereiche, deren zweites Magnetsignal weder eine obere Schwelle überschreitet noch eine untere Schwelle unterschreitet, als kombinierte Magnetbereiche zu identifizieren. Die obere Schwelle liegt dabei oberhalb des zweiten Signaloffsets und die untere Schwelle unterhalb des zweiten Signaloffsets. Insbesondere kann die obere und/oder die untere Schwelle entweder in der Signalverarbeitungseinrichtung hinterlegt sein oder wird durch die Signalverarbeitungseinrichtung dynamisch erzeugt werden. Dabei können die obere und untere Schwelle entsprechend den obigen Ausführungen gewählt werden.The apparatus further includes signal processing means arranged to analyze the first and second magnetic signals. The signal processing device is set up to determine at which positions on the security element magnetic areas of the security element are located, and to identify these magnetic areas. In identifying, each of the magnetic regions of the security element is identified either as one of the combined magnetic regions comprising both the high and low coercivity magnetic materials, or as one of the high or low magnetic magnetic regions, ie as one of the remaining magnetic regions which the security element may comprise , The signal processing device is set up to identify those magnetic regions whose second magnetic signal neither exceeds an upper threshold nor falls below a lower threshold than combined magnetic regions. The upper threshold lies above the second signal offset and the lower threshold below the second signal offset. In particular, the upper and / or the lower threshold can either be stored in the signal processing device or will be generated dynamically by the signal processing device. It can the upper and lower thresholds are selected according to the above explanations.

In einem Ausführungsbeispiel weist die Vorrichtung außerdem eine erste und eine zweite Magnetisierungseinrichtung auf, die Bestandteile der Vorrichtung sind. Die erste Magnetisierungseinrichtung der Vorrichtung ist zur Bereitstellung eines ersten Magnetfelds ausgebildet, das zum ersten Magnetisieren des Sicherheitselements ausgebildet ist. Die zweite Magnetisierungseinrichtung ist zur Bereitstellung eines zweiten Magnetfelds ausgebildet, das zum zweiten Magnetisieren des Sicherheitselements ausgebildet ist. Das erste und zweite Magnetfeld können z.B. durch Permanentmagnete oder durch Elektromagnete bereit gestellt werden. Das durch die erste Magnetisierungseinrichtung bereitgestellte erste Magnetfeld ist zum ersten Magnetisieren des hochkoerzitiven und des niederkoerzitiven Magnetmaterials in eine erste Magnetisierungsrichtung eingerichtet, wobei die zum ersten Magnetisieren verwendete Magnetfeldstärke des ersten Magnetfelds größer ist als die erste Koerzitivfeldstärke. Die erste Magnetisierungseinrichtung ist so angeordnet, dass, beim Betreiben der Vorrichtung, für jeden der Magnetbereiche das erste Magnetisieren durchgeführt wird, bevor das erste Magnetsignal des jeweiligen Magnetbereichs detektiert wird. Das durch die zweite Magnetisierungseinrichtung bereitgestellte zweite Magnetfeld ist zum zweiten Magnetisieren des niederkoerzitiven Magnetmaterials in eine zweite Magnetisierungsrichtung eingerichtet, die antiparallel zu einer ersten Magnetisierungsrichtung verläuft. Die zum zweiten Magnetisieren verwendete Magnetfeldstärke ist kleiner als die erste Koerzitivfeldstärke aber größer ist als die zweite Koerzitivfeldstärke. Die Magnetisierung des hochkoerzitiven Magnetmaterials bleibt bei der zweiten Magnetisierung in der ersten Magnetisierungsrichtung ausgerichtet Die zweite Magnetisierungseinrichtung ist so angeordnet, dass, beim Betreiben der Vorrichtung, für jeden der Magnetbereiche das zweite Magnetisieren durchgeführt wird, nachdem das erste und bevor das zweite Magnetsignal des jeweiligen Magnetbereichs detektiert wird. Insbesondere verläuft die Magnetfeldrichtung des zweiten Magnetfelds antiparallel zur Magnetfeldrichtung des ersten Magnetfelds.In one embodiment, the device also includes first and second magnetization devices that are components of the device. The first magnetization device of the device is designed to provide a first magnetic field, which is designed for the first magnetization of the security element. The second magnetization device is designed to provide a second magnetic field, which is designed for the second magnetization of the security element. The first and second magnetic field can be provided, for example, by permanent magnets or by electromagnets. The first magnetic field provided by the first magnetizing means is arranged to first magnetize the high-coercive and low-coercive magnetic materials in a first magnetization direction, wherein the magnetic field strength of the first magnetic field used for the first magnetization is greater than the first coercive force. The first magnetizing device is arranged so that, when operating the device, the first magnetization is performed for each of the magnetic regions before the first magnetic signal of the respective magnetic region is detected. The second magnetic field provided by the second magnetizing means is arranged to second magnetize the low-coercive magnetic material in a second magnetization direction which is anti-parallel to a first magnetizing direction. The magnetic field strength used for the second magnetization is smaller than the first coercive field strength but greater than the second coercive field strength. The magnetization of the high-coercive magnetic material remains aligned in the first direction of magnetization in the second magnetization. The second magnetization device is arranged such that, in operating the device, for each of the magnet regions the second magnetization is performed after the first and before the second magnetic signal of the respective magnetic domain is detected. In particular, the magnetic field direction of the second magnetic field runs antiparallel to the magnetic field direction of the first magnetic field.

In einem anderen Ausführungsbeispiel ist die erste Magnetisierungseinrichtung kein Bestandteil der Vorrichtung, sondern wird durch eine externe Magnetisierungseinrichtung gebildet, die außerhalb der Vorrichtung angeordnet ist und das erste Magnetfeld bereitstellt. Beispielsweise kann als externe Magnetisierungseinrichtung ein Permanentmagnet oder ein Elektromagnet verwendet werden, an dem das Wertdokument manuell oder automatisch vorbeigeführt wird, um das erste Magnetisieren des Sicherheitselements durchzuführen. Die externe Magnetisierungseinrichtung stellt eine Magnetfeldstärke bereit, die größer ist als die erste Koerzitivfeldstärke, so dass alle Magnetbereiche in die erste Magnetisierungsrichtung magnetisiert werden können. Die zweite Magnetisierungseinrichtung kann in diesem Ausführungsbeispiel, wie oben beschrieben, als Bestandteil der Vorrichtung ausgeführt sein.In another embodiment, the first magnetization device is not a component of the device, but is formed by an external magnetization device, which is arranged outside the device and provides the first magnetic field. For example, a permanent magnet or an electromagnet can be used as the external magnetization device, past which the value document is passed manually or automatically in order to carry out the first magnetization of the security element. The external magnetization device provides a magnetic field strength which is greater than the first coercive field strength, so that all magnetic regions can be magnetized in the first magnetization direction. The second magnetization device can be embodied as part of the device in this exemplary embodiment, as described above.

Alternativ kann die zweite Magnetisierungseinrichtung durch eine externe Magnetisierungseinrichtung gebildet sein, die außerhalb der Vorrichtung angeordnet ist und das zweite Magnetfeld bereitstellt. Für die zweite Magnetisierung wird beispielsweise ein Permanentmagnet oder ein Elektromagnet verwendet, an dem das Wertdokument manuell oder automatisch vorbeigeführt wird, um das zweite Magnetisieren des Sicherheitselements durchzuführen. Die externe Magnetisierungseinrichtung stellt eine zweite Magnetfeldstärke bereit, die zwischen der ersten und der zweiten Koerzitivfeldstärke liegt, so dass das niederkoerzitive Magnetmaterial in antiparalleler Richtung ummagnetisiert werden kann. Die erste Magnetisierungseinrichtung kann in diesem Ausführungsbeispiel entweder als Bestandteil der Vorrichtung ausgeführt sein oder ebenfalls als externe Magnetisierungseinrichtung. In letzterem Fall können die erste und zweite Magnetisierungseinrichtung als zwei getrennte externe Magnetisierungseinrichtungen oder als eine kombinierte externe Magnetisierungseinrichtung ausgeführt sein, die sowohl das erste als auch das zweite Magnetfeld bereit stellt.Alternatively, the second magnetization device may be formed by an external magnetization device which is arranged outside the device and provides the second magnetic field. For example, a permanent magnet or an electromagnet is used for the second magnetization, past which the value document is passed manually or automatically in order to carry out the second magnetization of the security element. The external magnetization device provides a second magnetic field strength that lies between the first and the second coercive field strength, so that the low-coercive magnetic material can be re-magnetized in an antiparallel direction. The first magnetization device may be performed either as part of the device in this embodiment, or also as an external magnetization device. In the latter case, the first and second magnetizing means may be implemented as two separate external magnetizing means or as a combined external magnetizing means providing both the first and second magnetic fields.

Nachfolgend wird die Erfindung beispielhaft anhand der folgenden Figuren erläutert. Es zeigen:

Figur 1
Vorrichtung zur Prüfung eines Sicherheitselements mit zwei Magnetisierungseinrichtungen und zwei Magnetdetektoren, die senkrecht zur Transportrichtung des Sicherheitselements und senkrecht zum Sicherheitselement orientiert sind,
Figur 2
mit Hilfe der Vorrichtung aus Figur 1 erhaltenes erstes und zweites Magnetsignal des Sicherheitselements,
Figur 3
Vorrichtung zur Prüfung eines Sicherheitselements mit zwei Magnetisierungseinrichtungen und zwei Magnetdetektoren, die senkrecht zur Transportrichtung des Sicherheitselements und parallel zum Sicherheitselement orientiert sind,
Figur 4
Vorrichtung zur Prüfung eines Sicherheitselements mit zwei Magnetisierungseinrichtungen und zwei Magnetdetektoren, die schräg zur Transportrichtung des Sicherheitselements und schräg zum Sicherheitselement orientiert sind,
Figur 5
dreidimensionale Darstellung einer Vorrichtung zur Prüfung eines Sicherheitselements, bei der das Wertdokument auf einer Trommel rotiert und bei der die zwei Magnetisierungseinrichtungen und zwei Magnetdetektoren parallel zum Sicherheitselement über das rotierende Wertdokument bewegt werden,
Figur 6
Draufsicht auf die Vorrichtung aus Figur 5,
Figur 7
Identifizierung der Magnetbereiche anhand eines von dem zweiten Magnetsignal abgeleiteten Signals.
The invention will be explained by way of example with reference to the following figures. Show it:
FIG. 1
Device for testing a security element with two magnetization devices and two magnetic detectors oriented perpendicular to the transport direction of the security element and perpendicular to the security element,
FIG. 2
with the help of the device FIG. 1 obtained first and second magnetic signal of the security element,
FIG. 3
Device for testing a security element with two magnetization devices and two magnetic detectors oriented perpendicular to the transport direction of the security element and parallel to the security element,
FIG. 4
Device for testing a security element with two magnetizing devices and two magnetic detectors, which are oriented obliquely to the transport direction of the security element and obliquely to the security element,
FIG. 5
three-dimensional representation of a device for checking a security element, in which the document of value rotates on a drum and in which the two magnetizing devices and two magnetic detectors are moved parallel to the security element via the rotating document of value,
FIG. 6
Top view of the device FIG. 5 .
FIG. 7
Identification of the magnetic areas based on a signal derived from the second magnetic signal.

In Figur 1 ist schematisch eine Vorrichtung zur Prüfung der magnetischen Eigenschaften eines Wertdokuments dargestellt, bei der ein Wertdokument, das ein Sicherheitselement 2 enthält, entlang einer Transportrichtung T an der Vorrichtung vorbei transportiert wird (Wertdokument nicht gezeigt). Die Vorrichtung ist zur Prüfung eines Sicherheitselements 2 ausgebildet, das parallel zur Transportrichtung T des Wertdokuments verläuft. Die Vorrichtung kann Bestandteil einer Wertdokumentbearbeitungs-Maschine sein, mit der Wertdokumente auf Echtheit, Art und/ oder Zustand geprüft werden, insbesondere ein Magnetsensor, der in eine solche Maschine einbaubar ist. Die Vorrichtung kann aber auch eine autarke Messvorichtung zur Prüfung der magnetischen Eigenschaften von Wertdokumenten sein. Das Sicherheitselement 2 ist in diesem Beispiel als Sicherheitsfaden ausgebildet, der entlang seiner Längsrichtung einen ersten hochkoerzitiven Magnetbereich h, einen kombinierten Magnetbereich c, einen niederkoerzitiven Magnetbereich l und einen zweiten hochkoerzitiven Magnetbereich h enthält. Zwischen diesen Magnetbereichen h, l, c, h befindet sich nichtmagnetisches Material. Das hochkoerzitive und das niederkoerzitive Magnetmaterial des kombinierten Magnetbereichs c haben die gleiche remanente Flussdichte.In FIG. 1 schematically a device for testing the magnetic properties of a value document is shown, in which a value document containing a security element 2, along a transport direction T is transported past the device (value document not shown). The device is designed to test a security element 2 that runs parallel to the transport direction T of the value document. The device may be part of a value-document processing machine with which value documents are checked for authenticity, type and / or condition, in particular a magnetic sensor that can be installed in such a machine. The device can also be a self-sufficient measuring device for testing the magnetic properties of value documents. The security element 2 is in this example designed as a security thread which contains along its longitudinal direction a first high-coercive magnetic region h, a combined magnetic region c, a low-coercive magnetic region 1 and a second high-coercive magnetic region h. Between these magnetic regions h, l, c, h is nonmagnetic material. The high-coercive and low-coercive magnetic materials of the combined magnetic region c have the same remanent flux density.

Die Vorrichtung weist eine erste Magnetisierungseinrichtung 9 und eine zweite Magnetisierungseinrichtung 19 auf, die ein Magnetfeld parallel bzw. antiparallel zur Transportrichtung T des Wertdokuments bereit stellen. Die erste Magnetisierungseinrichtung ist in diesem Beispiel zum ersten Magnetisieren des Sicherheitselements 2 parallel zur Transportrichtung T ausgebildet und die zweite Magnetisierungseinrichtung 19 zum zweiten Magnetisieren des Sicherheitselements 2 antiparallel zur Transportrichtung T. Alternativ kann das Sicherheitselement 2 auch erst antiparallel und danach parallel zur Transportrichtung T magnetisiert werden. Die Vorrichtung enthält außerdem einen ersten Magnetdetektor 10, der zwischen den beiden Magnetisierungseinrichtungen 9,19 angeordnet ist, und einen zweiten Magnetdetektor 20, der, in Transportrichtung T betrachtet, nach den beiden Magnetisierungseinrichtungen 9, 19 angeordnet ist. Die beiden Magnetdetektoren 10, 20 sind senkrecht zu Längsrichtung des Sicherheitselements 2 orientiert und besitzen ein Detektionselement, das zumindest zum Detektieren von Magnetfeldern parallel und antiparallel zur Transportrichtung T ausgebildet ist.The device has a first magnetization device 9 and a second magnetization device 19, which provide a magnetic field parallel or antiparallel to the transport direction T of the value document. The first magnetization device is formed in this example for the first magnetization of the security element 2 parallel to the transport direction T and the second magnetization device 19 for the second magnetization of the security element 2 antiparallel to the transport direction T. Alternatively can the security element 2 also antiparallel and then be magnetized parallel to the transport direction T. The device also includes a first magnetic detector 10 disposed between the two magnetizing devices 9, 19 and a second magnetic detector 20, which, viewed in the direction of transport T, is disposed after the two magnetizing devices 9, 19. The two magnetic detectors 10, 20 are oriented perpendicular to the longitudinal direction of the security element 2 and have a detection element which is formed at least for detecting magnetic fields parallel and antiparallel to the transport direction T.

Die Vorrichtung weist außerdem eine Signalverarbeitungseinrichtung 8 auf, die mit dem ersten und dem zweiten Magnetdetektor 10, 20 über die Leitungen 7 verbunden ist. Die Signalverarbeitungseinrichtung 8 empfängt Messsignale von den beiden Magnetdetektoren 10,20 und verarbeitet und analysiert diese. Die Signalverarbeitungseinrichtung 8 kann z.B. zusammen mit den Magnetdetektoren 10,20 im selben Gehäuse angeordnet sein. Über eine Schnittstelle 6 können Daten von der Signalverarbeitungseinrichtung 8 nach außen gesendet werden, z.B. zu einer Steuereinrichtung, die die Daten weiterverarbeitet, und/oder zu einer Anzeigeeinrichtung, die über das Ergebnis der Wertdokumentprüfung informiert. In folgenden Ausführungsbeispielen werden für gleiche Elemente dieselben Bezugszeichen verwendet.The device also has a signal processing device 8, which is connected to the first and the second magnetic detector 10, 20 via the lines 7. The signal processing device 8 receives measurement signals from the two magnetic detectors 10, 20 and processes and analyzes them. The signal processing device 8 may e.g. be arranged together with the magnetic detectors 10,20 in the same housing. Via an interface 6 data can be sent outwards from the signal processing device 8, e.g. to a control device which processes the data, and / or to a display device which informs about the result of the value-document check. In the following embodiments, the same reference numerals are used for the same elements.

In Figur 2 sind beispielhaft die Magnetsignale des Sicherheitselements 2 als Funktion der Zeit dargestellt, die sich beim Vorbeitransportieren des Sicherheitselements 2 an der in Figur 1 gezeigten Vorrichtung ergeben. Durch den ersten Magnetdetektor 10 wird das erste Magnetsignal M1 des Sicherheitselements 2 detektiert. Die erste Magnetisierungseinrichtung 9 erzeugt parallel zur Transportrichtung T ein erstes Magnetfeld mit hoher Magnetfeldstärke, durch welches, beim Vorbeitransportieren des Sicherheitselements 2, alle Magnetbereiche h, c, l parallel zur Transportrichtung T magnetisiert werden. Das erste Magnetsignal M1 zeigt, für alle Magnetbereiche h, l, c, h, bei Beginn des Magnetbereichs eine Magnetsignal-Signatur, die aus einem positiven Peak zu Beginn und einem negativen Peak am Ende eines Magnetbereichs besteht (M1h, M1c, M1l). Durch die zweite Magnetisierungseinrichtung 19 wird ein Magnetfeld mit geringerer Feldstärke erzeugt, dessen Richtung antiparallel zum ersten Magnetfeld der ersten Magnetisierungseinrichtung 9 verläuft. Die Feldstärke ist so dimensioniert, dass nur das niederkoerzitive Magnetmaterial ummagnetisiert wird, während die Magnetisierung des hochkoerzitiven Magnetmaterials erhalten bleibt. Folglich werden der niederkoerzitive Magnetbereich l und das niederkoerzitive Material des kombinierten Magnetbereichs c in die antiparallele Richtung ummagnetisiert. Die beiden hochkoerzitiven Magnetbereiche h und das hochkoerzitive Material des kombinierten Magnetbereichs c bleiben weiterhin in die erste Magnetisierungsrichtung magnetisiert. Bei der darauffolgenden Messung mit dem zweiten Magnetdetektor 20 wird das zweite Magnetsignal M2 des Sicherheitselements 2 detektiert. Die zweiten Magnetsignale M2h der hochkoerzitiven Magnetbereiche h zeigen die gleiche Magnetsignal-Signatur wie die ersten Magnetsignale M1h der hochkoerzitiven Magnetbereiche h. Da die niederkoerzitiven Magnetmaterialien antiparallel ummagnetisiert wurden, zeigt das zweite Magnetsignal M2l des niederkoerzitiven Magnetbereichs l eine Magnetsignal-Signatur, die invers zu den im ersten Magnetsignal beobachteten Magnetsignal-Signaturen ist, und die auch invers zu der im zweiten Magnetsignal beobachteten Magnetsignal-Signatur der hochkoerzitiven Magnetbereiche h ist (negativer Peak zu Beginn, positiver Peak am Ende des Magnetbereichs l). Für den kombinierten Magnetbereich c ergibt sich ein stark reduziertes Magnetsignal M2c, das relativ zu einem zweiten Signaloffset 02 des zweiten Magnetsignals M2, eine nahezu verschwindende Signalamplitude aufweist. Da die Magnetisierung des hochkoerzitiven Magnetmaterials des kombinierten Magnetbereichs c und die (dazu antiparallele) Magnetisierung des niederkoerzitiven Magnetmaterials des kombinierten Magnetbereichs c entgegengesetzt gleich sind (und sich quasi aufheben), ergibt sich daraus ein resultierendes Magnetsignal M2c des kombinierten Magnetbereichs mit nahezu verschwindender Signalamplitude.In FIG. 2 By way of example, the magnetic signals of the security element 2 are represented as a function of time, which are obtained when the security element 2 is transported past the inland transport FIG. 1 revealed device. By the first magnetic detector 10, the first magnetic signal M1 of the security element 2 is detected. The first magnetization device 9 generates parallel to the transport direction T a first magnetic field with high magnetic field strength, through which, when passing the security element 2, all Magnetic regions h, c, l are magnetized parallel to the transport direction T. The first magnetic signal M1 shows, for all magnetic regions h, l, c, h, at the beginning of the magnetic region a magnetic signal signature consisting of a positive peak at the beginning and a negative peak at the end of a magnetic region (M1 h , M1 c , M1 l ). The second magnetizing device 19 generates a magnetic field with a lower field strength, the direction of which runs antiparallel to the first magnetic field of the first magnetizing device 9. The field strength is dimensioned so that only the low-coercive magnetic material is re-magnetized while the magnetization of the high-coercive magnetic material is maintained. Consequently, the low-coercive magnetic domain 1 and the low-coercive material of the combined magnetic domain c are re-magnetized in the antiparallel direction. The two high-coercive magnetic regions h and the high-coercive material of the combined magnetic region c continue to be magnetized in the first magnetization direction. In the subsequent measurement with the second magnetic detector 20, the second magnetic signal M2 of the security element 2 is detected. The second magnetic signals M2 h of the high-coercive magnetic regions h show the same magnetic-signal signature as the first magnetic signals M1 h of the high-coercive magnetic regions h. Since the low-coercive magnetic materials have been remagnetized anti-parallel, the second magnetic signal M2 l of the low-coercive magnetic field l shows a magnetic signal signature which is inverse to the observed in the first magnetic signal magnetic signal signatures, and which also inverse to the magnetic signal signature observed in the second magnetic signal high coercive magnetic regions h is (negative peak at the beginning, positive peak at the end of the magnetic region l). For the combined magnetic region c results in a greatly reduced magnetic signal M2 c , which relative to a second signal offset 02 of the second magnetic signal M2, has a nearly vanishing signal amplitude. Because the magnetization of the highly coercive magnetic material of the combined magnetic region c and the (in addition antiparallel) magnetization of the low-coercive magnetic material of the combined magnetic region c are the opposite (and virtually cancel), this results in a resulting magnetic signal M2 c of the combined magnetic region with almost vanishing signal amplitude.

Aus dem ersten und zweiten Magnetsignal M1, M2 ermittelt die Signalverarbeitungseinrichtung 8, an welchen Positionen auf dem Sicherheitselement 2 Magnetbereiche vorhanden sind. Dies lässt sich z.B. bereits allein aus dem ersten Magnetsignal M1 ableiten, z.B. durch Analysieren, an welchen Positionen auf dem Sicherheitselement 2 die Magnetsignal-Signatur zu finden ist, die für die Magnetbereiche nach der ersten Magnetisierung erwartet wird (hier ein Doppelpeak). Außerdem ist die Signalverarbeitungseinrichtung 8 dazu eingerichtet, für jeden der gefundenen Magnetbereiche die Art des jeweiligen Magnetbereichs zu bestimmen. Zu diesem Zweck werden zwei Schwellen S1 und S2 verwendet, mit denen das zweite Magnetsignal M2 verglichen wird. Die obere Schwelle Slwird so gewählt, dass sie oberhalb des zweiten Signaloffsets 02 des zweiten Magnetsignals M2 liegt und die untere Schwelle S2 wird so gewählt, dass sie unterhalb des zweiten Signaloffsets 02 des zweiten Magnetsignals M2 liegt. Wenn der Vergleich mit den beiden Schwellen S1, S2 für einen der gefundenen Magnetbereiche ergibt, dass das zweite Magnetsignal des jeweiligen Magnetbereichs weder die obere Schwelle S1 überschreitet noch die untere Schwelle S2 unterschreitet, so wird dieser Magnetbereich als kombinierter Magnetbereich c identifiziert. Jeder Magnetbereich, dessen zweites Magnetsignal die obere Schwelle S1 überschreitet und/ oder die untere Schwelle S2 unterschreitet, wird als hochkoerzitiver oder niederkoerzitiver Magnetbereich identifiziert. Zur Unterscheidung der hochkoerzitiven und der niederkoerzitiven Magnetbereiche wird außerdem die jeweilige Magnetsignal-Signatur des zweiten Magnetsignals M2h, M2l dieser Magnetbereiche dahingehend analysiert, ob zuerst ein positiver und anschließend ein negativer Peak detektiert wurde (hochkoerzitive Magnetbereiche h) oder umgekehrt (niederkoerzitiver Magnetbereich l). Bei Umkehrung der Magnetfeldrichtungen der Magnetisierungseinrichtungen 9,19 oder bei Verwendung anderer Magnetdetektoren kann es sein, dass die Zuordnung der hoch- und niederkoerzitiven Magnetbereiche genau umgekehrt erfolgen muss.From the first and second magnetic signals M1, M2, the signal processing device 8 determines at which positions on the security element 2 magnetic regions are present. This can already be derived, for example, from the first magnetic signal M1 alone, for example by analyzing at which positions on the security element 2 the magnetic signal signature is to be found which is expected for the magnetic regions after the first magnetization (in this case a double peak). In addition, the signal processing device 8 is set up to determine the type of the respective magnetic region for each of the magnetic regions found. For this purpose, two thresholds S1 and S2 are used, with which the second magnetic signal M2 is compared. The upper threshold Sl is chosen to be above the second signal offset 02 of the second magnetic signal M2 and the lower threshold S2 is selected to be below the second signal offset 02 of the second magnetic signal M2. If the comparison with the two thresholds S1, S2 for one of the magnet areas found shows that the second magnetic signal of the respective magnetic area neither exceeds the upper threshold S1 nor falls below the lower threshold S2, this magnetic area is identified as the combined magnetic area c. Each magnetic region whose second magnetic signal exceeds the upper threshold S1 and / or falls below the lower threshold S2 is identified as a high-coercive or low-coercive magnetic region. To distinguish the high-coercive and the low-coercive magnetic regions also the respective magnetic signal signature of the second magnetic signal M2 h , M2 l of these magnetic regions are analyzed to see whether a positive and then a negative peak has been detected first (high-coercive magnetic regions h) or vice versa (low-magnetic magnetic region l). When reversing the magnetic field directions of the magnetizing devices 9, 19 or when using other magnetic detectors, it may be that the assignment of the high and low-coercive magnetic regions must be exactly the reverse.

Mit Hilfe dieses Verfahrens kann eine magnetische Kodierung des Sicherheitsfadens 2 aus hochkoerzitiven, niederkoerzitiven und kombinierten Magnetbereichen zuverlässig nachgewiesen werden. Optional kann dabei die obere und/oder die untere Schwelle S1, S2 in Abhängigkeit des ersten Magnetsignals M1 des Sicherheitselements 2 gewählt werden. Zum Beispiel kann die obere Schwelle S1, mit der das zweite Magnetsignal M2l des niedekoerzitiven Magnetbereichs l verglichen wird, individuell für den niederkoerzitiven Magnetbereich l auf die erste Schwelle S1* reduziert werden, während die zweiten Magnetsignale der übrigen Magnetbereiche h, c, h mit der Schwelle S1 verglichen werden. Damit kann die erste Schwelle individuell an den relativ geringen Signalhub H1l angepasst werden, den das erste Magnetsignal M1l des niederkoerzitiven Magnetbereichs l relativ zu dem ersten Signaloffset O1 des ersten Magnetsignals M1 aufweist.With the aid of this method, a magnetic coding of the security thread 2 from highly coercive, low coercive and combined magnetic regions can be reliably detected. Optionally, the upper and / or the lower threshold S1, S2 can be selected as a function of the first magnetic signal M1 of the security element 2. For example, the upper threshold S1 to which the second magnetic signal M2 1 of the low magnetic domain 1 is compared may be individually reduced to the first threshold S1 * for the low magnetic domain 1, while the second magnetic signals of the remaining magnetic domains h, c, h are referred to the threshold S1 are compared. Thus, the first threshold can be individually adapted to the relatively small signal H1 l , the first magnetic signal M1 l of the low-coercive magnetic field has l relative to the first signal offset O1 of the first magnetic signal M1.

In Figur 3 ist ein weiteres Ausführungsbeispiel skizziert, bei dem das Sicherheitselement 2 so transportiert wird, dass seine Längsrichtung senkrecht zur Transportrichtung T des Wertdokuments orientiert ist. Um eine räumliche Auflösung entlang des Sicherheitselements 2 (y-Richtung) zu erhalten, werden als erster und zweiter Magnetdetektor eine erste Detektorzeile 11 und eine zweite Detektorzeile 21 verwendet, die jeweils eine Vielzahl individueller Detektionselemente 12, 22 aufweisen. Jedes dieser Detektionselemente 12, 22 liefert ein Magnetsignal, so dass in diesem Beispiel eine Vielzahl erster Magnetsignale M1 mit Hilfe der Detektionselemente 12 und eine Vielzahl zweiter Magnetsignale M2 mit Hilfe der Detektionselemente 22 detektiert werden. Jedes Detektionselement 12 der ersten Detektorzeile 11 erfasst denselben Abschnitt des vorbeitransportierten Sicherheitselements 2 wie ein dazu korrespondierendes Detektionselement 22 der zweiten Detektorzeile 21. Die Signalverarbeitung kann z.B. analog zu dem Ausführungsbeispiel aus Figur 1 und 2 erfolgen, wobei jeweils die Magnetsignale zweier miteinander korrespondierender Detektionselemente 12, 22 als erstes und zweites Magnetsignal verarbeitet werden.In FIG. 3 is sketched another embodiment in which the security element 2 is transported so that its longitudinal direction is oriented perpendicular to the transport direction T of the value document. In order to obtain a spatial resolution along the security element 2 (y-direction), a first detector row 11 and a second detector row 21, each having a plurality of individual detection elements 12, 22, are used as first and second magnetic detectors. Each of these detection elements 12, 22 supplies a magnetic signal, so that in this example, a plurality of first magnetic signals M1 are detected by means of the detection elements 12 and a plurality of second magnetic signals M2 by means of the detection elements 22. Each detection element 12 of the first detector line 11 detects the same section of the transported security element 2 as a corresponding thereto detection element 22 of the second detector line 21. The signal processing can, for example, analogous to the embodiment of FIGS. 1 and 2 take place, in each case the magnetic signals of two mutually corresponding detection elements 12, 22 are processed as the first and second magnetic signal.

In Figur 4 ist ein weiteres Ausführungsbeispiel skizziert, bei dem das Sicherheitselement 2, wie auch in Figur 3, mit seiner Längsrichtung senkrecht zur Transportrichtung T transportiert wird. Im Unterschied zu dem Ausführungsbeispiel der Figuren 1 und 2 sind bei diesem Ausführungsbeispiel die Magnetdetektoren 10, 20 und die Magnetisierungseinrichtungen 9,19 aber schräg zur Transportrichtung T des Sicherheitselements 2 orientiert. Durch die Schrägstellung kann eine räumliche Auflösung auch ohne den Einsatz aufwendiger Detektorzeilen erreicht werden. Die beiden Detektionselemente der Magnetdetektoren 10, 20 detektieren das erste bzw. das zweite Magnetsignal, analog zum Beispiel der Figuren 1 und 2, als Funktion der Zeit.In FIG. 4 is sketched a further embodiment in which the security element 2, as well as in FIG. 3 is transported with its longitudinal direction perpendicular to the transport direction T. In contrast to the embodiment of Figures 1 and 2 However, in this embodiment, the magnetic detectors 10, 20 and the magnetization devices 9,19 but oriented obliquely to the transport direction T of the security element 2. Due to the skew, a spatial resolution can be achieved without the use of elaborate detector lines. The two detection elements of the magnetic detectors 10, 20 detect the first and the second magnetic signal, analogously to the example of Figures 1 and 2 , as a function of time.

Die Figuren 5 und 6 zeigen ein weiteres Ausführungsbeispiel, bei dem die Vorrichtung als autarke Messvorrichtung ausgebildet ist, die zur Prüfung der magnetischen Eigenschaften einzelner Wertdokumente 1 ausgebildet ist. Im Unterschied zu dem Ausführungsbeispiel der Figuren 1 und 2 sind bei diesem Ausführungsbeispiel die zweite Magnetisierungseinrichtung 19 und der zweite Magnetdetektor 23 neben der ersten Magnetisierungseinrichtung 9 und dem ersten Magnetdetektor 13 angeordnet. Die beiden Magnetdetektoren 13, 23 und die beiden Magnetisierungseinrichtungen 9,19 sind auf einer Scaneinrichtung 5 montiert, die entlang der Richtung B transportierbar ist und in geringem Abstand zur Trommel.3 angeordnet ist. Die Magnetdetektoren 13, 23 weisen an ihrer Unterseite jeweils einen Magnetfeldempfindlichen Bereich 14, 24 auf. Das Wertdokument 1 wird auf einer Trommel 3 befestigt, die um die Achse A rotierbar ist, die parallel zur Richtung B verläuft. Durch die Rotation der Trommel 3 lässt sich das Wertdokument 1 entlang des Umfangs der Trommel 3 wiederholt an den Magnetdetektoren 13, 23 und den Magnetisierungseinrichtungen 9,19 vorbeitransportieren. Bei jeder Rotation können dabei die Magnetsignale derjenigen Abschnitte des Sicherheitselements 2 detektiert werden, die sich, je nach Position der Scaneinrichtung 5, gerade im Erfassungsbereich der Magnetdetektoren 13 bzw. 23 befinden. Durch langsames Bewegen der Scaneinrichtung 5 entlang der Richtung B und gleichzeitiger, schneller Rotation der Trommel 3, werden die Magnetbereiche h, l, c des Sicherheitselements 2, wie in den vorherigen Ausführungsbeispielen, nacheinander zweimal magnetisiert und jeweils danach deren Magnetsignale detektiert. In Figur 6 ist die Vorrichtung zu einem Zeitpunkt während einer Rotation dargestellt, bei der der kombinierte Magnetbereich c durch die erste Magnetisierungseinrichtung 9 magnetisiert wird und die ersten Magnetsignale M1c des kombinierten Magnetbereichs c mit Hilfe des Magnetdetektors 13 detektiert wird. Die hochkoerzitiven und niederkoerzitiven Magnetbereiche h, l befinden sich bei dieser Rotation außerhalb des Erfassungsbereichs der beiden Magnetdetektoren 13,23. Alternativ zu der in den Figuren 5 und 6 gezeigten Anordnung kann das Wertdokument 1 auch so auf der Trommel 3 befestigt werden, dass das Sicherheitselement 2 nicht senkrecht, sondern parallel zur Transportrichtung T des Wertdokuments orientiert ist. In diesem Fall werden analog zu dem Ausführungsbeispiel aus Figur 1, das erste und zweite Magnetsignal jeweils als Funktion der Zeit, zuerst von dem ersten und anschließend von dem zweiten Magnetdetektor detektiert.The FIGS. 5 and 6 show a further embodiment in which the device is designed as a self-sufficient measuring device, which is designed to test the magnetic properties of individual value documents 1. In contrast to the embodiment of Figures 1 and 2 For example, in this embodiment, the second magnetization device 19 and the second magnetic detector 23 are disposed adjacent to the first magnetization device 9 and the first magnetic detector 13. The two magnetic detectors 13, 23 and the two magnetizing devices 9,19 are mounted on a scanning device 5, which is transportable along the direction B and is arranged at a small distance to the Trommel.3. The magnetic detectors 13, 23 each have a magnetic field-sensitive region 14, 24 on their underside. The value document 1 is mounted on a drum 3, which is rotatable about the axis A, which is parallel to the direction B. As a result of the rotation of the drum 3, the document of value 1 can be repeatedly transported past the magnet detectors 13, 23 and the magnetizing devices 9, 19 along the circumference of the drum 3. During each rotation, the magnetic signals of those sections of the security element 2 can be detected, which, depending on the position of the scanning device 5, are located just in the detection range of the magnetic detectors 13 and 23, respectively. By slowly moving the scanning device 5 along the direction B and simultaneous, fast rotation of the drum 3, the magnetic portions h, l, c of the security element 2, as in the previous embodiments, successively magnetized twice and then each detected their magnetic signals. In FIG. 6 the device is shown at a time during a rotation in which the combined magnetic domain c is magnetized by the first magnetizing means 9 and the first magnetic signals M1 c of the combined magnetic domain c are detected by means of the magnetic detector 13. The high-coercive and low-coercive magnet regions h, l are outside the detection range of the two magnetic detectors 13, 23 during this rotation. Alternatively to the in the FIGS. 5 and 6 1, the document of value 1 can also be fastened on the drum 3 in such a way that the security element 2 is not oriented perpendicularly but parallel to the transport direction T of the document of value. In this case, analogous to the embodiment FIG. 1 , the first and second magnetic signals respectively as a function of time, first detected by the first and then by the second magnetic detector.

Zum Identifizieren der Magnetbereiche können die ersten und zweiten Magnetsignale M1, M2 des Sicherheitselements 2, insbesondere bei den Ausführungsbeispielen der Figuren 3 und der Figuren 5 und 6, auch in folgender Weise verarbeitet werden: Von dem ersten Magnetsignal M1 wird zunächst ein erstes Signal M1' und von dem zweiten Magnetsignal M2 wird ein zweites Signal M2' abgeleitet. In Figur 7 sind Beispiele für ein derartiges abgeleitetes erstes und zweites Signal M1', M2' gezeigt. Das in Figur 7 gezeigte abgeleitete erste Signal M1' wurde von dem ersten Magnetsignal M1 des Magnetdetektors 10 durch Bildung einer Korrelation des ersten Magnetsignals M1 mit einem Basissignal abgeleitet, das charakteristisch ist für den verwendeten Magnetdetektor 10,11 und das zu prüfende Sicherheitselement 2. Das in Figur 7 dargestellte abgeleitete erste Signal M1' entspricht dem Maximalwert der Korrelationskurve, die für jede Position y entlang der Längsrichtung des Sicherheitselements 2 bestimmt wurde. Es können aber auch andere Charakteristika der Korrelationskurve verwendet werden. Analog dazu wurde das abgeleitete zweite Signal M2' von dem zweiten Magnetsignal M2 des Magnetdetektors 20, 21 durch Bildung einer Korrelation des zweiten Magnetsignals M2 mit einem Basissignal abgeleitet, das charakteristisch ist für den verwendeten Magnetdetektor 20, 21 und das Sicherheitselement 2.To identify the magnetic regions, the first and second magnetic signals M1, M2 of the security element 2, in particular in the embodiments of the Figures 3 and the FIGS. 5 and 6 , are also processed in the following manner: first signal M1 'is derived from first magnetic signal M1, and a second signal M2' is derived from second magnetic signal M2. In FIG. 7 Examples of such derived first and second signals M1 ', M2' are shown. This in FIG. 7 The derived first signal M1 'derived from the first magnetic signal M1 of the magnetic detector 10 is derived by forming a correlation of the first magnetic signal M1 with a base signal characteristic of the magnetic detector 10, 11 used and the security element 2 to be tested FIG. 7 represented derived first signal M1 'corresponds to the maximum value of the correlation curve, which was determined for each position y along the longitudinal direction of the security element 2. However, other characteristics of the correlation curve can also be used. Analogously, the derived second signal M2 'was derived from the second magnetic signal M2 of the magnetic detector 20, 21 by forming a correlation of the second magnetic signal M2 with a base signal characteristic of the magnetic detector 20, 21 and the security element 2 used.

Als abgeleitetes erstes Signal M1' kann aber auch z.B. der Maximalwert des ersten Magnetsignals M1 verwendet werden, den der erste Magnetdetektor 10,11 bzw. dessen einzelne Detektionselemente 12, an der jeweiligen y-Position des Sicherheitselements 2 detektieren. Als abgeleitetes erstes Signal M1' kann aber auch die Fläche unter dem ersten Magnetsignal M1 an der jeweiligen y-Position des Sicherheitselements 2 verwendet werden oder auch andere Charakteristika des ersten Magnetsignals M1. Das abgeleitete zweite Signal M2' wird von dem zweiten Magnetsignal M2 analog abgeleitet wie das abgeleitete erste Signal M1' von dem ersten Magnetsignal M1 abgeleitet wird.However, the maximum value of the first magnetic signal M1 which the first magnetic detector 10, 11 or its individual detection elements 12 detect at the respective y-position of the security element 2 can also be used as the derived first signal M1 '. As a derived first signal M1 'but also the area under the first magnetic signal M1 at the respective y-position of the security element 2 can be used or other characteristics of the first magnetic signal M1. The derived second signal M2 'is derived analogously from the second magnetic signal M2 as the derived first signal M1' is derived from the first magnetic signal M1.

Das abgeleitete zweite Signal M2' kann entweder von dem zweiten Magnetsignal M2 allein oder von dem ersten und dem zweiten Magnetsignal M1, M2 abgeleitet worden sein. In letzterem Fall werden zum Beispiel zunächst jeweils der Maximalwert oder die Fläche des ersten und zweiten Magnetsignals M1, M2 oder jeweils ein Korrelationswert des ersten und des zweiten Magnetsignals M1, M2 mit dem Basissignal bestimmt, und davon anschließend das abgeleitete zweite Signal M2' abgeleitet, z.B. durch eine Linearkombination oder Verhältnisbildung. Zum Beispiel wird das abgeleitete zweite Signal M2' abgeleitet durch Addieren oder Subtrahieren der Maximalwerte des ersten M1 und des zweiten Magnetsignals M2 an der jeweiligen y-Position oder durch Addieren oder Subtrahieren der Korrelationswerte des ersten und des zweiten Magnetsignals an der jeweiligen y-Position.The derived second signal M2 'may be derived either from the second magnetic signal M2 alone or from the first and second magnetic signals M1, M2. In the latter case, for example, first the maximum value or the area of the first and second magnetic signals M1, M2 or respectively a correlation value of the first and second magnetic signals M1, M2 are determined with the base signal, and subsequently the derived second signal M2 'is derived therefrom, eg by a linear combination or ratio formation. For example, the derived second signal M2 'is derived by adding or subtracting the maximum values of the first M1 and second magnetic signals M2 at the respective y-position or by adding or subtracting the correlation values of the first and second magnetic signals at the respective y-position.

Das abgeleitete zweite Signal M2' wird anschließend mit einer oberen Schwelle S1 und einer unteren Schwelle S2 verglichen, um die Magnetbereiche h, l, c zu identifizieren. Wenn der Vergleich mit den beiden Schwellen S1, S2 für einen der gefundenen Magnetbereiche h, l, c ergibt, dass das abgeleitete zweite Signal M2' des jeweiligen Magnetbereichs weder die obere Schwelle S1 überschreitet noch die untere Schwelle S2 unterschreitet, so wird dieser Magnetbereich als kombinierter Magnetbereich c identifiziert, vgl. Figur 7. Beim Überschreiten der oberen Schwelle S1 wird der jeweilige Magnetbereich als hochkoerzitiver Magnetbereich h und bei Unterschreiten der unteren Schwelle als niederkoerzitiver Magnetbereich l identifiziert.The derived second signal M2 'is then compared with an upper threshold S1 and a lower threshold S2 to identify the magnetic areas h, l, c. If the comparison with the two thresholds S1, S2 for one of the magnetic areas h, l, c found that the derived second signal M2 'of the respective magnetic area neither exceeds the upper threshold S1 nor falls below the lower threshold S2, this magnetic area is called Combined magnetic domain c identified, cf. FIG. 7 , When the upper threshold S1 is exceeded, the respective magnetic area is identified as a high-coercive magnetic area h and, when the lower threshold is undershot, as a low-magnetic area l.

Claims (17)

  1. A method for checking a document of value (1) which has a security element (2) with several magnetic areas (h, 1, c), wherein the several magnetic areas of the security element have at least one high-coercive magnetic area (h) which contains a high-coercive magnetic material with a first coercive field strength and at least one low-coercive magnetic area (1) which contains a low-coercive magnetic material with a second coercive field strength which is lower than the first coercive field strength and at least one combined magnetic area (c) which contains both the high-coercive and the low-coercive magnetic material, wherein in the method the following steps are carried out:
    - first magnetizing of the security element (2) by a first magnetic field whose magnetic field strength is greater than the first coercive field strength, so that the magnetization of the high-coercive magnetic material and the magnetization of the low-coercive magnetic material are aligned in a first magnetization direction,
    - detecting of first magnetic signals (M1) of the security element (2) by a first magnetic detector (10),
    - second magnetizing of the security element (2) by a second magnetic field whose magnetic field strength is smaller than the first coercive field strength but is greater than the second coercive field strength, wherein the second magnetic field is oriented such that the magnetization of the low-coercive magnetic material through the second magnetizing is aligned antiparallel to the first magnetization direction,
    - detecting of second magnetic signals (M2) of the security element (2) by the first magnetic detector (10) or by a second magnetic detector (20),
    - analyzing of the first (M1) and the second magnetic signals (M2) of the security element (2), in order to ascertain at which positions on the security element (2) there are localized the magnetic areas (h, 1, c) of the security element and in order to identify each of the magnetic areas (h, 1, c) either as one of the combined magnetic areas (c) or as one of the high- or low-coercive magnetic areas (h, 1).
  2. The method according to claim 1, characterized in that the at least one combined magnetic area (c) is magnetized by the second magnetic field such that a resulting magnetization of the at least one combined magnetic area (c), which arises from the second magnetizing, at least approximatively vanishes.
  3. The method according to any of the preceding claims, characterized in that the at least one combined magnetic area (c) is configured such that the high-coercive magnetic material of the combined magnetic area (c) and the low-coercive magnetic material of the combined magnetic area (c) have substantially the same remanent flux density, wherein the combined magnetic area (c) in particular contains equal quantities of the high-coercive and of the low-coercive magnetic material.
  4. The method according to any of the preceding claims, characterized in that for identifying the magnetic areas (h, l, c), the second magnetic signal (M2) of the respective magnetic area (h, 1, c) or a signal (M2') derived from the second magnetic signal (M2) of the respective magnetic area (h, 1, c) or a signal (M2') derived from the first (M1) and the second magnetic signal (M2) of the respective magnetic area (h, 1, c) is compared with an upper threshold (S1) and with a lower threshold (S2).
  5. The method according to any of the preceding claims, characterized in that each magnetic area (h, 1, c) whose second magnetic signal (M2) or a signal (M2') derived from its second magnetic signal (M2) or a signal (M2') derived from its first (M1) and its second magnetic signal (M2) neither exceeds an upper threshold (S1) nor undershoots a lower threshold (S2) is identified as combined magnetic area (c).
  6. The method according to claim 4 or 5, characterized in that each magnetic area (h, 1, c) whose second magnetic signal (M2) or a signal (M2') derived from its second magnetic signal (M2) or a signal (M2') derived from its first (M1) and its second magnetic signal (M2) exceeds the upper threshold (S1) and/ or undershoots the lower threshold (S2) is identified either as high-coercive (h) or as low-coercive magnetic area (1).
  7. The method according to any of claims 4 to 6, characterized in that the second magnetic signal (M2) of the security element (2) or a signal (M2') derived from its second magnetic signal (M2) or a signal (M2') derived from its first (M1) and its second magnetic signal (M2) has a second signal offset (O2) and that the upper threshold (S1) lies above the second signal offset (O2) and the lower threshold (S2) lies below the second signal offset (O2).
  8. The method according to any of claims 4 to 7, characterized in that the upper threshold (S1) and the lower threshold (S2) have a distance which is at least 50%, preferably at least 75%, in particular at least 100% of an average signal swing (H2), which the second magnetic signal of the high-coercive (h) and/ or of the low-coercive magnetic areas (1) has relative to the second signal offset (02).
  9. The method according to any of claims 4 to 8, characterized in that for at least one of the magnetic areas (h, 1, c) the upper (S1) and/ or the lower threshold (S2) is chosen in dependence on the first magnetic signal (M1), wherein preferably for at least one of the magnetic areas (h, 1, c) the upper (S1) and/ or the lower threshold (S2) is chosen individually, in dependence on a first magnetic signal (M1h, M1l, M1c) of the respective magnetic area (h, 1, c), in particular in dependence on a signal swing of the first magnetic signal (M1h, M1l, M1c) of the respective magnetic area (h, 1, c).
  10. An apparatus for checking a document of value (1) which has a security element (2) with several magnetic areas (h, 1, c), comprising one high-coercive magnetic area (h) which has a high-coercive magnetic material with a first coercive field strength, one low-coercive magnetic area (1) which has a low-coercive magnetic material with a second coercive field strength which is lower than the first coercive field strength, and one combined magnetic area (c) which has both the high-coercive and the low-coercive magnetic material, comprising:
    - a first magnetic detector (10) for detecting first magnetic signals (M1) of the security element (2) after a first magnetizing of the security element was carried out by a first magnetic field whose magnetic field strength is greater than the first coercive field strength, so that the magnetization of the high-coercive magnetic material and the magnetization of the low-coercive magnetic material are aligned in a first magnetization direction,
    - a magnetic detector for detecting second magnetic signals (M2) of the security element (2) after a second magnetizing of the security element was carried out by a second magnetic field whose magnetic field strength is smaller than the first coercive field strength but is greater than the second coercive field strength, wherein the second magnetic field is oriented such that the magnetization of the low-coercive magnetic material through the second magnetizing is aligned antiparallel to the first magnetization direction, and wherein the magnetic detector used for detecting the second magnetic signals is either the first magnetic detector (10) or a second magnetic detector (20),
    - a signal processing device (8) for analyzing the first (M1) and the second magnetic signals (M2), which is adapted
    ∘ to ascertain at which positions on the security element (2) there are localized magnetic areas (h, l, c) of the security element, and
    ∘ to identify the magnetic areas (h, l, c) of the security element (2), wherein each of the magnetic areas is identified either as high-coercive magnetic area (h), or as low-coercive magnetic area (1), or as combined magnetic area (c) which has both the high-coercive and the low-coercive magnetic material.
  11. The apparatus according to claim 10, characterized in that the signal processing device (8) is adapted to identify all those magnetic areas whose second magnetic signal or a signal (M2') derived from their second magnetic signal (M2) neither exceeds an upper threshold (S1) nor undershoots a lower threshold (S2) as combined magnetic areas (c).
  12. The apparatus according to claim 11, characterized in that the signal processing device (8) is adapted such that for identifying the magnetic areas (h, l, c), the second magnetic signal (M2) of the respective magnetic area (h, 1, c) or a signal (M2') derived from the second magnetic signal (M2) of the respective magnetic area (h, 1, c) or a signal (M2') derived from the first (M1) and the second magnetic signal (M2) of the respective magnetic area (h, l, c) is compared with an upper threshold (S1) and with a lower threshold (S2).
  13. The apparatus according to claim 11 or 12, characterized in that the signal processing device (8) is adapted to identify each of the magnetic areas whose second magnetic signal (M2) or a signal (M2') derived from its second magnetic signal (M2) or a signal (M2') derived from its first (M1) and its second magnetic signal (M2) exceeds the upper threshold (S1) and/ or undershoots the lower threshold (2) either as high-coercive (h) or as low-coercive magnetic area (1).
  14. The apparatus according to any of claims 11 to 13, characterized in that upon operation of the apparatus, the second magnetic signal (M2) of the security element (2) or a signal (M2') derived from its second magnetic signal (M2) or a signal (M2') derived from its first (M1) and its second magnetic signal (M2) has a second signal offset (O2) and that the upper threshold lies above the second signal offset (O2) and the lower threshold lies below the second signal offset (02).
  15. The apparatus according to any of claims 11 to 14, characterized in that the signal processing device (8) is adapted to choose for at least one of the magnetic areas (h, 1, c) the upper threshold (S1) and/ or the lower threshold (S2) in dependence on the first magnetic signal (M1), wherein the signal processing device (8) in particular is adapted to choose for at least one of the magnetic areas (h, l, c) the upper (S1) and/ or the lower threshold (S2) individually, in dependence on a first magnetic signal (M1h, M1l, M1c) of the respective magnetic area (h, l, c).
  16. The apparatus according to any of claims 10 to 15, characterized in that the apparatus has a first magnetization device (9) which is configured to provide a first magnetic field which is adapted for the first magnetizing of the high-coercive and of the low-coercive magnetic material in a first magnetization direction, wherein the magnetic field strength used for the first magnetizing is greater than the first coercive field strength.
  17. The apparatus according to any of claims 10 to 16, characterized in that the apparatus has a second magnetization device (19) which is configured to provide a second magnetic field which is adapted for the second magnetizing of the low-coercive magnetic material in a second magnetization direction which extends antiparallel to a first magnetization direction, wherein the magnetic field strength used for the second magnetizing is smaller than the first coercive field strength, but larger than the second coercive field strength.
EP10747629.3A 2009-09-01 2010-08-31 Method and device for testing value documents Active EP2473978B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009039588A DE102009039588A1 (en) 2009-09-01 2009-09-01 Method and device for checking value documents
PCT/EP2010/062681 WO2011026829A1 (en) 2009-09-01 2010-08-31 Method and device for testing value documents

Publications (2)

Publication Number Publication Date
EP2473978A1 EP2473978A1 (en) 2012-07-11
EP2473978B1 true EP2473978B1 (en) 2017-07-05

Family

ID=42989579

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10747629.3A Active EP2473978B1 (en) 2009-09-01 2010-08-31 Method and device for testing value documents

Country Status (9)

Country Link
US (1) US8544630B2 (en)
EP (1) EP2473978B1 (en)
CN (1) CN102576477B (en)
BR (1) BR112012004544B1 (en)
DE (1) DE102009039588A1 (en)
ES (1) ES2642105T3 (en)
RU (1) RU2560787C2 (en)
WO (1) WO2011026829A1 (en)
ZA (1) ZA201200778B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2580745B1 (en) * 2010-06-09 2017-08-16 Giesecke+Devrient Currency Technology GmbH Method and apparatus for checking value documents
DE102011109949A1 (en) * 2011-08-10 2013-02-14 Giesecke & Devrient Gmbh Test arrangement for value document testing
DE102011120972A1 (en) * 2011-12-13 2013-06-13 Giesecke & Devrient Gmbh Method and device for checking value documents
CN103971443B (en) * 2013-01-24 2016-08-10 中钞特种防伪科技有限公司 The method and apparatus that Security element is detected
US9595152B2 (en) * 2013-03-22 2017-03-14 Glory Ltd. Magnetic property detection apparatus
DE102013205891A1 (en) * 2013-04-03 2014-10-09 Giesecke & Devrient Gmbh Examination of a security element provided with magnetic materials
CN103226865B (en) * 2013-04-16 2016-05-25 无锡乐尔科技有限公司 A kind of magnetic head based on magneto-resistor technology for detection magnetic pattern thereon Surface field
CN103544764B (en) * 2013-09-12 2016-11-16 无锡乐尔科技有限公司 A kind of sensor for identifying magnetic medium
CN103809137B (en) * 2014-02-21 2016-08-31 中国人民银行印制科学技术研究所 Paper leaf detecting device and page detection method
FR3028801B1 (en) 2014-11-24 2021-11-19 Arjowiggins Security SECURITY ELEMENT
DE102015002219A1 (en) 2015-02-24 2016-08-25 Meas Deutschland Gmbh Magnetic biasing magnet and measuring device for measuring magnetic properties of the surroundings of the measuring device and methods for biasing magnetic materials on a measuring object
CN105118137A (en) * 2015-07-31 2015-12-02 孙宗远 Mobile portable hand-held currency detecting apparatus and currency detecting method
CN105160753A (en) * 2015-09-16 2015-12-16 深圳市倍量科技有限公司 Banknote security thread anti-counterfeiting detection device and method
DE102016015545A1 (en) 2016-12-27 2018-06-28 Giesecke+Devrient Currency Technology Gmbh Method and device for detecting a security thread in a value document
DE102016015559A1 (en) 2016-12-27 2018-06-28 Giesecke+Devrient Currency Technology Gmbh Method and device for detecting a security thread in a value document
BE1025465B1 (en) * 2017-08-11 2019-03-11 Phoenix Contact Gmbh & Co. Kg Method for magnetizing at least two magnets of different magnetic coercive field strengths
DE102018008519A1 (en) 2018-10-30 2020-04-30 Giesecke+Devrient Currency Technology Gmbh Magnetic verification of documents of value
CN110108781B (en) * 2019-05-15 2023-11-10 中钞印制技术研究院有限公司 Mobile device, article authentication method, apparatus and system thereof, and storage medium
DE102019003491A1 (en) * 2019-05-16 2020-11-19 Giesecke+Devrient Currency Technology Gmbh Testing of the coercive field strength of magnetic pigments
CN110738785A (en) * 2019-09-19 2020-01-31 中钞特种防伪科技有限公司 Detection method and device for magnetic anti-counterfeiting element
CN113516216A (en) * 2021-04-26 2021-10-19 中钞特种防伪科技有限公司 Anti-counterfeiting element, anti-counterfeiting element detection method and anti-counterfeiting product

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2834287C2 (en) * 1978-08-04 1984-03-22 GAO Gesellschaft für Automation und Organisation mbH, 8000 München Device for checking the authenticity of ferromagnetic security threads in value prints
GB2130414A (en) * 1982-11-18 1984-05-31 Portals Ltd Security documents and verification thereof
GB8921435D0 (en) * 1989-09-22 1989-11-08 Bank Of England Sensor system for document sorting machines
ES2088884T5 (en) * 1989-11-23 1999-11-16 Mantegazza A Arti Grafici UNIT TO DETECT MAGNETIC CODES.
AU6343898A (en) * 1997-02-28 1998-09-18 University And Community College System Of Nevada Magnetoresistive scanning system
FR2838543B1 (en) * 2002-04-12 2004-06-04 Cryptic MAGNETIC MARKING SYSTEM, METHOD AND MACHINE FOR THE PRODUCTION THEREOF
DE102004049999A1 (en) 2004-10-14 2006-04-20 Giesecke & Devrient Gmbh security element
DE102006055170A1 (en) * 2006-11-22 2008-05-29 Giesecke & Devrient Gmbh Security element for securing value documents
ITMI20080053A1 (en) * 2008-01-15 2009-07-16 Fabriano Securities Srl SECURITY ELEMENT, PARTICULARLY FOR BANKNOTES, SECURITY CARDS AND THE LIKE, WITH AN ANTI-COUNTERFEIT CHARACTERISTICS.
ITMI20080261A1 (en) * 2008-02-19 2009-08-20 Fabriano Securities Srl BANKNOTES READING SENSOR, SECURITY CARDS AND THE LIKE, CONTAINING AT LEAST A SECURITY ELEMENT.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
RU2012112338A (en) 2014-10-20
DE102009039588A1 (en) 2011-03-03
BR112012004544A2 (en) 2018-06-26
ZA201200778B (en) 2012-10-31
WO2011026829A1 (en) 2011-03-10
RU2560787C2 (en) 2015-08-20
CN102576477A (en) 2012-07-11
BR112012004544B1 (en) 2021-03-16
ES2642105T3 (en) 2017-11-15
US20120160632A1 (en) 2012-06-28
US8544630B2 (en) 2013-10-01
EP2473978A1 (en) 2012-07-11
CN102576477B (en) 2015-10-14

Similar Documents

Publication Publication Date Title
EP2473978B1 (en) Method and device for testing value documents
EP2580745B1 (en) Method and apparatus for checking value documents
EP2376932B1 (en) Magnetic sensor for checking value documents
EP2791919B1 (en) Method and device for checking value documents
EP2742492B1 (en) Test configuration for testing security documents
EP2981948B1 (en) Inspection of a security element provided with magnetic materials
EP2745277B1 (en) Measuring device for measuring the magnetic properties of the surroundings of the measuring device
DE102008033579B4 (en) Measuring device for measuring magnetic properties
DE2834287C2 (en) Device for checking the authenticity of ferromagnetic security threads in value prints
DE102010035469A1 (en) Sensor of device for examination of value document e.g. check, has magnetoresistive element positioned such that field of magnet at magnetoresistive element is oriented perpendicular to sensitivity direction of magnetoresistive element
EP2929514A1 (en) Device for examining a value document and method for examining a value document
EP3262432B2 (en) Method for biasing of magnetic materials on a measurement object
EP2941759B1 (en) Measuring device for measuring magnetic properties of the surroundings of the measuring device
EP3084731A1 (en) Magnetization device for testing a security element
DE102010019463A1 (en) Security element for securing value documents
EP3874475B1 (en) Magnetic testing of valuable documents
DE102016015545A1 (en) Method and device for detecting a security thread in a value document
DE102019200361A1 (en) Magnetizing device with reduced stray field

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120402

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170203

INTG Intention to grant announced

Effective date: 20170203

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 907075

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010013826

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL AND PARTN, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170705

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2642105

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171115

Ref country code: AT

Ref legal event code: HC

Ref document number: 907075

Country of ref document: AT

Kind code of ref document: T

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Effective date: 20170918

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Free format text: FORMER OWNER: GIESECKE AND DEVRIENT GMBH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171005

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180118 AND 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171006

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171105

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010013826

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

26N No opposition filed

Effective date: 20180406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 907075

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210823

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240831

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240822

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240918

Year of fee payment: 15

Ref country code: CH

Payment date: 20240901

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240830

Year of fee payment: 15