EP2336024B1 - Rotor bearing structure, rotorcraft carrying said bearing structure and method for avoiding instable coupling of the system eigenmodes - Google Patents
Rotor bearing structure, rotorcraft carrying said bearing structure and method for avoiding instable coupling of the system eigenmodes Download PDFInfo
- Publication number
- EP2336024B1 EP2336024B1 EP10015435.0A EP10015435A EP2336024B1 EP 2336024 B1 EP2336024 B1 EP 2336024B1 EP 10015435 A EP10015435 A EP 10015435A EP 2336024 B1 EP2336024 B1 EP 2336024B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rotor
- damping
- carrier structure
- mounting structure
- weight element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010168 coupling process Methods 0.000 title claims description 25
- 238000005859 coupling reaction Methods 0.000 title claims description 25
- 230000008878 coupling Effects 0.000 title claims description 24
- 238000000034 method Methods 0.000 title claims description 7
- 238000013016 damping Methods 0.000 claims description 107
- 230000007246 mechanism Effects 0.000 claims description 87
- 230000005540 biological transmission Effects 0.000 claims description 31
- 230000033001 locomotion Effects 0.000 claims description 22
- 230000005284 excitation Effects 0.000 claims description 12
- 239000000725 suspension Substances 0.000 claims description 8
- 230000005489 elastic deformation Effects 0.000 claims description 2
- 230000000452 restraining effect Effects 0.000 claims 2
- 238000005303 weighing Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000001066 destructive effect Effects 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 235000021168 barbecue Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 230000009347 mechanical transmission Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/001—Vibration damping devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/001—Vibration damping devices
- B64C2027/002—Vibration damping devices mounted between the rotor drive and the fuselage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/001—Vibration damping devices
- B64C2027/005—Vibration damping devices using suspended masses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/21—Elements
- Y10T74/2109—Balancing for drum, e.g., washing machine or arm-type structure, etc., centrifuge, etc.
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/21—Elements
- Y10T74/2121—Flywheel, motion smoothing-type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/21—Elements
- Y10T74/2121—Flywheel, motion smoothing-type
- Y10T74/2122—Flywheel, motion smoothing-type with fluid balancing means
- Y10T74/2125—Flywheel, motion smoothing-type with fluid balancing means and elastic device
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/21—Elements
- Y10T74/2121—Flywheel, motion smoothing-type
- Y10T74/2128—Damping using swinging masses, e.g., pendulum type, etc.
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/21—Elements
- Y10T74/2121—Flywheel, motion smoothing-type
- Y10T74/213—Damping by increasing frictional force
Definitions
- the present invention is in the field of equipment for motorized flying apparatus comprising a bearing structure connected to a rotor head, such as for a propeller plane or a rotorcraft for example. More particularly, the present invention relates vibration damping mechanisms induced by aeroelastic instabilities resulting from a coupling between the vibration modes of the carrier structure and the vibration modes of the rotor. The invention then relates to a support structure provided with such a mechanism and a flying apparatus provided with a supporting structure.
- flying apparatus provided with a rotor linked to a supporting structure, for example an aircraft equipped with a propeller or a rotorcraft provided with a lift rotor or propulsion.
- the rotor conventionally comprises a rotor mast integral with a hub, this hub carrying a plurality of radially distributed blades.
- the carrier structure has a cell, sometimes called “fuselage” in which are arranged motor means adapted to drive the rotor in rotation.
- the carrier structure comprises a rotor mounting structure for attaching the rotor to the cell.
- Such a mounting structure usually comprises mechanical transmission means as well as fixing elements of these transmission means to the cell.
- a mounting structure of a rotorcraft called “pylon” by those skilled in the French language and “pylon” in the English language, includes a main gearbox and
- the motorization means of the carrier structure then drive the rotor via the transmission means of the mounting structure.
- the carrier structure and the rotor are each subjected to forced excitation inherent to the speed of advance of the aircraft.
- the dynamic excitation of the rotor results from aerodynamic loads to which this rotor is subjected, these aerodynamic loads decomposing into fixed axes in a coplanar effort exerted in the general plane of the hub of the rotor which is perpendicular to the axis of rotation of the rotor, in an axial force which is exerted along the axis of rotation of the rotor, and in a coplanar moment acting in a plane perpendicular to the axis of rotation of the rotor tangentially to the rotational movement of the rotor hub.
- the carrier structure is subjected to forced excitation.
- the tail boom of a helicopter cell can be excited directly by a turbulent airflow from the main lift and propulsion rotor.
- Flying devices equipped with a rotor are generally structured to mitigate the consequences of such vibrations.
- antivibration systems For this purpose, it is common to equip the rotor or the structure of antivibration systems, sometimes called resonator, to filter the dynamic forces at the most inconvenient frequencies, from a passenger comfort point of view or to avoid the breakage of passengers. an element subjected to this vibratory fatigue. These antivibration systems are then set to one of the harmonics of the rotational speed of the rotor.
- Such pendular resonators are effective for only a given frequency.
- Such pendular resonators are arranged to equip a rotor head implanted at the top of the carrier structure, the rotor providing lift or propulsion, and do not take into account the specific characteristics of the bearing structure relating in particular to its mass and its excitation frequency.
- the resonators have the effect of stifling the vibrations by creating an antiresonance at the given frequency of adjustment.
- the resonator generates two new resonances (or modes of vibration) whose two respective frequencies are located on both sides of the antiresonance frequency.
- the frequency range defined by these two modes remains relatively narrow. Nevertheless, the two modes of vibration created by the resonators are not normally troublesome in that the two resonances differ from the given frequency to be processed.
- Vibration damping mechanisms are also known for treating the vibrations that result from the forced excitation of the supporting structure.
- FR2784350 (EUROCOPTER FRANCE) which describes a damped resonator arranged to be implanted at the tail of the carrier structure to filter given frequencies.
- a problem lies in the attenuation of the vibration phenomena induced by the aeroelastic instabilities experienced by an aircraft in flight.
- aeroelastic instabilities may result from the coupling between the modes of vibration of the carrier structure and the flow of air moving around it, namely in particular a fixed wing type structure (wing of airplane) or wing rotating (rotorcraft rotor blades or airplane propeller blades). It is then instabilities known to the skilled person under the general term "floating" or "flutter" in the English language.
- aeroelastic instabilities correspond for example to instabilities known as "whirl flutter" in English designating the coupling of the vibration modes of a rotor equipped with blades or blades with vibration modes of the supporting structure supporting the rotor.
- the manufacturers avoid that the rotor vibration modes are likely to couple with the vibration modes of the carrier structure, thus ensuring the compatibility of these two sets. For this it is generally sufficient to ensure the placement of eigenfrequencies and respective damping modes of vibration of the different sets.
- the manufacturer can not use the previously described resonators that can deal with forced excitation, and not couplings. Therefore, the manufacturer often chooses to modify its carrier structure, stiffening for example, such a modification having a financial cost but also an impact in terms of significant mass. In addition, it may be difficult to make the changes in question on an existing device.
- the state of the art further includes the documents EP 0250135 , DE 102007025934 , FR 2769396 and FR 2770825 .
- the document EP 0250135 has a structure carrying a rotor.
- the document DE 102007025934 presents a machine tool provided with a device comprising springs and dampers to suppress given vibrations.
- the document FR 2769396 is aimed at a device for reducing the noise in a cabin and not for avoiding a destructive coupling between the vibration modes of a carrier structure and the rotor of the aircraft, this device comprising at least one sensor for measuring the values of a vibratory and / or acoustic parameter representative of a vibratory and / or acoustic effect of at least one noise source, at least one controllable mechanical means capable of creating a force capable of reducing said vibratory and / or acoustic effect, and a control unit, for controlling the mechanical means, as a function of the values measured by the sensor.
- the document FR 2770825 is intended to reduce the vibrations present in the cabin of a rotary wing aircraft by means of a resonator arranged in the cabin.
- the present invention therefore aims to combat the phenomenon of unstable coupling of the vibration modes of the carrier structure and those of the rotor of an aircraft, by simple means, inexpensive, and can be easily implemented on an existing device.
- the principle is to bring damping to the mode (s) of vibration of the carrier structure being involved in the unstable coupling.
- the object of the present invention is to propose a vibration damping mechanism for flying apparatus provided with at least one rotor head, propeller plane or rotorcraft in particular, which makes it possible to optimize the attenuation of the vibrations induced by the movement of the aircraft. rotor in rotation and to which the cell of the carrying structure of the apparatus is subjected. It is more particularly sought by the present invention to provide such a mechanism which satisfies the required requirements of efficiency, simplicity of structure, mass and compactness allowing its easy implementation, even optional, on the flying apparatus, and which provides a satisfactory compromise in view of the constraints and difficulties that have been stated.
- the approach of the present invention has been to provide the carrier structure of the apparatus with a vibration absorption mechanism transmitted by the moving rotor head, which takes into account the characteristics of the rotor-structure coupling, it is that is to say not only those of the blades, but also those of the supporting structure, in particular the characteristics relating to the frequencies and the masses of its own modes.
- This zone of implantation of the mechanism is more particularly chosen as being a mounting structure commonly included in the flying apparatus, for assembly to the cell of the carrier structure of power transmission means interposed in the chain. transmission power that extends between the motor means and the rotor rotated by these motor means.
- Such transmission means are subject to vibration from the rotor, and are organized to be assembled to the cell.
- a mounting structure comprises in particular a main power transmission gearbox produced by the drive means for driving the rotor, which has the advantage of being located close to the rotor head and of being connected in an almost rigid at the mast of the rotor.
- the vibration absorption mechanism is advantageously grouped into an independent member provided with own fixing means on said mounting structure.
- the invention relates to a structure carrying a rotor of a flying apparatus provided with a cell and a mounting structure adapted to be engaged on the rotor, the mounting structure comprising driven transmission means. by motor means of the supporting structure.
- Such a carrier structure is mainly recognizable in that said mounting structure is equipped with a vibration damping mechanism to prevent the coupling of the vibration modes of the carrier structure and the vibration modes of a rotor which would be fixed to the carrier structure, the mechanism associates in particular a resonator comprising a weighing element mounted movably on the mounting structure, with means for damping the mobility of the heavy element which are interposed between said heavy element and said mounting structure, heavy element being a heavy weight element carried by the mounting structure via a first deformable member retaining its mobility.
- the resonator equipped with the damping means is therefore fixed closer to the rotor to optimize its efficiency on the vibrations induced by the rotor, and taking into account the modes of vibration of the carrier structure solicited by a forced excitation to prevent the coupling between the vibration modes of the carrier structure and the vibration modes of the rotor.
- the assembly of the mechanism on the mounting structure is easy and may be optional, the mechanism being adjustable and / or installed according to the results of instability of the aircraft in flight, without structural modification consequence of said structure mounting.
- the mechanism then has the effect of damping the vibrations over a wide frequency range, without creating antiresonance unlike a conventional resonator.
- the damping provided makes it possible to modify the vibration modes of the support structure equipped with the mechanism, and thus prevents the creation of a destructive coupling between the vibration modes of the rotor and the bearing structure of this rotor.
- the mounting structure including a main power transmission gearbox adapted to be engaged with a rotor mast of a rotor
- the proposed damping mechanism is preferably mounted on such a main transmission gearbox.
- power commonly interposed between the motor means and the rotor.
- This main power transmission gearbox is also likely to be a secondary gearbox assigned to drive in rotation of any rotor head, such as a tail rotor head.
- the main power transmission having a box bottom connected to the cell of the supporting structure, the damping mechanism can be arranged on the bottom of the box, if the elements between the bottom of the box and the rotor head are sufficiently rigid and that this location is sufficiently sensitive to the movements of the rotor head.
- the mounting structure including a main power transmission gearbox adapted to be engaged with a rotor mast of a rotor, the mounting structure having at least one suspension bar connecting an upper part of the transmission box. main transmission of power to the cell, the damping mechanism is mounted on the suspension bar.
- the mobility of the heavy element is a unidirectional mobility in an orthogonal plane and / or a plane parallel to the axis of rotation of the rotor. Since the cell is linked to a three-dimensional reference reference frame comprising a longitudinal axis, a transverse axis and a vertical axis, the orthogonal plane is a plane parallel to the plane passing the longitudinal axis and the transverse axis of this cell.
- the mobility of the heavy element is allowed at least in a plane orthogonal to the axis of rotation of the rotor and / or pitch around an axis of this plane.
- the first deformable member consists for example of any one of the members comprising at least one flexible blade, at least one torsion tube or at least one coil spring, or any other similar member providing mobility of the heavy element.
- the damping means are indifferently of the electromagnetic type, of the hydraulic type, or of the type with mechanical or elastic deformation such as for example consisting of at least one second elastically deformable member formed from a high loss angle elastomer. All other types of means capable of damping the movement of the heavy element induced by the vibrations supported by the mounting structure of the transmission means are capable of being exploited.
- the first deformable member is a means for opposing the vibrations on a first narrow frequency range induced by a forced excitation to which the rotor is subjected, with damping means which are means for opposing the vibrations to the rotor. origin of instability over a second frequency range wider than said first range.
- the invention also relates and not exclusively to an application to counter the phenomenon called "whirl flutter" in English by the skilled person.
- the stiffness of said mechanism is surprisingly a function of the given natural frequency of the vibration mode of the carrier structure to be treated and not of a natural frequency of this mechanism.
- the invention also relates to a flying apparatus provided with a rotor and a supporting structure comprising a cell and a structure for mounting the rotor to the cell.
- the apparatus is particularly notable in that the mounting structure is a carrier structure according to the invention as previously described to prevent the coupling of the vibration modes of the carrier structure and vibration modes of the rotor.
- the invention relates to a method for preventing the coupling of the vibration modes of a carrier structure of a flying apparatus and the modes of vibration of a rotor, said bearing structure carrying said rotor of a flying apparatus provided with a cell and a mounting structure adapted to be engaged on said rotor, said mounting structure comprising transmission means driven by motor means of the carrier structure.
- said mounting structure is equipped with a vibration damping mechanism to prevent said coupling, said mechanism associating a resonator comprising a weighing element mounted to move on the mounting structure with means for damping the mobility of the the heavy element which are interposed between said heavy element and said mounting structure, the heavy element of the resonator being a heavy weight element carried by the mounting structure via a first deformable member retaining its mobility.
- a plurality of values of the damping coefficient c r of said mechanism and of the mass m r are simultaneously scanned .
- the pair of damping coefficient c r final and final mass m r said damping mechanism corresponds to the torque generating a damping coefficient of the vibration mode of the maximum structure.
- a first graph is produced showing, on the abscissa, the quotient of this mass m r of the said damping mechanism and the mass m s given of the said support structure, and the ordinate the damping coefficient of the vibration mode of the structure obtained. via said eigenvalues.
- the curve obtained has a maximum representing an optimum in terms of damping contribution.
- the final stiffness K r of said damping mechanism is then determined, this final stiffness K r being equal to the product of the final mass m r and the natural frequency ⁇ s given of the vibration mode to be processed at the power of two.
- a search is the eigenvalues of the previous system to a plurality of values of the damping coefficient c r of said damping mechanism, and using the final mass m r and the final stiffness previously determined. Consequently, a second graph showing the damping coefficient c r of said damping mechanism is plotted on the abscissa and the damping coefficient of the vibration mode of the structure obtained via said eigenvalues is plotted on the ordinate.
- the curve obtained has a maximum representing an optimum in terms of damping contribution.
- the final damping coefficient is then equal to the damping coefficient of the damping mechanism generating said maximum.
- a third embodiment it is possible to fix the mass m r and the stiffness K r of the damping mechanism at given values, and then the eigenvalues of the preceding system are sought for a given value. plurality of values of the damping coefficient c r . Therefore, we make a first graph showing the abscissa damping coefficient c r said mechanism and the ordinate the damping coefficient of the vibration mode of the structure obtained via said eigenvalues.
- the curve obtained has a maximum representing an optimum in terms of damping contribution.
- the final damping coefficient is then equal to the damping coefficient of the damping mechanism generating said maximum.
- the eigenvalues of the preceding system are sought by using the value of the final damping coefficient c r of said damping mechanism and by using a plurality of values of the mass m r . Therefore, a second graph is produced which has the abscissa of the quotient of this mass m r of the said damping mechanism and the mass m s given of the said support structure and the ordinate the damping coefficient of the vibration mode of the structure obtained. via said eigenvalues.
- the curve obtained has a maximum representing an optimum in terms of damping contribution.
- the final stiffness K r of said damping mechanism is then determined, this stiffness K r being equal to the product mass m r final and the natural frequency ⁇ s given the vibration mode to be processed at power two
- a flying apparatus 30 essentially comprises a carrier structure 40 and a rotor 20.
- this carrier structure 40 consists in particular of a cell 1 also called “fuselage" on which are embarked equipment of the flying apparatus, the crew and if necessary of the personnel .
- the cell comprises motor means 2 for rotating the rotor 20.
- This rotor 20 comprises a rotor mast 3 engaged with a rotor head 4.
- This rotor head 4 comprises in particular a hub 5 which carries blades 6 and which is connected to the rotor mast 3 for its rotational drive.
- the carrier structure 40 comprises a mounting structure 8 arranged at the top of the cell 1 to carry the rotor 20.
- This mounting structure comprises transmission means 7 interposed from then in the power transmission chain between the drive means. 2 and the rotor head 4, and more particularly between the motor means 2 and the rotor mast 3.
- Such transmission means 7 consist of a main power transmission gearbox 50 which is commonly fitted to the rotorcraft and which is in connection with the rotor mast 3 for driving a rotor head 4, the main transmission gearbox.
- power 50 being disposed at the top of the cell 1 of the flying apparatus in ground station.
- the main transmission box 50 is therefore located within the mounting structure 8, sometimes called a pylon, which is placed above the cell 1.
- the mounting structure 8 is equipped with various fastening elements 9 ', 9 "favoring its stability in particular against the forces and vibrations coming from the rotor 20 to which it is subjected.
- the mounting structure may comprise suspension bars 9 'connecting an upper portion 50 "of the main power transmission gearbox to the cell 1.
- the can bottom 50' is attached to the cell 1 by a fixing element 9 ", of the type sometimes called" barbecue “by the skilled person or the type sometimes referred to as” sarib “by the skilled person.
- the flying apparatus 30 incorporates a mechanism 10 for absorbing the vibrations induced in particular by the moving rotor head 4.
- the implantation of this mechanism 10 is carried out by means of the mounting structure 8 of the transmission means 7 on the apparatus, and in particular by means of the main power transmission gearbox 50. More particularly, the mechanism 10 is arranged on the side wall of the box bottom 50 'of the main gearbox 50. The mechanism 10 is not arranged between the box bottom 50' and the cell. Similarly according to this variant, the mechanism 10 is not related to the suspension bars but is only attached to the main transmission gearbox.
- This mechanism 10 associates a resonator 11 and damping means 12 assigned to this resonator 11 to take into account the characteristics of the carrier structure 40, and in particular its own excitation frequency with regard to the absorption of the vibrations induced by the setting in motion of the rotor head 4 during the displacement of the apparatus.
- the resonator 11 comprises a mobile weighing element 13, such as a weighing element weighing, which is fixed on the mounting structure 8 by means of a first deformable member 14.
- a mobile weighing element 13 confers on it a mobility adapted to oppose the vibrations experienced by the transmission means 7, and more particularly by said mounting structure 8, and induced in particular by the setting in motion of the rotor head 4.
- the first deformable member 14 is a member capable of filtering the vibrations induced by the moving rotor head 4 over a first narrow frequency range.
- the heavy element 13 is for example mounted movably on the mounting structure 8 in flexion, such as by means of a blade or similar flexible member constituting the first deformable member 14.
- the mobility of the weighing element 13 is authorized in an XY plane orthogonal to the rotation axis A of the rotor 3, or even in pitch around the Y axis of this plane which is transverse to the general extension direction of the fuselage.
- the damping means 12 are interposed between the weighing element 13 and the mounting structure 8, on which they are engaged.
- the damping means 12 are deformable means of the hydraulic type.
- the damping means 12 are able to accompany the mobile movement of the weight element 13 as a function of the vibrations transmitted to the mounting structure 8 by the rotor 20, in a second frequency range wider than the first frequency range. relative to the opposition to these vibrations that provides the first deformable member 14.
- An unstable coupling between the mounting structure 8 and the fuselage 1 is then surprisingly avoided, from an enlargement of the band of frequencies on the basis of which the mechanism 10 is able to filter the vibrations coming from the rotor head 4.
- the damping means may be of the electromagnetic type or else and not exclusively of elastic type with use of a large loss angle elastomer.
- the resonator is fixed closer to the rotor, on one of the elements of the mounting structure so as to limit the participation of the higher modes of vibration of the carrier structure and to have the maximum efficiency on the responsible modes unstable coupling.
- the limitation of the rotor center displacement is a condition to avoid the coupling between the rotor and the structure.
- the mechanism 10 can be arranged on a suspension bar 9 'for example.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Vibration Prevention Devices (AREA)
Description
La présente invention est du domaine des équipements pour appareil volant motorisé comportant une structure porteuse liée à une tête de rotor, tels que pour un avion à hélice ou un giravion par exemple. Plus particulièrement, la présente invention relève des mécanismes amortisseurs de vibrations induites par des instabilités aéroélastiques résultant d'un couplage entre les modes de vibrations de la structure porteuse et les modes de vibration du rotor. L'invention a alors pour objet une structure porteuse munie d'un tel mécanisme et un appareil volant pourvu d'une structure porteuse.The present invention is in the field of equipment for motorized flying apparatus comprising a bearing structure connected to a rotor head, such as for a propeller plane or a rotorcraft for example. More particularly, the present invention relates vibration damping mechanisms induced by aeroelastic instabilities resulting from a coupling between the vibration modes of the carrier structure and the vibration modes of the rotor. The invention then relates to a support structure provided with such a mechanism and a flying apparatus provided with a supporting structure.
Parmi les aéronefs, on distingue les appareils volants munis d'un rotor lié à une structure porteuse, par exemple un avion muni d'une hélice ou encore un giravion muni d'un rotor de sustentation voire de propulsion.Among the aircraft, there are flying apparatus provided with a rotor linked to a supporting structure, for example an aircraft equipped with a propeller or a rotorcraft provided with a lift rotor or propulsion.
Le rotor comporte classiquement un mât rotor solidaire d'un moyeu, ce moyeu portant une pluralité de pales radialement réparties.The rotor conventionally comprises a rotor mast integral with a hub, this hub carrying a plurality of radially distributed blades.
Par ailleurs, la structure porteuse possède une cellule, dénommée parfois « fuselage » dans laquelle sont agencés des moyens moteurs aptes à entraîner en rotation le rotor. De plus, la structure porteuse comporte une structure de montage du rotor, permettant de fixer le rotor à la cellule.Furthermore, the carrier structure has a cell, sometimes called "fuselage" in which are arranged motor means adapted to drive the rotor in rotation. In addition, the carrier structure comprises a rotor mounting structure for attaching the rotor to the cell.
Une telle structure de montage comporte usuellement des moyens de transmission mécanique ainsi que des éléments de fixation de ces moyens de transmission à la cellule. Par exemple, une structure de montage d'un giravion, appelée « pylône » par l'homme du métier en langue française et « pylon » en langue anglaise, comprend une boîte de transmission principale de puissance et desSuch a mounting structure usually comprises mechanical transmission means as well as fixing elements of these transmission means to the cell. For example, a mounting structure of a rotorcraft, called "pylon" by those skilled in the French language and "pylon" in the English language, includes a main gearbox and
éléments de fixations de cette boîte de transmission principale de puissance à la cellule, telles que des barres de suspension par exemple.Fastening elements of this main transmission gearbox to the cell, such as suspension bars for example.
Les moyens de motorisation de la structure porteuse entraînent alors le rotor via les moyens de transmission de la structure de montage.The motorization means of the carrier structure then drive the rotor via the transmission means of the mounting structure.
La structure porteuse et le rotor sont chacune soumises à des excitations forcées inhérentes à la vitesse d'avancement de l'aéronef.The carrier structure and the rotor are each subjected to forced excitation inherent to the speed of advance of the aircraft.
L'excitation dynamique du rotor, par exemple le rotor de sustentation et de propulsion d'un hélicoptère, résulte des charges aérodynamiques auxquelles ce rotor est soumis, ces charges aérodynamiques se décomposant en axes fixes en un effort coplanaire s'exerçant dans le plan général du moyeu du rotor qui est perpendiculaire à l'axe de rotation du rotor, en un effort axial qui s'exerce suivant l'axe de rotation du rotor, et en un moment coplanaire s'exerçant dans un plan perpendiculaire à l'axe de rotation du rotor tangentiellement au mouvement de rotation du moyeu du rotor. Les fréquences de telles vibrations en axes fixes c'est-à-dire liés à la cellule de la structure porteuse, sont égales au produit kbΩ où « Ω » désigne la vitesse de rotation du rotor, « b » le nombre de pales et « k » un nombre entier positif. Les fréquences fondamentales correspondent à un nombre « k » égal à l'unité. Ces excitations sont transmises du rotor à la structure par le pylône.The dynamic excitation of the rotor, for example the rotor of levitation and propulsion of a helicopter, results from aerodynamic loads to which this rotor is subjected, these aerodynamic loads decomposing into fixed axes in a coplanar effort exerted in the general plane of the hub of the rotor which is perpendicular to the axis of rotation of the rotor, in an axial force which is exerted along the axis of rotation of the rotor, and in a coplanar moment acting in a plane perpendicular to the axis of rotation of the rotor tangentially to the rotational movement of the rotor hub. The frequencies of such vibrations in fixed axes that is to say related to the cell of the carrier structure, are equal to the product kbΩ where "Ω" designates the speed of rotation of the rotor, "b" the number of blades and " k "a positive integer. The fundamental frequencies correspond to a number "k" equal to unity. These excitations are transmitted from the rotor to the structure by the pylon.
De même, la structure porteuse est soumise à des excitations forcées. Par exemple, la poutre de queue d'une cellule d'hélicoptère peut être excitée directement par un flux d'air turbulent provenant du rotor principal de sustentation et de propulsion.Similarly, the carrier structure is subjected to forced excitation. For example, the tail boom of a helicopter cell can be excited directly by a turbulent airflow from the main lift and propulsion rotor.
Les appareils volants munis d'un rotor sont globalement structurés pour pallier aux conséquences de telles vibrations.Flying devices equipped with a rotor are generally structured to mitigate the consequences of such vibrations.
A cet effet, il est courant d'équiper le rotor ou la structure de systèmes antivibratoires, dénommés parfois résonateur, pour filtrer les efforts dynamiques aux fréquences les plus gênantes, d'un point de vue confort des passagers ou encore pour éviter la casse d'un élément soumis à cette fatigue vibratoire. Ces systèmes antivibratoires sont alors réglés sur un des harmoniques de la vitesse de rotation du rotor.For this purpose, it is common to equip the rotor or the structure of antivibration systems, sometimes called resonator, to filter the dynamic forces at the most inconvenient frequencies, from a passenger comfort point of view or to avoid the breakage of passengers. an element subjected to this vibratory fatigue. These antivibration systems are then set to one of the harmonics of the rotational speed of the rotor.
Dans ces conditions, il a été proposé tel que selon le document
Cependant, de tels résonateurs pendulaires sont efficaces pour uniquement une fréquence donnée. De tels résonateurs pendulaires sont agencés pour équiper une tête de rotor implantée en sommet de la structure porteuse, le rotor procurant la sustentation voire la propulsion, et ne prennent pas en compte les caractéristiques propres de la structure porteuse relatives notamment à sa masse et à sa fréquence d'excitation.However, such pendular resonators are effective for only a given frequency. Such pendular resonators are arranged to equip a rotor head implanted at the top of the carrier structure, the rotor providing lift or propulsion, and do not take into account the specific characteristics of the bearing structure relating in particular to its mass and its excitation frequency.
En effet, les résonateurs ont pour effet d'étouffer les vibrations en créant une antirésonance à la fréquence donnée de réglage. En conséquence, le résonateur génère deux nouvelles résonances (ou modes de vibration) dont les deux fréquences respectives sont situées de part et d'autre de la fréquence d'antirésonance. La plage de fréquence définie par ces deux modes reste relativement étroite. Néanmoins, les deux modes de vibrations créés par les résonateurs ne sont normalement pas gênants dans la mesure où les deux résonances diffèrent de la fréquence donnée à traiter.Indeed, the resonators have the effect of stifling the vibrations by creating an antiresonance at the given frequency of adjustment. As a result, the resonator generates two new resonances (or modes of vibration) whose two respective frequencies are located on both sides of the antiresonance frequency. The frequency range defined by these two modes remains relatively narrow. Nevertheless, the two modes of vibration created by the resonators are not normally troublesome in that the two resonances differ from the given frequency to be processed.
On connait aussi des mécanismes amortisseurs de vibrations pour traiter les vibrations qui résultent de l'excitation forcé de la structure porteuse. On peut par exemple se reporter au document
Outre les excitations forcées, un autre phénomène vibratoire peut être à l'origine de problèmes majeurs.In addition to the forced excitations, another vibratory phenomenon can be at the origin of major problems.
Dans le domaine aéronautique en particulier, un problème réside dans l'atténuation des phénomènes vibratoires induits par les instabilités aéroélastiques que subit un appareil en vol. Par exemple, de telles instabilités aéroélastiques peuvent résulter du couplage entre les modes de vibration de la structure porteuse et le flux d'air en mouvement autour d'elle, à savoir notamment une structure de type voilure fixe (aile d'avion) ou voilure tournante (pales de rotor de giravion ou d'hélice d'avion). Il s'agit alors d'instabilités connues par l'homme du métier sous le terme général « flottement » ou « flutter » en langue anglaise.In the aeronautical field in particular, a problem lies in the attenuation of the vibration phenomena induced by the aeroelastic instabilities experienced by an aircraft in flight. For example, such aeroelastic instabilities may result from the coupling between the modes of vibration of the carrier structure and the flow of air moving around it, namely in particular a fixed wing type structure (wing of airplane) or wing rotating (rotorcraft rotor blades or airplane propeller blades). It is then instabilities known to the skilled person under the general term "floating" or "flutter" in the English language.
D'autres instabilités aéroélastiques correspondent par exemple aux instabilités dénommées « whirl flutter » en langue anglaise désignant le couplage des modes de vibrations d'un rotor équipé de pales ou d'aubes avec des modes de vibrations de la structure porteuse supportant le rotor.Other aeroelastic instabilities correspond for example to instabilities known as "whirl flutter" in English designating the coupling of the vibration modes of a rotor equipped with blades or blades with vibration modes of the supporting structure supporting the rotor.
Ces phénomènes de « flutter » et de « whirl flutter » se caractérisent par des vibrations à cycle limite ou des vibrations divergentes pouvant conduire à des ruptures de pièces mécaniques ou d'éléments structuraux. Il est donc impératif de prendre en compte ces phénomènes dans la conception de l'aéronef de façon à repousser les vitesses critiques (vitesse d'avancement, vitesse de rotation du rotor) au-delà des limites du domaine de vol.These "flutter" and "whirl flutter" phenomena are characterized by limit cycle vibrations or vibrations divergences that may lead to breakage of mechanical parts or structural elements. It is therefore imperative to take these phenomena into account in the design of the aircraft so as to push the critical speeds (forward speed, rotational speed of the rotor) beyond the limits of the flight envelope.
En particulier pour le « whirl-flutter », les constructeurs évitent que les modes de vibrations du rotor soient susceptibles de se coupler aux modes de vibrations de la structure porteuse, assurant ainsi la compatibilité de ces deux ensembles. Pour cela il suffit généralement de s'assurer du placement des fréquences propres et des amortissements respectifs des modes de vibration des différents ensembles.In particular for the whirl-flutter, the manufacturers avoid that the rotor vibration modes are likely to couple with the vibration modes of the carrier structure, thus ensuring the compatibility of these two sets. For this it is generally sufficient to ensure the placement of eigenfrequencies and respective damping modes of vibration of the different sets.
Il est cependant difficile de modifier à posteriori les caractéristiques modales de la structure porteuse ou du rotor, si de tels phénomènes apparaissent au cours de la mise au point de l'aéronef. De plus, un constructeur peut être amené à modifier un aéronef existant pour répondre à des besoins spécifiques d'un utilisateur, ce qui peut impacter le comportement de l'appareil vis-à-vis de ces instabilités.However, it is difficult to modify a posteriori modal characteristics of the carrier structure or the rotor, if such phenomena occur during the development of the aircraft. In addition, a manufacturer may have to modify an existing aircraft to meet the specific needs of a user, which may impact the behavior of the aircraft vis-à-vis these instabilities.
Pour résoudre ces phénomènes qui peuvent apparaître comme explicité précédemment, le constructeur ne peut pas utiliser les résonateurs décris précédemment qui permettent de traiter des excitations forcées, et non pas des couplages. Dès lors, le constructeur choisit souvent de modifier sa structure porteuse, en la raidissant par exemple, une telle modification ayant un coût financier mais aussi un impact en termes de masse non négligeable. De plus, il peut être délicat de réaliser les modifications en question sur un appareil existant.To solve these phenomena that may appear as explained above, the manufacturer can not use the previously described resonators that can deal with forced excitation, and not couplings. Therefore, the manufacturer often chooses to modify its carrier structure, stiffening for example, such a modification having a financial cost but also an impact in terms of significant mass. In addition, it may be difficult to make the changes in question on an existing device.
L'état de la technique inclut de plus les documents
Le document
Le document
Le document
Le document
Ces documents ne se rapportent alors pas à la résolution d'un problème de couplage des modes de vibration d'une structure porteuse et des modes de vibration d'un rotor.These documents do not then relate to the resolution of a coupling problem of the vibration modes of a carrier structure and vibration modes of a rotor.
La présente invention a alors pour objet de lutter contre le phénomène de couplage instable des modes de vibrations de la structure porteuse et ceux du rotor d'un aéronef, par des moyens simples, peu onéreux, et pouvant être facilement implémentés sur un appareil existant. Le principe est d'apporter de l'amortissement au(x) mode(s) de vibration de la structure porteuse étant en cause dans le couplage instable.The present invention therefore aims to combat the phenomenon of unstable coupling of the vibration modes of the carrier structure and those of the rotor of an aircraft, by simple means, inexpensive, and can be easily implemented on an existing device. The principle is to bring damping to the mode (s) of vibration of the carrier structure being involved in the unstable coupling.
Le but de la présente invention est de proposer un mécanisme amortisseur de vibrations pour appareils volants muni d'au moins une tête de rotor, avion à hélice ou giravion notamment, qui permette d'optimiser l'atténuation des vibrations induites par le mouvement de du rotor en rotation et auxquelles est soumise la cellule de la structure porteuse de l'appareil. Il est plus particulièrement recherché par la présente invention de proposer un tel mécanisme qui satisfasse aux conditions requises d'efficacité, de simplicité de structure, de masse et d'encombrement réduits permettant son implantation aisée, voire optionnelle, sur l'appareil volant, et qui procure un compromis satisfaisant au regard des contraintes et des difficultés qui ont été énoncées.The object of the present invention is to propose a vibration damping mechanism for flying apparatus provided with at least one rotor head, propeller plane or rotorcraft in particular, which makes it possible to optimize the attenuation of the vibrations induced by the movement of the aircraft. rotor in rotation and to which the cell of the carrying structure of the apparatus is subjected. It is more particularly sought by the present invention to provide such a mechanism which satisfies the required requirements of efficiency, simplicity of structure, mass and compactness allowing its easy implementation, even optional, on the flying apparatus, and which provides a satisfactory compromise in view of the constraints and difficulties that have been stated.
La démarche de la présente invention a consisté à munir la structure porteuse de l'appareil d'un mécanisme d'absorption des vibrations transmises par la tête de rotor en mouvement, qui prend en compte les caractéristiques du couplage rotor-structure, c'est-à-dire non seulement celles des pales, mais aussi celles de la structure porteuse, notamment les caractéristiques relatives aux fréquences et aux masses de ses modes propres. Pour procurer à ce mécanisme une efficacité optimisée tout en répondant aux critères du compromis recherché, il est choisi une zone d'implantation du mécanisme dans la transmission du mouvement de la tête rotor vers la structure, qui est donc située proche du centre de la tête rotor ou sur des éléments liés rigidement à la tête rotor, sans pour autant encombrer outre mesure l'environnement de cette zone et/ou générer une gêne, ni sans conférer à la structure du mécanisme une complexité susceptible de porter atteinte à son encombrement général et/ou à sa légèreté et/ou à son obtention à moindres coûts. Cette zone d'implantation du mécanisme est plus particulièrement choisie comme étant une structure de montage que comporte couramment l'appareil volant, pour l'assemblage à la cellule de la structure porteuse de moyens de transmission de la puissance interposés dans la chaîne de transmission de puissance qui s'étend entre les moyens moteurs et le rotor entraînés en rotation par ces moyens moteurs. De tels moyens de transmission sont sujets à subir les vibrations en provenance du rotor, et sont organisés pour être assemblés à la cellule. Une telle structure de montage comprend notamment une boîte de transmission principale de puissance produite par les moyens moteurs pour l'entraînement du rotor, qui présente l'avantage d'être située à proximité de la tête du rotor et d'être liée de façon quasiment rigide au mât du rotor. Le mécanisme d'absorption des vibrations est avantageusement regroupé en un organe indépendant muni de moyens de fixation propre sur ladite structure de montage.The approach of the present invention has been to provide the carrier structure of the apparatus with a vibration absorption mechanism transmitted by the moving rotor head, which takes into account the characteristics of the rotor-structure coupling, it is that is to say not only those of the blades, but also those of the supporting structure, in particular the characteristics relating to the frequencies and the masses of its own modes. To provide this mechanism optimized efficiency while meeting the criteria of the desired compromise, it is chosen a region of implantation of the mechanism in the transmission of the movement of the rotor head to the structure, which is therefore located near the center of the head rotor or elements rigidly connected to the rotor head, without unduly encumbering the environment of this area and / or generate discomfort, or without giving the structure of the mechanism complexity likely to affect its overall size and / or its lightness and / or its obtaining at lower costs. This zone of implantation of the mechanism is more particularly chosen as being a mounting structure commonly included in the flying apparatus, for assembly to the cell of the carrier structure of power transmission means interposed in the chain. transmission power that extends between the motor means and the rotor rotated by these motor means. Such transmission means are subject to vibration from the rotor, and are organized to be assembled to the cell. Such a mounting structure comprises in particular a main power transmission gearbox produced by the drive means for driving the rotor, which has the advantage of being located close to the rotor head and of being connected in an almost rigid at the mast of the rotor. The vibration absorption mechanism is advantageously grouped into an independent member provided with own fixing means on said mounting structure.
Dès lors, l'invention concerne une structure porteuse d'un rotor d'un appareil volant pourvue d'une cellule et d'une structure de montage apte à être en prise sur le rotor, la structure de montage comprenant des moyens de transmission entraînés par des moyens moteurs de la structure porteuse.Therefore, the invention relates to a structure carrying a rotor of a flying apparatus provided with a cell and a mounting structure adapted to be engaged on the rotor, the mounting structure comprising driven transmission means. by motor means of the supporting structure.
Une telle structure porteuse est principalement reconnaissable en ce que ladite structure de montage étant équipée d'un mécanisme d'amortissement des vibrations pour empêcher le couplage des modes de vibration de la structure porteuse et des modes de vibration d'un rotor qui serait fixé à la structure porteuse, le mécanisme associe notamment un résonateur comprenant un élément pesant monté mobile sur la structure de montage, avec des moyens d'amortissement de la mobilité de l'élément pesant qui sont interposés entre ledit élément pesant et ladite structure de montage, l'élément pesant étant un élément pesant battant porté par la structure de montage par l'intermédiaire d'un premier organe déformable de retenue de sa mobilité.Such a carrier structure is mainly recognizable in that said mounting structure is equipped with a vibration damping mechanism to prevent the coupling of the vibration modes of the carrier structure and the vibration modes of a rotor which would be fixed to the carrier structure, the mechanism associates in particular a resonator comprising a weighing element mounted movably on the mounting structure, with means for damping the mobility of the heavy element which are interposed between said heavy element and said mounting structure, heavy element being a heavy weight element carried by the mounting structure via a first deformable member retaining its mobility.
Le résonateur équipé des moyens d'amortissement est donc fixé au plus près du rotor pour optimiser son efficacité sur les vibrations induites par le rotor, et en tenant compte des modes de vibration de la structure porteuse sollicitée par une excitation forcée pour empêcher le couplage entre les modes de vibration de la structure porteuse et les modes de vibration du rotor. Le montage du mécanisme sur la structure de montage est aisé et est susceptible d'être optionnel, le mécanisme pouvant être réglé et/ou installé en fonction de résultats constatés d'instabilité de l'appareil en vol, sans modification structurelle conséquence de ladite structure de montage.The resonator equipped with the damping means is therefore fixed closer to the rotor to optimize its efficiency on the vibrations induced by the rotor, and taking into account the modes of vibration of the carrier structure solicited by a forced excitation to prevent the coupling between the vibration modes of the carrier structure and the vibration modes of the rotor. The assembly of the mechanism on the mounting structure is easy and may be optional, the mechanism being adjustable and / or installed according to the results of instability of the aircraft in flight, without structural modification consequence of said structure mounting.
Le mécanisme a alors pour effet d'amortir les vibrations sur une plage de fréquence large, sans création d'antirésonance contrairement à un résonateur classique.The mechanism then has the effect of damping the vibrations over a wide frequency range, without creating antiresonance unlike a conventional resonator.
L'amortissement apporté permet de modifier les modes de vibration de la structure porteuse équipée du mécanisme, et empêche donc la création d'un couplage destructeur entre les modes de vibrations du rotor et de la structure porteuse de ce rotor.The damping provided makes it possible to modify the vibration modes of the support structure equipped with the mechanism, and thus prevents the creation of a destructive coupling between the vibration modes of the rotor and the bearing structure of this rotor.
Par ailleurs, selon une variante, la structure de montage incluant une boîte de transmission principale de puissance apte à être en prise avec un mât rotor d'un rotor, le mécanisme d'amortissement proposé est de préférence monté sur une telle boîte de transmission principale de puissance, couramment interposée entre les moyens moteurs et le rotor. Cette boîte de transmission principale de puissance est aussi susceptible d'être une boîte de transmission secondaire affectée à l'entraînement en rotation d'une quelconque tête de rotor, telle qu'une tête de rotor de queue.Furthermore, according to a variant, the mounting structure including a main power transmission gearbox adapted to be engaged with a rotor mast of a rotor, the proposed damping mechanism is preferably mounted on such a main transmission gearbox. power, commonly interposed between the motor means and the rotor. This main power transmission gearbox is also likely to be a secondary gearbox assigned to drive in rotation of any rotor head, such as a tail rotor head.
La boîte de transmission principale de puissance ayant un fond de boîte relié à la cellule de la structure porteuse, le mécanisme d'amortissement peut être agencé sur ce fond de boîte, si les éléments entre le fond de boîte et la tête rotor sont suffisamment rigides et que cet emplacement est suffisamment sensible aux mouvements de la tête du rotor.The main power transmission having a box bottom connected to the cell of the supporting structure, the damping mechanism can be arranged on the bottom of the box, if the elements between the bottom of the box and the rotor head are sufficiently rigid and that this location is sufficiently sensitive to the movements of the rotor head.
Selon une autre variante, la structure de montage incluant une boîte de transmission principale de puissance apte à être en prise avec un mât rotor d'un rotor, la structure de montage ayant au moins une barre de suspension reliant une partie supérieure de la boîte de transmission principale de puissance à la cellule, le mécanisme d'amortissement est monté sur la barre de suspension.According to another variant, the mounting structure including a main power transmission gearbox adapted to be engaged with a rotor mast of a rotor, the mounting structure having at least one suspension bar connecting an upper part of the transmission box. main transmission of power to the cell, the damping mechanism is mounted on the suspension bar.
Selon un exemple de réalisation du résonateur que comprend le mécanisme, la mobilité de l'élément pesant est une mobilité unidirectionnelle dans un plan orthogonal et/ou un plan parallèle à l'axe de rotation du rotor. La cellule étant liée à un repère tridimensionnel de référence comportant un axe longitudinal, un axe transversal et un axe vertical, le plan orthogonal est un plan parallèle au plan passant l'axe longitudinal et l'axe transversal de cette cellule.According to an exemplary embodiment of the resonator that includes the mechanism, the mobility of the heavy element is a unidirectional mobility in an orthogonal plane and / or a plane parallel to the axis of rotation of the rotor. Since the cell is linked to a three-dimensional reference reference frame comprising a longitudinal axis, a transverse axis and a vertical axis, the orthogonal plane is a plane parallel to the plane passing the longitudinal axis and the transverse axis of this cell.
Par exemple et selon une forme simplifiée mais néanmoins satisfaisante de réalisation, la mobilité de l'élément pesant est autorisée au moins dans un plan orthogonal à l'axe de rotation du rotor et/ou en tangage autour d'un axe de ce plan.For example and in a simplified but nevertheless satisfactory embodiment, the mobility of the heavy element is allowed at least in a plane orthogonal to the axis of rotation of the rotor and / or pitch around an axis of this plane.
Selon une forme de réalisation, le premier organe déformable est par exemple constitué de l'un quelconque des organes comprenant au moins une lame flexible, au moins un tube de torsion ou au moins un ressort à spires, ou tout autre organe analogue procurant la mobilité de l'élément pesant.According to one embodiment, the first deformable member consists for example of any one of the members comprising at least one flexible blade, at least one torsion tube or at least one coil spring, or any other similar member providing mobility of the heavy element.
Les moyens d'amortissement sont indifféremment du type électromagnétique, du type hydraulique, ou du type à déformation mécanique ou élastique tel que par exemple constitués d'au moins un deuxième organe élastiquement déformable formé à partir d'un élastomère à angle de perte important. Tous les autres types de moyens aptes à amortir le mouvement de l'élément pesant induit par les vibrations supportées par la structure de montage des moyens de transmission sont susceptibles d'être exploités.The damping means are indifferently of the electromagnetic type, of the hydraulic type, or of the type with mechanical or elastic deformation such as for example consisting of at least one second elastically deformable member formed from a high loss angle elastomer. All other types of means capable of damping the movement of the heavy element induced by the vibrations supported by the mounting structure of the transmission means are capable of being exploited.
Le premier organe déformable est un moyen pour s'opposer aux vibrations sur une première plage de fréquences étroite induites par une excitation forcée à laquelle est soumis le rotor, avec des moyens d'amortissement qui sont des moyens pour s'opposer aux vibrations à l'origine d'une instabilité sur une deuxième plage de fréquences plus large que ladite première plage.The first deformable member is a means for opposing the vibrations on a first narrow frequency range induced by a forced excitation to which the rotor is subjected, with damping means which are means for opposing the vibrations to the rotor. origin of instability over a second frequency range wider than said first range.
Ces fonctions remplies par le premier organe déformable et par les moyens d'amortissement ont pour résultat d'empêcher l'apparition d'un couplage destructeur entre la fréquence propre d'un mode propre de vibration d'une structure porteuse et la fréquence propre d'un mode propre de vibration d'un rotor d'aéronef.These functions performed by the first deformable member and the damping means have the result of preventing the occurrence of a destructive coupling between the natural frequency of a natural mode of vibration of a carrier structure and the natural frequency of a clean mode of vibration of an aircraft rotor.
Dans ce dernier cas, il s'agit par exemple d'augmenter la vitesse critique de flottement (« flutter » en langue anglaise) de sorte que l'aéronef ne soit pas sollicité par ce phénomène dans l'ensemble de son domaine de vol. Dès lors, les coefficients d'amortissement des modes de vibration doivent être augmentés positivement. Par suite, l'augmentation de la valeur de la vitesse critique conduit à une augmentation de la plage des fréquences, des vibrations, justifiant la nécessité d'une bande de fréquences plus large pour le fonctionnement du résonateur avec moyen d'amortissement.In the latter case, it is for example to increase the critical flutter speed ("flutter" in English) so that the aircraft is not solicited by this phenomenon in its entire flight envelope. Therefore, the damping coefficients of the vibration modes must be positively increased. As a result, the increase in the value of the critical speed leads to an increase in the frequency range, vibrations, justifying the need for a wider frequency band for the operation of the resonator with damping means.
L'invention concerne encore et non exclusivement une application pour contrer le phénomène dénommé « whirl flutter » en langue anglaise par l'homme du métier.The invention also relates and not exclusively to an application to counter the phenomenon called "whirl flutter" in English by the skilled person.
Selon un autre aspect, ledit élément pesant ayant une masse donnée, ledit mode de vibration de la structure porteuse étant associée à une fréquence propre donnée, la raideur dudit mécanisme est égale à :
On note que la raideur dudit mécanisme est étonnamment fonction de la fréquence propre donnée du mode de vibration de la structure porteuse à traiter et non pas d'une fréquence propre de ce mécanisme.It is noted that the stiffness of said mechanism is surprisingly a function of the given natural frequency of the vibration mode of the carrier structure to be treated and not of a natural frequency of this mechanism.
Par ailleurs, l'invention a aussi pour objet un appareil volant muni d'un rotor et d'une structure porteuse comportant une cellule et une structure de montage du rotor à la cellule. L'appareil est notamment remarquable en ce que la structure de montage est une structure porteuse selon l'invention telle que décrite précédemment pour empêcher le couplage des modes de vibration de la structure porteuse et des modes de vibration du rotor.Furthermore, the invention also relates to a flying apparatus provided with a rotor and a supporting structure comprising a cell and a structure for mounting the rotor to the cell. The apparatus is particularly notable in that the mounting structure is a carrier structure according to the invention as previously described to prevent the coupling of the vibration modes of the carrier structure and vibration modes of the rotor.
Enfin, l'invention vise un procédé pour empêcher le couplage des modes de vibration d'une structure porteuse d'un appareil volant et des modes de vibration d'un rotor, ladite structure porteuse portant ledit rotor d'un appareil volant pourvue d'une cellule et d'une structure de montage apte à être en prise sur ledit rotor, ladite structure de montage comprenant des moyens de transmission entraînés par des moyens moteurs de la structure porteuse.Finally, the invention relates to a method for preventing the coupling of the vibration modes of a carrier structure of a flying apparatus and the modes of vibration of a rotor, said bearing structure carrying said rotor of a flying apparatus provided with a cell and a mounting structure adapted to be engaged on said rotor, said mounting structure comprising transmission means driven by motor means of the carrier structure.
Selon ce procédé, on équipe ladite structure de montage d'un mécanisme d'amortissement des vibrations pour empêcher ledit couplage, ledit mécanisme associant un résonateur comprenant un élément pesant monté mobile sur la structure de montage avec des moyens d'amortissement de la mobilité de l'élément pesant qui sont interposés entre ledit élément pesant et ladite structure de montage, l'élément pesant du résonateur étant un élément pesant battant porté par la structure de montage par l'intermédiaire d'un premier organe déformable de retenue de sa mobilité.According to this method, said mounting structure is equipped with a vibration damping mechanism to prevent said coupling, said mechanism associating a resonator comprising a weighing element mounted to move on the mounting structure with means for damping the mobility of the the heavy element which are interposed between said heavy element and said mounting structure, the heavy element of the resonator being a heavy weight element carried by the mounting structure via a first deformable member retaining its mobility.
Par ailleurs, il est concevable de déterminer la masse mr finale du mécanisme d'amortissement, le coefficient d'amortissement cr final dudit mécanisme d'amortissement et la raideur Kr finale du mécanisme d'amortissement à l'aide de la masse ms donnée de la structure porteuse et de la fréquence propre ω s donnée du mode de vibration à traiter de la structure en recherchant les valeurs propres du système suivant pour une pluralité de valeurs du coefficient d'amortissement cr dudit mécanisme d'amortissement et de la masse mr de ce mécanisme d'amortissement afin d'obtenir un amortissement maximal des modes de vibration de la structure porteuse couplée au mécanisme d'amortissement :
avec « qi » qui représente le mouvement de la structure porteuse déterminé par des méthodes usuelles, « q̇i » qui représente la dérivée première par rapport au temps du mouvement de la structure porteuse, « q̈i » qui représente la dérivée seconde par rapport au temps du mouvement de la structure porteuse, « x » qui représente du mouvement de l'élément pesant déterminée par des méthodes usuelles, « ẋ » qui représente la dérivée première par rapport au temps du mouvement de l'élément pesant, « ẍ » qui représente la dérivée seconde par rapport au temps du mouvement de l'élément pesant, la raideur « Kr » dudit mécanisme d'amortissement étant égale au produit de la masse « mr » dudit mécanisme d'amortissement et de la fréquence propre « ω s » donnée du mode de vibration à traiter à la puissance deux,Furthermore, it is conceivable to determine the final mass m r of the damping mechanism, the damping coefficient c r end of said damper and K r final stiffness of the damping mechanism using the weight mechanism m s given the carrier structure and the natural frequency ω s given the mode of vibration to be treated of the structure by looking for the eigenvalues of the following system for a plurality of values of the damping coefficient c r of said damping mechanism and the mass m r of this damping mechanism in order to obtain a maximum damping of the vibration modes of the carrier structure coupled to the damping mechanism:
with " q i " which represents the movement of the carrier structure determined by usual methods, " q̇ i " which represents the first derivative with respect to the time of the motion of the carrier structure, " q̈ i " which represents the derivative second relative to at the time of the movement of the supporting structure, " x " which represents the movement of the heavy element determined by usual methods, " ẋ " which represents the first derivative with respect to the time of the movement of the heavy element, " ẍ " which represents the second derivative with respect to the time of movement of the heavy element, the stiffness " K r " of said damping mechanism being equal to the product of the mass " m r " of said damping mechanism and the natural frequency " ω s »vibration mode data to be processed at power two,
En sélectionnant le couple coefficient d'amortissement cr final dudit mécanisme d'amortissement et masse mr finale de ce mécanisme d'amortissement, on obtient un amortissement maximal des modes de vibration de la structure porteuse couplée au mécanisme d'amortissement. On déduit la raideur finale à partir de la masse finale par l'équation suivante : Kr = ω s 2*mr .Selecting the pair of damping coefficient c r of said final damping mechanism and final mass m r of the damping mechanism, we obtain a maximum damping of the vibration modes of the support structure coupled to the damping mechanism. We deduce the final stiffness from the final mass by the following equation: K r = ω s 2 * m r .
On note que l'on qualifie de « finale », les paramètres que l'on applique pour réaliser ledit mécanisme d'amortissement.It is noted that the parameters that are applied to realize said damping mechanism are termed "final".
Selon une réalisation, on fait un balayage simultané d'une pluralité de valeurs du coefficient d'amortissement cr dudit mécanisme et de la masse mr. On obtient alors un graphique tridimensionnel présentant le coefficient d'amortissement cr dudit mécanisme et la masse mr de ce mécanisme ainsi que le coefficient d'amortissement du mode de vibration de la structure déterminé à l'aide dudit système. Le couple coefficient d'amortissement cr final et masse mr finale dudit mécanisme d'amortissement correspond au couple générant un coefficient d'amortissement du mode de vibration de la structure maximal.According to one embodiment, a plurality of values of the damping coefficient c r of said mechanism and of the mass m r are simultaneously scanned . This gives a three-dimensional graph showing the damping coefficient c r of said mechanism and the mass m r of this mechanism as well as the damping coefficient of the vibration mode of the structure determined using said system. The pair of damping coefficient c r final and final mass m r said damping mechanism corresponds to the torque generating a damping coefficient of the vibration mode of the maximum structure.
Selon une deuxième réalisation, on peut fixer le coefficient d'amortissement cr à une valeur donnée, puis on recherche les valeurs propres du système précédent pour une pluralité de valeurs de la masse mr du mécanisme d'amortissement. Dès lors, on réalise un premier graphique présentant en abscisse le quotient de cette masse mr dudit mécanisme d'amortissement et de la masse ms donnée de ladite structure porteuse et en ordonnée le coefficient d'amortissement du mode de vibration de la structure obtenu via lesdites valeurs propres.According to a second embodiment, it is possible to set the damping coefficient c r to a given value, and then the eigenvalues of the preceding system are sought for a plurality of values of the mass m r of the damping mechanism. Therefore, a first graph is produced showing, on the abscissa, the quotient of this mass m r of the said damping mechanism and the mass m s given of the said support structure, and the ordinate the damping coefficient of the vibration mode of the structure obtained. via said eigenvalues.
La courbe obtenue présente un maximum représentant un optimal en termes d'apport d'amortissement.The curve obtained has a maximum representing an optimum in terms of damping contribution.
Par suite, on détermine la masse mr finale dudit mécanisme d'amortissement pour laquelle le quotient de cette masse mr dudit mécanisme d'amortissement et de la masse ms donnée de ladite structure porteuse engendre un amortissement maximal de la structure porteuse.As a result, determining the mass m of said final r damping mechanism for which the quotient of that mass m r said damping mechanism and the mass m s given to said bearing structure generates a maximum damping of the support structure.
On détermine alors la raideur Kr finale dudit mécanisme d'amortissement, cette raideur Kr finale étant égale au produit la masse mr finale et de la fréquence propre ω s donnée du mode de vibration à traiter à la puissance deux.The final stiffness K r of said damping mechanism is then determined, this final stiffness K r being equal to the product of the final mass m r and the natural frequency ω s given of the vibration mode to be processed at the power of two.
Enfin, on recherche les valeurs propres du système précédent pour une pluralité de valeurs du coefficient d'amortissement cr dudit mécanisme d'amortissement et en utilisant la masse mr finale et la raideur finale précédemment déterminés. Dès lors, on réalise un deuxième graphique présentant en abscisse le coefficient d'amortissement cr dudit mécanisme d'amortissement et en ordonnée le coefficient d'amortissement du mode de vibration de la structure obtenu via lesdites valeurs propres.Finally, a search is the eigenvalues of the previous system to a plurality of values of the damping coefficient c r of said damping mechanism, and using the final mass m r and the final stiffness previously determined. Consequently, a second graph showing the damping coefficient c r of said damping mechanism is plotted on the abscissa and the damping coefficient of the vibration mode of the structure obtained via said eigenvalues is plotted on the ordinate.
La courbe obtenue présente un maximum représentant un optimal en termes d'apport d'amortissement.The curve obtained has a maximum representing an optimum in terms of damping contribution.
Le coefficient d'amortissement final est alors égal au coefficient d'amortissement du mécanisme d'amortissement engendrant ledit maximum.The final damping coefficient is then equal to the damping coefficient of the damping mechanism generating said maximum.
Selon une troisième réalisation, on peut fixer la masse mr et la raideur Kr du mécanisme d'amortissement à des valeurs données, puis on recherche les valeurs propres du système précédent pour une pluralité de valeurs du coefficient d'amortissement cr. Dès lors, on réalise un premier graphique présentant en abscisse le coefficient d'amortissement cr dudit mécanisme et en ordonnée le coefficient d'amortissement du mode de vibration de la structure obtenu via lesdites valeurs propres.According to a third embodiment, it is possible to fix the mass m r and the stiffness K r of the damping mechanism at given values, and then the eigenvalues of the preceding system are sought for a given value. plurality of values of the damping coefficient c r . Therefore, we make a first graph showing the abscissa damping coefficient c r said mechanism and the ordinate the damping coefficient of the vibration mode of the structure obtained via said eigenvalues.
La courbe obtenue présente un maximum représentant un optimal en termes d'apport d'amortissement.The curve obtained has a maximum representing an optimum in terms of damping contribution.
Le coefficient d'amortissement final est alors égal au coefficient d'amortissement du mécanisme d'amortissement engendrant ledit maximum.The final damping coefficient is then equal to the damping coefficient of the damping mechanism generating said maximum.
Enfin, on recherche les valeurs propres du système précédent en utilisant la valeur du coefficient d'amortissement cr finale dudit mécanisme d'amortissement et en utilisant une pluralité de valeurs de la masse mr. Dès lors, on réalise un deuxième graphique présentant en abscisse le quotient de cette masse mr dudit mécanisme d'amortissement et de la masse ms donnée de ladite structure porteuse et en ordonnée le coefficient d'amortissement du mode de vibration de la structure obtenu via lesdites valeurs propres.Finally, the eigenvalues of the preceding system are sought by using the value of the final damping coefficient c r of said damping mechanism and by using a plurality of values of the mass m r . Therefore, a second graph is produced which has the abscissa of the quotient of this mass m r of the said damping mechanism and the mass m s given of the said support structure and the ordinate the damping coefficient of the vibration mode of the structure obtained. via said eigenvalues.
La courbe obtenue présente un maximum représentant un optimal en termes d'apport d'amortissement.The curve obtained has a maximum representing an optimum in terms of damping contribution.
Par suite, on détermine la masse mr finale dudit mécanisme d'amortissement pour laquelle le quotient de cette masse mr dudit mécanisme d'amortissement et de la masse ms donnée de ladite structure porteuse engendre un amortissement maximal de la structure porteuse.As a result, determining the mass m of said final r damping mechanism for which the quotient of that mass m r said damping mechanism and the mass m s given to said bearing structure generates a maximum damping of the support structure.
On détermine alors la raideur Kr finale dudit mécanisme d'amortissement, cette raideur Kr finale étant égale au produit la masse mr finale et de la fréquence propre ω s donnée du mode de vibration à traiter à la puissance deuxThe final stiffness K r of said damping mechanism is then determined, this stiffness K r being equal to the product mass m r final and the natural frequency ω s given the vibration mode to be processed at power two
Un exemple de réalisation de la présente invention va être décrit en relation avec la figure unique de la planche annexée, qui représente schématiquement un appareil volant muni d'une structure porteuse intégrant un mécanisme d'absorption de vibrations amortissant selon la présente invention.An exemplary embodiment of the present invention will be described with reference to the single figure of the attached plate, which schematically shows a flying apparatus provided with a bearing structure incorporating a damping vibration absorbing mechanism according to the present invention.
Sur la figure, un appareil volant 30 comprend essentiellement une structure porteuse 40 et un rotor 20.In the figure, a flying
Sur l'exemple de réalisation illustré qui représente un giravion, cette structure porteuse 40 est notamment constituée d'une cellule 1 appelée aussi « fuselage » sur laquelle sont embarqués des équipements de l'appareil volant, l'équipage et le cas échéant du personnel. La cellule comprend des moyens moteurs 2 pour l'entraînement en rotation du rotor 20.In the exemplary embodiment illustrated, which represents a rotorcraft, this
Ce rotor 20 comprend un mât rotor 3 en prise sur une tête de rotor 4. Cette tête de rotor 4 comprend notamment un moyeu 5 qui est porteur de pales 6 et qui est relié au mât rotor 3 pour son entraînement en rotation.This
Par ailleurs, la structure porteuse 40 comprend une structure de montage 8 agencée au sommet de la cellule 1 pour porter le rotor 20. Cette structure de montage comporte des moyens de transmission 7 interposés dés lors dans la chaîne de transmission de puissance entre les moyens moteurs 2 et la tête de rotor 4, et plus particulièrement entre les moyens moteurs 2 et le mât rotor 3.Furthermore, the
De tels moyens de transmission 7 sont constitués d'une boîte de transmission principale de puissance 50 qui équipe couramment les giravions et qui est en relation avec le mât rotor 3 d'entraînement d'une tête de rotor 4, la boîte de transmission principale de puissance 50 étant disposée au sommet de la cellule 1 de l'appareil volant en station d'assise au sol.Such transmission means 7 consist of a main
La boîte principale de transmission 50 est donc implantée au sein de la structure de montage 8, dénommée parfois pylône, qui est placé en surplomb de la cellule 1.The
De manière habituelle dans le domaine, la structure de montage 8 est équipée de divers éléments de fixation 9', 9" favorisant sa stabilité à l'encontre notamment des efforts et des vibrations en provenance du rotor 20 auxquels il est soumis.In the usual way in the field, the mounting
Par exemple, la structure de montage peut comporter des barres de suspension 9' reliant une partie supérieure 50" de la boîte de transmission principale de puissance à la cellule 1. De plus, le fond de boîte 50' est fixé à la cellule 1 par un élément de fixation 9", du type dénommé parfois « barbecue » par l'homme du métier ou encore du type dénommé parfois « sarib » par l'homme du métier.For example, the mounting structure may comprise suspension bars 9 'connecting an
L'appareil volant 30 intègre un mécanisme 10 d'absorption des vibrations induites notamment par la tête de rotor 4 en mouvement. L'implantation de ce mécanisme 10 est réalisée par l'intermédiaire de la structure de montage 8 des moyens de transmission 7 sur l'appareil, et notamment par l'intermédiaire de la boîte de transmission principale de puissance 50. Plus particulièrement, le mécanisme 10 est agencé sur la paroi latérale du fond de boîte 50' de la boîte de transmission principale de puissance 50. Le mécanisme 10 n'est donc pas disposé entre le fond de boîte 50' et la cellule. De même selon cette variante, le mécanisme 10 n'est pas lié aux barres de suspension mais est uniquement fixé à la boîte de transmission principale de puissance.The flying
Ce mécanisme 10 associe un résonateur 11 et des moyens d'amortissement 12 affectés à ce résonateur 11 pour prendre en compte les caractéristiques de la structure porteuse 40, et notamment sa fréquence d'excitation propre au regard de l'absorption des vibrations induites par la mise en mouvement de la tête de rotor 4 lors du déplacement de l'appareil.This
Le résonateur 11 comprend un élément pesant mobile 13, telle qu'un élément pesant battant, qui est fixé sur la structure de montage 8 par l'intermédiaire d'un premier organe déformable 14. Un tel montage de l'élément pesant 13 lui confère une mobilité apte à s'opposer aux vibrations subies par les moyens de transmission 7, et plus particulièrement par ladite structure de montage 8, et induites notamment par la mise en mouvement de la tête de rotor 4.The
Le premier organe déformable 14 est un organe apte à filtrer les vibrations induites par la tête de rotor 4 en mouvement, sur une première plage de fréquences étroite. L'élément pesant 13 est par exemple monté mobile sur la structure de montage 8 en flexion, tel que par l'intermédiaire d'une lame ou organe flexible analogue constituant le premier organe déformable 14. La mobilité de l'élément pesant 13 est autorisé dans un plan XY orthogonal à l'axe A de rotation du rotor 3, voire en tangage autour de l'axe Y de ce plan qui est transversal à l'orientation générale d'extension du fuselage.The first
Les moyens d'amortissement 12 sont interposés entre l'élément pesant 13 et la structure de montage 8, sur lesquelles ils sont en prise. Sur l'exemple de réalisation illustré, les moyens d'amortissement 12 sont des moyens déformables du type hydraulique. Les moyens d'amortissement 12 sont aptes à accompagner le déplacement en mobilité de l'élément pesant 13 en fonction des vibrations transmises à la structure de montage 8 par le rotor 20, selon une deuxième plage de fréquences plus large que la première plage de fréquences relative à l'opposition à ces vibrations que procure le premier organe déformable 14. Un couplage instable entre la structure de montage 8 et le fuselage 1 est alors étonnamment évité, à partir d'un élargissement de la bande de fréquences sur la base de laquelle le mécanisme 10 est apte à filtrer les vibrations en provenance de la tête de rotor 4.The damping means 12 are interposed between the weighing
Bien entendu, les moyens d'amortissement peuvent être de type électromagnétique ou encore et non exclusivement de type élastique avec utilisation d'un élastomère à angle de perte importante. De cette façon, le résonateur est fixé au plus près du rotor, sur un des éléments de la structure de montage de manière à limiter la participation des modes supérieurs de vibration de la structure porteuse et à avoir le maximum d'efficacité sur les modes responsables du couplage instable. La limitation du déplacement du centre du rotor est une condition pour éviter le couplage entre le rotor et la structure.Of course, the damping means may be of the electromagnetic type or else and not exclusively of elastic type with use of a large loss angle elastomer. In this way, the resonator is fixed closer to the rotor, on one of the elements of the mounting structure so as to limit the participation of the higher modes of vibration of the carrier structure and to have the maximum efficiency on the responsible modes unstable coupling. The limitation of the rotor center displacement is a condition to avoid the coupling between the rotor and the structure.
Enfin, il est à noter que selon une variante alternative à la variante schématisée, le mécanisme 10 peut être agencé sur une barre de suspension 9' par exemple.Finally, it should be noted that according to an alternative variant to the schematized variant, the
Claims (11)
- Carrier structure (40) for a rotor (20) of a flying machine (30), the carrier structure being provided with an airframe (1) and a mounting structure (8) suitable for engaging on said rotor (20), said mounting structure (8) comprising transmission means driven by engine means (2) of the carrier structure (40),
characterised in that said mounting structure (8) is fitted with an anti-coupling vibration-damping mechanism (10) for preventing the coupling of the vibration modes of the carrier structure (40) and of the vibration modes of a rotor (20) which would be fastened to said carrier structure (40), and said mechanism (10) associates a resonator (11) comprising a weight element (13) movably mounted on the mounting structure (8) with damping means (12) for damping the movement of the weight element (13) which are interposed between said weight element (13) and said mounting structure (8), the weight element (13) of the resonator (11) being a flapping weight element carried by the mounting structure (8) via a first deformable member (14) for restraining its mobility. - Carrier structure according to claim 1,
characterised in that the mounting structure (8) includes a main gearbox (50) suitable for engaging with a rotor mast (3) for a rotor (20), and the damping mechanism (10) is mounted on said main gearbox (50). - Carrier structure according to claim 2,
characterised in that said main gearbox (50) has a casing bottom (50') connected to said airframe (1), and said damping mechanism (10) is arranged on said casing bottom (50'). - Carrier structure according to claim 1,
characterised in that the mounting structure (8) includes a main gearbox (50) suitable for engaging with a rotor mast (3) for a rotor (20), said mounting structure having at least one suspension bar (9') connecting a top portion (50") of said main gearbox (50) to said airframe (1), and said damping mechanism (10) is mounted on said suspension bar (9'). - Carrier structure according to any one of claims 1 to 4,
characterised in that the first deformable member (14) is constituted by any one of the members comprising at least one flexible blade, at least one torsion tube, or at least one coil spring. - Carrier structure according to any one of claims 1 to 5,
characterised in that the damping means (12) are equally well of the electromagnetic type, the hydraulic type, or the elastic deformation type. - Carrier structure according to any one of claims 1 to 6,
characterised in that the first deformable member (14) is a means for opposing vibrations in a narrow, first frequency range which are induced by forced excitation to which the rotor (20) is subjected, and in that the damping means (12) are means for opposing vibrations giving rise to instability over a second frequency range that is broader than said first range. - Carrier structure according to any one of claims 1 to 7,
characterised in that said weight element has a given mass, said vibration mode of the carrier structure is associated with a given natural frequency, and the stiffness of said mechanism is equal to:
where mr represents the mass of the weight element, where ω s represents the given natural frequency of the vibration mode of the carrier structure to be treated, and where Kr represents the stiffness of said mechanism. - Flying machine (30) provided with a rotor (20) and with a carrier structure (40) comprising an airframe (1) and a mounting structure (8) for mounting the rotor (20) to said airframe (1),
characterised in that said mounting structure (8) is according to any one of the preceding claims for preventing the coupling of the vibration modes of said carrier structure (40) and of the vibration modes of said rotor (20). - Method for preventing the coupling of the vibration modes of a carrier structure (40) of a flying machine and of the vibration modes of a rotor (20), said carrier structure (40) carrying said rotor (20) of a flying machine (30), the carrier structure being provided with an airframe (1) and a mounting structure (8) suitable for engaging on said rotor (20), said mounting structure (8) comprising transmission means driven by engine means (2) of the carrier structure (40),
characterised in that said mounting structure (8) is fitted with a vibration-damping mechanism (10) for preventing said coupling, said mechanism (10) associating a resonator (11) comprising a weight element (13) movably mounted on the mounting structure (8) with damping means (12) for damping the mobility of the weight element (13) which are interposed between said weight element (13) and said mounting structure (8), the weight element (13) of the resonator (11) being a flapping weight element carried by the mounting structure (8) via a first deformable member (14) for restraining its mobility. - Method according to claim 10,
characterised in that the final mass (mr ) of said damping mechanism, the final damping coefficient (cr ) of said damping mechanism, and the final stiffness (Kr ) of said damping mechanism are determined with the help of the given mass (ms ) of said carrier structure and the given natural frequency (ω s ) of the vibration mode to be treated of the structure:- by searching for the eigenvalues of the following system for a plurality of values for the damping coefficient (cr ) of said damping mechanism and for the mass (mr ) of the damping mechanism:in which qi represents the movement of the carrier structure, q̇i represents the first derivative with respect to time of the movement of the carrier structure, q̈i represents the second derivative with respect to time of the movement of the carrier structure, x represents the movement of the weight element, ẋ represents the first derivative with respect to time of the movement of the weight element, ẍ represents the second derivative with respect to time of the movement of the weight element, and the stiffness (Kr ) of said mechanism being equal to the product of the mass (mr ) of said mechanism and the given natural frequency (ω s ) of the vibration mode to be treated to the power two; and
where- by selecting the pair comprising the damping coefficient (cr ) of said damping mechanism and the mass (mr ) of said damping mechanism that makes it possible to obtain maximum damping of the vibration modes of the carrier structure coupled to the damping mechanism (10).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0906120A FR2954273B1 (en) | 2009-12-17 | 2009-12-17 | ROTOR CARRIER STRUCTURE AND FLYING APPARATUS PROVIDED WITH SUCH A CARRIER STRUCTURE |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2336024A1 EP2336024A1 (en) | 2011-06-22 |
EP2336024B1 true EP2336024B1 (en) | 2013-07-10 |
Family
ID=42402584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10015435.0A Active EP2336024B1 (en) | 2009-12-17 | 2010-12-08 | Rotor bearing structure, rotorcraft carrying said bearing structure and method for avoiding instable coupling of the system eigenmodes |
Country Status (3)
Country | Link |
---|---|
US (1) | US8820674B2 (en) |
EP (1) | EP2336024B1 (en) |
FR (1) | FR2954273B1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6592355B2 (en) * | 2015-01-30 | 2019-10-16 | 株式会社荏原製作所 | Connecting mechanism and substrate polishing apparatus |
US20170088257A1 (en) * | 2015-09-30 | 2017-03-30 | Bell Helicopter Textron Inc. | Unified control of multiple active systems for helicopter vibration suppression |
FR3052209B1 (en) * | 2016-06-02 | 2018-06-01 | Airbus Helicopters | RESONATOR, AND AIRCRAFT PROVIDED WITH THIS RESONATOR |
KR102669208B1 (en) | 2017-11-03 | 2024-05-28 | 조비 에어로, 인크. | VTOL M-wing configuration |
CN108163229B (en) * | 2018-01-24 | 2020-11-03 | 东南大学 | System and method for synchronously detecting lift thrust and wing motion information of flapping-wing robot |
EP3539865A1 (en) * | 2018-03-12 | 2019-09-18 | Ge Avio S.r.l. | Fan blade support assembly |
US10947995B1 (en) * | 2019-08-27 | 2021-03-16 | Pratt & Whitney Canada Corp. | Fan nose cone and dynamic tuning of aircrafts |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4420134A (en) * | 1980-10-27 | 1983-12-13 | Kaman Aerospace Corporation | Vibration isolator with crank driven inertia bar |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1361222A (en) * | 1920-01-23 | 1920-12-07 | Gyrocopter Ltd | Helicopter or gyrocopter |
FR1507306A (en) * | 1966-11-17 | 1967-12-29 | Sud Aviation | Connection device filtering vibrations between a vibrating member and a support, in particular a rotor and a helicopter structure |
FR2232481B1 (en) * | 1973-06-08 | 1976-05-07 | Aerospatiale | |
FR2270144B1 (en) * | 1974-05-09 | 1976-10-15 | Aerospatiale | |
FR2499505A1 (en) * | 1981-02-09 | 1982-08-13 | Aerospatiale | SIMPLIFIED ANTI-SUSPENSION SUSPENSION DEVICE FOR HELICOPTER |
US4596513A (en) * | 1985-01-10 | 1986-06-24 | United Technologies Corporation | Helicopter air-spring vibration absorber |
GB8615109D0 (en) * | 1986-06-20 | 1986-07-23 | Westland Plc | Helicopter rotor |
FR2669982B1 (en) * | 1990-11-30 | 1993-02-19 | Aerospatiale | ANTI-RESONANT SUSPENSION DEVICE FOR HELICOPTER. |
GB9104189D0 (en) * | 1991-02-28 | 1991-06-12 | Westland Helicopters | Active vibration control systems |
FR2680848B1 (en) * | 1991-08-29 | 1995-03-17 | Aerospatiale Ste Nat Indle | METHOD AND DEVICE FOR FILTERING THE VIBRATORY EXCITATIONS TRANSMITTED BETWEEN TWO PARTS, IN PARTICULAR BETWEEN THE ROTOR AND THE FUSELAGE OF A HELICOPTER. |
GB9211719D0 (en) * | 1992-06-03 | 1992-07-15 | Westland Helicopters | Method & apparatus for in-flight shake testing of an aircraft fuselage |
US5915508A (en) * | 1994-04-18 | 1999-06-29 | Minnesota Mining And Manufacturing Company | Tuned mass damper |
US5558191A (en) * | 1994-04-18 | 1996-09-24 | Minnesota Mining And Manufacturing Company | Tuned mass damper |
FR2728539A1 (en) * | 1994-12-23 | 1996-06-28 | Eurocopter France | BIDIRECTIONAL ANTI-VIBRATORY SUSPENSION DEVICE FOR HELICOPTER ROTOR |
US6009985A (en) * | 1997-02-10 | 2000-01-04 | Lord Corporation | Efficient multi-directional active vibration absorber assembly |
FR2769396B1 (en) * | 1997-10-02 | 2000-11-10 | Eurocopter France | DEVICE FOR REDUCING THE NOISE OF RAIES INSIDE A ROTATING-SAIL AIRCRAFT, IN PARTICULAR A HELICOPTER |
FR2770825B1 (en) * | 1997-11-13 | 1999-12-31 | Eurocopter France | DEVICE FOR REDUCING VIBRATION IN THE CABIN OF A TURNING AIRCRAFT, ESPECIALLY A HELICOPTER |
FR2784350B1 (en) | 1998-10-12 | 2000-12-08 | Eurocopter France | DEVICE FOR REDUCING VIBRATIONS GENERATED ON THE STRUCTURE OF A TURNED AIRCRAFT |
FR2787161B1 (en) * | 1998-12-11 | 2001-02-16 | Eurocopter France | ANTI-VIBRATION DEVICE FOR REDUCING THE TRANSMISSION OF VIBRATION BETWEEN TWO BODIES, AND APPLICATIONS |
FR2808256B1 (en) | 2000-04-27 | 2002-08-30 | Eurocopter France | ROTOR WITH VERTICAL PENDULUM HEAD ANTI-VIBRATOR |
US6467723B1 (en) * | 2000-10-10 | 2002-10-22 | Lord Corporation | Active vibration control system for helicopter with improved actustor placement |
FR2842271B1 (en) * | 2002-07-15 | 2004-09-10 | Eurocopter France | TILTING POWER TRANSMISSION BOX WITH CARRYING LOAD TRANSFER |
US7568565B2 (en) * | 2004-08-17 | 2009-08-04 | Nes Technologies, Inc | Device, a system and a method for transferring vibrational energy |
US7985190B2 (en) * | 2005-04-12 | 2011-07-26 | Gruber William H | Non-invasive skin contouring device to delaminate skin layers using tissue resonance |
FR2889687B1 (en) * | 2005-08-10 | 2007-11-30 | Eurocopter France | METHOD FOR SELECTIVE SOLIDIC DECOUPLING OF NOISE, LAMINATED ROD, MECHANICAL CONNECTION AND AIRCRAFT. |
DE102007025934B4 (en) * | 2007-06-04 | 2015-02-12 | Siemens Aktiengesellschaft | machine tool |
JP2012125135A (en) * | 2010-07-27 | 2012-06-28 | Nihon Densan Seimitsu Kk | Vibration generator |
-
2009
- 2009-12-17 FR FR0906120A patent/FR2954273B1/en not_active Expired - Fee Related
-
2010
- 2010-12-08 EP EP10015435.0A patent/EP2336024B1/en active Active
- 2010-12-16 US US12/969,691 patent/US8820674B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4420134A (en) * | 1980-10-27 | 1983-12-13 | Kaman Aerospace Corporation | Vibration isolator with crank driven inertia bar |
Also Published As
Publication number | Publication date |
---|---|
US8820674B2 (en) | 2014-09-02 |
FR2954273A1 (en) | 2011-06-24 |
EP2336024A1 (en) | 2011-06-22 |
FR2954273B1 (en) | 2012-02-24 |
US20110147512A1 (en) | 2011-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2340997B1 (en) | Vibration damping mechanism and aircraft with a support structure and a rotor with such a mechanism | |
EP2336024B1 (en) | Rotor bearing structure, rotorcraft carrying said bearing structure and method for avoiding instable coupling of the system eigenmodes | |
US6607161B1 (en) | Convertible aircraft with tilting rotors | |
EP2527250B1 (en) | Method and aircraft equipped with a device for reducing vibrations | |
US20150203196A1 (en) | Active vibration control system with non-concentric revolving masses | |
EP2253535B1 (en) | Device with distributed masses for reducing the vibration caused by a lift rotor of a rotorcraft, and hub of a rotor provided with such a device | |
EP1375343B1 (en) | Method and apparatus for reducing vibratory movements of an aircraft fuselage | |
EP2303694B1 (en) | Aircraft including at least one engine having counter-rotating rotors | |
FR2982584A1 (en) | DEVICE FOR NOT VARYING THE BLADES OF A SUSTENTATION ROTOR | |
EP2845799B1 (en) | Anti-vibration suspension device of a mechanical element and aircraft with such a device | |
EP3252339B1 (en) | A resonator, and an aircraft fitted with the resonator | |
EP2138399B1 (en) | Blade for reducing the drag movements of said blade and method for reducing such a drag movement | |
US20230406483A1 (en) | Acoustic noise suppressing ducted fan propulsor mounting arrangement and treatments | |
EP1547920B1 (en) | Process and device for reducing vibrations generated on a helicopter fuselage by means of a steerable horizontal stabilizer | |
EP1547919B1 (en) | Process and device for reducing vibrations generated on a helicopter fuselage by means of a steerable rudder | |
EP3194264B1 (en) | Anti-vibration load generating aircraft actuation system | |
US8740133B2 (en) | Aircraft including an engine controlled by synchrophasing | |
EP0742144A1 (en) | Device for damping lead-lag motion of rotor blades of a helicopter | |
CA2795366C (en) | Anti-vibration suspension system for a retaining rod for a power gearbox in an aircraft, anti-vibration device, and aircraft | |
EP3712062B1 (en) | Vibration attenuation system for electric and hybrid electric vehicles | |
EP2910469B1 (en) | Aircraft and aircraft power plant provided with a connection device for connecting a power transmission unit and an engine | |
EP3345829B1 (en) | Rotor assembly with high lock-number blades | |
EP3378764B1 (en) | A rotorcraft fitted with an antivibration system, and a method of adjusting such an antivibration system | |
Krysinski et al. | Helicopter Vibration control Methodology and Flight Test Validation of a Self-Adaptative Anti-Vibration System | |
BE512418A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20110527 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20130426 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 620813 Country of ref document: AT Kind code of ref document: T Effective date: 20130715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010008332 Country of ref document: DE Effective date: 20130829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 620813 Country of ref document: AT Kind code of ref document: T Effective date: 20130710 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130710 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130724 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131010 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131111 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131011 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131021 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: AIRBUS HELICOPTERS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20140411 |
|
BERE | Be: lapsed |
Owner name: EUROCOPTER Effective date: 20131231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602010008332 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: AIRBUS HELICOPTERS, FR Effective date: 20140602 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010008332 Country of ref document: DE Effective date: 20140411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131208 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602010008332 Country of ref document: DE Effective date: 20140701 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131231 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131208 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131010 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101208 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20221223 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20221228 Year of fee payment: 13 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231221 Year of fee payment: 14 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20231208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231208 |