[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2331526A2 - Pyrimidinderivate als kinaseinhibitoren - Google Patents

Pyrimidinderivate als kinaseinhibitoren

Info

Publication number
EP2331526A2
EP2331526A2 EP09770964A EP09770964A EP2331526A2 EP 2331526 A2 EP2331526 A2 EP 2331526A2 EP 09770964 A EP09770964 A EP 09770964A EP 09770964 A EP09770964 A EP 09770964A EP 2331526 A2 EP2331526 A2 EP 2331526A2
Authority
EP
European Patent Office
Prior art keywords
methyl
pyrazol
chloro
pyrimidine
diamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09770964A
Other languages
English (en)
French (fr)
Inventor
Thomas H. Marsilje, Iii
Wenshuo Lu
Bei Chen
Xiaohui He
Songchun Jiang
Kunyong Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IRM LLC
Original Assignee
IRM LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IRM LLC filed Critical IRM LLC
Publication of EP2331526A2 publication Critical patent/EP2331526A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • the invention relates to protein kinase inhibitors, more particularly novel pyrimidine derivatives and pharmaceutical compositions thereof, and their use as pharmaceuticals .
  • IGF-I Insulin-like growth factor
  • IGF-IR IGF-I receptor
  • Anaplastic lymphoma kinase (ALK), a member of the insulin receptor superfamily of receptor tyrosine kinases, has been implicated in oncogenesis in hematopoietic and non-hematopoietic tumors.
  • ALK insulin receptor superfamily of receptor tyrosine kinases
  • the aberrant expression of full-length ALK receptor proteins has been reported in neuroblastomas and glioblastomas; and ALK fusion proteins have occurred in anaplastic large cell lymphoma.
  • the study of ALK fusion proteins has also raised the possibility of new therapeutic treatments for patients with ALK-positive malignancies. (Pulford et al., Cell. MoI. Life Sci. 61:2939-2953 (2004)).
  • the invention relates to novel pyrimidine derivatives and pharmaceutical compositions thereof, and their use as pharmaceuticals.
  • the invention provides a compound of Formula (1): or a physiologically acceptable salt thereof;
  • W is , R 5 or W ;
  • W is pyridyl, isoquinolinyl, quinoliny, naphthalenyl, cinnolin-5-yl or [3-(C 1 -O alkyl)-(2,3,4,5-tetrahydro-lH-benzo[d]azepin-7yl], each of which is optionally substituted with 1-3 R 9 ; and said pyridyl, isoquinolinyl, quinolinyl and napthalenyl
  • R 1 is halo, C 1 -O alkyl, or a halo-substituted C 1 -O alkyl
  • R 2 is a 5-6 membered heteroaryl having 1-3 heteroatoms selected from N, O and S, and is optionally substituted with C 1 - O alkyl, Ci- ⁇ haloalkyl or C 3 _ 7 cycloalkyl; each R 3 is H;
  • R 4 is halo, hydroxyl, C 1 -O alkyl, C 1 -O alkoxy, halo-substituted C 1 -O alkyl, halo- substituted C 1-6 alkoxy, cyano or C(0)Oo-iR ;
  • R 6 is H, C 1-6 alkyl, C 2 _6 alkenyl or C 2 _6 alkynyl, each of which may be optionally substituted with halo and/or hydroxyl groups; -(CR 2 ) P -OR 7 , -(CR 2 ) P - CH(OH)C 1 F 21+1 wherein t is 1-3, (CR 2 ) P -CN; (CR 2 ) P -NR(R 7 ), -(CR 2 ) P -C(O)OR 7 , (CR 2 ) p NR(CR 2 ) p OR 7 ,
  • R 6 is a radical selected from formula (a), (b), (c) or (d):
  • R 10 is O, S, NR 17 wherein R 17 is H, C 1-6 alkyl, SO 2 R 8a or CO 2 R 8a ;
  • R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are independently selected from H; C 1-6 alkoxy; Ci_ 6 alkyl, C 2 _ 6 alkenyl or C 2 _ 6 alkynyl, each of which may be optionally substituted with halo, amino or hydroxyl groups; or R 11 and R 12 , R 12 and R 15 , R 15 and R 16 , R 13 and R 14 , or R 13 and R 15 together with the atoms to which they are attached may form a 3-7 membered saturated, unsaturated or partially unsaturated ring containing 1-3 heteroatoms selected from N, O and S, and optionally substituted with oxo and 1-3 R 9 groups;
  • L is (CR 2 ) i- 4 or a bond
  • Y is C3-7 carbocyclic ring, C 6-1 O aryl, or a 5-10 membered heteroaryl or 4-10 membered heterocyclic ring, each of which is optionally substituted with 1-3 R 9 groups;
  • R 7 , R 8 and R 8a are independently C 1 -O alkyl, C 2 _6 alkenyl or C 2 _6 alkynyl, each of which may be optionally substituted with halo, NRR 7a , hydroxyl or cyano; (CR 2 ) q Y or Ci_ 6 alkoxy; or R 7 is H;
  • R 9 is R 4 , C(O)NRR 7 or NRR 7 ;
  • R and R 7a are independently H or C 1 -O alkyl; R and R 7 together with N in each NRR 7 , and R and R 7a together with N in NRR 7a may form a 5-6 membered ring containing 1-3 heteroatoms selected from N, O and S, and optionally substituted with oxo and 1-3 R 4 groups; m is 2-4; n and p are independently 1-4; and q is 0-4.
  • R 2 may be pyrazolyl or isoxazolyl, each of which is substituted with C 1 - O alkyl or C 3 - 7 cycloalkyl.
  • the invention provides a compound of Formula (2):
  • W is W ;
  • W is pyridyl optionally substituted with alkyl, isoquinolinyl, quinolinyl, naphthalenyl, cinnolin-5-yl optionally substituted with alkyl or [3-(Ci_ 6 alkyl)- (2,3,4,5-tetrahydro-lH-benzo[d]azepin-7yl]; and said pyridyl, isoquinolinyl,
  • quinolinyl and napthalenyl are each substituted on a ring carbon
  • R 6 is H, Ci_ 6 alkyl, C 2 - 6 alkenyl or C 2 - 6 alkynyl, each of which may be optionally substituted with halo, amino, hydroxyl or alkoxy; -(CR2) p -CH(OH)C t F2t +1 wherein t is 1,
  • R and R 7 are independently H or C 1 -O alkyl
  • R 8 is Ci-6 alkyl
  • R 1 and R 3 are as defined in Formula (1).
  • the invention provides a compound of Formula (3): wherein Z is NH or O; R 4 is halo or C 1-6 alkyl;
  • R 6 is H
  • R 1 and R 3 are as defined in Formula (1).
  • the invention provides a compound of Formula (1).
  • R 4a , R 4b and R 4c are H and the others are independently halo, C 1 . 6 alkyl, C 1 -O alkoxy, halo-substituted C 1 -O alkyl or halo-substituted C 1 -O alkoxy;
  • X is as defined in Formula (1).
  • R 7 is H or C 1-6 alkyl optionally substituted with hydroxyl or NRR 7a ; each R is H or C 1-6 alkyl;
  • NRR > 7a may form a 5-6 membered ring containing 1-2 heteroatoms selected from N, O and S; and n and p are independently 1-4.
  • X may be quinolinyl, (l,2,3,4-tetrahydroisoquinolin-6-yl) or a 5-6 membered heteroaryl selected from pyrazolyl, pyridyl, thiophenyl, furanyl, imidazolyl, isoxazolyl, oxazolyl or thiaxolyl, each of which is optionally substituted with C 1 - O alkyl, hydroxyl, or C(O)NRR 7 ; R 7 is H or C 1-6 alkyl; and R is H or C 1 -O alkyl.
  • the invention provides a compound of Formula (5):
  • R 4a , R 4b and R 4c are H and the others are independently halo, C 1- 6 alkyl, C 1-6 alkoxy, halo-substituted C 1 - O alkyl or halo-substituted C 1 - O alkoxy;
  • R 9 is hydroxyl or NRR 7 ;
  • R is H or C 1-6 alkyl
  • R 7 is Ci- 6 alkyl or (CR 2 ) q Y and Y is C 3 cycloalkyl; alternatively, R and R 7 together with N in NRR 7 forms morpholinyl, piperidinyl, piperazinyl, (C 1-6 alkyl)-piperazinyl, or pyrrolidinyl, each of which is optionally substituted with hydroxyl; and
  • R 1 and R 3 are as defined in Formual (1).
  • R 4b may be H.
  • R 4a and R 4c are independently halo, C 1 - O alkyl, C 1 - O alkoxy, halo-substituted C 1 - O alkyl or halo-substituted C 1 - O alkoxy.
  • R 1 is chloro or a halo-substituted C 1 - O alkyl.
  • R 3 is H.
  • the present invention provides pharmaceutical compositions comprising a compound having Formula (1), (2), (3), (4) or (5), and a physiologically acceptable excipient.
  • the invention provides methods for inhibiting IGF- IR in a cell, comprising contacting the cell with an effective amount of a compound having Formula (1), (2), (3), (4) or (5) or a pharmaceutical composition thereof.
  • the invention also provides methods to treat, ameliorate or prevent a condition which responds to inhibition of IGF-IR or anaplastic lymphoma kinase (ALK) in a mammal suffering from said condition, comprising administering to the mammal a therapeutically effective amount of a compound having Formula (1), (2), (3), (4) or (5) or a pharmaceutical composition thereof, and optionally in combination with a second therapeutic agent.
  • ALK anaplastic lymphoma kinase
  • the present invention provides for the use of a compound having Formula (1), (2), (3), (4) or (5), and optionally in combination with a second therapeutic agent, in the manufacture of a medicament for treating a condition mediated by IGF-IR or ALK.
  • the compounds of the invention may be administered, for example, to a mammal suffering from an autoimmune disease, a transplantation disease, an infectious disease or a cell proliferative disorder.
  • the compounds of the invention may be used alone or in combination with a chemotherapeutic agent to treat a cell proliferative disorder, including but not limited to, multiple myeloma, neuroblastoma, synovial, hepatocellular, Ewing's Sarcoma or a solid tumor selected from a osteosarcoma, melanoma, and tumor of breast, renal, prostate, colorectal, thyroid, ovarian, pancreatic, lung, uterine or gastrointestinal tumor.
  • a chemotherapeutic agent to treat a cell proliferative disorder, including but not limited to, multiple myeloma, neuroblastoma, synovial, hepatocellular, Ewing's Sarcoma or a solid tumor selected from a osteosarcoma, melanoma, and tumor of breast, renal, prostate, colorectal, thyroid, ovarian, pancreatic, lung, uterine or gastrointestinal tumor.
  • Alkyl refers to a moiety and as a structural element of other groups, for example halo-substituted-alkyl and alkoxy, and may be straight-chained or branched.
  • An optionally substituted alkyl, alkenyl or alkynyl as used herein may be optionally halogenated (e.g., CF 3 ), or may have one or more carbons that is substituted or replaced with a heteroatom, such as NR, O or S (e.g., -OCH 2 CH 2 O-, alkylthiols, thioalkoxy, alkylamines, etc).
  • Aryl refers to a monocyclic or fused bicyclic aromatic ring containing carbon atoms.
  • Arylene means a divalent radical derived from an aryl group.
  • an aryl group may be phenyl, indenyl, indanyl, naphthyl, or 1, .2,3, A- tetrahydronaphthalenyl, which may be optionally substituted in the ortho, meta or para position.
  • Heteroaryl as used herein is as defined for aryl above, where one or more of the ring members is a heteroatom.
  • a heteroaryl substituent for use in the compounds of the invention may be a monocyclic or bicyclic 5-10 membered heteroaryl containing 1-4 heteroatoms selected from N, O, and S.
  • heteroaryls include but are not limited to pyridyl, pyrazinyl, indolyl, indazolyl, quinoxalinyl, quinolinyl, benzofuranyl, benzopyranyl, benzothiopyranyl, benzo[l,3]dioxole, imidazolyl, benzo-imidazolyl, pyrimidinyl, furanyl, oxazolyl, isoxazolyl, triazolyl, benzotriazolyl, tetrazolyl, pyrazolyl, thienyl, pyrrolyl, isoquinolinyl, purinyl, thiazolyl, tetrazinyl, benzothiazolyl, oxadiazolyl, benzoxadiazolyl, etc.
  • Examples of carbocyclic rings include but are not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylene, cyclohexanone, etc.
  • a "heterocyclic ring" as used herein is as defined for a carbocyclic ring above, wherein one or more ring carbons is a heteroatom.
  • a heterocyclic ring for use in the compounds of the invention may be a 4-7 membered heterocyclic ring containing 1-3 heteroatoms selected from N, O and S, or a combination thereof such as -S(O) or -S(O) 2 -.
  • heterocyclic rings include but are not limited to azetidinyl, morpholino, pyrrolidinyl, pyrrolidinyl-2-one, piperazinyl, piperidinyl, piperidinylone, l,4-dioxa-8-aza-spiro[4.5]dec-8-yl, 1,2,3,4-tetrahydroquinolinyl, etc.
  • Heterocyclic rings as used herein may encompass bicyclic amines and bicyclic diamines.
  • an H atom in any substituent groups encompasses all suitable isotopic variations, e.g., H, 2 H and 3 H.
  • the term "pharmaceutical combination” as used herein refers to a product obtained from mixing or combining active ingredients, and includes both fixed and non-fixed combinations of the active ingredients.
  • the term "fixed combination” means that the active ingredients, e.g. a compound of Formula (1) and a co-agent, are both administered to a patient simultaneously in the form of a single entity or dosage.
  • the term “non-fixed combination” means that the active ingredients, e.g. a compound of Formula (1) and a co-agent, are both administered to a patient as separate entities either simultaneously, concurrently or sequentially with no specific time limits, wherein such administration provides therapeutically effective levels of the active ingredients in the body of the patient.
  • cocktail therapy e.g.
  • mammal refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, etc. In particular examples, the mammal is human.
  • administration means providing a compound of the invention and prodrugs thereof to a subject in need of treatment.
  • Administration "in combination with” one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order, and in any route of administration.
  • an “effective amount” of a compound is an amount sufficient to carry out a specifically stated purpose.
  • An “effective amount” may be determined empirically and in a routine manner, in relation to the stated purpose.
  • the term "therapeutically effective amount” refers to an amount of a compound (e.g., an IGF-IR antagonist) effective to "treat" an IGF-lR-mediated disorder in a subject or mammal.
  • the therapeutically effective amount of the drug may reduce the number of cancer cells; reduce the tumor size; inhibit (i.e., slow to some extent and preferably stop) cancer cell infiltration into peripheral organs; inhibit (i.e., slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the cancer. See the definition herein of "treating”.
  • the drug may prevent growth and/or kill existing cancer cells, it may be cytostatic and/or cytotoxic.
  • cancer refers to the physiological condition in mammals that is typically characterized by unregulated cell growth/proliferation.
  • examples of cancer include, but are not limited to: carcinoma, lymphoma, blastoma, and leukemia. More particular examples of cancers include, but are not limited to: chronic lymphocytic leukemia (CLL), lung, including non small cell (NSCLC), breast, ovarian, cervical, endometrial, prostate, colorectal, intestinal carcinoid, bladder, gastric, pancreatic, hepatic (hepatocellular), hepatoblastoma, esophageal, pulmonary adenocarcinoma, mesothelioma, synovial sarcoma, osteosarcoma, head and neck squamous cell carcinoma, juvenile nasopharyngeal angiofibromas, liposarcoma, thyroid, melanoma, basal cell carcinoma (BCC), medulloblastoma and desmoi
  • CLL chronic lymph
  • Treating” or “treatment” or “alleviation” refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic disease or condition or disorder.
  • Those in need of treatment include those already with the disorder as well as those prone to having the disorder or those in whom the disorder is to be prevented (prophylaxis).
  • the IGF-lR-mediated disorder is cancer
  • a subject or mammal is successfully "treated” or shows a reduced tumor burden if, after receiving a therapeutic amount of an IGF-IR antagonist according to the methods of the present invention, the patient shows observable and/or measurable reduction in or absence of one or more of the following: reduction in the number of cancer cells or absence of the cancer cells; reduction in the tumor size; inhibition (i.e., slow to some extent and preferably stop) of cancer cell infiltration into peripheral organs including the spread of cancer into soft tissue and bone; inhibition (i.e., slow to some extent and preferably stop) of tumor metastasis; inhibition, to some extent, of tumor growth; and/or relief to some extent, one or more of the symptoms associated with the specific cancer; reduced morbidity and mortality, and improvement in quality of life issues.
  • the IGF-IR antagonist may prevent growth and/or kill existing cancer cells, it may be cytostatic and/or cytotoxic. Reduction of these signs or symptoms may also be felt by the patient.
  • Carriers as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers which are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution.
  • physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN®, polyethylene glycol (PEG), and PLURONICS®.
  • buffers such as phosphate, citrate, and other organic acids
  • antioxidants including ascorbic acid
  • proteins such as serum albumin,
  • a "chemotherapeutic agent” is a chemical compound useful in the treatment of cancer.
  • chemotherapeutic agents include alkylating agents such as thiotepa and CYTOXAN® cyclosphosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethiylenethiophosphoramide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); delta-9-tetrahydrocannabinol (dronabinol, MARINOL®); beta-lapachone; lapachol; colchicines; betulinic acid; a camptothecin (including the synthetic analogue
  • dynemicin including dynemicin A; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, caminomycin, carzinophilin, chromomycinis, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, ADRIAMYCIN® doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and deoxydoxorubicin), epirubicin, esorubicin, idarubi
  • ABRAXANETM Cremophor-free, albumin-engineered nanoparticle formulation of paclitaxel American Pharmaceutical Partners, Schaumberg, 111.
  • TAXOTERE® doxetaxel Rh ⁇ ne-Poulenc Rorer, Antony, France
  • chloranbucil gemcitabine
  • GEMZAR® 6-thioguanine
  • mercaptopurine methotrexate
  • platinum analogs such as cisplatin and carboplatin
  • vinblastine VELB AN®
  • platinum etoposide (VP- 16); ifosfamide; mitoxantrone; vincristine (ONCOVIN®); oxaliplatin; leucovovin; vinorelbine (NA VELB INE®); novantrone; edatrexate; daunomycin; aminopterin; ibandronate; topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO
  • chemotherapeutic agent may include anti-hormonal agents that act to regulate, reduce, block, or inhibit the effects of hormones that can promote the growth of cancer, and are often in the form of systemic, or whole-body treatment. They may be hormones themselves.
  • Examples include anti-estrogens and selective estrogen receptor modulators (SERMs), including, for example, tamoxifen (including NOLVADEX® tamoxifen), EVISTA® raloxifene, droloxifene, A- hydroxytamoxifen, trioxifene, keoxifene, LYl 17018, onapristone, and FARESTON® toremifene; anti-progesterones; estrogen receptor down-regulators (ERDs); agents that function to suppress or shut down the ovaries, for example, leutinizing hormone- releasing hormone (LHRH) agonists such as LUPRON® and ELIGARD® leuprolide acetate, goserelin acetate, buserelin acetate and tripterelin; other anti-androgens such as flutamide, nilutamide and bicalutamide; and aromatase inhibitors that inhibit the enzyme aromatase, which regulates
  • chemotherapeutic agents includes bisphosphonates such as clodronate (for example, BONEFOS® or OSTAC®), DIDROCAL® etidronate, NE-58095, ZOMETA® zoledronic acid/zoledronate, FOSAMAX® alendronate, AREDIA® pamidronate, SKELID® tiludronate, or ACTONEL® risedronate; as well as troxacitabine (a 1,3- dioxolane nucleoside cytosine analog); antisense oligonucleotides, particularly those that inhibit expression of genes in signaling pathways implicated in abherant cell proliferation, such as, for example, PKC-alpha, Raf, H-Ras, and epidermal growth factor receptor (EGF-R); vaccines such as THERATOPE® vaccine and gene therapy vaccines, for example, ALLOVECTIN® vaccine, LEUVECTIN® vaccine, and VAXID® vaccine; LURTOTECAN®
  • the invention provides novel pyrimidine derivatives and pharmaceutical compositions thereof, and methods for using such compounds.
  • the invention provides a compound of Formula (1):
  • W is , or W
  • W is pyridyl, isoquinolinyl, quinoliny, naphthalenyl, cinnolin-5-yl or [3-(C 1 -O alkyl)-(2,3,4,5-tetrahydro-lH-benzo[d]azepin-7yl], each of which is optionally substituted with 1-3 R 9 ; and said pyridyl, isoquinolinyl, quinolinyl and napthalenyl
  • R 1 is halo, C 1-6 alkyl, or a halo-substituted C 1-6 alkyl
  • R 2 is a 5-6 membered heteroaryl having 1-3 heteroatoms selected from N, O and S, and is optionally substituted with C 1 - O alkyl, Ci- ⁇ haloalkyl or C 3 - 7 cycloalkyl; each R 3 is H;
  • R 4 is halo, hydroxyl, C 1 - O alkyl, C 1 - O alkoxy, halo-substituted C 1 - O alkyl, halo- substituted C 1-6 alkoxy, cyano or C(0)Oo-iR 8 ;
  • R 6 is H, C 1-6 alkyl, C 2 _6 alkenyl or C 2 _6 alkynyl, each of which may be optionally substituted with halo and/or hydroxyl groups; -(CR 2 ) P -OR 7 , -(CR 2 ) P - CH(OH)CtF 21+1 wherein t is 1-3, (CR 2 ) P -CN; (CR 2 ) P -NR(R 7 ), -(CR 2 ) P -C(O)OR 7 , (CR 2 ) P NR(CR 2 ) P OR 7 ,
  • R 6 is a radical selected from formula (a), (b), (c) or (d):
  • R 10 is O, S, NR 17 wherein R 17 is H, C 1-6 alkyl, SO 2 R 8a or CO 2 R 8a ;
  • R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are independently selected from H; C 1-6 alkoxy; Ci_ 6 alkyl, C 2 _ 6 alkenyl or C 2 _ 6 alkynyl, each of which may be optionally substituted with halo, amino or hydroxyl groups; or R 11 and R 12 , R 12 and R 15 , R 15 and R 16 , R 13 and R 14 , or R 13 and R 15 together with the atoms to which they are attached may form a 3-7 membered saturated, unsaturated or partially unsaturated ring containing 1-3 heteroatoms selected from N, O and S, and optionally substituted with oxo and 1-3 R 9 groups;
  • L is (CR 2 ) i- 4 or a bond
  • Y is C3-7 carbocyclic ring, C 6-1 O aryl, or a 5-10 membered heteroaryl or 4-10 membered heterocyclic ring, each of which is optionally substituted with 1-3 R 9 groups;
  • R 7 , R 8 and R 8a are independently C 1 -O alkyl, C 2 _6 alkenyl or C 2 _6 alkynyl, each of which may be optionally substituted with halo, NRR 7a , hydroxyl or cyano; (CR 2 ) q Y or Ci_ 6 alkoxy; or R 7 is H;
  • R 9 is R 4 , C(O)NRR 7 or NRR 7 ;
  • R and R , 7a a are independently H or C 1 -O alkyl
  • NRR > 7a a may form a 5-6 membered ring containing 1-3 heteroatoms selected from N, O and S, and optionally substituted with oxo and 1-3 R 4 groups; m is 2-4; n and p are independently 1-4; and q is 0-4.
  • the invention provides a compound of Formula (2):
  • W is W ;
  • W is pyridyl optionally substituted with C 1 - O alkyl, isoquinolinyl, quinolinyl, naphthalenyl, cinnolin-5-yl optionally substituted with C 1 -O alkyl or [3-(C 1 -O alkyl)- (2,3,4,5-tetrahydro-lH-benzo[d]azepin-7yl]; and said pyridyl, isoquinolinyl,
  • quinolinyl and napthalenyl are each substituted on a ring carbon w iitthh
  • R 6 is H, C 1-6 alkyl, C 2 _6 alkenyl or C 2 _6 alkynyl, each of which may be optionally substituted with halo, amino, hydroxyl or alkoxy; -(CR 2 ) p -CH(OH)C t F 2t+1 wherein t is 1,
  • L is (CR 2 )w
  • R and R 7 are independently H or C 1 - O alkyl
  • R 8 is Ci-e alkyl
  • R 1 and R 3 are as defined in Formula (1).
  • the invention provides a compound of Formula (3):
  • Z is NH or O
  • R 4 is halo or C 1-6 alkyl
  • R 6 is H
  • R 1 and R 3 are as defined in Formula (1).
  • the invention provides a compound of Formula (1).
  • R 4a , R 4b and R 4c are H and the others are independently halo, C 1 - 6 alkyl, C 1 -O alkoxy, halo-substituted C 1 -O alkyl or halo-substituted C 1 -O alkoxy;
  • X is as defined in Formula (1).
  • the invention provides a compound of Formula
  • R 4a , R 4b and R 4c are H and the others are independently halo, C 1 .
  • R 9 is hydroxyl or NRR 7 ;
  • R is H or Ci_ 6 alkyl
  • R 7 is Ci- 6 alkyl or (CR 2 ) q Y and Y is C 3 cycloalkyl; alternatively, R and R 7 together with N in NRR 7 forms morpholinyl, piperidinyl, piperazinyl, (C 1 - O alkyl)-piperazinyl, or pyrrolidinyl, each of which is optionally substituted with hydroxyl; and R 1 and R 3 are as defined in Formual (1).
  • any asymmetric carbon atoms may be present in the (R)-, (S)-or (R,S)-configuration.
  • the compounds may thus be present as mixtures of isomers or as pure isomers, for example, as pure enantiomers or diastereomers.
  • the invention further encompasses possible tautomers of the inventive compounds.
  • any formula given herein is also intended to represent unlabeled forms as well as isotopically labeled forms of the compounds.
  • Isotopically labeled compounds have structures depicted by the formulas given herein, except that one or more atoms are replaced by an atom having a selected atomic mass or mass number.
  • isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, and chlorine, such as H, 3 H, 11 C, 13 C, 14 C, 15 N, 18 F 31 P, 32 P, 35 S, 36 Cl, 125 I respectively.
  • the invention includes various isotopically labeled compounds as defined herein, for example, those into which radioactive isotopes such as 3 H, 13 C, and 14 C , are present.
  • isotopically labelled compounds are useful in metabolic studies (with, for example, 14 C), reaction kinetic studies (with, for example 2 H or 3 H), detection or imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT) including drug or substrate tissue distribution assays, or in radioactive treatment of patients.
  • PET positron emission tomography
  • SPECT single-photon emission computed tomography
  • an 18 F or labeled compound may be used for PET or SPECT studies.
  • Isotopic variations of the compounds have the potential to change a compound' s metabolic fate and/or create small changes in physical properties such as hydrophobicity, and the like. Isotopic variations also have the potential to enhance efficacy and safety, enhance bioavailability and half-life, alter protein binding, change biodistribution, increase the proportion of active metabolites and/or decrease the formation of reactive or toxic metabolites.
  • Isotopically labeled compounds of this invention and prodrugs thereof can generally be prepared by carrying out the procedures disclosed in the schemes or in the examples and preparations described below by substituting a readily available isotopically labeled reagent for a non-isotopically labeled reagent.
  • each optionally substituted moiety may be substituted with C 1 -O alkyl, C 2 _6 alkenyl or C3-6 alkynyl, each of which may be optionally halogenated or optionally having a carbon that may be replaced or substituted with N, S, O, or a combination thereof (for example, hydroxylCi-Cgalkyl, Ci-CgalkoxyCi-Cgalkyl); halo, amino, amidino, Ci_ 6 alkoxy; hydroxyl, methylenedioxy, carboxy; C 1-8 alkylcarbonyl, C 1-8 alkoxycarbonyl, carbamoyl, C 1-8 alkylcarbamoyl, sulfamoyl, cyano, oxo, nitro, or an optionally substituted carbocyclic ring, heterocyclic ring, aryl or heteroaryl as previously described.
  • the compounds of the invention and their pharmaceutically acceptable salts exhibit valuable pharmacological properties when tested in vitro in cell-free kinase assays and in cellular assays, and are therefore useful as pharmaceuticals.
  • the compounds of the invention may inhibit insulin like growth-factor receptor 1 (IGF-IR), and may be useful in the treatment of IGF-I R mediated diseases.
  • IGF-IR mediated diseases include but are not limited to proliferative diseases, such as tumors, for example breast, renal, prostate, colorectal, thyroid, ovarian, pancreas, neuronal, lung, uterine and gastro intestinal tumors, as well as osteosarcomas and melanomas.
  • the efficacy of the compounds of the invention as inhibitors of IGF-IR tyrosine kinase activity may be demonstrated using a cellular capture ELISA. In this assay, the activity of the compounds of the invention against (IGF-l)-induced autophosphorylation of the IGF-IR is determined.
  • the compounds of the invention may inhibit the tyrosine kinase activity of anaplastic lymphoma kinase (ALK) and the fusion protein of NPM- ALK.
  • ALK anaplastic lymphoma kinase
  • NPM- ALK fusion protein of NPM- ALK
  • NPM-ALK plays a key role in signal transmission in a number of hematopoetic and other human cells leading to hematological and neoplastic diseases, for example in anaplastic large-cell lymphoma (ALCL) and non-Hodgkin's lymphomas (NHL), specifically in ALK+NHL or Alkomas, in inflammatory myofibroblastic tumors (IMT) and neuroblastomas.
  • ACL anaplastic large-cell lymphoma
  • NHL non-Hodgkin's lymphomas
  • IMT myofibroblastic tumors
  • neuroblastomas Duyster et al. 2001 Oncogene 20, 5623-5637.
  • TPM3-ALK a fusion of nonmuscle tropomyosin with ALK
  • ALK tyrosine kinase activity may be demonstrated using known methods, for example using the recombinant kinase domain of the ALK in analogy to the VEGF-R kinase assay described in J. Wood et al. Cancer Res. 60, 2178-2189 (2000).
  • Reactions are terminated by adding 50 ⁇ l of 125 mM EDTA, and the reaction mixture is transferred onto a MAIP Multiscreen plate (Millipore, Bedford, MA, USA), previously wet with methanol, and rehydrated for 5 min with H 2 O. Following washing (0.5 % H 3 PO 4 ), plates are counted in a liquid scintillation counter. IC 50 values are calculated by linear regression analysis of the percentage inhibition.
  • the compounds of the invention may potently inhibit the growth of human NPM-ALK overexpressing murine BaF3 cells (DSMZ Manual Sammiung von Mikroorganismen und Zelikulturen GmbH, Germany).
  • the expression of NPM-ALK may be achieved by transfecting the BaF3 cell line with an expression vector pClneoTM (Promega Corp., Madison WI, USA) coding for NPM-ALK and subsequent selection of G418 resistant cells.
  • Non-transfected BaF3 cells depend on IL-3 for cell survival.
  • NPM-ALK expressing BaF3 cells can proliferate in the absence of IL-3 because they obtain proliferative signal through NPM-ALK kinase.
  • Putative inhibitors of the NPM-ALK kinase therefore abolish the growth signal and may result in antiproliferative activity.
  • the antiproliferative activity of putative inhibitors of the NPM-ALK kinase can however be overcome by addition of IL-3, which provides growth signals through an NPM- ALK independent mechanism.
  • An analogous cell system using FLT3 kinase has also been described (see, E Weisberg et al. Cancer Cell; 1, 433-443 (2002)).
  • the inhibitory activity of the compounds of the invention may be determined as follows.
  • BaF3-NPM-ALK cells (15,000/microtitre plate well) are transferred to 96-well microtitre plates.
  • Test compounds dissolved in dimethyl sulfoxide (DMSO) are added in a series of concentrations (dilution series) in such a manner that the final concentration of DMSO is not greater than 1 % (v/v).
  • DMSO dimethyl sulfoxide
  • the plates are incubated for two days during which the control cultures without test compound are able to undergo two cell-division cycles.
  • the growth of the BaF3-NPM-ALK cells is measured by means of YOPROTM staining [T Idziorek et al. J. Immunol.
  • the compounds of the invention may also be useful in the treatment and/or prevention of acute or chronic inflammatory diseases or disorders or autoimmune diseases e.g. rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, Hashimoto's thyroiditis, multiple sclerosis, myasthenia gravis, diabetes (type I and II) and the disorders associated therewith, respiratory diseases such as asthma or inflammatory liver injury, inflammatory glomerular injury, cutaneous manifestations of immunologically-mediated disorders or illnesses, inflammatory and hyperproliferative skin diseases (such as psoriasis, atopic dermatitis, allergic contact dermatitis, irritant contact dermatitis and further eczematous dermatitis, seborrhoeic dermatitis), s inflammatory eye diseases, e.g. Sjoegren's syndrome, keratoconjunctivitis or uveitis, inflammatory bowel disease, Crohn's disease or ulcerative
  • the present invention provides:
  • compositions e.g. for use in any of the indications herein before set forth, comprising a compound of the invention as active ingredient together with one or more pharmaceutically acceptable diluents or carriers;
  • the disease to be treated is selected from anaplastic large cell lymphoma, non-Hodgkin's lymphomas, inflammatory myofibroblastic tumors, neuroblastomas and neoplastic diseases;
  • (11) a method for the treatment of a disease which responds to inhibition of the anaplastic lymphoma kinase, especially a disease selected from anaplastic large- cell lymphoma, non Hodgkin's lymphomas, inflammatory myofibroblastic tumors, neuroblastomas and neoplastic diseases, comprising administering an effective amount of a compound of the invention or a pharmaceutically acceptable salt thereof.
  • compositions of the invention will be administered in therapeutically effective amounts via any of the usual and acceptable modes known in the art, either singly or in combination with one or more therapeutic agents.
  • a therapeutically effective amount may vary widely depending on the severity of the disease, the age and relative health of the subject, the potency of the compound used and other factors known to those of ordinary skill in the art.
  • the required dosage will also vary depending on the mode of administration, the particular condition to be treated and the effect desired.
  • an indicated daily dosage in the larger mammal may be in the range from about 0.5 mg to about 2000 mg, or more particularly, from about 0.5 mg to about 100 mg, conveniently administered, for example, in divided doses up to four times a day or in retard form.
  • Suitable unit dosage forms for oral administration comprise from ca. 1 to 50 mg active ingredient.
  • Compounds of the invention may be administered as pharmaceutical compositions by any conventional route; for example, enterally, e.g., orally, e.g., in the form of tablets or capsules; parenterally, e.g., in the form of injectable solutions or suspensions; or topically, e.g., in the form of lotions, gels, ointments or creams, or in a nasal or suppository form.
  • enterally e.g., orally, e.g., in the form of tablets or capsules
  • parenterally e.g., in the form of injectable solutions or suspensions
  • topically e.g., in the form of lotions, gels, ointments or creams, or in a nasal or suppository form.
  • compositions comprising a compound of the present invention in free form or in a pharmaceutically acceptable salt form in association with at least one pharmaceutically acceptable carrier or diluent may be manufactured in a conventional manner by mixing, granulating, coating, dissolving or lyophilizing processes.
  • pharmaceutical compositions comprising a compound of the invention in association with at least one pharmaceutical acceptable carrier or diluent may be manufactured in conventional manner by mixing with a pharmaceutically acceptable carrier or diluent.
  • Unit dosage forms for oral administration contain, for example, from about 0.1 mg to about 500 mg of active substance.
  • the pharmaceutical compositions are solutions of the active ingredient, including suspensions or dispersions, such as isotonic aqueous solutions.
  • suspensions or dispersions such as isotonic aqueous solutions.
  • dispersions or suspensions can be made up before use.
  • the pharmaceutical compositions may be sterilized and/or contain adjuvants, such as preserving, stabilizing, wetting or emulsifying agents, solution promoters, salts for regulating the osmotic pressure and/or buffers.
  • Suitable preservatives include but are not limited to antioxidants such as ascorbic acid, or microbicides, such as sorbic acid or benzoic acid.
  • solutions or suspensions may further comprise viscosity-increasing agents, including but not limited to, sodium carboxymethylcellulose, carboxymethylcellulose, dextran, polyvinylpyrrolidone, gelatins, or solubilizers, e.g. Tween 80 (polyoxyethylene(20)sorbitan mono-oleate).
  • viscosity-increasing agents including but not limited to, sodium carboxymethylcellulose, carboxymethylcellulose, dextran, polyvinylpyrrolidone, gelatins, or solubilizers, e.g. Tween 80 (polyoxyethylene(20)sorbitan mono-oleate).
  • Suspensions in oil may comprise as the oil component the vegetable, synthetic, or semi- synthetic oils customary for injection purposes.
  • oils customary for injection purposes.
  • Examples include liquid fatty acid esters that contain as the acid component a long-chained fatty acid having from 8 to 22 carbon atoms, or in some embodiments, from 12 to 22 carbon atoms.
  • Suitable liquid fatty acid esters include but are not limited to lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, behenic acid or corresponding unsaturated acids, for example oleic acid, elaidic acid, erucic acid, brassidic acid and linoleic acid, and if desired, may contain antioxidants, for example vitamin E, 3-carotene or 3,5-di-tert-butyl- hydroxytoluene.
  • the alcohol component of these fatty acid esters may have six carbon atoms and may be monovalent or polyvalent, for example a mono-, di- or trivalent, alcohol. Suitable alcohol components include but are not limited to methanol, ethanol, propanol, butanol or pentanol or isomers thereof; glycol and glycerol.
  • Suitable fatty acid esters include but are not limited ethyl-oleate, isopropyl myristate, isopropyl palmitate, LABRAFIL® M 2375, (polyoxyethylene glycerol), LABRAFIL® M 1944 CS (unsaturated polyglycolized glycerides prepared by alcoholysis of apricot kernel oil and comprising glycerides and polyethylene glycol ester), LABRASOLTM (saturated polyglycolized glycerides prepared by alcoholysis of TCM and comprising glycerides and polyethylene glycol ester; all available from GaKefosse, France), and/or MIGLYOL® 812 (triglyceride of saturated fatty acids of chain length C% to C 12 from Hiils AG, Germany), and vegetable oils such as cottonseed oil, almond oil, olive oil, castor oil, sesame oil, soybean oil, or groundnut oil.
  • vegetable oils such as cottonseed oil, almond oil, olive oil,
  • compositions for oral administration may be obtained, for example, by combining the active ingredient with one or more solid carriers, and if desired, granulating a resulting mixture, and processing the mixture or granules by the inclusion of additional excipients, to form tablets or tablet cores.
  • Suitable carriers include but are not limited to fillers, such as sugars, for example lactose, saccharose, mannitol or sorbitol, cellulose preparations, and/or calcium phosphates, for example tricalcium phosphate or calcium hydrogen phosphate, and also binders, such as starches, for example corn, wheat, rice or potato starch, methylcellulose, hydroxypropyl methylcellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone, and/or, if desired, disintegrators, such as the above-mentioned starches, carboxymethyl starch, crosslinked polyvinylpyrrolidone, alginic acid or a salt thereof, such as sodium alginate.
  • Additional excipients include flow conditioners and lubricants, for example silicic acid, talc, stearic acid or salts thereof, such as magnesium or calcium stearate, and/or polyethylene glycol, or derivatives thereof.
  • Tablet cores may be provided with suitable, optionally enteric, coatings through the use of, inter alia, concentrated sugar solutions which may comprise gum arable, talc, polyvinylpyrrolidone, polyethylene glycol and/or titanium dioxide, or coating solutions in suitable organic solvents or solvent mixtures, or, for the preparation of enteric coatings, solutions of suitable cellulose preparations, such as acetylcellulose phthalate or hydroxypropylmethylcellulose phthalate. Dyes or pigments may be added to the tablets or tablet coatings, for example for identification purposes or to indicate different doses of active ingredient.
  • concentrated sugar solutions which may comprise gum arable, talc, polyvinylpyrrolidone, polyethylene glycol and/or titanium dioxide, or coating solutions in suitable organic solvents or solvent mixtures, or, for the preparation of enteric coatings, solutions of suitable cellulose preparations, such as acetylcellulose phthalate or hydroxypropylmethylcellulose phthalate.
  • Dyes or pigments may be added to the tablets or tablet coatings,
  • compositions for oral administration may also include hard capsules comprising gelatin or soft-sealed capsules comprising gelatin and a plasticizer, such as glycerol or sorbitol.
  • the hard capsules may contain the active ingredient in the form of granules, for example in admixture with fillers, such as corn starch, binders, and/or glidants, such as talc or magnesium stearate, and optionally stabilizers.
  • the active ingredient may be dissolved or suspended in suitable liquid excipients, such as fatty oils, paraffin oil or liquid polyethylene glycols or fatty acid esters of ethylene or propylene glycol, to which stabilizers and detergents, for example of the polyoxyethylene sorbitan fatty acid ester type, may also be added.
  • suitable liquid excipients such as fatty oils, paraffin oil or liquid polyethylene glycols or fatty acid esters of ethylene or propylene glycol, to which stabilizers and detergents, for example of the polyoxyethylene sorbitan fatty acid ester type, may also be added.
  • compositions suitable for rectal administration are, for example, suppositories comprising a combination of the active ingredient and a suppository base.
  • Suitable suppository bases are, for example, natural or synthetic triglycerides, paraffin hydrocarbons, polyethylene glycols or higher alkanols.
  • compositions suitable for parenteral administration may comprise aqueous solutions of an active ingredient in water-soluble form, for example of a water-soluble salt, or aqueous injection suspensions that contain viscosity- increasing substances, for example sodium carboxymethylcellulose, sorbitol and/or dextran, and, if desired, stabilizers.
  • the active ingredient optionally together with excipients, can also be in the form of a lyophilizate and can be made into a solution before parenteral administration by the addition of suitable solvents. Solutions such as are used, for example, for parenteral administration can also be employed as infusion solutions.
  • the manufacture of injectable preparations is usually carried out under sterile conditions, as is the filling, for example, into ampoules or vials, and the sealing of the containers.
  • the compounds of the invention may be administered as the sole active ingredient, or together with other drugs useful against neoplastic diseases or useful in immunomodulating regimens.
  • the compounds of the invention may be used in accordance with the invention in combination with pharmaceutical compositions effective in various diseases as described above, e.g.
  • cyclophosphamide 5-fluorouracil, fludarabine, gemcitabine, cisplatinum, carboplatin, vincristine, vinblastine, etoposide, irinotecan, paclitaxel, docetaxel, rituxan, doxorubicine, gefitinib, or imatinib; or also with cyclosporins, rapamycins, ascomycins or their immunosuppressive analogs, e.g. cyclosporin A, cyclosporin G, FK-506, sirolimus or everolimus, corticosteroids, e.g.
  • prednisone cyclophosphamide, azathioprene, methotrexate, gold salts, sulfasalazine, antimalarials, brequinar, leflunomide, mizoribine, mycophenolic acid, mycophenolate, mofetil, 15- deoxyspergualine, immuno-suppressive monoclonal antibodies, e.g. monoclonal antibodies to leukocyte receptors, e.g.
  • the invention also provides for a pharmaceutical combinations, e.g. a kit, comprising a) a first agent which is a compound of the invention as disclosed herein, in free form or in pharmaceutically acceptable salt form, and b) at least one co-agent.
  • a pharmaceutical combination e.g. a kit, comprising a) a first agent which is a compound of the invention as disclosed herein, in free form or in pharmaceutically acceptable salt form, and b) at least one co-agent.
  • the kit can comprise instructions for its administration.
  • the compounds of the invention are also obtainable in the form of hydrates, or their crystals may include for example the solvent used for crystallization (present as solvates).
  • Salts can usually be converted to compounds in free form, e.g., by treating with suitable basic agents, for example with alkali metal carbonates, alkali metal hydrogen carbonates, or alkali metal hydroxides, such as potassium carbonate or sodium hydroxide.
  • suitable basic agents for example with alkali metal carbonates, alkali metal hydrogen carbonates, or alkali metal hydroxides, such as potassium carbonate or sodium hydroxide.
  • a compound of the invention in a base addition salt form may be converted to the corresponding free acid by treating with a suitable acid (e.g., hydrochloric acid, etc.).
  • any reference to the free compounds is to be understood as referring also to the corresponding salts, as appropriate.
  • Salts of the inventive compounds with a salt-forming group may be prepared in a manner known per se. Acid addition salts of compounds of Formula (1), (2A), (2B), (3A) and (3B), may thus be obtained by treatment with an acid or with a suitable anion exchange reagent. Pharmaceutically acceptable salts of the compounds of the invention may be formed, for example, as acid addition salts, with organic or inorganic acids, from compounds of Formula (1), (2A), (2B), (3A) and (3B), with a basic nitrogen atom.
  • Suitable inorganic acids include, but are not limited to, halogen acids, such as hydrochloric acid, sulfuric acid, or phosphoric acid.
  • Suitable organic acids include, but are not limited to, carboxylic, phosphoric, sulfonic or sulfamic acids, for example acetic acid, propionic acid, octanoic acid, decanoic acid, dodecanoic acid, glycolic acid, lactic acid, fumaric acid, succinic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, -malic acid, tartaric acid, citric acid, amino acids, such as glutamic acid or aspartic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, cyclohexanecarboxylic acid, adamantanecarboxylic acid, benzoic acid, salicylic acid, 4 aminosalicylic acid, phthalic acid, phenylacetic acid, mandelic acid
  • Compounds of the invention in unoxidized form may be prepared from N- oxides of compounds of the invention by treating with a reducing agent (e.g., sulfur, sulfur dioxide, triphenyl phosphine, lithium borohydride, sodium borohydride, phosphorus trichloride, tribromide, or the like) in a suitable inert organic solvent (e.g. acetonitrile, ethanol, aqueous dioxane, or the like) at 0 to 80 0 C.
  • a reducing agent e.g., sulfur, sulfur dioxide, triphenyl phosphine, lithium borohydride, sodium borohydride, phosphorus trichloride, tribromide, or the like
  • a suitable inert organic solvent e.g. acetonitrile, ethanol, aqueous dioxane, or the like
  • Prodrug derivatives of the compounds of the invention may be prepared by methods known to those of ordinary skill in the art (e.g., for further details see Saulnier et al., (1994), Bioorganic and Medicinal Chemistry Letters, Vol. 4, p. 1985).
  • appropriate prodrugs may be prepared by reacting a non-derivatized compound of the invention with a suitable carbamylating agent (e.g., 1,1- acyloxyalkylcarbanochloridate, para-nitrophenyl carbonate, or the like).
  • Protected derivatives of the compounds of the invention may be made by means known to those of ordinary skill in the art. A detailed description of techniques applicable to the creation of protecting groups and their removal may be found in T. W. Greene, "Protecting Groups in Organic Chemistry", 3 rd edition, John Wiley and Sons, Inc., 1999.
  • Compounds of the invention may be prepared as their individual stereoisomers by reacting a racemic mixture of the compound with an optically active resolving agent to form a pair of diastereoisomeric compounds, separating the diastereomers and recovering the optically pure enantiomers.
  • Resolution of enantiomers may be carried out using covalent diastereomeric derivatives of the compounds of the invention, or by using dissociable complexes (e.g., crystalline diastereomeric salts).
  • Diastereomers have distinct physical properties (e.g., melting points, boiling points, solubilities, reactivity, etc.) and may be readily separated by taking advantage of these dissimilarities.
  • the diastereomers may be separated by fractionated crystallization, chromatography, or by separation/resolution techniques based upon differences in solubility.
  • the optically pure enantiomer is then recovered, along with the resolving agent, by any practical means that would not result in racemization.
  • a more detailed description of the techniques applicable to the resolution of stereoisomers of compounds from their racemic mixture may be found in Jean Jacques, Andre Collet, Samuel H. Wilen, "Enantiomers, Racemates and Resolutions", John Wiley And Sons, Inc., 1981.
  • the compounds of the invention may be made by a process as described in the Examples.
  • Step 2 l-(2,5-dimethyl-4-nitrophenyl)-3-(dimethylamino)but-2-en- 1-one
  • Steps 3 and 4 2,5-dimethyl-4-(3-methyrisoxazol-5-yl)anirine
  • a mixture of l-(2,5-dimethyl-4-nitrophenyl)-3-(dimethylamino)but-2-en- 1-one (Step 2, 100 mg, 0.38 mmol) and hydroxylamine monohydrochloride (132 mg, 1.9 mmol) in ethanol (3 mL) was heated in a microwave at 100 0 C for 15 min.
  • the obtained 5-(2,5-dimethyl-4-nitrophenyl)-3-methylisoxazole was dissolved in methanol (10 mL). To this solution was added Pd/C (10%).
  • Step 1 To a mixture of 2,5-dimethyl-4-nitrobenzaldehyde (75 mg, 0.42 mmol) and toluenesulfonylmethyl isocyanide (TOSMIC) (98 mg, 0.5 mmol) in methanol (2 mL), was added sodium methoxide (68 mg, 1.26 mmol). The mixture was sealed and heated at 90 0 C for 15 hr. The reaction mixture was concentrated and partitioned between water and ethyl acetate. The organic layer was separated, dried over sodium sulfate and concentrated. The 5-(2,5-Dimethyl-4-nitrophenyl)oxazole obtained was used in the next step without purification.
  • TOSMIC toluenesulfonylmethyl isocyanide
  • Step 2 The 5-(2,5-dimethyl-4-nitrophenyl)oxazole obtained in the last step was dissolved in methanol (10 mL). To the solution was added Pd/C (10%). The reaction mixture was degassed and purged with H 2 for several times and then stirred under 1 atm. hydrogen gas overnight. The mixture was filtered and concentrated to afford 2,5-dimethyl-4-(oxazol-5-yl)aniline as a white solid. ESMS m/z 189 (M+ H + ).
  • Step 1 To a mixture of l-(2,5-dimethyl-4-nitrophenyl)ethanone (300 mg, 1.55 mmol) in HBr (48%) (5 mL)/methanol (2.4 rnL) was added bromine (250 mg, 1.55 mmol). The mixture was stirred at room temperature for 4 hrs. The mixture was diluted with water and extracted with ethyl acetate (2 x 20 mL). The organic layer was washed with brine and concentrated.
  • Step 2 A mixture of 2-bromo-l-(2,5-dimethyl-4-nitrophenyl)ethanone (70 mg, 0.26 mmol) and ethanethioamide (30 mg, 0.4 mmol) in ethanol (2 mL) was heated in a microwave at 150 0 C for 20 min. The obtained 4-(2,5-dimethyl-4- nitrophenyl)-2-methylthiazole was dissolved in methanol (10 mL). To the solution was added Pd/C (10%). The reaction mixture was degassed and purged with H 2 for several times and stirred under 1 atm. hydrogen gas overnight. The mixture was filtered and concentrated to afford 2,5-dimethyl-4-(2-methylthiazol-4-yl)aniline. ESMS m/z 219 (M+ H+).
  • Step 1 tert-Butyl 4-(2-chloro-4-fluoro-5-nitrobenzamido)piperidine-l- carboxylate
  • Step 2 tert-Butyl 4-(4-fluoro-5-nitro-2-vinylbenzamido)piperidine-l- carboxylate.
  • Step 3 tert-Butyl 4-(5-fluoro-6-nitro-l-oxoisoindolin-2-yl)piperidine-l- carboxylate
  • tert-Butyl 4-(4-fluoro-5-nitro-2-vinylbenzamido)piperidine- 1-carboxylate (Step 2, 1.1 g, 2.77 mmol) in 50 mL of DCM is chilled to -78°C. Ozone was passed through the solution until the starting material was consumed, and then nitrogen was passed through the solution for 5 min. The reaction mixture was warmed to room temperature. Triphenylphosphine-resin (2.77 g) in 10 mL of DCM was added, and was stirred for another 1.5 h. The resin was filtered off, and the solution was concentrated in vacuo.
  • the resulting crude was dissolved in DCM (15 mL), and to this solution were added TFA (15 mL) and triethylsilane (1.0 mL, 5.9 mmol) sequentially. The reaction was stirred at room temperature 2 h. After concentration, the reaction crude was poured into 10 mL of water, neutralized to pH 8 with sat. aq. NaHCO 3 , followed by addition of (Boc) 2 O (603 mg, 2.77 mmol) in 10 mL of DCM. The reaction was stirred at room temperature for 1.5 h, then extracted with DCM.
  • Step 4 tert-Butyl 4-(6-amino-5-fluoro-l-oxoisoindolin-2-yl)piperidine-l- carboxylate
  • Step 1 fer ⁇ butyl-4-(4-aminonaphthalen-l-yl)-5,6-dihvdropyridine-l(2H)- carboxylate
  • Step 2 fe/t-butyl-4-(4-aminonaphthalen- 1 -yPpiperidine- 1 -carboxylate
  • ?ert-butyl-4-(4-aminonaphthalen-l-yl)-5,6- dihydropyridine-l(2H)-carboxylate 50 mL of MeOH was added 10 wt% Pd-C (100 mg). The reaction was degassed to remove air and stirred under 1 atm. H 2 until the starting material is consumed. The Pd-C was removed by filtration and the resulting solution was concentrated in vacuo to afford te/t-butyl-4-(4-aminonaphthalen-l- yl)piperidine- 1 -carboxylate.
  • Step 1 To a solution of N 2 -(4-bromo-2,5-dimethylphenyl)-5-chloro-N 4 -(5- methyl-lH-pyrazol-3-yl)pyrimidine-2,4-diamine (280 mg, 0.69 mmol) in THF (3 mL) was added p-TSA (119 mg, 0.69 mmol) and 3,4-dihydro-2H-pyran (348 mg, 2.86 mmol). The mixture was stirred at room temperature for 14 h and then poured into saturated aqueous NaHCO 3 solution (10 mL). The resulting mixture was extracted with EtOAc (3 x 10 mL) and the combined organic layers were concentrated.
  • Step 2 A mixture of N 2 -(4-bromo-2,5-dimethylphenyl)-5-chloro-N 4 -(5- methyl-l-(tetrahydro-2H-pyran-2-yl)-lH-pyrazol-3-yl)pyrimidine-2,4-diamine (166 mg, 0.34 mmol), tributyl(l-ethoxyvinyl)stannane (146 mg, 0.41 mmol) and Pd(PPh 3 ) 4 (39 mg, 0.034 mmol) in toluene (2 mL) was degassed and heated at 100 0 C under N 2 for 14 h. After cooling down to room temperature, the mixture was concentrated.
  • Step 3 To a solution of l-(4-(5-chloro-4-(5-methyl-lH-pyrazol-3- ylamino)pyrimidin-2-ylamino)-2,5-dimethylphenyl)ethanone (60 mg, 0.16 mmol) in MeOH (1 niL) was added AcOH (15 mg, 0.25 mmol), followed by the addition of 2- (aminooxy)ethanol (20 mg, 0.26 mmol). The mixture was heated to 60 0 C for 14 h and cooled down to room temperature.
  • Step 1 A mixture of l-bromo-2,5-dimethyl-4-nitrobenzene (100 mg, 0.43 mmol), 4,4,5, 5-tetramethyl-2-(l,4-dioxaspiro[4.5]dec-7-en-8-yl)-l,3,2-dioxaborolane (112 mg, 0.43 mmol), Pd(PPh 3 ) 4 (49 mg, 0.043 mmol) and CsF (196 mg, 1.29 mmol) in a mixture of dimethyl ethylene glycol and water (2:1, 1.5 mL) was degassed and heated under N 2 at 130 0 C in microwave reactor for 15 min.
  • Step 2 A mixture of 8-(2,5-Dimethyl-4-nitrophenyl)-l,4- dioxaspiro[4.5]dec-7-ene (105 mg, 0.36 mmol) and Pd/C (10 mg) in EtOH was degassed and stirred under 1 atm. H 2 at room temperature for 14 h. Pd/C was removed by filtration and filtrate was concentrated to provide 2,5-dimethyl-4-(l,4- dioxaspiro[4.5]decan-8-yl)aniline, which was used in the next step without further purification; ESMS m/z 262.2 (M + H + ).
  • Step 3 A mixture of 2,5-dimethyl-4-(l,4-dioxaspiro[4.5]decan-8- yl)aniline (86 mg, 0.33 mmol) and 2,5-dichloro-N-(5-methyl-lH-pyrazol-3- yl)pyrimidin-4-amine (104 mg, 0.43 mmol) in 1 PrOH (3 mL) was treated with HCl (82 ⁇ L, 4N in dioxane, 0.33mmol) and heated to 125 0 C in a sealed tube for 14 h.
  • Step 4 To a solution of 4-(4-(5-chloro-4-(5-methyl-lH-pyrazol-3- ylamino)pyrimidin-2-ylamino)-2,5-dimethylphenyl)cyclohexanone (30 mg, 0.071 mmol) in 1,2-dichloroethane (1 mL) was added morpholine (9 mg, 0.11 mmol) followed by AcOH (6.5 mg, 0.11 mmol) and 4A molecular sieves. The mixture was stirred at room temperature for 1 h before the addition of sodium triacetoxyborohydride (22.5 mg, 0.11 mmol).
  • Step 1 A mixture of 2,5-dichloro-N-(5-methyl-lH-pyrazol-3-yl)pyrimidin- 4-amine (732 mg, 3 mmol), 4-bromo-2,5-dimethylaniline (554 mg, 2 mmol) and cone, aqueous HCl (1.5 mL) in isopropanol (15 mL) was heated in a microwave for 40 min at 130 °C. LCMS showed that the reaction was not complete, and additional 2,5- dichloro-N-(5-methyl-lH-pyrazol-3-yl)pyrimidin-4-amine (732 mg, 3 mmol) was added to the reaction.
  • reaction was again heated in a microwave for an additional 60 min at 130 °C.
  • the crude reaction mixture was then diluted with EtOAc (100 mL), sequentially washed with saturated aqueous NaHCO 3 (2x20 mL) and brine (10 mL), dried over Na 2 CO 3 and concentrated in vacuo.
  • Step 2 A mixture of N 2 -(4-bromo-2,5-dimethylphenyl)-5-chloro- ⁇ -(5- methyl-lH-pyrazol-3-yl)pyrimidine-2,4-diamine (41 mg, 0.1 mmol), potassium 1- trifluoroboratomethylmorpholine (43 mg, 0.2 mmol), Pd(OAc) 2 (3 mg, 0.013 mmol), Xantphos (12 mg, 0.025 mmol) and Cs 2 CO 3 (98 mg, 0.3 mmol) in THF (1 mL)/H 2 O (0.1 mL) was degassed by a stream of argon gas.
  • reaction mixture was heated at 150 0 C in a microwave reactor for 20 min, followed by concentration and purification with preparative RP-HPLC to afford 6-(5-chloro-4-(5-methyl-lH-pyrazol-3- ylamino)pyrimidin-2-ylamino)-5-fluoro-2-(piperidin-4-yl)isoindolin- 1-one; ESMS m/z 457.2 (M + H + ).
  • reaction mixture was heated at 150 0 C in microwave reactor for 20 min, followed by concentration and purification with preparative RP-HPLC to afford 6-(5-chloro-4-(5-methylisoxazol-3-ylamino)pyrimidin-2-ylamino)-5-fluoro-2- (piperidin-4-yl)isoindolin-l-one; ESMS m/z 458.1 (M + H + ).
  • Step 1 To a mixture of 5-bromo-4-methylpyridin-2-amine (200 mg, 1.07 mmol), ?ert-butyl 4-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)-5,6- dihydropyridine-l(2H)-carboxylate (370 mg, 1.2 mmol) and sodium carbonate (400 mg, 1.28 mmol) in DMF/H 2 O (8/2 mL) was added tetrakis(triphenylphosphine) palladium (0) (62 mg, 5% mmol).
  • the reaction tube is sealed, the mixture was purged with N 2 for 3 min and then heated at 100 0 C under N 2 for overnight.
  • the reaction was cooled to room temperature and poured into saturated aqueous ammonia chloride solution.
  • the crude reaction mixture was extracted with ethyl acetate (3 x 15 mL). The organic extracts were combined, washed with brine and concentrated.
  • the crude product was purified with silica gel column chromatography (80% ethyl acetate in hexanes) to afford te/t-butyl 4-(6-amino-4-methylpyridin-3-yl)-5,6-dihydropyridine- l(2H)-carboxylate as a yellow oil.
  • Step 2 To a mixture of 2,5-dichloro-N-(5-methyl- l-(tetrahydro-2H-pyran- 2-yl)-lH-pyrazol-3-yl)pyrimidin-4-amine (150 mg, 0.45 mmol), tert-bvXy ⁇ 4-(6- amino-4-methylpyridin-3-yl)piperidine-l-carboxylate (120 mg, 0.41 mmol), Xantphos (24 mg, 0.04 mmol) and cesium carbonate ( 270 mg, 0.82 mmol) in THF (4 mL) was added palladium acetate (5 mg, 0.02 mmol). The mixture was purged with nitrogen and the tube was sealed.
  • Step 3 To a solution of tert-butyl 4-(6-(5-chloro-4-(5-methyl-l- (tetrahydro-2H-pyran-2-yl)-lH-pyrazol-3-ylamino)pyrimidin-2-ylamino)-4- methylpyridin-3-yl)piperidine-l-carboxylate in DCM (1 rnL), was added TFA (1 rnL).
  • Step 4 To a mixture of 5-chloro-N4-(5-methyl-lH-pyrazol-3-yl)-N2-(4- methyl-5-(piperidin-4-yl)pyridin-2-yl)pyrimidine-2,4-diamine (50 mg, 0.12 mmol) and triethylamine (50 uL, 0.36 mmol) in DMF (1.5 mL), was added 2-bromo- acetamide (25 mg, 0.18 mmol). The mixture was stirred at room temperature for 2 hours.
  • the IC 50 of a drug may be determined constructing a dose-response curve and examining the effect of different concentrations of antagonist on reversing agonist activity.
  • IC 50 values may be calculated for a given antagonist by determining the concentration needed to inhibit half of the maximum biological response of the agonist.
  • a series of dose-response data e.g., drug concentrations xl, x2, ...,xn and growth inhibition yl, y2, ...,yn, the values of y are in the range of 0-1 is generated.
  • the IC 50 value is given as that concentration of the test compound that results in growth inhibition that is 50 % lower than that obtained using the control without inhibitor.
  • the compounds of the invention in free form or in pharmaceutically acceptable salt form may exhibit valuable pharmacological properties, for example, as indicated by the in vitro tests described in this application.
  • compounds of the invention have IC 50 values from 1 nM to 10 ⁇ M.
  • compounds of the invention have IC 50 values from 0.01 ⁇ M to 5 ⁇ M.
  • compounds of the invention have IC 50 values from 0.01 ⁇ M to 1 ⁇ M, or more particularly from 1 nM to 1 ⁇ M.
  • compounds of the invention have IC 50 values of less than 1 nM or more than 10 ⁇ M.
  • the compounds of the invention may exhibit a percentage inhibition of greater than 50%, or in other embodiments, may exhibit a percentage inhibition greater than about 70%, against IGF-IR at 10 ⁇ M.
  • Ba/F3 is a murine IL- 3 -dependent pro-B lymphoma cell line.
  • Parental Ba/F3 cells are used to generate a panel of sublines whose proliferation and survival is rendered IL-3 -independent by stable transduction with individual tyrosine kinases activated by fusion with the amino-terminal portion of TEL (amino acid 1-375) or BCR.
  • TEL amino acid 1-375
  • BCR BCR
  • TK Tel-Tyrosine Kinase
  • Each transformed Ba/F3 cells are cultured in RPMI- 1640 media (Gibco Cat #11875093, Carlsbad, CA) supplemented with 10% FBS (Hyclone Cat #SV30014.03, Logan, UT), 4.5 g/L glucose (Sigma #G5400, St.Louis, MO), 1.5 g/L sodium bicarbonate (Biowhittaker #17-613E, Walkersville, MD) and Pen/Strep (Gibco #10378-016, Carlsbad, CA). Cells are splitted twice weekly.
  • the potency of test compounds against various TeI-TK transformed Ba/F3 lines is determined as follows. Exponentially growing BaF3 TeI-TK cells are diluted in fresh medium to 75,000 cells/mL and seeded into 384-well plates (3750 cells/well) at 50 ⁇ L/well using a ⁇ Fill liquid dispenser (BioTek, Winooski, VT, USA). Duplicate plates are run for each cell line. Test and control compounds are serially diluted with DMSO and arrayed in a polypropylene 384-well plate. 50 nL of compound is transferred into the assay plates using a pin-transfer device, and the plates are incubated at 37 0 C (5% CO 2 ) for 48 hours.
  • IGF-IR and INSR insulin receptor
  • IGF-IR and INSR insulin receptor
  • 1O x kinase buffer 200 mM Tris (pH 7.0), 100 mM MgCl 2 , 30 mM MnCl 2 , 50 nM NaVO 4 ), 10 mM ATP, 100 mg/ml BSA, 0.5 M EDTA, 4 M KF.
  • Proxiplate-384 from Perkin-Elmer is used for set up assay.
  • the HTRF reagents including substrate are purchased from CIS-US, Inc.
  • the substrate/ ATP mix is prepared by adding ATP (final concentration, 3 ⁇ M) and biotinylated poly-GT (final concentration, 10 ng/ ⁇ l) into Ix KB, and dispensed into Proxiplate-384 at 5 ⁇ l/well using ⁇ Fill (Bio-TEK). Serially diluted compounds (in DMSO) are transferred into plate using 50 nL pinhead. 5 ⁇ L of prepared Enzyme mix (enzyme (final concentration, 5 ng/ ⁇ l), mixed with BSA and DTT in Ix KB) is added to initiate kinase reaction using ⁇ Fill (Bio-TEK). Assay plate is incubated at room temperature for 2 hours.
  • Detection mix is prepared by adding both Mab PT66-K and Streptavidin-XL ent into 0.5 x KB solution containing KF (final concentration, 125 mM), EDTA (final concentration, 50 mM) and BSA (final concentration, 100 ⁇ g/ml) in. At the end of reaction, 10 ⁇ L of detection mix is added and incubated for 30 minutes at room temperature before measurement. HTRF signal is detected using Analyst-GT (molecular Devices).
  • each cell line is transduced by ampholytic retrovirus carrying both luciferase gene and puromycin-resistant gene whose expression is driven by LTR.
  • the retroviral vector pMSCV-Puro-Luc is transfected into Phoenix cell line using Fugene ⁇ (Roche) according to manufacturer's instruction.
  • supernatant containing virus is harvested and filtered with 0.2 ⁇ m filter.
  • Harvested virus is used immediately or stored at -80'C.
  • cultured cancer cells are harvested and plated (5x10 5 cells/well in 1 ml medium) on 6-well tissue culture plate.
  • virus supernatant is added together with 400 ⁇ l FBS, 40 ⁇ l 1 M HEPES (pH8.0) and 4 ⁇ l of polybrene (lO ⁇ g/ml, Specialty media).
  • the plate is centrifuged down for 90 minutes at 2500 rpm for spin- infection and is transferred into an incubator for overnight infection.
  • infected cell line is transferred into T-75 flask containing fresh medium and incubated for one day.
  • puromycin is added at the final concentration of l ⁇ g/ml to begin selection.
  • puromycin-resistant cell line is established after at least two subsequent splits and is preserved as luciferized stock.
  • Each cell line is harvested while in log phase growth by trypsinization and diluted in respective media to appropriate density prior to plating.
  • Cells are dispensed using ⁇ Fill (BioTeK) at 50 ⁇ l/well into white walled clear bottom plates (Greiner - custom for GNF). Cells are then placed in 37 0 C incubator supplying 5% CO2 overnight.
  • Compounds are transferred using 50nL/well Pintool technology via Platemate (Matrix). Assay plates are then placed back into the incubator for 3 days.
  • BRITELITE® Perkin Elmer, diluted according to manufacturer's suggestion
  • Raw data is generated in RLU.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
EP09770964A 2008-06-25 2009-06-24 Pyrimidinderivate als kinaseinhibitoren Withdrawn EP2331526A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7558308P 2008-06-25 2008-06-25
PCT/US2009/048509 WO2009158431A2 (en) 2008-06-25 2009-06-24 Compounds and compositions as kinase inhibitors

Publications (1)

Publication Number Publication Date
EP2331526A2 true EP2331526A2 (de) 2011-06-15

Family

ID=41076758

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09770964A Withdrawn EP2331526A2 (de) 2008-06-25 2009-06-24 Pyrimidinderivate als kinaseinhibitoren

Country Status (11)

Country Link
EP (1) EP2331526A2 (de)
JP (1) JP2011526291A (de)
KR (1) KR20110020940A (de)
CN (1) CN102203083A (de)
AU (1) AU2009262198B2 (de)
BR (1) BRPI0914545A2 (de)
CA (1) CA2729546A1 (de)
EA (1) EA201100078A1 (de)
MX (1) MX2010014568A (de)
UA (1) UA101057C2 (de)
WO (1) WO2009158431A2 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8933227B2 (en) 2009-08-14 2015-01-13 Boehringer Ingelheim International Gmbh Selective synthesis of functionalized pyrimidines
JP5539518B2 (ja) 2009-08-14 2014-07-02 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 2−アミノ−5−トリフルオロメチルピリミジン誘導体の位置選択的調製
WO2011112666A1 (en) 2010-03-09 2011-09-15 OSI Pharmaceuticals, LLC Combination anti-cancer therapy
US8987307B2 (en) 2011-03-03 2015-03-24 Hoffmann-La Roche Inc. 3-amino-pyridines as GPBAR1 agonists
ES2628438T3 (es) * 2011-11-29 2017-08-02 Genentech, Inc. Derivados de aminopirimidina como moduladores de LRRK2
CN104854101B (zh) 2012-11-06 2018-05-01 上海复尚慧创医药研究有限公司 Alk激酶抑制剂
MX2015012062A (es) * 2013-03-14 2016-05-05 Tolero Pharmaceuticals Inc Inhibidores de jak2 y alk2 y metodos para su uso.
US10023593B2 (en) * 2014-05-30 2018-07-17 Beijing Pearl Biotechnology Limited Liability Company ALK kinase inhibitor, and preparation method and uses thereof
WO2018068017A1 (en) * 2016-10-07 2018-04-12 Araxes Pharma Llc Heterocyclic compounds as inhibitors of ras and methods of use thereof
CN107488148A (zh) * 2017-06-26 2017-12-19 安徽省黄淮兽药有限公司 一种苯丙酰胺类杀虫剂及其制备方法
IL275490B2 (en) 2017-12-22 2024-05-01 Ravenna Pharmaceuticals Inc Aminopyridine derivatives as phosphatidylinositol phosphate kinase inhibitors
TW202045008A (zh) * 2019-02-01 2020-12-16 印度商皮埃企業有限公司 4-取代的異噁唑/異噁唑啉(雜)芳基脒化合物、及其製備與用途
TW202112767A (zh) 2019-06-17 2021-04-01 美商佩特拉製藥公司 作為磷脂酸肌醇磷酸激酶抑制劑之胺基吡啶衍生物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0004890D0 (en) * 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
WO2003026666A1 (en) * 2001-09-26 2003-04-03 Bayer Pharmaceuticals Corporation 2-phenylamino-4- (5-pyrazolylamino)-pyrimidine derivatives as kinase inhibitors, in particular, as src kinase inhibitors
CA2533377C (en) * 2003-07-30 2012-11-27 Rigel Pharmaceuticals, Inc. Methods of treating or preventing autoimmune diseases with 2,4-pyrimidinediamine compounds
WO2005013996A2 (en) * 2003-08-07 2005-02-17 Rigel Pharmaceuticals, Inc. 2,4-pyrimidinediamine compounds and uses as anti-proliferative agents
GB0321710D0 (en) * 2003-09-16 2003-10-15 Novartis Ag Organic compounds
US20070105839A1 (en) * 2003-09-18 2007-05-10 Patricia Imbach 2, 4-Di (phenylamino) pyrimidines useful in the treatment of proliferative disorders
ATE519759T1 (de) * 2004-12-30 2011-08-15 Exelixis Inc Pyrimidinderivate als kinasemodulatoren und anwendungsverfahren
US20060270694A1 (en) * 2005-05-03 2006-11-30 Rigel Pharmaceuticals, Inc. JAK kinase inhibitors and their uses
AU2007269540B2 (en) * 2006-07-05 2013-06-27 Exelixis, Inc. Methods of using IGF1R and Abl kinase modulators
MY148427A (en) * 2006-12-08 2013-04-30 Irm Llc Compounds and compositions as protein kinase inhibitors
ME00811B (me) * 2006-12-08 2012-03-20 Novartis Ag JEDINJENJA l KOMPOZICIJE KAO INHIBITORI PROTEIN KINAZE
WO2009017838A2 (en) * 2007-08-01 2009-02-05 Exelixis, Inc. Combinations of jak-2 inhibitors and other agents
MX2010008700A (es) * 2008-02-22 2010-08-30 Hoffmann La Roche Moduladores de beta-amiloide.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009158431A2 *

Also Published As

Publication number Publication date
UA101057C2 (en) 2013-02-25
JP2011526291A (ja) 2011-10-06
CN102203083A (zh) 2011-09-28
EA201100078A1 (ru) 2011-08-30
BRPI0914545A2 (pt) 2017-05-23
MX2010014568A (es) 2011-03-29
WO2009158431A2 (en) 2009-12-30
WO2009158431A3 (en) 2010-03-11
KR20110020940A (ko) 2011-03-03
AU2009262198B2 (en) 2012-09-27
CA2729546A1 (en) 2009-12-30
AU2009262198A1 (en) 2009-12-30

Similar Documents

Publication Publication Date Title
US8859574B2 (en) Compounds and compositions as kinase inhibitors
AU2009262198B2 (en) Pyrimidine derivatives as kinase inhibitors
US8592432B2 (en) Compounds and compositions as protein kinase inhibitors
US8445505B2 (en) Pyrimidine derivatives as kinase inhibitors
EP2311807B1 (de) Verbindungen und zusammensetzungen als proteinkinase-hemmer
US9567342B2 (en) Certain protein kinase inhibitors
JP5214799B2 (ja) キナーゼ阻害剤としての化合物および組成物

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110118

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120507

RIC1 Information provided on ipc code assigned before grant

Ipc: C07D 413/14 20060101ALI20140508BHEP

Ipc: C07D 403/12 20060101ALI20140508BHEP

Ipc: A61P 37/00 20060101ALI20140508BHEP

Ipc: A61P 31/00 20060101ALI20140508BHEP

Ipc: A61K 31/506 20060101ALI20140508BHEP

Ipc: C07D 403/14 20060101ALI20140508BHEP

Ipc: C07D 401/14 20060101AFI20140508BHEP

Ipc: C07D 409/14 20060101ALI20140508BHEP

Ipc: C07D 417/14 20060101ALI20140508BHEP

Ipc: C07D 405/14 20060101ALI20140508BHEP

Ipc: A61P 35/00 20060101ALI20140508BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140623

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141104