[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2325476A1 - Coupled multi-charge ignition system with an intelligent controlling circuit - Google Patents

Coupled multi-charge ignition system with an intelligent controlling circuit Download PDF

Info

Publication number
EP2325476A1
EP2325476A1 EP09176699A EP09176699A EP2325476A1 EP 2325476 A1 EP2325476 A1 EP 2325476A1 EP 09176699 A EP09176699 A EP 09176699A EP 09176699 A EP09176699 A EP 09176699A EP 2325476 A1 EP2325476 A1 EP 2325476A1
Authority
EP
European Patent Office
Prior art keywords
voltage
current
switching
transformer
switched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09176699A
Other languages
German (de)
French (fr)
Other versions
EP2325476B1 (en
Inventor
Frank Lorenz
Marco Loenarz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Technologies Inc
Original Assignee
Delphi Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Technologies Inc filed Critical Delphi Technologies Inc
Priority to EP09176699.8A priority Critical patent/EP2325476B1/en
Publication of EP2325476A1 publication Critical patent/EP2325476A1/en
Application granted granted Critical
Publication of EP2325476B1 publication Critical patent/EP2325476B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • F02P3/0435Opening or closing the primary coil circuit with electronic switching means with semiconductor devices
    • F02P3/0442Opening or closing the primary coil circuit with electronic switching means with semiconductor devices using digital techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/121Testing characteristics of the spark, ignition voltage or current by measuring spark voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/05Layout of circuits for control of the magnitude of the current in the ignition coil
    • F02P3/051Opening or closing the primary coil circuit with semiconductor devices
    • F02P3/053Opening or closing the primary coil circuit with semiconductor devices using digital techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/055Layout of circuits with protective means to prevent damage to the circuit, e.g. semiconductor devices or the ignition coil
    • F02P3/0552Opening or closing the primary coil circuit with semiconductor devices
    • F02P3/0554Opening or closing the primary coil circuit with semiconductor devices using digital techniques

Definitions

  • the present invention relates to an ignition system and particularly, to an AC ignition system which is able to create and maintain a continuous spark.
  • Multi-charge Ignition systems produce a fast sequence of individual sparks, so that the output is a long quasi-continuous spark.
  • Multi-charge ignition methods have the disadvantage that the spark is interrupted during the recharge periods, which has negative effects, particularly noticeable when high turbulences are present in the combustion chamber. For example this can lead to misfire, resulting in higher fuel consumption and higher emissions.
  • prior solutions such as simple AC ignition systems have also the disadvantage that the primary side is directly coupled to the secondary side of the transformer during the firing, so the transferred energy to the spark plug decreases with higher burn voltages.
  • an ignition system providing power and duration controlled ignition spark.
  • the system comprises a spark controller, first switching energy accumulator, storage capacitor, and second switching energy accumulator with an ignition coil.
  • the ignition system utilizes dual means of switching energy accumulation, internal energy transfer, and three means of energy release to the ignition spark, managed by means of the spark controller depending on engine operating conditions, and provides continuous bipolar ignition spark.
  • Such ignition system is based on the use of an energy accumulator coupled to a storage capacitor in order to feed energy to a single ignition coil. It does not provide any solution to the disadvantage encountered with multi-charge systems.
  • One goal of the present invention is to overcome the aforecited drawbacks by providing a multi-charge ignition system without these negative effects and, at least partly, producing a continuous ignition spark over a wide area of burn voltage, delivering an adjustable energy to the spark plug and providing with a burning time of the ignition fire that can be chosen freely.
  • the invention concerns an ignition system for a combustion engine comprising a spark plug with a pair of gapped electrodes, a first transformer including a first primary winding inductively coupled to a first secondary winding, a second transformer including a second primary winding inductively coupled to a second secondary winding, secondary windings being each coupled to the gapped electrodes of the spark plug and a control unit enabled to simultaneously energize and deenergize primary windings by simultaneously switching on and off two switches to establish an electrical arc across the gapped electrodes and to sequentially energize and deenergize primary windings by sequentially switching on and off both switches to maintain a continuous ignition fire.
  • the control unit allows the control unit to use simultaneously the energy stored in both transformers to create an ignition spark and to use alternatively the energy stored either in one transformer or in the other to maintain a continuous ignition fire while reenergizing the other transformer.
  • the alternation between energizing and deenergizing is done after comparison of the secondary current with a predetermined current threshold representative of the minimum necessary level of energy stored in the transformer that is switched off. When the secondary current falls short to the predetermined current threshold, the switching operation is executed.
  • the ignition system allows production of a continuous ignition spark with a burning time of the ignition fire that can be chosen freely.
  • the ignition system further comprises a step-down converter connected to the primary windings and including a third switch and a diode, and said control unit is enabled to switch off said third switch when a primary current exceeds a predetermined current threshold in order to limit the stored energy in the transformer that is switched on by impelling a current over the diode. Due to this step-down converter, the primary current is limited to a predetermined maximum value, so that the transformers cannot go into magnetic saturation.
  • control unit is further enabled to compare the secondary current with the predetermined current threshold representative of the minimum necessary level of energy stored in the transformer that is switched off and to adapt this predetermined current threshold to the level of energy stored.
  • predetermined current threshold representative of the minimum necessary level of energy stored in the transformer that is switched off
  • secondary windings are decoupled one from the other by high voltage diodes, and said control unit is further enabled to detect a burn voltage at the spark plug in the combustion engine, to switch off both corresponding switches when burn voltage is higher than a predetermined burn voltage threshold and switch on high-voltage diodes so as a forward current floats through.
  • said control unit detects burn voltage at the spark plug by measuring the gradient of the secondary current. Detection of the burn voltage allows stopping ignition when it exceeds a predetermined level in order to be able to use ordinary low-cost high-voltage breakdown diodes on the secondary side, i.e. with a breakdown voltage of e.g. 5kV, instead of expensive and too large high-voltage diodes with a breakdown voltage of 30kV or more.
  • the present invention concerns a method of producing electrical arcs across a pair of gapped electrodes of a spark plug with an ignition system of claim 1, comprising the steps of:
  • the method further comprises the steps of comparing the primary current with a first predetermined current threshold; switching off a third switch when the primary current exceeds the first predetermined current threshold and impelling a current over a diode from the primary winding that is switched on.
  • the method further comprises the steps of comparing the secondary current with a second predetermined current threshold representative of the minimum necessary level of energy stored in the transformer that is switched off; and switching sequentially on and off both corresponding switches when the secondary current falls short to the second predetermined current threshold.
  • the method further comprises the step of setting adaptively said second predetermined current threshold to the level of energy stored in the transformer that is switched off.
  • the method further comprises the step of detecting burn voltage at the spark plug in the combustion engine and switching off both corresponding switches when burn voltage is higher than a predetermined burn voltage threshold and switching on high-voltage diodes so as forward current floats through.
  • a multi-charge ignition system for producing a continuous ignition spark over a wide area of burn voltage servicing a single set of gapped electrodes in a spark plug 11 such as might be associated with a single combustion cylinder of an internal combustion engine (not shown).
  • the multi-charge ignition system uses fast charging ignition coils (L1-L4), including primary windings, L1, L2 to generate the required high AC voltage and wound on a common core K1 forming a first transformer and secondary windings L3, L4 wound on another common core K2 forming a second transformer.
  • the two coil ends of the first and second primary windings L1, L3 may be alternately switched to a common ground such as a chassis ground of an automobile by electrical switches Q1, Q2.
  • These switches Q1, Q2 are preferably Insulated Gate Bipolar Transistors.
  • Resistor R1 for measuring the primary current I p that flows from the primary side is connected between the switches Q1, Q2 and ground, while resistor R2 for measuring the secondary current I s that flows from the secondary side is connected between the diodes D1, D2 and ground.
  • the low-voltage ends of the secondary windings L2, L4 are coupled to a common ground or chassis ground of an automobile through high-voltages diodes D1, D2.
  • the high-voltage ends of the secondary ignition windings L2, L4 are coupled to one electrode of a gapped pair of electrodes in a spark plug 11 through conventional means.
  • the other electrode of the spark plug 11 is also coupled to a common ground, conventionally by way of threaded engagement of the spark plug to the engine block.
  • the primary windings L1, L3 are connected to a common energizing potential which in the present embodiment is assumed to correspond to conventional automotive system voltage in a nominal 12V automotive electrical system and is in the figure the positive voltage of battery 15.
  • the charge current can be supervised by an electronic control circuit 13 that controls the state of the switches Q1, Q2.
  • the control circuit 13 is for example responsive to engine spark timing (EST) signals to selectively couple the primary windings L1 and L2 to system ground through switches Q1 and Q2 respectively controlled by signals Igbt1 and Igbt2 respectively.
  • Measured primary current I p and secondary current I s are sent to control unit 13.
  • the common energizing potential of the battery 15 is coupled by way of an ignition switch M1 to the primary windings L1, L3 at the opposite end that the grounded one.
  • Switch M1 is preferably a MOSFET transistor.
  • a diode D3 is coupled to transistor M1 so as to form a step-down converter.
  • Control unit 13 is enabled to switch off switch M1 by means of a signal FET.
  • the control circuit 13 is operative to provide an extended continuous high-energy arc across the gapped electrodes.
  • switches M1, Q1 and Q2 are all switched on, so that the delivered energy of the power supply 15 is stored in the magnetic circuit of both transformers (T1, T2).
  • both primary windings are switched off at the same time by means of switches Q1 and Q2.
  • switch Q1 is switched on and switch Q2 is switched off (or vice versa).
  • the first transformer (L1, L2) stores energy into its magnetic circuit while the second transformer (L3, L4) delivers energy to spark plug (or vice versa).
  • the control unit detects it and switches transistor M1 off.
  • the stored energy in the transformer (L1, L2 or L3, L4) that is switched on (Q1, or Q2) impels a current over diode D3 (step-down topology), so that the transformer cannot go into the magnetic saturation, its energy being limited.
  • transistor M1 will be permanently switched on and off to hold the energy in the transformer on a constant level.
  • steps 3 to 5 will be iterated by sequentially switching on and off switches Q1 and Q2 as long as the control unit switches both switches Q1 and Q2 off.
  • the trace represents primary current I p along time.
  • the traces represent the secondary current I s and the secondary voltage U s at the gapped electrodes of the spark plug.
  • the different steps 1 to 5 of operation of the control circuit have been reported on Figure 2 .
  • step 1 i.e. M1, Q1 and Q2 switched on
  • the primary current I p is increasing rapidly with the energy storage in the transformers.
  • step 2 i.e. Q1 and Q2 switched off
  • the secondary current Is is increasing and a high voltage is induced so as to create an ignition spark through the gapped electrodes of the spark plug.
  • step 3 i.e.
  • step 4 comparison is made between primary current I p and a limit I pmax . When I p exceeds I pmax M1 is switched off, so that the "switched on" transformer cannot go into the magnetic saturation, by limiting its stored energy.
  • step 5 comparison is made between the secondary current I s and a secondary current threshold level I smin . If I s ⁇ I smin , Q1 is switched off and Q2 switched on (or vice versa). Then steps 3 to 5 will be iterated by sequentially switching on and off Q1 and Q2 as long as the control unit switches both Q1 and Q2 off. Because of the alternating charging and discharging of the two transformers the ignition system delivers a continuous ignition fire.
  • Figure 3 is a diagram showing in more details step by step the different control signals sent and received by the control unit of an ignition system as illustrated in Figure 1 .
  • control unit checks whether there is a high EST signal. If so, during a step S1, control signals Igbt1, Igbt2 and Fet are switched on, so both transformers are charged at the same time. The delivered energy of the power supply is stored in the magnetic circuit of the transformers.
  • control unit checks whether there is a low EST signal. Until this is the case, the transformers are charging.
  • both control signals Igbt1 and Igbt2 are switched off.
  • a high voltage is induced (up to 30-40kV).
  • a spark gap at the spark plug breaks down and the secondary voltage decreases to a burn voltage (e.g. ⁇ 0.5 kV).
  • the high voltage diodes (D1, D2) are protected from too high voltages, because both diodes are conducted in forward direction during this critical breakthrough period.
  • step S3 Igbt1 remains off and Igbt2 is switched on.
  • coil T1 is recharged and coil T2 is firing.
  • the control signal FET is switched off for a short time during a step S4.
  • the primary current I p is limited to a maximum value and cannot rise up very quickly to non-controllable values; and therefore the magnetic circuit cannot go into magnetic saturation.
  • the control circuit will advantageously switch both Igbt1 and Igbt2 off, if the secondary voltage (respectively dI s /dt) reaches a maximum limit (U s >U smax ).
  • the control circuit detects the gradient of the secondary current any more and will fall back to the normal operational mode, if the secondary voltage falls below the maximum limit (Us ⁇ Usmax), i.e. one Igbt control signal being on, the other one being off. In case the secondary voltage would remain at a very high level, the system then works in a normal multi-charge mode where both Igbt signals are on respectively off at the same time, (see figures 4 and 5 ). Another way to detect the secondary voltage is to measure the voltage at the drain connector of the transistors Q1, Q2.
  • step 5 if the secondary current I s falls short off the secondary current threshold I smin (I s ⁇ I smin ) the Igbt 2 control signal is switched off and Igbt 1 is switched on. Then during a step 6, the Igbt control signals are alternately switched on and off, steps 1.2, 4, 4.1 and 5 being iterated by the control unit.
  • the burn voltage at the spark plug in a combustion engine is variable, because of the turbulences at the ignition spark.
  • the secondary voltage U s becomes higher, the firing transformer has to deliver more energy to the ignition spark. Then, the transformer, which is recharging, cannot safe enough energy until the secondary current I s falls short to the secondary current threshold I smin . Consequently, the average energy level in the transformers decreases.
  • the burn voltage U s is advantageously detected and the secondary current threshold I smin set adaptively to a level that depends on the stored energy in the charging coil. This situation has been shown in Figure 4 .
  • Figure 4 illustrates three traces which represent primary current I p , secondary current I s and the secondary voltage U s along time.
  • the secondary voltage or burn voltage is around 2kV, i.e. twice greater than in the example of Figure 2 .
  • the steps for creating and maintaining an ignition spark are mainly the same as for the example of Figure 2 .
  • the secondary current threshold I s is set dependent on the primary current I p (see step S1.2 explained above). This function is useful to prevent the system to get to an oscillating system.
  • the secondary current threshold I smin reaches a minimum set value, the system switches into a normal multi-charge mode to deliver a higher power level to the spark plug until the burn voltage decreases.
  • the burn voltage U s becomes too high (e.g. the ignition spark is blown out), the high-voltage diodes on the secondary side can breakdown.
  • One possible solution is to increase the breakdown voltage of the diodes, e.g. to 30kV or more. But these diodes are expensive and/or not available for automotive applications. Therefore, to minimize the breakdown voltage of the high-voltage diodes on the secondary side, the burn voltage U s has to be detected by the control unit.
  • a convenient way to do so is to detect the gradient of the secondary current (dI s /dt). If the gradient is too high, the control unit switches both transistors Q1 and Q2 off. Thus, the diodes are safe, because both are switched on and through the diodes float a forward current. This situation has been shown in Figure 5 .
  • Figure 5 illustrates the same traces as Figure 4 , namely the primary current I p , the secondary current I s and the secondary voltage U s along time.
  • the secondary voltage or burn voltage is around 4.8kV, i.e. five greater than in the example of Figure 2 .
  • the controlling unit detects the detects the gradient of the secondary current (dI s /dt). Over a predetermined value, e.g. 4kV, since the gradient is to high, the ignition system switches both transistors Q1 and Q2 off, so as to deliver a higher power level to the spark plug until the burn voltage decreases called normal multi-charge mode. If the burn voltage does not decrease the system remains in this normal multi-charge mode.
  • such intelligent control unit saves the high-voltage diodes on the secondary side for too large burn voltages, allowing using safely high-voltage diodes with only a breakdown voltage of 5kV which are easily available and at low price on the market.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

The invention relates to an ignition system for a combustion engine comprising a spark plug with a pair of gapped electrodes, a first transformer T1 including a first primary winding L1 inductively coupled to a first secondary winding L2 a second transformer T2 including a second primary winding L3 inductively coupled to a second secondary winding L4, secondary windings L2 and L4 being each coupled to the gapped electrodes of the spark plug and a control unit enabled to simultaneously energize and deenergize primary windings L1 and L3 by simultaneously switching on and off two switches Q1 and Q2 to establish an electrical arc across the gapped electrodes and to sequentially energize and deenergize primary windings L1 and L3 by sequentially switching on and off both switches Q1 and Q2 to maintain a continuous ignition fire.

Description

    TECHNICAL FIELD
  • The present invention relates to an ignition system and particularly, to an AC ignition system which is able to create and maintain a continuous spark.
  • BACKGROUND OF THE INVENTION
  • The automotive industries have developed gasoline engines that use very lean air-fuel mixtures, that is, having a higher air component, to reduce fuel consumption and emissions. Common combustion principles are either homogeneous lean mixtures or stratified direct injection. To get a safe ignition it is necessary to have a high energy ignition source.
  • Prior art solutions are generally large, high energy, single spark ignition coils, which have a limited spark duration and energy output. To overcome this limitation and also to reduce the size of the ignition system multi-charge Ignition systems have been developed. Multi-charge systems produce a fast sequence of individual sparks, so that the output is a long quasi-continuous spark. Multi-charge ignition methods have the disadvantage that the spark is interrupted during the recharge periods, which has negative effects, particularly noticeable when high turbulences are present in the combustion chamber. For example this can lead to misfire, resulting in higher fuel consumption and higher emissions. Otherwise, prior solutions such as simple AC ignition systems have also the disadvantage that the primary side is directly coupled to the secondary side of the transformer during the firing, so the transferred energy to the spark plug decreases with higher burn voltages.
  • Furthermore, it is known from document WO 2007/025367 an ignition system providing power and duration controlled ignition spark. The system comprises a spark controller, first switching energy accumulator, storage capacitor, and second switching energy accumulator with an ignition coil. The ignition system utilizes dual means of switching energy accumulation, internal energy transfer, and three means of energy release to the ignition spark, managed by means of the spark controller depending on engine operating conditions, and provides continuous bipolar ignition spark. Such ignition system is based on the use of an energy accumulator coupled to a storage capacitor in order to feed energy to a single ignition coil. It does not provide any solution to the disadvantage encountered with multi-charge systems.
  • SUMMARY OF THE INVENTION
  • One goal of the present invention is to overcome the aforecited drawbacks by providing a multi-charge ignition system without these negative effects and, at least partly, producing a continuous ignition spark over a wide area of burn voltage, delivering an adjustable energy to the spark plug and providing with a burning time of the ignition fire that can be chosen freely.
  • For that purpose, according to a first aspect, the invention concerns an ignition system for a combustion engine comprising a spark plug with a pair of gapped electrodes, a first transformer including a first primary winding inductively coupled to a first secondary winding, a second transformer including a second primary winding inductively coupled to a second secondary winding, secondary windings being each coupled to the gapped electrodes of the spark plug and a control unit enabled to simultaneously energize and deenergize primary windings by simultaneously switching on and off two switches to establish an electrical arc across the gapped electrodes and to sequentially energize and deenergize primary windings by sequentially switching on and off both switches to maintain a continuous ignition fire. Thanks to the use of a multi-charge ignition system, it allows the control unit to use simultaneously the energy stored in both transformers to create an ignition spark and to use alternatively the energy stored either in one transformer or in the other to maintain a continuous ignition fire while reenergizing the other transformer. The alternation between energizing and deenergizing is done after comparison of the secondary current with a predetermined current threshold representative of the minimum necessary level of energy stored in the transformer that is switched off. When the secondary current falls short to the predetermined current threshold, the switching operation is executed. Thus, the ignition system allows production of a continuous ignition spark with a burning time of the ignition fire that can be chosen freely.
  • According to an advantageous embodiment, the ignition system further comprises a step-down converter connected to the primary windings and including a third switch and a diode, and said control unit is enabled to switch off said third switch when a primary current exceeds a predetermined current threshold in order to limit the stored energy in the transformer that is switched on by impelling a current over the diode. Due to this step-down converter, the primary current is limited to a predetermined maximum value, so that the transformers cannot go into magnetic saturation.
  • According to another advantageous embodiment, the control unit is further enabled to compare the secondary current with the predetermined current threshold representative of the minimum necessary level of energy stored in the transformer that is switched off and to adapt this predetermined current threshold to the level of energy stored. Such adaptation of the minimum secondary current level depending on the stored energy in the transformers allows getting a stable controlling circuit.
  • According to another advantageous embodiment, secondary windings are decoupled one from the other by high voltage diodes, and said control unit is further enabled to detect a burn voltage at the spark plug in the combustion engine, to switch off both corresponding switches when burn voltage is higher than a predetermined burn voltage threshold and switch on high-voltage diodes so as a forward current floats through. Advantageously, said control unit detects burn voltage at the spark plug by measuring the gradient of the secondary current. Detection of the burn voltage allows stopping ignition when it exceeds a predetermined level in order to be able to use ordinary low-cost high-voltage breakdown diodes on the secondary side, i.e. with a breakdown voltage of e.g. 5kV, instead of expensive and too large high-voltage diodes with a breakdown voltage of 30kV or more.
  • According to another aspect, the present invention concerns a method of producing electrical arcs across a pair of gapped electrodes of a spark plug with an ignition system of claim 1, comprising the steps of:
    • energizing simultaneously both primary windings by switching on corresponding switches;
    • deenergizing simultaneously both primary windings by switching off corresponding switches to establish an electrical arc across the pair of gapped electrodes;
    • energizing and deenergizing sequentially primary windings by sequentially switching on and off corresponding switches.
  • According to an advantageous variant, the method further comprises the steps of comparing the primary current with a first predetermined current threshold; switching off a third switch when the primary current exceeds the first predetermined current threshold and impelling a current over a diode from the primary winding that is switched on.
  • According to another advantageous variant, the method further comprises the steps of comparing the secondary current with a second predetermined current threshold representative of the minimum necessary level of energy stored in the transformer that is switched off; and switching sequentially on and off both corresponding switches when the secondary current falls short to the second predetermined current threshold.
  • According to another advantageous variant, the method further comprises the step of setting adaptively said second predetermined current threshold to the level of energy stored in the transformer that is switched off.
  • According to another advantageous variant, the method further comprises the step of detecting burn voltage at the spark plug in the combustion engine and switching off both corresponding switches when burn voltage is higher than a predetermined burn voltage threshold and switching on high-voltage diodes so as forward current floats through.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other features and advantages of the invention will appear upon reading the following description which refers to the annexed drawings in which:
    • Figure 1 is an electrical schematic illustration of an ignition system according to a preferred embodiment of the present invention;
    • Figures 2, 4 and 5 illustrate certain characteristic signals at various points in a use cycle for the exemplary ignition system as illustrated in Figure 1;
    • Figure 3 is a diagram representing step by step the different control signals sent and received by the control unit of an ignition system as illustrated in Figure 1.
    DETAILED DESCRIPTION OF THE INVENTION
  • With reference now to Figure 1, a multi-charge ignition system is illustrated for producing a continuous ignition spark over a wide area of burn voltage servicing a single set of gapped electrodes in a spark plug 11 such as might be associated with a single combustion cylinder of an internal combustion engine (not shown).
  • The multi-charge ignition system uses fast charging ignition coils (L1-L4), including primary windings, L1, L2 to generate the required high AC voltage and wound on a common core K1 forming a first transformer and secondary windings L3, L4 wound on another common core K2 forming a second transformer. The two coil ends of the first and second primary windings L1, L3 may be alternately switched to a common ground such as a chassis ground of an automobile by electrical switches Q1, Q2. These switches Q1, Q2 are preferably Insulated Gate Bipolar Transistors. Resistor R1 for measuring the primary current Ip that flows from the primary side is connected between the switches Q1, Q2 and ground, while resistor R2 for measuring the secondary current Is that flows from the secondary side is connected between the diodes D1, D2 and ground.
  • In the present embodiment for extended burn applications, it is assumed that the low-voltage ends of the secondary windings L2, L4 are coupled to a common ground or chassis ground of an automobile through high-voltages diodes D1, D2. The high-voltage ends of the secondary ignition windings L2, L4 are coupled to one electrode of a gapped pair of electrodes in a spark plug 11 through conventional means. The other electrode of the spark plug 11 is also coupled to a common ground, conventionally by way of threaded engagement of the spark plug to the engine block.
  • The primary windings L1, L3 are connected to a common energizing potential which in the present embodiment is assumed to correspond to conventional automotive system voltage in a nominal 12V automotive electrical system and is in the figure the positive voltage of battery 15.
  • The charge current can be supervised by an electronic control circuit 13 that controls the state of the switches Q1, Q2. The control circuit 13 is for example responsive to engine spark timing (EST) signals to selectively couple the primary windings L1 and L2 to system ground through switches Q1 and Q2 respectively controlled by signals Igbt1 and Igbt2 respectively. Measured primary current Ip and secondary current Is are sent to control unit 13.
  • Advantageously, the common energizing potential of the battery 15 is coupled by way of an ignition switch M1 to the primary windings L1, L3 at the opposite end that the grounded one. Switch M1 is preferably a MOSFET transistor. A diode D3 is coupled to transistor M1 so as to form a step-down converter. Control unit 13 is enabled to switch off switch M1 by means of a signal FET.
  • In operation, the control circuit 13 is operative to provide an extended continuous high-energy arc across the gapped electrodes. During a first step, switches M1, Q1 and Q2 are all switched on, so that the delivered energy of the power supply 15 is stored in the magnetic circuit of both transformers (T1, T2). During a second step, both primary windings are switched off at the same time by means of switches Q1 and Q2. On the secondary side of the transformers a high voltage is induced and an ignition ignition spark is created through the gapped electrodes of the spark plug 11. During a third step, switch Q1 is switched on and switch Q2 is switched off (or vice versa). That means that the first transformer (L1, L2) stores energy into its magnetic circuit while the second transformer (L3, L4) delivers energy to spark plug (or vice versa). During a fourth step, when the primary current Ip increases over a limit (Ipmax), the control unit detects it and switches transistor M1 off. The stored energy in the transformer (L1, L2 or L3, L4) that is switched on (Q1, or Q2) impels a current over diode D3 (step-down topology), so that the transformer cannot go into the magnetic saturation, its energy being limited. Preferably, transistor M1 will be permanently switched on and off to hold the energy in the transformer on a constant level. During a fifth step, just after the secondary current Is falls short of a secondary current threshold level (Ismin) the switch Q1 is switched off and the switch Q2 is switched on (or vice versa). Then steps 3 to 5 will be iterated by sequentially switching on and off switches Q1 and Q2 as long as the control unit switches both switches Q1 and Q2 off.
  • As illustrated in Figure 2, on the upper graph, the trace represents primary current Ip along time. On the lower graph, the traces represent the secondary current Is and the secondary voltage Us at the gapped electrodes of the spark plug. The different steps 1 to 5 of operation of the control circuit have been reported on Figure 2. During step 1, i.e. M1, Q1 and Q2 switched on, the primary current Ip is increasing rapidly with the energy storage in the transformers. During step 2, i.e. Q1 and Q2 switched off, the secondary current Is is increasing and a high voltage is induced so as to create an ignition spark through the gapped electrodes of the spark plug. During step 3, i.e. Q1 and Q2 are switched on and off sequentially, so as to maintain the spark as well as the energy stored in the transformers. During step 4, comparison is made between primary current Ip and a limit Ipmax. When Ip exceeds Ipmax M1 is switched off, so that the "switched on" transformer cannot go into the magnetic saturation, by limiting its stored energy. During step 5, comparison is made between the secondary current Is and a secondary current threshold level Ismin. If Is < Ismin, Q1 is switched off and Q2 switched on (or vice versa). Then steps 3 to 5 will be iterated by sequentially switching on and off Q1 and Q2 as long as the control unit switches both Q1 and Q2 off. Because of the alternating charging and discharging of the two transformers the ignition system delivers a continuous ignition fire.
  • Figure 3 is a diagram showing in more details step by step the different control signals sent and received by the control unit of an ignition system as illustrated in Figure 1.
  • During a step S0, the control unit checks whether there is a high EST signal. If so, during a step S1, control signals Igbt1, Igbt2 and Fet are switched on, so both transformers are charged at the same time. The delivered energy of the power supply is stored in the magnetic circuit of the transformers. During a step S1.1, the control unit checks whether there is a low EST signal. Until this is the case, the transformers are charging.
  • When a low EST signal is detected, during a step S1.2, the control unit will preferably detect the maximum primary current Ipmax and set the secondary current threshold Ismin dependent on the Ipmax (Ismin=f(Ipmax)). A greater primary current will result in a greater secondary current threshold and vice versa.
  • Then during a step S2, both control signals Igbt1 and Igbt2 are switched off. On the secondary side of the transformers a high voltage is induced (up to 30-40kV). After a short time a spark gap at the spark plug breaks down and the secondary voltage decreases to a burn voltage (e.g. ≈ 0.5 kV). The high voltage diodes (D1, D2) are protected from too high voltages, because both diodes are conducted in forward direction during this critical breakthrough period.
  • Then during a step S3, Igbt1 remains off and Igbt2 is switched on. Thus coil T1 is recharged and coil T2 is firing. If the primary current Ip exceeds the primary threshold Ipmax, the control signal FET is switched off for a short time during a step S4. Thus, the primary current Ip is limited to a maximum value and cannot rise up very quickly to non-controllable values; and therefore the magnetic circuit cannot go into magnetic saturation.
  • Otherwise, since the secondary voltage Us depends on the ambient conditions at the spark plug (e.g. airflow), the control circuit will preferably detect during a step 4.1 the secondary voltage Us using the gradient of the secondary current (dIs/dt=f(Us)). In order to protect the high-voltage-diodes on the secondary side from too high voltages, the control circuit will advantageously switch both Igbt1 and Igbt2 off, if the secondary voltage (respectively dIs/dt) reaches a maximum limit (Us>Usmax). In case such event occurs the control circuit detects the gradient of the secondary current any more and will fall back to the normal operational mode, if the secondary voltage falls below the maximum limit (Us<Usmax), i.e. one Igbt control signal being on, the other one being off. In case the secondary voltage would remain at a very high level, the system then works in a normal multi-charge mode where both Igbt signals are on respectively off at the same time, (see figures 4 and 5). Another way to detect the secondary voltage is to measure the voltage at the drain connector of the transistors Q1, Q2.
  • During a step 5, if the secondary current Is falls short off the secondary current threshold Ismin (Is < Ismin) the Igbt 2 control signal is switched off and Igbt 1 is switched on. Then during a step 6, the Igbt control signals are alternately switched on and off, steps 1.2, 4, 4.1 and 5 being iterated by the control unit.
  • The burn voltage at the spark plug in a combustion engine is variable, because of the turbulences at the ignition spark. When the secondary voltage Us becomes higher, the firing transformer has to deliver more energy to the ignition spark. Then, the transformer, which is recharging, cannot safe enough energy until the secondary current Is falls short to the secondary current threshold Ismin. Consequently, the average energy level in the transformers decreases. To get a stable controlling circuit, the burn voltage Us is advantageously detected and the secondary current threshold Ismin set adaptively to a level that depends on the stored energy in the charging coil. This situation has been shown in Figure 4.
  • Figure 4 illustrates three traces which represent primary current Ip, secondary current Is and the secondary voltage Us along time. In this example, the secondary voltage or burn voltage is around 2kV, i.e. twice greater than in the example of Figure 2. The steps for creating and maintaining an ignition spark are mainly the same as for the example of Figure 2. However, in this preferred embodiment, the secondary current threshold Is is set dependent on the primary current Ip (see step S1.2 explained above). This function is useful to prevent the system to get to an oscillating system. When the secondary current threshold Ismin reaches a minimum set value, the system switches into a normal multi-charge mode to deliver a higher power level to the spark plug until the burn voltage decreases.
  • When the burn voltage Us becomes too high (e.g. the ignition spark is blown out), the high-voltage diodes on the secondary side can breakdown. One possible solution is to increase the breakdown voltage of the diodes, e.g. to 30kV or more. But these diodes are expensive and/or not available for automotive applications. Therefore, to minimize the breakdown voltage of the high-voltage diodes on the secondary side, the burn voltage Us has to be detected by the control unit. A convenient way to do so is to detect the gradient of the secondary current (dIs/dt). If the gradient is too high, the control unit switches both transistors Q1 and Q2 off. Thus, the diodes are safe, because both are switched on and through the diodes float a forward current. This situation has been shown in Figure 5.
  • Figure 5 illustrates the same traces as Figure 4, namely the primary current Ip, the secondary current Is and the secondary voltage Us along time. In this example, the secondary voltage or burn voltage is around 4.8kV, i.e. five greater than in the example of Figure 2. The controlling unit detects the detects the gradient of the secondary current (dIs/dt). Over a predetermined value, e.g. 4kV, since the gradient is to high, the ignition system switches both transistors Q1 and Q2 off, so as to deliver a higher power level to the spark plug until the burn voltage decreases called normal multi-charge mode. If the burn voltage does not decrease the system remains in this normal multi-charge mode.
  • According to this preferred embodiment, such intelligent control unit saves the high-voltage diodes on the secondary side for too large burn voltages, allowing using safely high-voltage diodes with only a breakdown voltage of 5kV which are easily available and at low price on the market.
  • Having described the invention with regard to certain specific embodiments, it is to be understood that these embodiments are not meant as limitations of the invention. Indeed, various modifications, adaptations and/or combination between embodiments may become apparent to those skilled in the art without departing from the scope of the annexed claims.

Claims (12)

  1. An ignition system for a combustion engine comprising:
    - a spark plug with a pair of gapped electrodes;
    - a first transformer (T1) including a first primary winding (L1) inductively coupled to a first secondary winding (L2);
    - a second transformer (T2) including a second primary winding (L3) inductively coupled to a second secondary winding (L4);
    - secondary windings (L2, L4) being each coupled to the gapped electrodes of the spark plug;
    - a control unit enabled to simultaneously energize and deenergize primary windings (L1, L3) by simultaneously switching on and off two corresponding switches (Q1, Q2) to establish an electrical arc across the gapped electrodes and to sequentially energize and deenergize primary windings (L1, L3) by sequentially switching on and off both corresponding switches (Q1, Q2) to maintain a continuous ignition fire.
  2. An ignition system according to claim 1, wherein it further comprises a step-down converter including a switch (M1) and a diode (D3), said control unit being enabled to switch off said switch (M1) when a primary current (Ip) exceeds a first predetermined current threshold (Ipmax) in order to limit the stored energy in the transformer (T1 or T2) that is switched on by impelling a current over said diode (D3).
  3. An ignition system according to claim 1 or 2, wherein the control unit is enabled to compare a secondary current (Is) with a second predetermined current threshold (Ismin) representative of the minimum necessary level of energy stored in the transformer that is switched off and for switching sequentially on and off both corresponding switches (Q1 and Q2) when the secondary current (Is) falls short to the second predetermined current threshold (Ismin).
  4. An ignition system according to any of claims 1 to 3, wherein the control unit is further enabled to compare the secondary current (Is) with a second predetermined current threshold (Ismin) representative of the minimum necessary level of energy stored in the transformer (T1 or T2) that is switched off and to adapt said second predetermined current threshold (Ismin) to the level of energy stored in said switched off transformer (T1 or T2).
  5. An ignition system according to any of claims 1 to 4, wherein secondary windings (L2, L4) are decoupled one from the other by high voltage diodes (D1, D2), and wherein said control unit being further enabled to detect a burn voltage at the spark plug in the combustion engine, to switch off both corresponding switches (Q1, Q2) when burn voltage is higher than a predetermined burn voltage threshold and switch on both high voltage diodes (D1, D2) so as a forward current floats through.
  6. An ignition system according to claim 5, wherein said control unit detects burn voltage at the spark plug by measuring the gradient of a secondary current Is or by detecting the drain voltage at the switches (Q1, Q2).
  7. A method of producing electrical arcs across a pair of gapped electrodes of a spark plug with an ignition system of claim 1, comprising the steps of:
    - energizing simultaneously both primary windings (L1, L3) by switching on corresponding switches (Q1, Q2);
    - deenergizing simultaneously both primary windings (L1, L3) by switching off corresponding switches (Q1, Q2) to establish an electrical arc across the pair of gapped electrodes;
    - energizing and deenergizing sequentially primary windings (L1, L3) by sequentially switching on and off both corresponding switches (Q1, Q2).
  8. The method according to claim 7, wherein it further comprises the steps of:
    - comparing the primary current (Ip) with a first predetermined current threshold (Ipmax);
    - switching off a switch (M1) when the primary current (Ip) exceeds the first predetermined current threshold (Ipmax) and impelling a current over a diode (D3) from the primary winding that is switched on.
  9. The method according to claim 7 or 8, wherein it further comprises the steps of:
    - comparing the secondary current (Is) with a second predetermined current threshold (Ismin) representative of the minimum necessary level of energy stored in the transformer that is switched off;
    - switching sequentially on and off both corresponding switches (Q1, Q2) when the secondary current (Is) falls short to the second predetermined current threshold (Ismin).
  10. The method according to claim 9, wherein it further comprises the step of:
    - setting adaptively said second predetermined current threshold (Ismin) to the level of energy stored in the transformer that is switched off.
  11. The method according to any of claim 7 to 10, wherein it further comprises the step of:
    - detecting burn voltage at the spark plug in the combustion engine and switching off both corresponding switches (Q1, Q2) when the burn voltage is higher than a predetermined burn voltage threshold and switching on high-voltage diodes (D1, D2) so as a forward current floats through.
  12. The method according to claim 11, wherein said control unit detects burn voltage at the spark plug by measuring the gradient of the secondary current (Is) or by detecting the drain voltage at the switches (Q1, Q2).
EP09176699.8A 2009-11-20 2009-11-20 Coupled multi-charge ignition system with an intelligent controlling circuit Active EP2325476B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09176699.8A EP2325476B1 (en) 2009-11-20 2009-11-20 Coupled multi-charge ignition system with an intelligent controlling circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09176699.8A EP2325476B1 (en) 2009-11-20 2009-11-20 Coupled multi-charge ignition system with an intelligent controlling circuit

Publications (2)

Publication Number Publication Date
EP2325476A1 true EP2325476A1 (en) 2011-05-25
EP2325476B1 EP2325476B1 (en) 2016-04-13

Family

ID=42105893

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09176699.8A Active EP2325476B1 (en) 2009-11-20 2009-11-20 Coupled multi-charge ignition system with an intelligent controlling circuit

Country Status (1)

Country Link
EP (1) EP2325476B1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2410169A1 (en) * 2010-07-22 2012-01-25 Diamond Electric MFG. Co., Ltd. Internal combustion engine control system
DE102012106207B3 (en) * 2012-03-14 2013-05-23 Borgwarner Beru Systems Gmbh Method for actuating spark plug in combustion engine of vehicle, involves charging and discharging primary and secondary windings repeatedly, and disconnecting primary windings from direct current supply until start signal is produced
EP2639446A1 (en) * 2012-03-16 2013-09-18 Delphi Automotive Systems Luxembourg SA Ignition system
DE102012106158A1 (en) 2012-07-09 2014-01-09 Borgwarner Beru Systems Gmbh Inductive ignition system for four stroke Otto engine that is utilized as lean-burn engine in vehicle, has spark plugs comprising two ignition coils that produce elongated arc-overs or sequence of sparks at plugs during time period
WO2014041070A1 (en) * 2012-09-12 2014-03-20 Robert Bosch Gmbh Ignition system for an internal combustion engine
WO2015009594A1 (en) 2013-07-17 2015-01-22 Delphi Technologies, Inc. Ignition system for spark ignition engines and method of operating same
CN104457416A (en) * 2014-12-19 2015-03-25 王振环 Electric baton based on self-inductance principle
CN104436433A (en) * 2014-12-19 2015-03-25 曾飞 Brain electric stimulation device based on double self-induction coils
CN104436434A (en) * 2014-12-19 2015-03-25 曾飞 Brain electric stimulation device based on double self-induction coils
CN104500306A (en) * 2014-12-19 2015-04-08 陈廷 Ignition device of cylinder
CN104612878A (en) * 2014-12-19 2015-05-13 陈廷 Cylinder ignition device
EP2873850A1 (en) 2013-11-14 2015-05-20 Delphi Automotive Systems Luxembourg SA Method and apparatus to control a multi spark ignition system for an internal combustion engine
WO2015071062A1 (en) * 2013-11-14 2015-05-21 Robert Bosch Gmbh Ignition system and method for operating an ignition system
WO2015071046A1 (en) * 2013-11-14 2015-05-21 Robert Bosch Gmbh Ignition system and method for operating an ignition system
WO2015071047A1 (en) * 2013-11-14 2015-05-21 Robert Bosch Gmbh Ignition system and method for operating an ignition system
EP2876298A1 (en) 2013-11-21 2015-05-27 Delphi Automotive Systems Luxembourg SA Method and apparatus to control an ignition system with two coils for one spark plug
DE102015200019A1 (en) * 2014-01-08 2015-07-09 Honda Motor Co., Ltd. DEVICE FOR INTERNAL COMBUSTION ENGINE
EP2757248A4 (en) * 2011-09-14 2015-11-04 Toyota Motor Co Ltd Ignition control apparatus for internal combustion engine
JP2016079958A (en) * 2014-10-22 2016-05-16 株式会社デンソー Ignition device for internal combustion engine
CN105705775A (en) * 2013-11-14 2016-06-22 罗伯特·博世有限公司 Ignition system and method for operating an ignition system
CN105742962A (en) * 2014-12-19 2016-07-06 陈廷 Discharging apparatus and switch
EP2930348A4 (en) * 2012-12-05 2016-07-13 Toyota Motor Co Ltd Control device of internal combustion engine
CN105870783A (en) * 2014-12-19 2016-08-17 曾飞 Discharging device and switch
US20160312757A1 (en) * 2013-11-14 2016-10-27 Robert Bosch Gmbh Ignition system and method for operating an ignition system
DE102012210198B4 (en) * 2012-01-27 2017-02-23 Mitsubishi Electric Corporation detonator
WO2017081007A1 (en) * 2015-11-09 2017-05-18 Delphi Automotive Systems Luxembourg Sa Method and apparatus to control an ignition system
WO2017081005A1 (en) * 2015-11-09 2017-05-18 Delphi Automotive Systems Luxembourg Sa Method and apparatus to control an ignition system
US9784230B2 (en) 2012-09-12 2017-10-10 Robert Bosch Gmbh Ignition system for an internal combustion engine
CN109196220A (en) * 2016-04-13 2019-01-11 德尔福汽车系统卢森堡有限公司 Method and apparatus for controlling ignition system
DE102017216227B3 (en) 2017-09-13 2019-03-07 Audi Ag Control circuit for controlling an ignition coil of an internal combustion engine and method for operating such a control circuit
EP3613979A4 (en) * 2017-04-20 2020-07-29 Denso Corporation Internal combustion engine ignition system
GB2599420A (en) * 2020-10-01 2022-04-06 Delphi Automotive Systems Lux Method and apparatus to control an ignition system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790076A (en) * 2014-12-19 2016-07-20 陈廷 Discharging apparatus and switch

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417433A (en) * 1977-07-11 1979-02-08 Fuji Electric Co Ltd Igniter for internal combustion engine
US4228779A (en) * 1977-10-25 1980-10-21 Siemens Aktiengesellschaft Process and a circuit arrangement for the control of the primary current in coil ignition systems of motor vehicles
US5193515A (en) * 1991-03-12 1993-03-16 Aisin Seiki Kabushiki Kaisha Ignition system for an engine
EP1046814A1 (en) * 1999-04-19 2000-10-25 Peugeot Citroen Automobiles SA Ignition system for the engine of a motor vehicle
DE10231511A1 (en) * 2002-07-12 2004-01-15 Audi Ag Ignition coil device for internal combustion engine has combustion current supply device with second transformer device with second drive unit, both transformer secondaries connected to ignition plug
WO2007025367A1 (en) 2005-08-29 2007-03-08 Vimx Technologies Inc. Spark generation method and ignition system using same
US20070181110A1 (en) * 2006-02-08 2007-08-09 Denso Corporation Multiple discharge ignition control apparatus and method for internal combustion engines

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417433A (en) * 1977-07-11 1979-02-08 Fuji Electric Co Ltd Igniter for internal combustion engine
US4228779A (en) * 1977-10-25 1980-10-21 Siemens Aktiengesellschaft Process and a circuit arrangement for the control of the primary current in coil ignition systems of motor vehicles
US5193515A (en) * 1991-03-12 1993-03-16 Aisin Seiki Kabushiki Kaisha Ignition system for an engine
EP1046814A1 (en) * 1999-04-19 2000-10-25 Peugeot Citroen Automobiles SA Ignition system for the engine of a motor vehicle
DE10231511A1 (en) * 2002-07-12 2004-01-15 Audi Ag Ignition coil device for internal combustion engine has combustion current supply device with second transformer device with second drive unit, both transformer secondaries connected to ignition plug
WO2007025367A1 (en) 2005-08-29 2007-03-08 Vimx Technologies Inc. Spark generation method and ignition system using same
US20070181110A1 (en) * 2006-02-08 2007-08-09 Denso Corporation Multiple discharge ignition control apparatus and method for internal combustion engines

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2410169A1 (en) * 2010-07-22 2012-01-25 Diamond Electric MFG. Co., Ltd. Internal combustion engine control system
US8813732B2 (en) 2010-07-22 2014-08-26 Diamond Electric Mfg. Co., Ltd. Internal combustion engine control system
EP2757248A4 (en) * 2011-09-14 2015-11-04 Toyota Motor Co Ltd Ignition control apparatus for internal combustion engine
US9291142B2 (en) 2011-09-14 2016-03-22 Toyota Jidosha Kabushiki Kaisha Ignition control device for internal combustion engine
DE102012210198B4 (en) * 2012-01-27 2017-02-23 Mitsubishi Electric Corporation detonator
DE102012106207B3 (en) * 2012-03-14 2013-05-23 Borgwarner Beru Systems Gmbh Method for actuating spark plug in combustion engine of vehicle, involves charging and discharging primary and secondary windings repeatedly, and disconnecting primary windings from direct current supply until start signal is produced
US10190564B2 (en) 2012-03-14 2019-01-29 Borgwarner Beru Systems Gmbh Method for actuating a spark gap
DE102013102529A8 (en) * 2012-03-14 2018-12-20 Borgwarner Ludwigsburg Gmbh Method for controlling a spark gap, in particular a spark plug
US9531165B2 (en) 2012-03-14 2016-12-27 Borgwarner Beru Systems Gmbh Method for actuating a spark gap
DE102013102529A1 (en) 2012-03-14 2014-09-18 Borgwarner Beru Systems Gmbh Method for controlling a spark gap, in particular a spark plug
DE102013102529B4 (en) 2012-03-14 2019-05-02 Borgwarner Ludwigsburg Gmbh Method for controlling a spark gap, in particular a spark plug
CN104508294B (en) * 2012-03-16 2016-10-12 德尔福汽车系统卢森堡有限公司 Ignition system
CN104508294A (en) * 2012-03-16 2015-04-08 德尔福汽车系统卢森堡有限公司 Ignition system
WO2013135907A1 (en) 2012-03-16 2013-09-19 Delphi Automotive Systems Luxembourg Sa Ignition system
EP2639446A1 (en) * 2012-03-16 2013-09-18 Delphi Automotive Systems Luxembourg SA Ignition system
DE102012106158A1 (en) 2012-07-09 2014-01-09 Borgwarner Beru Systems Gmbh Inductive ignition system for four stroke Otto engine that is utilized as lean-burn engine in vehicle, has spark plugs comprising two ignition coils that produce elongated arc-overs or sequence of sparks at plugs during time period
CN104603450A (en) * 2012-09-12 2015-05-06 罗伯特·博世有限公司 Ignition system for an internal combustion engine
US9784230B2 (en) 2012-09-12 2017-10-10 Robert Bosch Gmbh Ignition system for an internal combustion engine
CN104603450B (en) * 2012-09-12 2017-06-23 罗伯特·博世有限公司 For the ignition system of internal combustion engine
US9651016B2 (en) 2012-09-12 2017-05-16 Robert Bosch Gmbh Ignition system for an internal combustion engine
WO2014041070A1 (en) * 2012-09-12 2014-03-20 Robert Bosch Gmbh Ignition system for an internal combustion engine
EP2930348A4 (en) * 2012-12-05 2016-07-13 Toyota Motor Co Ltd Control device of internal combustion engine
WO2015009594A1 (en) 2013-07-17 2015-01-22 Delphi Technologies, Inc. Ignition system for spark ignition engines and method of operating same
EP3022437A4 (en) * 2013-07-17 2018-03-14 Delphi Technologies, Inc. Ignition system for spark ignition engines and method of operating same
US9945346B2 (en) 2013-11-14 2018-04-17 Delphi Automotive Systems Luxembourg Sa Method and apparatus to control an ignition system
WO2015071046A1 (en) * 2013-11-14 2015-05-21 Robert Bosch Gmbh Ignition system and method for operating an ignition system
US9850875B2 (en) 2013-11-14 2017-12-26 Robert Bosch Gmbh Ignition system and method for operating an ignition system
EP2873850A1 (en) 2013-11-14 2015-05-20 Delphi Automotive Systems Luxembourg SA Method and apparatus to control a multi spark ignition system for an internal combustion engine
CN105705777B (en) * 2013-11-14 2017-09-15 罗伯特·博世有限公司 Ignition system and the method for running ignition system
CN105705776A (en) * 2013-11-14 2016-06-22 罗伯特·博世有限公司 Ignition system and method for operating an ignition system
CN105705775A (en) * 2013-11-14 2016-06-22 罗伯特·博世有限公司 Ignition system and method for operating an ignition system
CN105705777A (en) * 2013-11-14 2016-06-22 罗伯特·博世有限公司 Ignition system and method for operating an ignition system
CN105705773A (en) * 2013-11-14 2016-06-22 德尔福汽车系统卢森堡有限公司 Method and apparatus to control a multi spark ignition system for an internal combustion engine
CN105705774A (en) * 2013-11-14 2016-06-22 德尔福汽车系统卢森堡有限公司 Method and apparatus to control a multi spark ignition system for an internal combustion engine
US10961972B2 (en) 2013-11-14 2021-03-30 Delphi Automotive Systems Luxembourg S.A. Method and apparatus to control an ignition system
WO2015071047A1 (en) * 2013-11-14 2015-05-21 Robert Bosch Gmbh Ignition system and method for operating an ignition system
CN105705774B (en) * 2013-11-14 2020-07-07 德尔福汽车系统卢森堡有限公司 Method and device for controlling a multi-spark ignition system of an internal combustion engine
WO2015071245A1 (en) 2013-11-14 2015-05-21 Delphi Automotive Systems Luxembourg Sa Method and apparatus to control a multi spark ignition system for an internal combustion engine
JP2018109410A (en) * 2013-11-14 2018-07-12 デルファイ・オートモーティブ・システムズ・ルクセンブルク・エスア Method and apparatus for controlling multi-spark ignition system for internal combustion engine
US9874194B2 (en) 2013-11-14 2018-01-23 Robert Bosch Gmbh Ignition system and method for operating an ignition system
US20160298593A1 (en) * 2013-11-14 2016-10-13 Delphi Automotive Systems Luxembourg Sa Fuel injector
US20160312757A1 (en) * 2013-11-14 2016-10-27 Robert Bosch Gmbh Ignition system and method for operating an ignition system
JP2016536515A (en) * 2013-11-14 2016-11-24 デルファイ・オートモーティブ・システムズ・ルクセンブルク・エスア Method and apparatus for controlling a multi-spark ignition system for an internal combustion engine
JP2016538460A (en) * 2013-11-14 2016-12-08 デルファイ・オートモーティブ・システムズ・ルクセンブルク・エスア Method and apparatus for controlling a multi-spark ignition system for an internal combustion engine
WO2015071062A1 (en) * 2013-11-14 2015-05-21 Robert Bosch Gmbh Ignition system and method for operating an ignition system
WO2015071246A1 (en) 2013-11-14 2015-05-21 Delphi Automotive Systems Luxembourg Sa Method and apparatus to control a multi spark ignition system for an internal combustion engine
WO2015071243A1 (en) * 2013-11-14 2015-05-21 Delphi Automotive Systems Luxembourg Sa Method and apparatus to control a multi spark ignition system for an internal combustion engine
CN105705773B (en) * 2013-11-14 2018-04-17 德尔福汽车系统卢森堡有限公司 Method and apparatus for the multiple-spark discharge ignition system for controlling internal combustion engine
EP2876298A1 (en) 2013-11-21 2015-05-27 Delphi Automotive Systems Luxembourg SA Method and apparatus to control an ignition system with two coils for one spark plug
DE102015200019B4 (en) * 2014-01-08 2018-02-01 Honda Motor Co., Ltd. DEVICE FOR INTERNAL COMBUSTION ENGINE
DE102015200019A1 (en) * 2014-01-08 2015-07-09 Honda Motor Co., Ltd. DEVICE FOR INTERNAL COMBUSTION ENGINE
US9341155B2 (en) 2014-01-08 2016-05-17 Honda Motor Co., Ltd. Ignition apparatus for internal combustion engine
JP2016079958A (en) * 2014-10-22 2016-05-16 株式会社デンソー Ignition device for internal combustion engine
CN105870782A (en) * 2014-12-19 2016-08-17 曹小玲 Discharging device and switch
CN104436433A (en) * 2014-12-19 2015-03-25 曾飞 Brain electric stimulation device based on double self-induction coils
CN104612878A (en) * 2014-12-19 2015-05-13 陈廷 Cylinder ignition device
CN104457416A (en) * 2014-12-19 2015-03-25 王振环 Electric baton based on self-inductance principle
CN104500306A (en) * 2014-12-19 2015-04-08 陈廷 Ignition device of cylinder
CN105977791A (en) * 2014-12-19 2016-09-28 乌鲁木齐九品芝麻信息科技有限公司 Discharging device and switch
CN105870783A (en) * 2014-12-19 2016-08-17 曾飞 Discharging device and switch
CN105742962A (en) * 2014-12-19 2016-07-06 陈廷 Discharging apparatus and switch
CN104436434A (en) * 2014-12-19 2015-03-25 曾飞 Brain electric stimulation device based on double self-induction coils
KR20180084848A (en) * 2015-11-09 2018-07-25 델피 오토모티브 시스템스 룩셈부르크 에스에이 Method and apparatus for controlling an ignition system
KR20180084850A (en) * 2015-11-09 2018-07-25 델피 오토모티브 시스템스 룩셈부르크 에스에이 Method and apparatus for controlling an ignition system
US10788006B2 (en) 2015-11-09 2020-09-29 Delphi Automotive Systems Luxembourg Sa Method and apparatus to control an ignition system
WO2017081007A1 (en) * 2015-11-09 2017-05-18 Delphi Automotive Systems Luxembourg Sa Method and apparatus to control an ignition system
WO2017081005A1 (en) * 2015-11-09 2017-05-18 Delphi Automotive Systems Luxembourg Sa Method and apparatus to control an ignition system
US10648444B2 (en) 2015-11-09 2020-05-12 Delphi Automotive Systems Luxembourg Sa Method and apparatus to control an ignition system
US20190162155A1 (en) * 2016-04-13 2019-05-30 Delphi Automotive Systems Luxembourg Sa Method and apparatus to control an ignition system
CN109196220B (en) * 2016-04-13 2020-08-25 德尔福汽车系统卢森堡有限公司 Multi-charge ignition system and method of operating a multi-charge ignition system
US10844825B2 (en) * 2016-04-13 2020-11-24 Delphi Automotive Systems Luxembourg Sa Method and apparatus to control an ignition system
CN109196220A (en) * 2016-04-13 2019-01-11 德尔福汽车系统卢森堡有限公司 Method and apparatus for controlling ignition system
EP3613979A4 (en) * 2017-04-20 2020-07-29 Denso Corporation Internal combustion engine ignition system
US10859057B2 (en) 2017-04-20 2020-12-08 Denso Corporation Internal combustion engine ignition system
DE102017216227B3 (en) 2017-09-13 2019-03-07 Audi Ag Control circuit for controlling an ignition coil of an internal combustion engine and method for operating such a control circuit
GB2599420A (en) * 2020-10-01 2022-04-06 Delphi Automotive Systems Lux Method and apparatus to control an ignition system
WO2022069753A1 (en) * 2020-10-01 2022-04-07 BorgWarner Luxembourg Automotive Systems S.A. Method and apparatus to control a multi-charge ignition system with at least two coils per spark plug
GB2599420B (en) * 2020-10-01 2023-03-29 Delphi Automotive Systems Lux Method and apparatus to control an ignition system

Also Published As

Publication number Publication date
EP2325476B1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
EP2325476B1 (en) Coupled multi-charge ignition system with an intelligent controlling circuit
KR101788666B1 (en) Ignition device
CN105705774B (en) Method and device for controlling a multi-spark ignition system of an internal combustion engine
JP5901718B1 (en) Internal combustion engine control device
JP5979068B2 (en) Ignition device
US10422310B2 (en) Ignition device
GB2549251B (en) Method and apparatus to control an ignition system
EP3374626B1 (en) Method and apparatus to control an ignition system
JP2008522066A (en) Fast multi-spark ignition
EP3374627B1 (en) Method and apparatus to control an ignition system
EP2876298A1 (en) Method and apparatus to control an ignition system with two coils for one spark plug
US9546637B2 (en) Ignition apparatus
US9212645B2 (en) Internal combustion engine ignition device
JP2008106723A (en) Ignition control device of internal combustion engine
CN112483296B (en) Ignition device
WO2022069753A1 (en) Method and apparatus to control a multi-charge ignition system with at least two coils per spark plug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110728

17Q First examination report despatched

Effective date: 20130321

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151106

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 790437

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009037695

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 790437

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160413

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160714

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160816

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009037695

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

26N No opposition filed

Effective date: 20170116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161120

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091120

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602009037695

Country of ref document: DE

Owner name: DELPHI AUTOMOTIVE SYSTEMS LUXEMBOURG S.A., LU

Free format text: FORMER OWNER: DELPHI TECHNOLOGIES, INC., TROY, MICH., US

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231010

Year of fee payment: 15

Ref country code: DE

Payment date: 20231010

Year of fee payment: 15