EP2318605A1 - Enduit sous vide, matériaux de construction et matériaux isolants constitués de pores sous vide - Google Patents
Enduit sous vide, matériaux de construction et matériaux isolants constitués de pores sous videInfo
- Publication number
- EP2318605A1 EP2318605A1 EP09775609A EP09775609A EP2318605A1 EP 2318605 A1 EP2318605 A1 EP 2318605A1 EP 09775609 A EP09775609 A EP 09775609A EP 09775609 A EP09775609 A EP 09775609A EP 2318605 A1 EP2318605 A1 EP 2318605A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pores
- insulating materials
- pore
- vacuum
- building
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000011148 porous material Substances 0.000 title claims abstract description 78
- 239000004566 building material Substances 0.000 title claims abstract description 20
- 239000011810 insulating material Substances 0.000 title claims abstract description 18
- 238000001771 vacuum deposition Methods 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 55
- 239000000463 material Substances 0.000 claims abstract description 47
- 210000002381 plasma Anatomy 0.000 claims abstract description 42
- 230000008569 process Effects 0.000 claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 claims abstract description 32
- 238000010438 heat treatment Methods 0.000 claims abstract description 28
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- 229910052751 metal Inorganic materials 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 18
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 17
- 239000006260 foam Substances 0.000 claims abstract description 16
- 238000007872 degassing Methods 0.000 claims abstract description 10
- 239000008187 granular material Substances 0.000 claims abstract description 6
- 150000002739 metals Chemical class 0.000 claims abstract description 5
- 238000000576 coating method Methods 0.000 claims abstract description 4
- 239000002105 nanoparticle Substances 0.000 claims abstract description 4
- 239000000126 substance Substances 0.000 claims abstract description 3
- 238000007493 shaping process Methods 0.000 claims abstract 2
- 239000011521 glass Substances 0.000 claims description 35
- 239000002245 particle Substances 0.000 claims description 25
- 239000007789 gas Substances 0.000 claims description 18
- 239000007858 starting material Substances 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 230000000694 effects Effects 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 7
- 239000000835 fiber Substances 0.000 claims description 7
- 150000004706 metal oxides Chemical class 0.000 claims description 7
- 230000002829 reductive effect Effects 0.000 claims description 7
- 239000000654 additive Substances 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 230000035939 shock Effects 0.000 claims description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 6
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 239000006229 carbon black Substances 0.000 claims description 5
- 239000004927 clay Substances 0.000 claims description 5
- 239000010881 fly ash Substances 0.000 claims description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- 239000000741 silica gel Substances 0.000 claims description 5
- 229910002027 silica gel Inorganic materials 0.000 claims description 5
- 238000002604 ultrasonography Methods 0.000 claims description 5
- 239000010457 zeolite Substances 0.000 claims description 5
- 239000004568 cement Substances 0.000 claims description 4
- 230000008961 swelling Effects 0.000 claims description 4
- 230000005672 electromagnetic field Effects 0.000 claims description 3
- 239000012774 insulation material Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 239000000155 melt Substances 0.000 claims description 3
- 239000003973 paint Substances 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- 230000002123 temporal effect Effects 0.000 claims description 3
- 229910021536 Zeolite Inorganic materials 0.000 claims description 2
- 230000009471 action Effects 0.000 claims description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 2
- 239000011888 foil Substances 0.000 claims description 2
- 239000010451 perlite Substances 0.000 claims description 2
- 235000019362 perlite Nutrition 0.000 claims description 2
- 239000011435 rock Substances 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 5
- -1 for example airgel Substances 0.000 claims 4
- 238000004078 waterproofing Methods 0.000 claims 2
- 238000005054 agglomeration Methods 0.000 claims 1
- 230000002776 aggregation Effects 0.000 claims 1
- 238000005253 cladding Methods 0.000 claims 1
- 238000004140 cleaning Methods 0.000 claims 1
- 238000002425 crystallisation Methods 0.000 claims 1
- 230000008025 crystallization Effects 0.000 claims 1
- 230000007423 decrease Effects 0.000 claims 1
- 230000005284 excitation Effects 0.000 claims 1
- 229910003465 moissanite Inorganic materials 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 claims 1
- 239000002994 raw material Substances 0.000 claims 1
- 239000012495 reaction gas Substances 0.000 claims 1
- 238000007711 solidification Methods 0.000 claims 1
- 230000008023 solidification Effects 0.000 claims 1
- 238000009833 condensation Methods 0.000 abstract description 6
- 230000005494 condensation Effects 0.000 abstract description 6
- 238000010276 construction Methods 0.000 abstract description 5
- 238000002844 melting Methods 0.000 abstract description 5
- 230000008018 melting Effects 0.000 abstract description 5
- 239000000156 glass melt Substances 0.000 abstract description 2
- 239000011859 microparticle Substances 0.000 abstract description 2
- 230000005855 radiation Effects 0.000 abstract description 2
- 238000000859 sublimation Methods 0.000 abstract description 2
- 230000008022 sublimation Effects 0.000 abstract description 2
- 238000011065 in-situ storage Methods 0.000 abstract 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 230000000903 blocking effect Effects 0.000 abstract 1
- 239000013590 bulk material Substances 0.000 abstract 1
- 230000009172 bursting Effects 0.000 abstract 1
- 239000002131 composite material Substances 0.000 abstract 1
- 125000006850 spacer group Chemical group 0.000 abstract 1
- 230000008901 benefit Effects 0.000 description 5
- 230000035515 penetration Effects 0.000 description 4
- 239000006066 glass batch Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- QXJJQWWVWRCVQT-UHFFFAOYSA-K calcium;sodium;phosphate Chemical compound [Na+].[Ca+2].[O-]P([O-])([O-])=O QXJJQWWVWRCVQT-UHFFFAOYSA-K 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000011494 foam glass Substances 0.000 description 1
- 238000005816 glass manufacturing process Methods 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000010407 vacuum cleaning Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
- E04B1/80—Heat insulating elements slab-shaped
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
- E04B1/80—Heat insulating elements slab-shaped
- E04B1/803—Heat insulating elements slab-shaped with vacuum spaces included in the slab
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B2001/7691—Heat reflecting layers or coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/24—Structural elements or technologies for improving thermal insulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/24—Structural elements or technologies for improving thermal insulation
- Y02A30/242—Slab shaped vacuum insulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B80/00—Architectural or constructional elements improving the thermal performance of buildings
- Y02B80/10—Insulation, e.g. vacuum or aerogel insulation
Definitions
- the invention therefore has as its object, under
- Starting material is suitable, suitable is any starting material that can be produced or transformed in melting or reacting processes (RZ 7 and 8 in A 1343/08), wherein the known degassing be conducted so that they lead instead to a complete degassing to a vacuum pore formation , The respective manufacturing or forming process is performed completely or partially under vacuum.
- Preferred starting materials are clays, rocks, ceramics, plastics, particularly preferably glasses and glass-metal mixtures, it also being possible to produce evacuated hollow fibers.
- ultrasonic or shock waves can be used. Also, that can
- Wall material are selectively placed in a bias state, which preferably makes it possible to exploit the limits of the theoretical material, in particular glass strength ranges to minimize the remaining wall thicknesses, as well as the remaining web volume and density.
- the pore pressure is reduced to less than 1 Pa and the wall thickness to less than 10 microns minimizes the web volume by the application of the principle of Ausfallkörnung and the material infrared absorbing equipped (for example by doping with carbon or copper), as well Getter material (for example Cu, Ba, Ti) is inserted, with the combination of these measures leading to the insulating values of the "multilayer insulation technique" being available on site.
- Getter material for example Cu, Ba, Ti
- the so-called refining required to remove the unavoidable in the glass melt gas inclusions is carried out under vacuum, so that the pores are under reduced pressure (for example, 0.1 to 80,000 Pa). This forms fine-pored foam or hollow spheres, if the material is in
- these pores are then inflated by applying a higher vacuum using a higher temperature, this step being repeated until the desired wall thickness is reached.
- the heating is preferably carried out by waves such as microwaves, high-frequency waves (HF), ultrasound, electric arc, shock waves, ie any type of wave-shaped energy input and / or plasma fields which can be produced by arc or HF / microwave (particularly easily in vacuum).
- waves such as microwaves, high-frequency waves (HF), ultrasound, electric arc, shock waves, ie any type of wave-shaped energy input and / or plasma fields which can be produced by arc or HF / microwave (particularly easily in vacuum).
- the pressure in the reaction vessel is lowered so that plasma formation no longer occurs.
- the initial internal pressure of the pores can be chosen arbitrarily, as long as it allows plasma ignition only in conjunction with the applied waves.
- the wave supply is clocked in short periods (minutes to milliseconds). Too large pores burst, so that a largely uniform pore size prevails.
- This successive heating mimics the process on the glassmaker's whistle, wherein the shrinkage of the spatial dimensions of the glass hollow body corresponds to a reduction of the heating periods and the pressure in the interior can be controlled by the wavelength and the intensity of the waves.
- the observation of the melting mixture / foam is adopted to control the shaft supply by (5) pore formation observed through (quartz glass) window in the reaction tube and the timing of the wave supply material-specifically adjusted so that foam or glass bubbles with the desired size and wall thickness arise.
- the penetration depth exceeds the ID wall thickness, so that it is also possible to produce foams in metals or glasses with a high content of dissolved metals.
- the (micro) wave pick-up can be controlled by adding susceptor materials such as graphite, silicon carbide, carbon black. Likewise, metal oxides can be used for 1S increase in strength. As getters come preferred
- the waves also influence the viscosity and surface tension. It is known that in particular electromagnetic fields cause a drastic reduction of the surface tension, which is industrially used, for example, for paint spraying.
- this effect can be used according to the invention, for example, by HF / microwaves, the surface tension is lowered so far that it is possible to produce pores in the nanometer range.
- microparticles or nanoparticles such as metal dusts, carbon black or fly ash
- preference may be given to adding microparticles or nanoparticles, such as metal dusts, carbon black or fly ash, to the glass batch.
- the waves can be switched on and off electronically controlled, while in an oven, the flow rate and the length of the heating zone specify a dwell time (and ultimately prevent these ratios in a corresponding mass flow rate).
- the principle of successive wave heating proves to be innovative compared to the principle of heating by infrared rays.
- microwave heating consists in the fact that the plasma inside temperatures of 1,600 ° C to 20,000 0 C, and thus reaches areas that can be reached with an oven heating never clocked.
- all known materials are meltable, and thus available in principle as a starting material, as far as they are deformable at all by temperature.
- an external heating component can also be set by setting a plasma temperature by the ratio of the pressure in the reaction vessel to the input shaft energy. In general, such a plasma heating from the outside but will be economical to use, because the advantage of low load on the reactor walls is lost in part.
- a plurality of exposure zones of, for example, RF / microwaves are switched on by a respective cut-off path or magnetic fields (stationary and / or pulsed), the vacuum tube passing through the outside.
- Stationary and pulsed magnetic fields serve to shield the walls and / or e.g. by exceeding the cyclotron resonance field strength (87.6 mT at 2450 MHz) of the targeted spatial and / or temporal plasma field formation and control.
- the inventive method has a wide range of adjustment, and it has surprisingly been found that very large adjustment tolerances exist, that is, that the production of a
- Vacuum glass foam in a variety of conditions and materials succeed, so a broad scope for the optimization obvious Process parameters, as are obvious to those skilled in the art, eg wavelength, pulse duration, magnetic fields, vacuum pressure, reaction gases, consists.
- Additives and propellants are used to selectively fill the interior of the pores with a gas that is dissolved or sublimated chemically or physically on cooling.
- this invention has been applied here
- Vacuum the purpose of keeping the proportion of soluble or sublimable gas types from the outset low and not, the starting glass powder and suck off. Also, due to the drastically reduced proportion of web material, of course, only a small amount of gas is absorbed by the latter and only a small amount of refining gas is needed because this gas expands considerably (10-100 times) as a result of the vacuum. Condensation or resublimation in the interior of the hollow sphere can certainly promote vacuum formation, but it is of great advantage if this process does not start at atmospheric pressure but under vacuum conditions.
- WO 2008/087047 Al only on heating by means of ovens, but not also on heating by means of waves, in particular not by means of micro and high frequency waves, ultrasound and arc, as well as shock waves (e.g.
- the glass or batch of electric arc is highly heated, thereby rapidly forming micropores.
- a particularly preferred embodiment of the invention provides that the pore interior is heated in a pulse-shaped manner by the plasma so that the glass material of a thin wall zone itself evaporates.
- the crafted hollow body must be heated from the outside so far that even the innermost piece of the wall can be widened by the internal pressure. This causes it to drain thin liquid outer wall area, which is why the hollow body in the hollow glass production must be continuously rotated to prevent concentration of material at the lowest point.
- the inner wall part is hotter than the outer, to prevent the achievement of a flowable state and the wall to soften only so far that they can just just be stretched because the shaft is turned off before a significant drain of wall material enters.
- Atmosphere of the plasma for example, by admixing carbon soot - graphite, etc.
- carbon soot - graphite, etc. are heated, it is possible to produce metal precipitates on the pore wall. More preferably, this effect occurs when as seed nuclei for the pores, e.g. SiC, soot particles and / or metal (oxide) particles are also used only by the pores.
- Wave radiation can be locally heated and vaporized to form a microplasma zone, forming a pore (new), which continues to expand as long as the plasma burns locally (formation of so-called hot spots in the nm / ⁇ m range).
- the invention solves the problem of providing methods for the production of "thermos flasks as nanoparticles" by the physical
- This method also allows stronger wall thicknesses to higher
- the insulation effect according to the invention and also the increase in strength can also be achieved by enveloping larger particles again.
- supporting body for example of silica gel, airgel,
- the surface layer can melt and achieve its sealing function while the plasma inside ensures high vacuum quality.
- Particularly preferred is the timely shutdown of the shaft before the enveloping material softens so that it can penetrate into the support body and the pore can coincide.
- the reactor wall is expediently at least partially made of metal in order to avoid the escape of the waves. It can be thermally insulated and consists in this case of a refraction metal. To reduce the heat load, an inner tube made of e.g. Alumina can be arranged.
- the tube diameter is tuned to the RF / microwave wavelength, which at 2,450 MHZ means a minimum diameter of 72 mm and at 915 MHz such as 192 mm, to an undamped
- Wave propagation Through a targeted bottleneck (cut-off) or magnetic fields, it is possible to separate the individual process zones.
- the liquid glass can be used as a seal against the vacuum, wherein the heating of the nozzle stone in the feeder also allows control of the material flow and the sealing effect (on the viscosity). In principle, one would also be
- a channel of, for example, microwave-transparent aluminum oxide runs through the reaction vessel, which is suitably
- the glass mixture underlies the reactor through the reactor, forms pores, the pore volume is optionally expanded several times and finally a cooling section is obtained before the particles or the material comminuted in granules (or else cast into fibers of the plates)
- Vacuum can be discharged.
- the function of the vacuum-retaining housing (outer reactor) can advantageously also be separated from the function of limiting the wave propagation and of the plasma in terms of plant engineering.
- a minimum wall thickness of the metal is sufficient (just just greater than the penetration depth), which can sometimes be achieved by wrapping aluminum oxide tubes with sufficient temperature-resistant metal foil.
- the aluminum oxide tube In the longitudinal direction of the aluminum oxide tube (eg, for crowding the plasma in the center of the tube for the purpose of temperature protection) so that displacement of the plasma from undesirable zones as well as coils are arranged transversely or at an angle to Al 2 O 3 -ROhT, attract and turn the plasma in the For example, the field strength of the cyclotron resonance frequency is exceeded, which makes it possible to ignite the plasma already in individual sections, while it does not yet burn at another point (for example, at the feed point) HF / microwaves.
- the coils are thereby flowed through by direct or alternating current, also pulse-shaped, also controlled in relation to the wave timing. By doing so, it is possible to cause the plasma to burn only locally at the desired heating zones and only in the heating pulses which are desired in time.
- a standing reaction tube For the treatment of individual particles (which are then supplied as glass dust from above), a standing reaction tube is possible.
- the material transport can be controlled by particle flows, thus it is also possible to act in the individual zones different vacuums.
- the particle flow can also be used selectively, for example, by joints in the supersonic flow to cause sudden pressure and temperature changes punctually, or to influence the plasma fields. Also, by particle flow, the particles (for fractions of a second) in
- Wave fields are held in suspension so that they just expand at the site of action and then by the fact that the surface for attacking the flow is suddenly increased entrained. To protect the reaction walls and magnetic fields can constrict the plasmas.
- observation windows e.g., quartz glass
- to protect staff from the RF / microwave camera systems allows one to observe the reaction zones. This manages the duty cycle, the
- the optimal pulse data and magnetic field parameters are determined and adjusted by observation of the material, plant and production.
- the vacuum pump is arranged at the end of the system, whereby at the beginning a rather higher pressure prevails, which promotes the formation of plasma-heatable pores, while further dilutes the reaction atmosphere inside the tube by the pumping process and the particle flow accelerates.
- Such an expansion process can also be used specifically for cooling.
- a particularly preferred embodiment of the invention provides to arrange the pores or the starting material in the interior of sheets or metallic walls.
- microwaves can spread particularly well between the two metal surfaces of a sandwich panel.
- metal-laminated or one or both sides metal-covered foam glass constructions can be produced, with a shear bond between the metallic surface and the glass foam is given by the fact that relatively high temperatures also prevail at the channel geometry, which limits the microwave propagation.
- the carrying capacity of trapezoidal sheet metal profiles can be increased.
- glass tubes can be filled with powder and then melted again in the plasma under vacuum, or powder can be inflated between two glass plates.
- the construction becomes transparent, but retains its heat-insulating properties (provided that in this application the mirrored inner surfaces are omitted and the carbon additive for infrared absorption is kept smaller ).
- reaction gases can be supplied over the entire reaction zone. This can be done on the one hand in a zone outside the actual reaction vessel under normal atmospheric conditions, on the other hand, but also under vacuum, in which case, of course, the combustion or reaction gases are supplied under lower pressure.
- reaction flames or reaction gases can be made both supportive, as well as alone. Pore formation can also be effected by introducing such reaction gases, preferably in the HF / microwave heating zone, through a sieve plate or nozzle into the liquid glass stream.
- reaction gases preferably in the HF / microwave heating zone
- a sieve plate or nozzle into the liquid glass stream.
- oxygen can be added at the point of the reactor where a reducing effect (e.g., for the mirror or getter film) is required without the need for carbon additive.
- the reactor is constructed on the flow principle, with outer tube lengths of 5 to 15 m and a relatively small diameter of the inner reaction tubes from 100 to 300 mm, so that the entire device operates on the flow principle.
- the concrete tube geometry is strongly dependent on the starting material (for example clay, ceramic, glass or metal) and is not restricted according to the invention.
- the small particle size and the pulsatility of the waves in the millisecond range lead to a relatively high flow rate, which is in stark contrast to the previous glass melting process.
- an overpressure is arranged in the outer reactor, it is also possible to produce gas-tight pores which are individually under overpressure and can thus carry off a higher load.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Acoustics & Sound (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Building Environments (AREA)
- Thermal Insulation (AREA)
Abstract
L'invention concerne des procédés pour produire des matériaux de construction et des matériaux isolants appropriés pour les chantiers, présentant des pores fermés à vide poussé dont la surface intérieure est pourvue d'une couche réfléchissante, de tels matériaux pouvant être coupés à dimensions sur place. A cette fin, des processus de dégazage sont interrompus lors de la fusion, avant le dégazage complet sous vide; et le matériau est mis en forme pour obtenir des mousses sous vide, des pores individuels (sphères creuses), des fibres, des agglomérats, des enduits ou des plaques. De préférence, on utilise un processus en deux étapes, dans lequel, tout d'abord, le processus connu de production ou de façonnage (par exemple, bain de verre fondu) s'effectue de manière à obtenir des micropores qui se dilatent ensuite sous l'effet du vide, et continuent à être chauffés progressivement à l'aide de champs d'ondes (entre autres, ondes hautes fréquences/micro-ondes, arcs électriques) jusqu'à obtention d'une épaisseur de paroi minimale théorique. De préférence, des plasmas sont simultanément générés à l'intérieur des pores (chauffage des pores depuis l'intérieur) par l'intermédiaire d'ondes cadencées. L'alternance rapide de l'élévation de température et de l'élévation de pression provoquée par les impulsions d'ondes, permet à la matière de paroi de se dilater, ce qui évite l'éclatement des pores. La formation de plasma permet ou facilite les réactions chimiques et physiques qui mènent à la sublimation ou à la condensation du contenu des pores, et favorisent ainsi la formation de vide, l'application d'une couche réfléchissante sur la paroi des pores et le passage de la matière à un état de précontrainte augmentant sa solidité. L'utilisation de nanoparticules et de microparticules en tant que corps de support et qu'éléments d'occupation d'espace permet, selon le principe de granularité discontinue, de minimiser le volume des éléments de liaisons et simultanément de minimiser, par blocage infrarouge, la transmission et le rayonnement d'ondes infrarouges à l'intérieur des pores et le long de la structure d'ossature. Les pores individuels ainsi produits peuvent être mis en forme pour obtenir des agglomérats en mousse, des fibres, des plaques, des enduits, des granulats et des matériaux de remplissage. Seule une telle mise en forme permet d'obtenir des matériaux aptes à être utilisés sur des chantiers et à être préparés et manipulés sur place, dans des conditions de chantier. Le fait de relier la mousse sous vide à force avec les tôles de panneau et les matériaux de paroi permet d'augmenter considérablement la résistance du matériau composite (par exemple, des tôles trapézoïdales). Ainsi, l'invention permet d'obtenir un matériau de construction à fort pouvoir thermo-isolant polyvalent et résistant cependant aux sollicitations.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0134308A AT507278A1 (de) | 2008-08-28 | 2008-08-28 | Feuersichere pur-vakuumdämmstoffe/putze |
PCT/AT2009/000327 WO2010022423A1 (fr) | 2008-08-28 | 2009-08-24 | Enduit sous vide, matériaux de construction et matériaux isolants constitués de pores sous vide |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2318605A1 true EP2318605A1 (fr) | 2011-05-11 |
Family
ID=41461073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09775609A Withdrawn EP2318605A1 (fr) | 2008-08-28 | 2009-08-24 | Enduit sous vide, matériaux de construction et matériaux isolants constitués de pores sous vide |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2318605A1 (fr) |
AT (2) | AT507278A1 (fr) |
WO (1) | WO2010022423A1 (fr) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102661475B (zh) * | 2012-05-23 | 2014-12-10 | 苏州维艾普新材料股份有限公司 | 一种真空绝热板现场裁切封装方式 |
CN103628580A (zh) * | 2012-08-23 | 2014-03-12 | 陕西亿丰绿色建筑材料有限公司 | 五级阻热传导真空保温板生产工艺 |
CN105461256B (zh) * | 2015-12-11 | 2018-07-06 | 武汉汉威炉外精炼工程有限公司 | 一种空心隔音隔热材料真空泵隔音隔热层 |
AT518807B1 (de) * | 2016-06-21 | 2018-07-15 | Rainer Kurbos Dr | Diskoschaum |
US10359550B2 (en) | 2016-08-31 | 2019-07-23 | Efx Energy Technologies, Llc | Multi-layered reflective insulation system |
CN107579203B (zh) * | 2017-08-09 | 2020-12-22 | 华南理工大学 | 一种锂离子电池硅掺杂碳多孔复合薄膜及其制备方法 |
CN117646498B (zh) * | 2023-12-28 | 2024-08-13 | 山东广泰声学新材料技术有限公司 | 一种节能隔音建筑材料及其制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2629171A1 (de) * | 1976-06-29 | 1978-01-12 | Siegfried Rodrian | Waerme- und schallisolierplatte |
FR2835216B1 (fr) * | 2002-01-28 | 2004-04-02 | Usinor | Structure composite a parement de rigidite elevee, de tres faible epaisseur et integrant un super isolant sous vide |
GB2443014A (en) * | 2006-10-07 | 2008-04-23 | Marcellus Charles Richard Sims | Sound insulating panel comprising bubbles having a vacuum therein |
DE102007002904A1 (de) * | 2007-01-19 | 2008-07-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Herstellung von Vakuumhohlkugeln aus Glas, Vakuumhohlkugeln sowie deren Verwendung |
-
2008
- 2008-08-28 AT AT0134308A patent/AT507278A1/de not_active Application Discontinuation
-
2009
- 2009-08-24 EP EP09775609A patent/EP2318605A1/fr not_active Withdrawn
- 2009-08-24 AT ATA9301/2009A patent/AT523464A5/de not_active Application Discontinuation
- 2009-08-24 WO PCT/AT2009/000327 patent/WO2010022423A1/fr active Application Filing
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2010022423A1 * |
Also Published As
Publication number | Publication date |
---|---|
AT507278A1 (de) | 2010-03-15 |
WO2010022423A1 (fr) | 2010-03-04 |
AT523464A5 (de) | 2021-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010022423A1 (fr) | Enduit sous vide, matériaux de construction et matériaux isolants constitués de pores sous vide | |
DE60319957T2 (de) | Grosse platte aus hochdichtem schaumglas | |
US10336641B2 (en) | Method for producing a foam glass with high open pore content | |
CN108752035A (zh) | 用花岗岩废料生产的发泡陶瓷轻质板材及其制备方法 | |
Lu et al. | Extraction of metallic lead from cathode ray tube (CRT) funnel glass by thermal reduction with metallic iron | |
DE69627897T2 (de) | Wärmedammende bauteile | |
DE102011016606B4 (de) | Verfahren zur Herstellung von Glasschaumprodukten unter Wiederverwertung eines Altglasgemisches | |
US7927670B2 (en) | Silica microspheres, method for making and assembling same and possible uses of silica microspheres | |
EP2437020B1 (fr) | Four à micro-ondes | |
EP2620567A2 (fr) | Système composite d'isolation thermique avec une barrière ignifuge, élément d'isolation thermique et utilisation de l'élément d'isolation thermique comme barrière ignifuge | |
KR100952225B1 (ko) | 현무암 폐슬러지를 이용한 인공 다포체의 제조방법 및 그 제조방법으로 제조된 인공다포체 | |
EP1278924A1 (fr) | Pierre de construction et son procede de production | |
EP1608476B1 (fr) | Procede et dispositif pour produire de la mousse aux dimensions exactes | |
AT501518A1 (de) | Schaumstoffprodukt | |
JPH11209130A (ja) | 超軽量骨材の製造方法 | |
US20060266956A1 (en) | Method of expanding mineral ores using microwave radiation | |
DE10354711B4 (de) | Verfahren zur Herstellung poröser Granulate und deren Verwendung | |
DE10116141A1 (de) | Verfahren zur Herstellung eines hochporösen Körpers | |
DE2248304B2 (de) | Verfahren zum herstellen nicht brennbarer, leichter formkoerper | |
KR20020023194A (ko) | 폐유리를 원료로 한 발포유리비드의 제조방법 및 발포유리제조용 조성물 | |
CN114031416A (zh) | 一种利用机制砂泥饼烧制陶粒的方法 | |
WO2021028797A1 (fr) | Procédé de production d'un produit fabriqué de manière additive à partir d'une matière minérale de départ par frittage au laser direct, et pièce légère produite par ledit procédé | |
EP1036615B1 (fr) | Procédé pour le moussage d'articles métalliques | |
EP2025652A2 (fr) | Procede d'obtention d'anhydrite iii stabilisee | |
JP3848282B2 (ja) | 耐爆裂性高強度コンクリート、及び耐爆裂性高強度コンクリートの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20101227 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20120629 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20171003 |