[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2307127A1 - Dispositif de filtration et de predistribution pour reacteur a lit catalytique fixe et son utilisation - Google Patents

Dispositif de filtration et de predistribution pour reacteur a lit catalytique fixe et son utilisation

Info

Publication number
EP2307127A1
EP2307127A1 EP09784393A EP09784393A EP2307127A1 EP 2307127 A1 EP2307127 A1 EP 2307127A1 EP 09784393 A EP09784393 A EP 09784393A EP 09784393 A EP09784393 A EP 09784393A EP 2307127 A1 EP2307127 A1 EP 2307127A1
Authority
EP
European Patent Office
Prior art keywords
filtration
chimney
bed
elements
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09784393A
Other languages
German (de)
English (en)
Inventor
Bernard Cottard
Matthew Allen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Marketing Services SA
Original Assignee
Total Raffinage Marketing SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Raffinage Marketing SA filed Critical Total Raffinage Marketing SA
Publication of EP2307127A1 publication Critical patent/EP2307127A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/30Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/006Separating solid material from the gas/liquid stream by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/0085Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction promoting uninterrupted fluid flow, e.g. by filtering out particles in front of the catalyst layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0292Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds with stationary packing material in the bed, e.g. bricks, wire rings, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0492Feeding reactive fluids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/09Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30257Wire
    • B01J2219/30265Spiral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30296Other shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30408Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30416Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30416Ceramic
    • B01J2219/30425Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30433Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30466Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30475Composition or microstructure of the elements comprising catalytically active material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the present invention relates to the field of reactors with catalytic bed (s) fixed (s) fed by fluids, liquid and / or gaseous, can operate in co-current downward or upward or against the current.
  • the invention proposes a new device, located upstream of the catalytic bed, capable of improving the filtration of impurity-loaded feed fluids and their distribution in order to limit the fouling of the surface layers of the catalytic bed.
  • the phrase “included between an X value and a Y value” means an interval in which the X and Y terminals are included.
  • the good operation of the reactor essentially depends on the management of the catalyst loading, the distribution of the phases and of the pressure drop across the catalytic bed.
  • the problems generated by a poor distribution of fluids and the increase in pressure drop are essentially related to the presence of polluting and clogging particles of different natures whose size can vary from 1 ⁇ m to 200 ⁇ m and which are contained in the feed fluids.
  • the particles present in the hydrocarbon-type fluids may be catalyst fines originating from catalytic cracking units such as FCC (Fluid Catalytic Cracking) and whose dimensions vary from 5 to 20 ⁇ m, particles of corrosion, also called "rust scales", from storage facilities and metal units upstream of the reactor, or coking particles from the exchangers.
  • the invention seeks to solve the problems related to the distribution of fluids and the pressure drop by proposing a new device for filtering and dispensing feed fluids.
  • Said device of the invention aims in particular to greatly reduce the fouling of the catalyst bed by exerting, upstream of the catalyst, an effective filtration of the feed fluids.
  • the process starts with the simultaneous distribution of the feed fluids at the reactor head.
  • the quality of the distribution of the liquid towards the catalytic bed is essential.
  • the liquid must be distributed in fine and regular rain.
  • the liquid charged with particles is dispersed in the form of homogeneous jets and multidirectional by the charge diffuser (s) and then fractionated at the time of its passage through a perforated distribution plate (plateau of perforated predistribution of 40 to 100 orifices per square meter of cross-section of the catalytic bed).
  • the problem encountered at this level is related to the fact that the pollutant particles contained in the liquid can clog the orifices of the plate and cause the distribution defects of the liquid phase.
  • the fluids then reach a perforated distribution tray (distributor tray) used to support chimneys.
  • This plate allows mixing between the liquid and the gas within the chimneys (the semi-open upper end of the chimneys allows the passage of the reactive gas while the lights located in the lower part allow the passage of the liquid).
  • the two-phase mixture flows through a plunger flow through several layers 10 to 15 cm thick of solid inert balls made of silica and alumina. From upstream to downstream, these layers are usually distributed according to a gradient of decreasing particle size.
  • inert balls serve to divide the charge flow and redistribute it in order to avoid the creation of preferential circuits, sources of hot spots and coking in the catalytic bed.
  • the catalytic bed can extend over a height of 5 to 10 m.
  • the polluting particles of small dimensions pass through the layers of Inert balls accumulate in the surface of the catalytic bed. This results in a progressive obstruction of the free interstitial zones located between the catalyst grains.
  • This gradual fouling of the layers of the catalytic bed may have the effect of gradually increasing the pressure drop across the catalytic bed and clogging the mixing funnels then causing the deformation of the distribution plate and the poor distribution of the fluids on the catalytic bed. . It may then be necessary to prematurely stop the unit in order to change all or part of the catalyst even before the catalyst has completely lost its catalytic activity.
  • the frequency of interventions can vary widely. Usually, stops are made every 12 to 18 months to perform the refill in new catalyst and new balls. However, it is sometimes necessary to carry out, every 2 to 3 months, operations of crushing of the catalyst. Each of these unit stops for interventions on the catalytic bed (crushing or catalyst replacement) have a considerable financial impact. It therefore seems essential to avoid them and to seek to significantly prolong the activity of the catalyst.
  • the invention aims to meet these needs by proposing a new device for filtering and dispensing fluids located upstream of the distribution tray.
  • the mesh portion of the basket can be quickly clogged by impurities in the load and therefore, the cycle time of the catalyst bed is not significantly lengthened.
  • the distribution of fluids can be disturbed if the baskets are not evenly distributed and positioned vertically. Such a provision seems difficult to obtain.
  • No. 4,313,908 discloses a reactor in which an auxiliary catalytic bed is inserted downstream of a distributor plate supporting chimneys and upstream of the main catalytic bed. Tubes of two different lengths, arranged alternately, pass through the auxiliary bed. When the auxiliary bed is dirty, the liquid chooses the path of least resistance. Thus the liquid charge passes through the tubes of short lengths by overflow while the gas continues to pass through the tubes of greater length.
  • This device makes it possible to bypass the crust of the auxiliary catalytic bed and to reach the main catalytic bed. The reactor activity time is thus extended. This device however has disadvantages.
  • EP 1200183 proposes devices intended to reduce the pressure drop by changing the flow of fluids.
  • This patent relates in particular to a bypass device inserted inside the catalytic bed.
  • This device consists of a first tubular cage element containing in its center a second hollow elongated element for receiving the load as soon as the upper layer of the catalytic bed is fouled. The charge flow is thus distributed to the lower layers of the catalytic bed without significant pressure drop.
  • This solution is however not optimal because, like the previous ones, it occupies a non-negligible volume of catalytic bed reducing all the capacity of the latter to react with the load.
  • the patent application FR 2 229 759 proposes filtration devices fixed on a plate situated upstream of the catalytic bed.
  • a filtration unit may consist of two cylinders coaxial with each other and with respect to the reactor.
  • the inner cylinder is closed at the top and open at the bottom, while this configuration is reversed for the outer cylinder.
  • the walls of the rolls are perforated and the chamber between the rolls may contain catalytic material identical to or different from that of the catalytic bed.
  • the charge containing the particles enters the outer cylinder where it is filtered and then emerges from the open bottom of the inner cylinder to contact the catalyst bed.
  • the disadvantage of this device lies in the fact that the filter cartridges can become clogged, which can lead to complete encumbrance of the plate and then to the shutdown of the reactor.
  • patent FR 2 889 973 discloses a device for filtering and distributing gaseous and liquid phases consisting of a perforated plate located upstream of the catalytic bed and on which are fixed mixing funnels.
  • a filter bed consisting of different layers of particles, is supported by the tray and surrounds the chimneys.
  • Each chimney can be separated from the filter bed by means of a grid whose mesh size is smaller than that of the particles of the filter bed.
  • the particles constituting the catalytic bed are inert particles formed of silica or alumina, particles that are active with respect to the chemical reaction put into play on the catalytic bed or else structured packing elements. .
  • the filtration bed consists of at least one layer of particles of size less than or equal to the particle size of the catalytic bed.
  • the gas enters the chimneys through the upper openings as the liquid passes through the filter bed and then enters the chimneys through side slots.
  • the filter bed becomes stagnant starting with the lower layers and must be replaced at least every 6 months.
  • the effectiveness of this device can be limited by the partial or total closure of the circular grids and chimneys causing a poor distribution of the liquid on the rest of the open fireplaces and an increase in the pressure drop.
  • the presence of orifices on the tray does not promote mixing between the gaseous and liquid phases in the stack since the liquid can pass through the filter bed and then evacuate through the openings of the tray without entering the chimney where the gas flows.
  • US Patent 3,584,685 discloses a tubular filter element supported by a support plate.
  • This filter element is formed of a helical wire attached to the rods attached to the plate perpendicular to the latter, it is therefore integral with the plate, its axis being perpendicular to the surface of the plate.
  • the filter element is integral with the tray, and it is not at any time considered another use of this element, including a "bulk” use in a filter bed.
  • the present invention aims to solve the problems encountered in the prior art.
  • the invention therefore proposes a novel device for filtering and dispensing feed fluids capable of reducing fouling of the upper layers of the catalytic bed in order to prolong the activity of the catalyst.
  • the main advantage of said device is to maximize the useful volume of the catalyst bed by positioning upstream thereof, preferably upstream of the distributor plate.
  • the device of the invention will be described as a device "pre-distribution" fluids. The other advantages of the invention will be demonstrated by the examples.
  • the invention relates to a device for the filtration and the predistribution of at least one fluid charged with particles feeding a reactor comprising at least one fixed catalytic bed.
  • the fixed catalytic bed reactor (s) can be fed with fluids, liquid and / or gaseous, and can operate downward or upward co-current or against the current.
  • the device of the invention is located upstream of the catalytic bed, preferably upstream of the distributor plate which can serve as a support for mixing funnels.
  • the device of the invention is positioned in the free space between the fluid diffuser (s) and the distributor plate.
  • the reactor comprises more than one fixed catalytic bed, there can be as many devices as beds catalyst.
  • each additional device according to the invention is preferably positioned between the quench box for quench cooling the reactor and the downstream distribution plate with holes or, failing this, between the box of quench quench and the dispenser tray.
  • upstream and downstream are to be understood in relation to a downward flow in the reactor.
  • the device of the invention comprises:
  • each orifice of the tray is overhung by a vertical hollow chimney having at least one light passing through its side wall from one side to the other;
  • a filtration bed placed on the perforated plate and surrounding said chimneys, the filtering bed comprising at least one layer of hollow filter elements whose dimensions are greater than the dimensions of the chimney lumens, each filter element being obtained by a winding in contiguous and / or non-contiguous turns of a wire of section (s) so as to comprise at least one closed end and having a free surface ratio (Subre) of the element on occupied surface (Sm) by the wire comprised between 2 and 50%.
  • each chimney is removable.
  • the perforated pre-distribution plane plate chimneys whose dimensions of the light or lights are lower than the most small dimension of the filter elements surrounding it, so that these filter elements can not enter the chimney by the light.
  • said at least one lumen of each chimney extends along a substantially helical path along the side wall of the chimney.
  • the axis of this trajectory in the form of a helix is thus confused with the vertical axis of the chimney, the pitch of this trajectory being variable.
  • This light can extend continuously or discontinuously along the path.
  • the realization of chimneys each provided with a continuous light over substantially the entire height of the chimney has the advantage of promoting the flow of gas through the chimney and avoid clogging.
  • such a chimney can be easily de-clogged by vibration, for example by the vibrations induced by bowing or stretching followed by loosening of the chimney.
  • the orifices of the pre-distribution perforated flat plate are regularly arranged so as to have a distribution density of between 5 and 150 orifices per m 2 of surface of the plate, preferably between 30 and 100 orifices per m 2 of surface of the plate.
  • the perforated plane plate of the device is preferably located in place of the standard predistribution plate and is therefore based on the support beams already existing inside the reactor.
  • the perforated plane plate of the device therefore, by its shape and its dimensions, the internal cross section of the reactor.
  • each chimney is obtained by winding a wire of section (s') in non-contiguous turns of constant pitch over its entire height, this being for example between 100 and 1500 mm, preferably between 150 and 600 mm.
  • the pitch of the coil will then be chosen less than the smallest dimension of the filter elements, possibly associated with other elements, which surround it.
  • the pitch of the turns may be variable depending on the height of the chimney, zones of contiguous turns alternating, for example, with zones of non-contiguous turns.
  • the winding of the wire constituting the chimney may be similar to that of a spring, it is possible to give it any geometry, for example cylindrical, spherical, barrel, amphora, conical, oblong, square, polygonal and any section for example round, square, rectangular, triangular, oval ...
  • the path of light or lights may not be in the form of a regular spiral.
  • the chimneys according to the invention are cylindrical and their side lights describe a helix whose pitch may be variable.
  • the chimneys are in the form of a cylinder of internal diameter Di 'at least equal to that of a circular orifice of the perforated plate, with a total height of between 100 and 1500 mm and whose light in the form of a helix is at constant pitch over the entire height of the chimney.
  • the preferred parameters of such a chimney are the following: "Height: between 150 and 600 mm, preferably equal to 300 mm.
  • Inner diameter between 20 and 500 mm, preferably equal to 60 mm.
  • the pitch of the non-contiguous turn is less than 50 mm, preferably less than at 20 mm.
  • Wire diameter constituting the cylinder between 5 and 15 mm.
  • each chimney is in the form of a cylinder and has open ends, at least one of which terminates in a radial return (spigot) of the wire of section (s) having a length of between 1/3 and 2/3 of the diameter. of the cylinder.
  • At least one end of the chimney is shaped so that it can be fitted manually and reversibly on a cylindrical sleeve.
  • this sleeve is adapted to be secured to an orifice of said perforated plate, which makes it easy to assemble and disassemble the chimney of the perforated plate.
  • both ends of the chimney are shaped in this manner.
  • the sleeve is for example provided with a notch whose geometry allows a male / female type assembly with the radial return.
  • one of the ends of the chimney is provided with a sleeve inserted into an orifice of the perforated plate and the other end of the chimney is provided with a sleeve covered with a styling element.
  • the chimneys inserted on the perforated plane plate are preferably identical to each other in size and shape.
  • the chimney is made of any material able to withstand the extreme conditions of pressure, temperature and corrosion of industrial processes, such as metallic materials (steel, stainless steel, bronze, beryllium bronze ...), alloys ("Monel” , “Inconel” %), ceramic, plastic (polypropylene, PVDF, C-PVC, PFA, ETFE, ECTFE, PTFE %), composites, graphite, glass.
  • the chimney is made of stainless steel or steel.
  • each chimney of the device is surrounded by a filter bed.
  • Each chimney exceeds for example the level of the filter bed with a height of between 20 and 70 mm, preferably between 30 and 60 mm.
  • the total height of the filtration bed is between 100 and 500 mm.
  • the filter element is obtained by winding contiguous and / or non-contiguous turns of a wire of section (s) so as to comprise at least one closed end and having a free surface (Subre) ratio of the element on the surface. occupied (Sm) by the yarn between 2 and 50%, preferably between 5 and 30%, more preferably between 15 and 25%.
  • surface occupied by the wire is meant the area occupied by the wire when the hollow element is developed, over its entire periphery, on a plane disposed perpendicularly to the winding axis of its turns, the free surface (Subre) then corresponding to the surface not occupied by the wire on this projection.
  • the area occupied by the wire (SRI) is the surface of the wire projected on a surface surrounding the outside of the hollow element in question, this surface being then opened and "flattened” on a plane to allow the measurement, the free surface (Subre) then corresponding to the surface not occupied by the projection of the wire.
  • the hollow element is obtained by the winding in contiguous and / or non-contiguous turns of a single wire.
  • winding of a hollow element according to the invention can be similar to that of a spring, it is possible to give it any geometry, for example cylindrical, spherical, barrel, amphora, conical, oblong, square, polygonal and any section for example round, square, rectangular, triangular, oval ...
  • the filtering element is in the form of a cylinder or a sphere, this sphere being able to be perfect or slightly deformed as a function of the pitch of the turns of the winding.
  • the filter element When the filter element is in the form of a cylinder, its height is less than or equal to 50 mm, preferably between 10 and 35 mm.
  • the filter element When the filter element is spherical in shape, its internal diameter is less than or equal to 50 mm, preferably between 10 and 35 mm.
  • the filter element has two ends, at least one of which is closed.
  • the filter element has an open end and a closed end, however, both ends could be closed, the turns then being non-contiguous.
  • the closed end of the element can be obtained by a winding contiguous turns of the wire section (s) in a flat winding or in a narrowing, preferably conical type.
  • the element can also be obstructed at one of its ends at least by any other styling element, flat or volume, of any geometry and suitable material.
  • the filter element is made of any material able to withstand the extreme conditions of pressure, temperature and corrosion of industrial processes, such as metallic materials (steel, stainless steel, bronze, beryllium bronze ...), alloys (" Monel “,” Inconel “%), ceramic, plastic (polypropylene, PVDF, C-PVC, PFA, ETFE, ECTFE, PTFE %), composites, graphite, glass.
  • the hollow element is made of stainless steel or steel.
  • the filter element can be constituted, over its entire height, non-contiguous turns constant or variable pitch, or contiguous turns or a combination of contiguous and non-contiguous turns.
  • the filtering element comprises an open end followed by an inlet zone Z1 of the fluid consisting of non-contiguous turns of pitch P1, followed by a filtration zone Z2 of the fluid consisting of non-contiguous turns of pitch P2 ⁇ P1, which zone is extended by a closed end of the element.
  • the open end, the inlet zone and the filtration zone may follow one another directly or be spaced from each other by at least one contiguous turn.
  • the P 1 / P2 ratio of the non-contiguous turns is such that P1 / P2 ⁇ 50, more preferably P1 / P2 ⁇ 15.
  • the filter element is preferably designed to filter particles ranging in size from 1 ⁇ m to 20 mm.
  • the filter elements may constitute a filter bed comprising at least one layer of said elements.
  • the hollow filter elements are preferably identical to each other, in particular in shape and dimensions.
  • these are preferably organized along a gradient of size of the filter elements and more particularly from the upstream of the reactor downstream, according to a decreasing gradient.
  • Said hollow filter elements may be used alone or in combination with other elements, in particular of shapes and / or dimensions and / or different functions.
  • the filtering elements of the device of the invention can in particular be associated with other elements, porous or not, such as the inerts usually used in the reactors in order to improve the diffusion of fluids (for example inert balls).
  • the elements associated with the filter elements may also be porous ceramic elements, Rashig ring type packing elements, PaIl rings or tile-shaped parts, high vacuum elements and / or catalyst particles.
  • the filter elements are associated with catalyst particles, they may be identical to or different from those forming the downstream catalytic bed.
  • the elements associated with the filtering elements are pretreatment catalyst particles capable of trapping the metals contained in the fluid to be purified.
  • the invention also relates to the use of said device in a reactor comprising at least one fixed catalytic bed, the reactor being fed with at least one liquid charged with particles and a reactive gas, said device being situated upstream of the catalytic bed, the tray perforated plane being parallel to the cross section of the reactor.
  • the liquid and the gas can flow in a downward or upward cocurrent flow or in a countercurrent flow.
  • said device is then positioned upstream of the distributor plate that can support mixing chimneys, itself located upstream of the fixed catalytic bed.
  • the device according to the invention is inserted into a reactor for carrying out hydrotreatment reactions, selective hydrogenation, or conversion of residues or hydrocarbon cuts.
  • Figure 1 is a longitudinal sectional view of a reactor equipped with a device according to the invention
  • Figure 2 shows a longitudinal sectional view of the reactor of Figure 1 showing in more detail the device according to the invention, a distribution plate and the upper part of the catalytic bed;
  • Figure 3 is a side view partially in section of a chimney of the device according to the invention shown in Figures 1 and 2;
  • Figure 4 is a top view of an embodiment of a chimney of the device according to the invention.
  • FIGs 5 to 8 show embodiments of filter elements of the device according to the invention. Each element is shown seen from the side and seen from above. The element shown in FIG. 5 is furthermore shown in cross section. Figures 9 to 19 show inert elements cited in the examples seen from above and in longitudinal section. The dimensions of these elements in millimeters are shown in the figures.
  • the device which is the subject of the present invention is inserted for example in a reactor (1) of the type shown in FIG. comprising at least one fixed catalytic bed (12) fed by at least one fluid (C) charged with particles.
  • said reactor (1) is fed with a liquid feed and a reactive gas flowing in co-downflow.
  • the liquid and the reactive gas can be introduced simultaneously at the reactor head via a charge diffuser (3) or separately, the gas can then be introduced into the reactor.
  • the fluids (C) are distributed in homogeneous jets and multidirectional towards the filtration device and pre-distribution (4) of the invention.
  • FIG. 1 represents a longitudinal section of a reactor (1) with a fixed catalytic bed fed by a stream of charges (C) consisting of liquid and gas flowing in co-downflow.
  • the fluids (C) are introduced at the top (2) of the reactor and are dispersed in the form of homogeneous and multidirectional jets by a charge diffuser (3) towards a filtering and pre-dispensing device according to the invention (4). ).
  • the latter comprises a flat plate (5) perforated with orifices (16), the plate serving as support for hollow chimneys (6) around which is disposed a filter bed (7) consisting of at least one layer of elements filters (8) ( Figure 2).
  • Each chimney (6) has a lateral lumen (22), its upper end being provided with a styling element (15), as hereinafter described in detail, with reference to Figures 2 and 3.
  • the reactive gas enters each chimney (6) through the end covered with a styling element (15) while the liquid passes through the filtration bed (7). Throughout the path of the liquid, the particles (17) contained therein are trapped by the filter elements (8), inside the filter elements and in the free spaces between elements.
  • the filtered liquid then enters each chimney (6) via the side lights (22).
  • Gas and purified liquid are evacuated from the chimney (6) by its open end to an orifice (16) of the perforated pre-distribution plate (5).
  • the purified fluids (C) leaving the device according to the invention are thus dispersed in the direction of a distribution plate (9) serving as support for mixing chimneys (10).
  • these mixing chimneys (10) are positioned staggered relative to the orifices (16) of the upstream perforated plane plate (5).
  • the gas enters the mixing chimney (10) through its semi-open upper end (24) while the filtered liquid accumulates on the tray (9) and then enters the chimney (10) through the side lights (23) located in the lower part.
  • Gas and filtered liquid are mixed in the chimneys (10) and then open, through orifices (18), onto a bed of inert balls (1 1) situated downstream before reaching the catalytic bed (12) ( Figure 2).
  • This bed of inert balls (1 1) serves to divide the flow of charges (C) and redistribute it towards the catalytic bed (12).
  • the fluids (C) pass through a new bed of inert balls (1 1) (usually organized according to a gradient of increasing particle size) and then a strainer or outlet manifold (13) before being evacuated the reactor through an outlet (14).
  • the reaction carried out in such a reactor (1) may be a hydrodesulfurization reaction.
  • the fluids (C) feed (2) are then composed of hydrogen gas H2 and liquid hydrocarbons.
  • the fluids consist of a desulphurized liquid charge, H2 and H2S gas.
  • FIG. 2 represents a filtration and predistribution device (4) according to the invention comprising: a substantially horizontal base plate (5) perforated with orifices (16), which can also be called a predistribution plate, each orifice of the plate being overlooked by a chimney (6), and
  • a filter bed (7) consisting of filter elements (8) surrounding the hollow chimneys (6) supported by the flat plate (5).
  • the perforated flat plate (5) also serves as a support for the filtration bed (7) surrounding each of the chimneys (6).
  • Said perforated planar plate (5) rests on reactor support beams (not shown) and matches, by its shape and dimensions, the internal cross section of the reactor (1).
  • each orifice (16) of the pre-distribution plate (5) corresponds a substantially vertical chimney (6) oriented towards the top of the reactor and connected to the orifice (16) via a sleeve (20).
  • the outer dimensions of the sections of the sleeves (20) are chosen to correspond to the orifices (16) of the perforated pre-dispensing tray (5).
  • these orifices (16) pass through the perforated pre-distribution plate (5) over its entire thickness and are identical to each other in shape and size.
  • Each of the chimneys (6) has an upper end that can be covered with any styling element (15) and has at its periphery at least one lumen (22) passing through its side wall for passing fluids (C).
  • each light extends along a substantially helical path along the side wall of the chimney, over the entire height of the chimney.
  • the styling element (15) must, by its shape and dimensions, allow the passage of the reactive gas while preventing the liquid from entering the chimney (6) by its upper end. In the same way, by the presence of the styling element (15), the filtering elements (8) constituting the filtration bed (7) must not be able to penetrate inside the chimney (6) during their loading. in the reactor.
  • the styling element (15) may, for example, be in the form of an inverted cup and be fixed by any suitable means (interlocking, clipping, welding, etc.) on a sleeve (20), advantageously identical to that positioned at the lower end of the chimney (6).
  • the opening of the chimney at its lower end on an orifice (16) of the pre-dispensing plate (5) serves to let the fluids escape in the direction of the distributor plate (9).
  • Each of the chimneys (6) of the device shown in the figures is firstly covered at its upper end with a styling element (15) assembled on a sleeve (20) itself mounted on the upper end of the chimney, and secondly associated with its lower end to an orifice (16) of the perforated flat plate (5) via a second sleeve (20).
  • the orifices (16) may be of any shape, preferably cylindrical.
  • only one type of sleeve (20) is used to mount the chimney on the orifice (16) and the styling element (15) on the same chimney.
  • the chimney has a cylindrical shape and the sleeve is formed of a cylinder of outside diameter substantially equal to the inside diameter of the chimney.
  • the sleeve (20) can thus be inserted into each end of the chimney, the ends of the chimney and the sleeve being shaped so as to allow a manual and reversible assembly of the sleeve on these ends.
  • chimneys (6) whose geometry is a function of the nature of the filter elements and other associated elements that it is desired to load on the pre-distribution perforated plate (5) around the chimneys (6).
  • FIG. 3 represents an exemplary embodiment of a chimney (6) of the device according to the invention.
  • the chimney (6) is obtained by winding a wire (F ') of section (s') in non-contiguous turns. constant pitch all the way up.
  • a continuous side lumen (22) is thus formed by the spacing between the turns of the wire forming the chimney.
  • the chimney (6) is in the form of a cylinder whose open ends each terminate in a radial return (21), or spigot, of length (L) between 1/3 and 2/3 of the diameter (Di ') of the cylinder as shown in Figure 4.
  • Each end of the chimney can then be associated manually and reversibly by fitting (clipping) to a cylindrical sleeve (20) provided with a notch (25) whose geometry allows a male / female type assembly with the radial return (21). .
  • this notch (25) extends in a vertical plane along a diameter of the sleeve and is adapted to receive the radial return (21) of each end of the chimney.
  • a sleeve (20) can then be used firstly to fix one of the ends of the chimney on the perforated flat plate (5), the sleeve itself being inserted into a circular orifice (16) of the flat plate. (5), and on the other hand to obstruct the other end of the chimney, the second sleeve then comprising a styling element (15).
  • the first sleeve is for example secured to the perforated flat plate by any suitable means, for example by welding, screwing, gluing, clipping or the like.
  • the styling element (15) is attached to the second sleeve by welding, gluing, screwing, clipping or the like.
  • the parameters defining this chimney (6) are as follows: "Shape and total height (H) of the chimney
  • the insertion of the chimneys (6) and the filter elements (8) on the perforated plate (5) is simple and inexpensive, particularly in the case where the chimneys (6) are removable, especially when they are assembled manually by the sleeves (20) without welding operation, and the filter elements (8) can be arranged in bulk by an operator. It should be noted that the perforated plate (5) not equipped with its chimneys (6) can act as a conventional hole plate distributor;
  • the position very upstream of the device (4) in the reactor makes it possible to maintain the integrity of the volume of the catalytic bed (12) and thus ensure the maximum reactivity of the catalyst;
  • Filtration of the fluid makes it possible to reduce the clogging of the mixing stacks (10) located on the distributor plate (9), to limit the increase in the pressure drop and to guarantee better mechanical integrity of the inerts (1 1);
  • the filter elements (8) forming the filter bed (7) of the device are now described in more detail with reference to FIGS. 5 to 8.
  • These filtering elements (8) which are arranged on the perforated pre-distribution plate (5) around the chimneys (6), are hollow elements arranged in the manner of a spring with contiguous and non-contiguous turns and one end of which is closed.
  • FIGS. 5 to 8 the side view makes it possible to see each element as a whole and more particularly the cylindrical or spherical geometry.
  • the view from above gives access to the open and closed ends of the elements as well as non-limiting variants.
  • the filter elements shown in these figures are obtained by winding in turns of a single wire F of section (s). Each element has two ends F 1, F 2 located opposite each other along the winding axis of the turns.
  • FIG. 5 represents an element A: this element is cylindrical, with non-contiguous turns of pitch PA and has an open end F1 and a closed end F2 obtained by conical narrowing of contiguous turns of the main geometry.
  • FIG. 6 represents an element B: this element is spherical, with contiguous turns of pitch PB and has two closed ends F1 and F2.
  • FIG. 7a represents an element C: this element is spherical, with contiguous turns of pitch PC and has an open end F1 and a closed end F2.
  • FIG. 7b represents an element C: this element is also spherical, but with non-contiguous turns of pitch PC, in fact the geometry of the element is no longer a perfect sphere but an elongated sphere in the direction of the axis d winding of the turns. It also has an open end Fl and a closed end F2.
  • FIG. 8 represents an element D: this element is cylindrical, with non-contiguous turns of pitch PD 1 on the zone Z 1 of entry of the fluid and PD 2 on the zone Z 2 of filtration of the fluid.
  • the element comprises an open end Fl linked to Z1 and a closed end F2 linked to Z2 and obtained by conical narrowing with contiguous turns of the main geometry.
  • the open end Fl contains a return Ra of the section wire (s) in a concentric circle (FIG. 8a) or performs a radial return Rb (FIG. 8b) whose length is, preferably between 1/3 and 2/3 of the diameter of the cylinder.
  • Version D corresponds to the optimal version chosen to carry out the filtration tests whose results are presented in the examples. It should be noted that these filter elements may differ from each other (from one version to another or in the same category) by variation of one or more parameters:
  • the filter elements (8) may, depending on the fluid to be treated, differ from each other by variation of one or more parameters.
  • Table 1 groups together the preferred parameters of the cylindrical and spherical geometries of the filter elements constituting the filtration bed (7). Bulk loading tests of the filter elements from the top of the reactor on the perforated plane (5) show that the cylindrical geometry is the best adapted to obtain an efficient filtration bed. Indeed, whatever their position after loading, the cylindrical filter elements (8) always have openings, thus promoting the good flow of the fluid and therefore its filtration. Once clogged by the accumulated particles, the filter elements (8) continue to be active by ensuring the homogeneous dispersion of the purified fluid, a role usually performed by the inert balls (1 1). Finally, when the interstices between the filter elements are themselves clogged, it is easy to remove, clean or replace the elements whose manufacturing cost is low.
  • Table 1 groups together the preferred parameters of the cylindrical and spherical geometries of the filter elements constituting the filtration bed
  • FIGS. 9 to 19 show the different geometries of the inerts tested in the example in comparison with the filter element of optimal geometry according to the version D.
  • These inerts are spherical or cylindrical, solid or traversed by circular, oval or triangular, with or without surface roughness.
  • the Applicant has endeavored to evaluate and compare the efficiency of a filtration bed forming part of the filtration device according to the invention.
  • References 3 to 13 correspond to the elements shown in Figures 9 to 19 respectively.
  • the filtration element of the filtration bed of the device according to the invention (element D) used in these tests is defined by the following parameters:
  • Cylinder 20 mm high consisting of an open end followed by 3 contiguous turns, themselves followed by a Zl zone consisting of 2 non-contiguous turns at a constant pitch of 3 mm, said zone Z1 being followed by a zone Z2 consisting of non-contiguous turns at constant pitch PD2 of 1 mm over a height of 8 mm, said zone Z2 being followed by a conical closed end with contiguous turns over a height of 3 mm.
  • Stainless steel wire 321 with a circular section of 0.8 mm in diameter.
  • the tests consisted in evaluating the retention capacity of a filtration bed consisting of a certain reference of filtering elements. The elements of the same reference have been loaded in bulk to form a filter bed column 60cm in height and 10cm in diameter.
  • each of the beds made up of one of the 14 references was weighed empty and subjected, for 2 hours, to a flow of liquid (120L / h of water) loaded with clogging particles (2kg solid particles with a particle size ranging from 10 ⁇ m to 400 ⁇ m) and a gas flow rate (2.5 m 3 / h of air).
  • the elements charged with particles constituting the filter beds were dried in an oven at 120 ° C. for 24 hours and then weighed.
  • Table 2 summarizes the results of this first series and reveals the overall filtration capacity of a filtration bed consisting of the same category of elements.
  • the two filtration beds constituted by the most efficient filtration elements (references N ° 12 and N ° 14) revealed by the series 1 of tests were subjected, continuously, to 3 successive passages. , each of 2 hours, of the liquid loaded with clogging particles under a flow of gas (ie 3 times 120L / h of water charged with 2 kg of solid particles having a particle size ranging from 10 to 400 ⁇ m under an air flow rate of 2.5 m 3 / h). Between each pass, the elements tested were neither cleaned nor replaced. The weighings of the elements charged with particles constituting the filter beds were carried out after drying in an oven (120 ° C. for 24 hours).
  • Elements N ° 12 exerts only a "passive retention" of the particles which accumulate in the interstices left free between each element.
  • the asperities on the surface of elements N ° 12 make it possible to capture particles, but are quickly saturated and do not allow the capture of a large volume of particles.
  • the other elements are inefficient, so they can not be qualified as filters within the meaning of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

L'invention concerne un dispositif pour la filtration et la prédistribution (4) comprenant : un plateau (5) plan perforé d'orifices, chaque orifice étant surplombé par une cheminée (6) creuse verticale comportant au moins une lumière traversant sa paroi latérale, un lit de filtration (7) disposé sur le plateau entourant lesdites cheminées, comportant au moins une couche d'éléments filtrants (8) creux de dimensions sont supérieures aux dimensions des lumières des cheminées, ledit élément filtrant étant obtenu par un enroulement en spires jointives et/ou non jointives d'un fil de section (s) de façon à comporter au moins une extrémité fermée et présentant un rapport surface libre (Subre) de l'élément sur surface occupée (Sm) par le fil compris entre 2 et 50%. L'invention concerne également l'utilisation de ce dispositif (4) pour la filtration et la prédistribution d'au moins un liquide chargé en particules en amont d'un lit catalytique fixe (12) d'un réacteur.

Description

DISPOSITIF DE FILTRATION ET DE PREDISTRIBUTION POUR REACTEUR A LIT CATALYTIQUE FIXE ET SON UTILISATION
DOMAINE TECHNIQUE
La présente invention concerne le domaine des réacteurs à lit(s) catalytique(s) fixe(s) alimentés par des fluides, liquides et/ou gazeux, pouvant fonctionner à co-courant descendant ou ascendant ou encore à contre-courant. L'invention propose un nouveau dispositif, situé en amont du lit catalytique, capable d'améliorer la filtration des fluides d'alimentation chargés en impuretés ainsi que leur distribution afin de limiter l'encrassement des couches superficielles du lit catalytique.
Par la suite et au sens de l'invention, on entend par le terme « fluide(s) », les liquides et gaz et par le terme « particule(s) », l'ensemble des impuretés solides et liquides contenues dans les fluides. De même et sauf indication contraire, l'expression « compris (e) entre une valeur X et une valeur Y », signifie un intervalle dans lequel les bornes X et Y sont incluses. Dans le cas des réacteurs catalytiques à lit(s) fixe(s) à écoulement diphasique de liquide et de gaz à co-courant descendant, le bon fonctionnement du réacteur repose essentiellement sur la gestion du chargement du catalyseur, de la distribution des phases et de la perte de charge à travers le lit catalytique . Les problèmes générés par une mauvaise distribution des fluides et l'augmentation de la perte de charge sont essentiellement liés à la présence de particules polluantes et colmatantes de natures différentes dont la taille peut varier lμm à 200μm et qui sont contenues dans les fluides d'alimentation. Dans le domaine du raffinage, les particules présentes dans les fluides de type hydrocarbures peuvent être des fines de catalyseur issues d'unités de craquage catalytique tel que le FCC (Fluid Catalytic Cracking) et dont les dimensions varient de 5 à 20μm, des particules de corrosion, appelées encore « écailles de rouille», issues des installations de stockage et des unités métalliques situées en amont du réacteur, ou encore des particules de cokage provenant des échangeurs. Par leurs dépôts sur ou entre les grains de catalyseur, ces particules peuvent rapidement provoquer l'augmentation de la perte de charge à travers le lit catalytique et réduire fortement les performances du réacteur. L'invention s'attache à résoudre les problèmes liés à la distribution des fluides et à la perte de charge en proposant un nouveau dispositif de filtration et de distribution des fluides d'alimentation. Ledit dispositif de l'invention vise notamment à réduire fortement l'encrassement du lit catalytique en exerçant, en amont du catalyseur, une filtration efficace des fluides d'alimentation.
De manière générale dans un réacteur catalytique à lit fixe fonctionnant à co-courant descendant de gaz et de liquide, le procédé débute par la distribution simultanément des fluides d'alimentation en tête de réacteur. Dès cette étape, la qualité de la distribution du liquide en direction du lit catalytique est primordiale. Pour cela, le liquide doit être réparti en pluie fine et régulière. A cet effet et selon une configuration préférée de réacteur, le liquide chargé en particules est dispersé sous forme de jets homogènes et multidirectionnels par le diffuseur de charge(s) puis fractionné au moment de son passage à travers un plateau répartiteur à trous (plateau de prédistribution perforé de 40 à 100 orifices par mètre carré de section droite du lit catalytique). Le problème rencontré à ce niveau est lié au fait que les particules polluantes contenues dans le liquide peuvent boucher les orifices du plateau et engendrer des défauts de distribution de la phase liquide. Les fluides atteignent ensuite un plateau de distribution perforé (plateau distributeur) servant de support à des cheminées. Ce plateau permet le mélange entre le liquide et le gaz au sein des cheminées (l'extrémité supérieure semi- ouverte des cheminées autorise le passage du gaz réactif tandis que des lumières situées en partie basse permettent le passage du liquide). En sortie de cheminée, le mélange diphasique traverse, par écoulement piston, plusieurs couches de 10 à 1 5 cm d'épaisseur de billes inertes pleines constituées de silice et d'alumine. De l'amont vers l'aval, ces couches sont habituellement réparties selon un gradient de granulométrie décroissant. Ces billes inertes ont pour rôle de diviser le flux de charge et de le redistribuer afin d'éviter la création de circuits préférentiels, sources de points chauds et de cokage dans le lit catalytique. Au dessous des billes inertes et stabilisé par celles-ci, le lit catalytique peut s'étendre sur une hauteur de 5 à 10 m. Suivant le cheminement du liquide, les particules polluantes de petites dimensions traversent les couches de billes inertes et s'accumulent en superficie du lit catalytique. Il en résulte une obstruction progressive des zones interstitielles libres situées entre les grains de catalyseur. Cet encrassement progressif des couches du lit catalytique peut avoir pour effets d'augmenter graduellement la perte de charge à travers le lit catalytique et de boucher les cheminées de mélange provoquant ensuite la déformation du plateau de distribution et la mauvaise répartition des fluides sur le lit catalytique. Il peut être alors nécessaire d'arrêter prématurément l'unité afin de changer tout ou partie du catalyseur et ceci avant même que le catalyseur ait totalement perdu son activité catalytique. La périodicité des interventions peut fortement varier. Habituellement, les arrêts sont réalisés tous les 12 à 18 mois afin d'effectuer la recharge en catalyseur neuf et billes neuves. Il est cependant parfois nécessaire d'effectuer, tous les 2 à 3 mois, des opérations d'écroutage du catalyseur. Chacun de ces arrêts d'unité pour des interventions sur le lit catalytique (écroutage ou remplacement de catalyseur) ont un impact financier considérable. Il apparaît donc essentiel de les éviter et de chercher à prolonger significativement l'activité du catalyseur. L'invention vise à satisfaire ces besoins en proposant un nouveau dispositif de filtration et de distribution des fluides situé en amont du plateau de distribution.
ETAT DE LA TECHNIQUE ANTERIEURE
Pour améliorer la filtration de la charge liquide et sa distribution, de nombreux dispositifs ont été proposés antérieurement. Les technologies les plus représentatives du domaine étudié sont décrites ci après : Dans le brevet US3992282, il est proposé d'utiliser des paniers à écailles traversant successivement une couche de billes inertes puis le lit catalytique. Lorsque la partie supérieure du lit catalytique est encrassée, la charge contourne la croûte formée à la surface du catalyseur en cheminant dans les paniers. La maille qui constitue la moitié inférieure du panier laisse sortir la charge vers les couches inférieures du catalyseur tout en piégeant les particules ou écailles contenues en elle. Ce dispositif présente cependant des inconvénients :
La portion maillée du panier peut rapidement être obstruée par les impuretés de la charge et de ce fait, la durée de cycle du lit catalytique n'est pas significativement allongée. La répartition des fluides peut être perturbée si les paniers à écailles ne sont pas répartis de façon homogène et positionnés verticalement. Une telle disposition semble difficile à obtenir.
Le brevet US4313908 décrit un réacteur dans lequel un lit catalytique auxiliaire est inséré en aval d'un plateau distributeur supportant des cheminées et en amont du lit catalytique principal. Des tubes de deux longueurs différentes, disposés en alternance, traversent de part en part le lit auxiliaire. Lorsque le lit auxiliaire est encrassé, le liquide choisit le chemin de moindre résistance. Ainsi la charge liquide traverse les tubes de petites longueurs par débordement tandis que le gaz continue de traverser les tubes de plus grande longueur. Ce dispositif permet de contourner la croûte du lit catalytique auxiliaire et d'atteindre le lit catalytique principal. La durée d'activité du réacteur en est ainsi prolongée. Ce dispositif présente cependant des inconvénients. En effet, pour mettre en œuvre cette technologie, il est nécessaire d'augmenter les dimensions du réacteur afin de maintenir un volume identique de catalyseur du lit principal et d'installer une nouvelle grille de support de catalyseur nécessitant pour cela des opérations de soudure dans le réacteur. De plus, il n'est pas aisé de contrôler les débits de gaz et de liquide au cours de la réaction puisque le cheminement du liquide diffère en début et en fin de fonctionnement contrairement à celui du gaz.
Comme le brevet cité précédemment, le brevet EP 1200183 propose des dispositifs ayant pour but de diminuer la perte de charge en modifiant le cheminement des fluides. Ce brevet concerne notamment un dispositif de dérivation inséré à l'intérieur du lit catalytique. Ce dispositif est constitué d'un premier élément cage tubulaire contenant en son centre un second élément allongé creux destiné à recevoir la charge dès lors que la couche supérieure du lit catalytique est encrassée. Le flux de charge est ainsi distribué vers les couches inférieures du lit catalytique sans perte de charge significative. Cette solution n'est cependant pas optimale car, comme les précédentes, elle occupe un volume non négligeable de lit catalytique réduisant d'autant la capacité de ce dernier à réagir avec la charge.
La demande de brevet FR 2 229 759, propose des dispositifs de filtration fixés sur un plateau situé en amont du lit catalytique. Une telle unité de filtration peut être constituée de deux cylindres coaxiaux entre eux et par rapport au réacteur. Le cylindre intérieur est fermé en son sommet et ouvert en son fond, tandis que cette configuration est inversée pour le cylindre extérieur. Les parois des cylindres sont perforées et la chambre entre les cylindres peut contenir de la matière catalytique identique ou différente de celle du lit catalytique. La charge contenant les particules pénètre dans le cylindre extérieur où elle est filtrée puis ressort par le fond ouvert du cylindre intérieur pour entrer en contact avec le lit catalytique. L'inconvénient de ce dispositif réside dans le fait que les cartouches filtrantes peuvent s'encrasser pouvant conduire à l'encombrement complet du plateau puis à l'arrêt du réacteur.
Enfin, le brevet FR 2 889 973 présente un dispositif de filtration et de distribution des phases gazeuse et liquide constitué d'un plateau perforé situé en amont du lit catalytique et sur lequel sont fixées des cheminées de mélange. Un lit de filtration, constitué de différentes couches de particules, est supporté par le plateau et entoure les cheminées. Chaque cheminée peut être séparée du lit de filtration au moyen d'une grille dont la taille de la maille est inférieure à celle des particules du lit de filtration. Au sens de ce brevet, les particules constituant le lit catalytique sont des particules inertes formées de silice ou d'alumine, des particules actives vis-à-vis de la réaction chimique mise en jeu sur le lit catalytique ou encore des éléments de garnissage structuré. Le lit de filtration est constitué d'au moins une couche de particules de taille inférieure ou égale à la taille des particules du lit catalytique. Le gaz pénètre dans les cheminées par les ouvertures supérieures tandis que le liquide traverse le lit de filtration et pénètre ensuite dans les cheminées par des fentes latérales. Le lit de filtration se colmate progressivement en commençant par les couches inférieures et doit être remplacé au moins tous les 6 mois. L'efficacité de ce dispositif peut être limitée par le bouchage partiel ou total des grilles circulaires puis des cheminées provoquant une mauvaise répartition du liquide sur le reste des cheminées encore ouvertes ainsi qu'une augmentation de la perte de charge. De plus, la présence d'orifices sur le plateau ne favorise pas le mélange entre les phases gazeuses et liquide au sein de la cheminée puisque le liquide peut traverser le lit de filtration puis s'évacuer par les orifices du plateau sans pénétrer dans la cheminée où circule le gaz.
Le brevet US 3 584 685 décrit un élément de filtration tubulaire supporté par un plateau support. Cet élément de filtration est formé d'un fil hélicoïdal fixé à des tiges fixées au plateau perpendiculairement à ce dernier, il est donc solidaire du plateau, son axe étant perpendiculaire à la surface du plateau.
Toutefois, dans ce document, l'élément de filtration est solidaire du plateau, et il n'est à aucun moment envisagé une autre utilisation de cet élément, notamment une utilisation « en vrac » dans un lit de filtration.
La présente invention vise à résoudre les problèmes rencontrés dans l'art antérieur. L'invention propose donc un nouveau dispositif de filtration et de distribution des fluides d'alimentation, capable de réduire l'encrassement des couches supérieures du lit catalytique en vue de prolonger l'activité du catalyseur. Le principal avantage dudit dispositif est de maximiser le volume utile du lit catalytique en se positionnant en amont de celui-ci, de préférence, en amont du plateau distributeur. A ce titre et en comparaison avec le plateau distributeur, le dispositif de l'invention sera par la suite qualifié de dispositif de « pré distribution » des fluides. Les autres avantages de l'invention seront mis en évidence par les exemples.
DESCRIPTION DE L'INVENTION
L'invention concerne un dispositif pour la filtration et la prédistribution d'au moins un fluide chargé en particules alimentant un réacteur comportant au moins un lit catalytique fixe. Ledit réacteur à lit(s) catalytique (s) fixe(s) peut être alimenté par des fluides, liquides et/ ou gazeux, et peut fonctionner à co-courant descendant ou ascendant ou encore à contre-courant. Dans un tel réacteur, le dispositif de l'invention est situé en amont du lit catalytique, de préférence en amont du plateau distributeur lequel peut servir de support à des cheminées de mélange.
Dans un mode de réalisation où le réacteur ne comporte qu'un seul lit catalytique fixe, le dispositif de l'invention est positionné dans l'espace libre situé entre le diffuseur de fluide(s) et le plateau distributeur. Dans un autre mode de réalisation où le réacteur comporte plus d'un lit catalytique fixe, il peut y avoir autant de dispositifs que de lits catalytiques. Dans cette configuration, chaque dispositif supplémentaire selon l'invention est, de préférence, positionné entre la boîte de quench assurant le refroidissement par trempe du réacteur et le plateau répartiteur à trous situé en aval ou, à défaut de ce dernier, entre la boîte de quench et le plateau distributeur.
Dans la présente demande, les termes « amont » et « aval » sont à comprendre par rapport à un écoulement descendant dans le réacteur.
Le dispositif de l'invention comprend :
- un plateau plan perforé d'orifices, destiné à être placé parallèlement à la section transversale du réacteur. Chaque orifice du plateau est surplombé par une cheminée creuse verticale comportant au moins une lumière traversant sa paroi latérale de part en part ;
- un lit de filtration disposé sur le plateau perforé et entourant lesdites cheminées, le lit de filtration comportant au moins une couche d'éléments filtrants creux dont les dimensions sont supérieures aux dimensions des lumières des cheminées, chaque élément filtrant étant obtenu par un enroulement en spires jointives et/ou non jointives d'un fil de section (s) de façon à comporter au moins une extrémité fermée et présentant un rapport surface libre (Subre) de l'élément sur surface occupée (Sm) par le fil compris entre 2 et 50%.
Avantageusement, chaque cheminée est amovible. En fonction des propriétés du fluide à traiter et de la taille des éléments filtrants choisis pour épurer ledit fluide, il est alors possible d'adapter au plateau plan perforé de prédistribution, des cheminées dont les dimensions de la ou des lumières sont inférieures à la plus petite dimension des éléments filtrants qui l'entoure, de sorte que ces éléments filtrants ne peuvent pénétrer dans la cheminée par la lumière.
Avantageusement, ladite au moins une lumière de chaque cheminée s'étend suivant une trajectoire sensiblement en forme d'hélice le long de la paroi latérale de la cheminée.
L'axe de cette trajectoire en forme d'hélice est donc confondu avec l'axe vertical de la cheminée, le pas de cette trajectoire pouvant être variable. Cette lumière peut s'étendre de manière continue ou discontinue le long de la trajectoire. La réalisation de cheminées pourvues chacune d'une lumière continue sur sensiblement toute la hauteur de la cheminée, présente l'avantage de favoriser la circulation du gaz au travers de la cheminée et d'éviter son bouchage. De plus, une telle cheminée peut être facilement désencrassée par vibration, par exemple par les vibrations induites par une incurvation ou étirement suivie d'un relâchement de la cheminée.
Les orifices du plateau plan perforé de pré distribution sont régulièrement arrangés de manière à présenter une densité de répartition comprise entre 5 et 150 orifices par m2 de surface du plateau, de préférence entre 30 et 100 orifices par m2 de surface du plateau. Le plateau plan perforé du dispositif se situe, de préférence, en lieu et place du plateau de prédistribution standard et repose de ce fait sur les poutres support existant déjà à l'intérieur du réacteur. Le plateau plan perforé du dispositif épouse donc, par sa forme et ses dimensions, la section transversale interne du réacteur. De préférence, et quelque soit sa géométrie, chaque cheminée est obtenue par enroulement d'un fil de section (s') en spires non jointives de pas constant sur toute sa hauteur, celle-ci étant par exemple comprise entre 100 et 1500 mm, de préférence entre 150 et 600 mm.
Dans ce cas d'une cheminée obtenue par enroulement en spires d'un fil, le pas de la spire sera alors choisi inférieur à la plus petite dimension des éléments filtrants, associés éventuellement à d'autres éléments, qui l'entourent.
En variante, le pas des spires peut être variable suivant la hauteur de la cheminée, des zones de spires jointives alternant par exemple avec des zones de spires non jointives.
L'enroulement du fil constituant la cheminée pouvant s'apparenter à celui d'un ressort, il est possible de lui donner toute géométrie, par exemple cylindrique, sphérique, tonneau, amphore, conique, oblong, carré, polygonaux et toute section par exemple ronde, carrée, rectangulaire, triangulaire, ovale... Selon la géométrie de la cheminée, la trajectoire de la lumière ou des lumières peut ne pas être en forme d'hélice régulière.
De préférence, les cheminées selon l'invention sont cylindriques et leurs lumières latérales décrivent une hélice dont le pas peut être variable. Dans un mode préféré de réalisation de l'invention, les cheminées sont en forme de cylindre de diamètre intérieur Di' au moins égal à celui d'un orifice circulaire du plateau perforé, de hauteur totale comprise entre 100 et 1500 mm et dont la lumière en forme d'hélice est à pas constant sur toute la hauteur de la cheminée.
Les paramètres préférés d'une telle cheminée sont les suivants : " Hauteur: entre 150 et 600 mm, de préférence égale à 300 mm.
• Diamètre intérieur: entre 20 et 500 mm, de préférence égal à 60 mm. " Matériau du cylindre : tout matériau capable de résister aux contraintes de pression et de température du réacteur, de préférence de l'acier inoxydable de type INOX 321. 316L ou 304.
" Lorsque la cheminée est obtenue par enroulement d'un fil [F) de section (s') en spires non jointives de pas constant sur toute sa hauteur, alors le pas de la spire non jointive est inférieur à 50 mm, de préférence inférieur à 20 mm.
• Diamètre du fil constituant le cylindre : entre 5 et 15 mm.
De préférence, chaque cheminée est en forme de cylindre et présente des extrémités ouvertes dont l'une au moins se termine par un retour radial (ergot) du fil de section (s) de longueur comprise entre 1 /3 et 2/3 du diamètre du cylindre.
Avantageusement, au moins une extrémité de la cheminée est conformée de manière à pouvoir être emboîtée manuellement et réversiblement sur un manchon cylindrique. De préférence, ce manchon est apte à être solidarisé à un orifice dudit plateau perforé, ce qui permet de monter et démonter facilement la cheminée du plateau perforé. De préférence, les deux extrémités de la cheminée sont conformées de cette manière.
Dans le cas où la cheminée est pourvue d'un retour radial, le manchon est par exemple muni d'une encoche dont la géométrie autorise un assemblage de type mâle/ femelle avec le retour radial.
Avantageusement, une des extrémités de la cheminée est pourvue d'un manchon inséré dans un orifice du plateau perforé et l'autre extrémité de la cheminée est pourvue d'un manchon recouvert d'un élément coiffant. Les cheminées insérées sur le plateau plan perforé sont, de préférence, identiques entre elles en dimensions et en forme.
La cheminée est réalisée en tout matériau capable de résister aux conditions extrêmes de pression, de température et de corrosion des procédés industriels, tels que les matériaux métalliques (acier, acier inoxydable, bronze, bronze béryllium ...), alliages (« Monel », « Inconel »...), céramique, plastique (polypropylène, PVDF, C-PVC, PFA, ETFE, ECTFE, PTFE...), composites, graphite, verre. De préférence, la cheminée est en acier inoxydable ou acier. Selon l'invention, chaque cheminée du dispositif est entourée par un lit de filtration. Chaque cheminée dépasse par exemple le niveau du lit de filtration d'une hauteur comprise entre 20 et 70 mm, de préférence entre 30 et 60 mm.
Avantageusement, la hauteur totale du lit de filtration est comprise entre 100 et 500 mm.
L'élément filtrant est obtenu par un enroulement en spires jointives et/ou non jointives d'un fil de section (s) de façon à comporter au moins une extrémité fermée et présentant un rapport surface libre (Subre) de l'élément sur surface occupée (Sm) par le fil compris entre 2 et 50%, de préférence entre 5 et 30%, de préférence encore entre 15 et 25%.
Par surface occupée par le fil (SRI) , on entend la surface occupée par le fil lorsque l'élément creux est développé, sur toute sa périphérie, sur un plan disposé perpendiculairement à l'axe d'enroulement de ses spires, la surface libre (Subre) correspondant alors à la surface non occupée par le fil sur cette projection. A savoir, la surface occupée par le fil (SRI) est la surface du fil projeté sur une surface enveloppant l'extérieur de l'élément creux concerné, cette surface étant ensuite ouverte et « aplatie » sur un plan pour permettre la mesure, la surface libre (Subre) correspondant alors à la surface non occupée par la projection du fil. De préférence l'élément creux est obtenu par l'enroulement en spires jointives et/ou non jointives d'un fil unique.
L'enroulement d'un élément creux selon l'invention pouvant s'apparenter à celui d'un ressort, il est possible de lui donner toute géométrie, par exemple cylindrique, sphérique, tonneau, amphore, conique, oblong, carré, polygonaux et toute section par exemple ronde, carrée, rectangulaire, triangulaire, ovale...
De préférence, l'élément filtrant est en forme de cylindre ou de sphère, cette sphère pouvant être parfaite ou légèrement déformée en fonction du pas des spires de l'enroulement.
Lorsque l'élément filtrant est en forme de cylindre, sa hauteur est inférieure ou égale à 50mm, de préférence comprise entre 10 et 35mm.
Lorsque l'élément filtrant est en forme de sphère, son diamètre intérieur est inférieur ou égal à 50mm, de préférence compris entre 10 et 35 mm.
Quelque soit sa géométrie, l'élément filtrant comporte deux extrémités, dont l'une au moins est fermée. De préférence, l'élément filtrant comporte une extrémité ouverte et une extrémité fermée, toutefois, les deux extrémités pourraient être fermées, les spires étant alors non jointives.
L'extrémité fermée de l'élément peut être obtenue par un enroulement à spires jointives du fil de section (s) selon un enroulement plat ou selon un rétrécissement, de préférence de type conique. L'élément peut également être obstrué à l'une de ses extrémités au moins par tout autre élément coiffant, plat ou en volume, de toute géométrie et matériau adéquat.
L'élément filtrant est réalisé en tout matériau capable de résister aux conditions extrêmes de pression, de température et de corrosion des procédés industriels, tels que les matériaux métalliques (acier, acier inoxydable, bronze, bronze béryllium ...), alliages (« Monel », « Inconel »...), céramique, plastique (polypropylène, PVDF, C-PVC, PFA, ETFE, ECTFE, PTFE...), composites, graphite, verre. De préférence, l'élément creux est en acier inoxydable ou acier.
Quelque soit sa géométrie, l'élément filtrant peut être constitué, sur toute sa hauteur, de spires non jointives à pas constant ou variable, ou de spires jointives ou encore d'une association de spires jointives et non jointives.
De préférence, l'élément filtrant comporte une extrémité ouverte suivie d'une zone d'entrée Zl du fluide constituée de spires non jointives de pas Pl, suivie d'une zone de filtration Z2 du fluide, constituée de spires non jointives de pas P2<P1, laquelle zone se prolonge par une extrémité fermée de l'élément. L'extrémité ouverte, la zone d'entrée et la zone de filtration peuvent se succéder directement ou bien être distantes l'une de l'autre par au moins une spire jointive. De préférence, le rapport P 1 / P2 des pas des spires non jointives est tel que Pl/P2<50, de préférence encore Pl /P2<15. Bien que pouvant être dimensionné à volonté, en fonction du domaine d'application, l'élément filtrant est de préférence conçu pour filtrer des particules dont la taille varie de lμm à 20mm. Comme explicité précédemment, les éléments filtrants peuvent constituer un lit de filtration comportant au moins une couche desdits éléments.
Dans une même couche, les éléments creux filtrants sont, de préférence, identiques entre eux, notamment en forme et dimensions. Lorsque le lit de filtration comporte plusieurs couches, celles-ci sont, de préférence, organisées suivant un gradient de taille des éléments filtrants et plus particulièrement de l'amont du réacteur vers l'aval, suivant un gradient décroissant.
Lesdits éléments creux filtrants peuvent être utilisés seuls ou en association avec d'autres éléments, notamment de formes et/ou dimensions et/ ou fonctions différentes.
Les éléments filtrants du dispositif de l'invention peuvent notamment être associés à d'autres éléments, poreux ou non, tels que les inertes habituellement employés dans les réacteurs en vue d'améliorer la diffusion des fluides (par exemple les billes inertes). Les éléments associés aux éléments filtrants peuvent également être des éléments céramiques poreux, des éléments de garnissage de type anneaux de Rashig, anneaux de PaIl ou des pièces en forme de tuile, des éléments à grande fraction de vide et/ou encore des particules de catalyseur. Lorsque les éléments filtrants sont associés à des particules de catalyseur celles-ci peuvent être identiques ou différentes de celles formant le lit catalytique situé en aval. De préférence, les éléments associés aux éléments filtrants sont des particules de catalyseur de prétraitement, capables de piéger les métaux contenus dans le fluide à épurer. L'invention concerne encore l'utilisation dudit dispositif dans un réacteur comportant au moins un lit catalytique fixe, le réacteur étant alimenté par au moins un liquide chargé en particules et un gaz réactif, ledit dispositif étant situé en amont du lit catalytique, le plateau plan perforé étant parallèle à la section transversale du réacteur.
Le liquide et le gaz peuvent circuler selon un écoulement co-courant descendant ou ascendant ou selon un écoulement à contre courant.
Avantageusement, ledit dispositif est alors positionné en amont du plateau distributeur pouvant supporter des cheminées de mélange, lui même situé en amont du lit catalytique fixe.
De préférence, le dispositif selon l'invention est inséré dans un réacteur permettant de réaliser des réactions d'hydrotraitement, d'hydrogénation sélective, ou de conversion de résidus ou de coupes hydrocarbonées. L'invention est maintenant décrite en référence aux dessins annexés, non limitatifs, dans lesquels :
La figure 1 est une vue en coupe longitudinale d'un réacteur équipé d'un dispositif selon l'invention ;
La figure 2 représente une vue en coupe longitudinale du réacteur de la figure 1 montrant plus en détails le dispositif selon l'invention, un plateau de distribution et la partie supérieure du lit catalytique ;
La figure 3 est une vue de côté partiellement en coupe d'une cheminée du dispositif selon l'invention représentée sur les figures 1 et 2 ;
La figure 4 est une vue de dessus d'un mode de réalisation d'une cheminée du dispositif selon l'invention ;
Les figures 5 à 8 représentent des exemples de réalisation d'éléments filtrants du dispositif selon l'invention. Chaque élément est représenté vu de côté et vu de dessus. L'élément représenté figure 5 est en outre représenté en coupe transversale. Les figures 9 à 19 représentent des éléments inertes cités dans les exemples vus de dessus et en coupe longitudinale. Les dimensions de ces éléments en millimètres sont reportées sur les figures.
Le dispositif objet de la présente invention s'insère par exemple dans un réacteur (1) du type de celui représenté sur la figure 1, comportant au moins un lit catalytique fixe (12), alimenté par au moins un fluide (C) chargé en particules. Dans un mode préféré, ledit réacteur (1) est alimenté par une charge liquide et un gaz réactif circulant à co- courant descendant. En fonction de la configuration du réacteur (1), le liquide et le gaz réactif peuvent être introduits simultanément en tête de réacteur par l'intermédiaire d'un diffuseur de charge (3) ou bien séparément, le gaz pouvant alors être introduit sur le côté du réacteur à hauteur des cheminées de mélange (10). Quelque soit le mode d'alimentation, lesdits fluides (C) sont distribués en jets homogènes et multidirectionnels en direction du dispositif de filtration et de pré distribution (4) de l'invention.
La figure 1 représente une coupe longitudinale d'un réacteur (1) à lit catalytique fixe alimenté par un flux de charges (C) constituées de liquide et de gaz circulant à co-courant descendant. Les fluides (C) sont introduits en tête (2) de réacteur et sont dispersés sous forme de jets homogènes et multidirectionnels par un diffuseur de charges (3) en direction d'un dispositif de filtration et de pré distribution selon l'invention (4).
Ce dernier comprend un plateau plan (5) perforé d'orifices ( 16), le plateau servant de support à des cheminées (6) creuses autour desquelles est disposé un lit de filtration (7) constitué d'au moins une couche d'éléments filtrants (8) (figure 2).
Chaque cheminée (6) comporte une lumière latérale (22), son extrémité supérieure étant pourvue d'un élément coiffant (15), tel que décrit ci- après en détails, en référence aux figures 2 et 3.
Le gaz réactif pénètre dans chaque cheminée (6) par l'extrémité recouverte d'un élément coiffant ( 15) tandis que le liquide traverse le lit de filtration (7). Tout au long du cheminement du liquide, les particules (17) contenues dans celui-ci sont piégées par les éléments filtrants (8), à l'intérieur des éléments filtrants ainsi que dans les espaces libres interéléments. Le liquide filtré pénètre ensuite dans chaque cheminée (6) par l'intermédiaire des lumières latérales (22). Gaz et liquide épuré s'évacuent de la cheminée (6) par son extrémité ouverte sur un orifice (16) du plateau plan perforé de prédistribution (5). Les fluides (C) épurés sortant du dispositif selon l'invention sont ainsi dispersés en direction d'un plateau de distribution (9) servant de support à des cheminées de mélange (10). Dans l'exemple représenté sur les figures 1 et 2, ces cheminées de mélange (10) sont positionnées en quinconce par rapport aux orifices (16) du plateau plan perforé amont (5).
A ce niveau, le gaz pénètre dans la cheminée de mélange ( 10) par son extrémité supérieure semi-ouverte (24) tandis que le liquide filtré s'accumule sur le plateau (9) pour pénétrer ensuite dans la cheminée (10) par les lumières latérales (23) situées en partie basse. Gaz et liquide filtré sont mélangés dans les cheminées (10) puis débouchent, par l'intermédiaire d'orifices (18), sur un lit de billes inertes (1 1) situé en aval avant d'atteindre le lit catalytique (12) (figure 2).
Ce lit de billes inertes (1 1) a pour fonction de diviser le flux de charges (C) et de le redistribuer en direction du lit catalytique (12). En sortie du lit catalytique (12), les fluides (C) traversent un nouveau lit de billes inertes ( 1 1 ) (habituellement organisé selon un gradient de granulométrie croissant) puis une crépine ou collecteur de sortie (13) avant d'être évacués du réacteur par une sortie (14).
A titre d'exemple non limitatif, la réaction réalisée au sein d'un tel réacteur (1) peut être une réaction d'hydrodésulfuration. Les fluides (C) d'alimentation (2) sont alors composés de gaz hydrogène H2 et d'hydrocarbures liquides. En sortie de réacteur (14), les fluides sont constitués d'une charge liquide désulfurée, de gaz H2 et H2S.
Un mode de réalisation du dispositif selon l'invention est maintenant décrit plus en détails en référence aux figures 2 à 4.
La figure 2 représente un dispositif de filtration et de prédistribution (4) selon l'invention comportant : un plateau plan de base (5) sensiblement horizontal perforé d'orifices (16), pouvant également être appelé plateau de prédistribution, chaque orifice du plateau étant surplombé par une cheminée (6), et
- un lit de filtration (7) constitué d'éléments filtrants (8) entourant les cheminées creuses (6) supportées par le plateau plan (5).
Le plateau plan perforé (5) sert également de support au lit de filtration (7) entourant chacune des cheminées (6). Ledit plateau plan perforé (5) repose sur des poutres support du réacteur (non représentées) et épouse, par sa forme et ses dimensions, la section transversale interne du réacteur (1).
A chaque orifice (16) du plateau de pré distribution (5) correspond une cheminée (6) sensiblement verticale, orientée vers le sommet du réacteur et assemblée à l'orifice ( 16) par l'intermédiaire d'un manchon (20).
Les dimensions externes des sections des manchons (20) sont choisies de façon à correspondre aux orifices ( 16) du plateau perforé de pré distribution (5).
De préférence, ces orifices (16) traversent le plateau perforé de pré distribution (5) sur toute son épaisseur et sont identiques les uns aux autres en forme et en dimensions.
Chacune des cheminées (6) comporte une extrémité supérieure pouvant être recouverte d'un élément coiffant (15) quelconque et comporte à sa périphérie au moins une lumière (22) traversant sa paroi latérale destinée à laisser passer les fluides (C). Dans l'exemple représenté, chaque lumière s'étend suivant une trajectoire sensiblement en forme d'hélice le long de la paroi latérale de la cheminée, sur toute la hauteur de la cheminée.
L'élément coiffant (15) doit, par sa forme et ses dimensions, autoriser le passage du gaz réactif tout en empêchant le liquide de pénétrer dans la cheminée (6) par son extrémité supérieure. De la même façon, par la présence de l'élément coiffant (15), les éléments filtrants (8) constituant le lit de filtration (7) ne doivent pas pouvoir pénétrer à l'intérieur de la cheminée (6) lors de leur chargement dans le réacteur.
Ainsi, l'élément coiffant (15) peut, par exemple, être en forme de coupelle renversée et être fixé par tout moyen adéquat (emboîtement, clipsage, soudage, ...) sur un manchon (20), avantageusement identique à celui positionné à l'extrémité inférieure de la cheminée (6).
L'ouverture de la cheminée à son extrémité inférieure sur un orifice (16) du plateau de pré distribution (5) a pour rôle de laisser les fluides s'évacuer en direction du plateau distributeur (9).
Chacune des cheminées (6) du dispositif représenté sur les figures est d'une part recouverte à son extrémité supérieure d'un élément coiffant (15) assemblé sur un manchon (20) lui-même monté sur l'extrémité supérieure de la cheminée, et d'autre part associée à son extrémité inférieure à un orifice (16) du plateau plan perforé (5) par l'intermédiaire d'un second manchon (20). Les cheminées (6) du plateau plan perforé (5) comme les manchons
(20) et les orifices ( 16) peuvent être de toutes formes, préférentiellement cylindriques.
De préférence, tel que représenté dans l'exemple, un seul type de manchon (20) est utilisé pour monter la cheminée sur l'orifice ( 16) et l'élément coiffant (15) sur la même cheminée.
Dans l'exemple, la cheminée présente une forme cylindrique et le manchon est formé d'un cylindre de diamètre extérieur sensiblement égal au diamètre intérieur de la cheminée.
Le manchon (20) peut ainsi être inséré dans chaque extrémité de la cheminée, les extrémités de la cheminée et le manchon étant conformés de manière à permettre un assemblage manuel et réversible du manchon sur ces extrémités.
Cette configuration très spécifique des extrémités des cheminées confère au dispositif (4) un réel avantage en rendant les cheminées amovibles de manière simple et économique. En n'étant pas soudées au plateau perforé de prédistribution (5) mais simplement emboîtées sur celui-ci par l'intermédiaire des manchons, les cheminées (6) peuvent donc facilement être retirées et échangées.
Grâce au caractère amovible des cheminées, en fonction du liquide à traiter, il est possible d'adapter, au plateau perforé de prédistribution
(5), des cheminées (6) dont la géométrie est fonction de la nature des éléments filtrants et autres éléments associés que l'on souhaite charger sur le plateau perforé de prédistribution (5) autour des cheminées (6) .
Lorsque la cheminée est obtenue par enroulement en spires d'un fil (F'), le pas de la spire, ainsi que les autres paramètres de la cheminée seront choisis de manière adéquate.
La figure 3 représente un exemple de réalisation d'une cheminée (6) du dispositif selon l'invention.
Dans l'exemple représenté sur la figure 3, la cheminée (6) est obtenue par enroulement d'un fil (F') de section (s') en spires non jointives de pas constant sur toute sa hauteur. Une lumière latérale (22) continue est ainsi formée par l'espacement entre les spires du fil formant la cheminée.
La cheminée (6) est en forme de cylindre dont les extrémités ouvertes se terminent chacune par un retour radial (21), ou ergot, de longueur (L) comprise entre 1 /3 et 2/3 du diamètre (Di') du cylindre, tel que représenté sur la figure 4.
Chaque extrémité de la cheminée peut alors être associée manuellement et réversiblement par emboîtement (clipsage) à un manchon cylindrique (20) muni d'une encoche (25) dont la géométrie autorise un assemblage de type mâle/femelle avec le retour radial (21).
Dans l'exemple représenté sur les figures, cette encoche (25) s'étend dans un plan vertical suivant un diamètre du manchon et est apte à recevoir le retour radial (21) de chaque extrémité de la cheminée. Un tel manchon (20) peut alors être utilisé d'une part pour fixer l'une des extrémités de la cheminée sur le plateau plan perforé (5) , le manchon étant lui-même inséré dans un orifice circulaire (16) du plateau plan (5), et d'autre part pour obstruer l'autre extrémité de la cheminée, le second manchon comportant alors un élément coiffant (15). Le premier manchon est par exemple solidarisé au plateau plan perforé par tout moyen adéquat, par exemple par soudage, vissage, collage, clipsage ou analogues. De même, l'élément coiffant (15) est fixé au deuxième manchon par soudage, collage, vissage, clipsage ou analogues. Les paramètres définissant cette cheminée (6) sont les suivants : " Forme et hauteur totale (H) de la cheminée
• Diamètre intérieur (Di')
• Configuration de la lumière en spirale (22) et répartition des pas des spires du fil (F')
- Matériau du fil (F') - Section (s') du fil (F')
• Dimension de la section (s') du fil (F')
" Longueur (L) du retour radial ou ergot (21) Par son action de filtration et de prédistribution en amont du lit catalytique , le dispositif (4) de l'invention présente de nombreux avantages :
L'insertion des cheminées (6) et des éléments filtrants (8) sur le plateau plan perforé (5) est simple et peu coûteuse, notamment dans le cas où les cheminées (6) sont amovibles, en particulier lorsqu'elles sont assemblées manuellement au moyen des manchons (20) sans opération de soudage, et les éléments filtrants (8) peuvent être disposés en vrac par un opérateur. Il est à noter que le plateau perforé (5) non équipé de ses cheminées (6) peut faire office de plateau répartiteur à trous classique ;
La position très en amont du dispositif (4) dans le réacteur permet de maintenir l'intégrité du volume du lit catalytique (12) et d'assurer ainsi la ré activité maximale du catalyseur ;
La filtration du fluide permet de réduire l'encrassement des cheminées de mélange (10) situées sur le plateau distributeur (9), de limiter l'augmentation de la perte de charge et de garantir une meilleure intégrité mécanique des inertes (1 1) ;
La filtration du fluide liquide évite l'encrassement de la première couche du lit catalytique (12). De ce fait l'écroutage du lit et les coûteuses opérations de démontage du plateau de distribution (9) ne sont plus nécessaires.
La durée du cycle de fonctionnement des réacteurs (1), sensibles à l'encrassement des couches supérieures des lits catalytiques (12), est augmentée ; - Les opérations d'écroutage et de changement de tout ou partie du catalyseur sont limitées réduisant ainsi les coûts d'interventions. Des charges (C) moins nobles peuvent être traitées.
Les éléments filtrants (8) formant le lit de filtration (7) du dispositif sont maintenant décrits plus en détails en référence aux figures 5 à 8.
Ces éléments filtrants (8), qui sont disposés sur le plateau plan perforé de prédistribution (5) autour des cheminées (6), sont des éléments creux agencés à la manière d'un ressort à spires jointives et non jointives et dont une extrémité est fermée. Sur les figures 5 à 8, la vue de côté permet de voir chaque élément dans son ensemble et plus particulièrement la géométrie cylindrique ou sphérique. La vue de dessus donne accès aux extrémités ouvertes et fermées des éléments ainsi qu'aux variantes non limitatives. Les éléments filtrants représentés sur ces figures sont obtenus par l'enroulement en spires d'un fil unique F de section (s). Chaque élément présente deux extrémités Fl, F2 situées à l'opposé l'une de l'autre suivant l'axe d'enroulement des spires.
La figure 5 représente un élément A : cet élément est cylindrique, à spires non jointives de pas PA et comporte une extrémité ouverte Fl et une extrémité fermée F2 obtenue par rétrécissement conique de type spires jointives de la géométrie principale.
La figure 6 représente un élément B : cet élément est sphérique, à spires jointives de pas PB et comporte deux extrémités fermées Fl et F2. La figure 7a représente un élément C : cet élément est sphérique, à spires jointives de pas PC et comporte une extrémité ouverte Fl et une extrémité fermée F2.
La figure 7b représente un élément C : cet élément est également sphérique, mais à spires non jointives de pas PC, de fait la géométrie de l'élément n'est plus une sphère parfaite mais une sphère allongée dans la direction de l'axe d'enroulement des spires. Il comporte aussi une extrémité ouverte Fl et une extrémité fermée F2.
La figure 8 représente un élément D : cet élément est cylindrique, à spires non jointives de pas PD l sur la zone Zl d'entrée du fluide et PD2 sur la zone Z2 de filtration du fluide. L'élément comporte une extrémité ouverte Fl liée à Zl et une extrémité fermée F2 liée à Z2 et obtenue par rétrécissement conique à spires jointives de la géométrie principale. Dans les variantes représentées sur les figures 8a et 8b, l'extrémité ouverte Fl contient un retour Ra du fil de section (s) en cercle concentrique (figure 8a) ou bien effectue un retour Rb radial (figure 8b) dont la longueur est, de préférence, comprise entre 1 /3 et 2/3 du diamètre du cylindre. La version D correspond à la version optimale retenue pour effectuer les essais de filtration dont les résultats sont présentés dans les exemples. II est à noter que ces éléments filtrants peuvent différer les uns des autres (d'une version à l'autre ou dans une même catégorie) par variation d'un ou plusieurs paramètres :
Hauteur totale de l'élément - Surface occupée (Sm) par le fil et Surface libre (Subre) de l'élément, dans le rapport Subre/Sm précédemment défini ;
Configuration ouverte ou fermée des extrémités et géométries associées ;
Diamètre intérieur Di de l'élément ; - Configurations jointives ou non jointives des spires (pas) et leurs répartitions sur toute la hauteur de l'élément ;
Matériau du fil et géométrie, dimensions de sa section (s); Densité de l'élément.
Comme décrit précédemment, les éléments filtrants (8) peuvent, en fonction du fluide à traiter, différer les uns des autres par variation d'un ou plusieurs paramètres. Le tableau 1 regroupe les paramètres préférés des géométries cylindriques et sphériques des éléments filtrants constituant le lit de filtration (7). Les essais de chargement en vrac des éléments filtrants par le sommet du réacteur sur le plan perforé (5) montrent que la géométrie cylindrique est la mieux adaptée pour obtenir un lit de filtration efficace. En effet, quelque soit leur positionnement après chargement, les éléments filtrants cylindriques (8) présentent toujours des ouvertures, favorisant ainsi la bonne circulation du fluide et donc sa filtration. Une fois colmatés par les particules accumulées, les éléments filtrants (8) continuent à être actifs en assurant la dispersion homogène du fluide épuré, rôle habituellement assuré par les billes inertes (1 1). Enfin, lorsque les interstices entre les éléments filtrants sont eux-mêmes colmatés, il est facile d'enlever, nettoyer ou remplacer les éléments dont le coût de fabrication est faible. Les éléments filtrants (8) selon l'invention présentés dans le tableau
1 présentent chacun une extrémité fermée et une extrémité ouverte. TABLEAU 1
Les figures 9 à 19 présentent les différentes géométries des inertes testés dans l'exemple en comparaison avec l'élément filtrant de géométrie optimale selon la version D. Ces inertes sont sphériques ou cylindriques, pleins ou traversés par des canaux à section circulaire, ovale ou triangulaire, avec ou sans aspérités en surface.
EXEMPLES
Les exemples présentés ci-après ont pour objectif d'illustrer les avantages de l'invention.
La demanderesse s'est attachée à évaluer et comparer l'efficacité d'un lit de filtration faisant partie du dispositif de filtration selon l'invention.
L'état de la technique montre que, dans les réacteurs, les éléments employés pour améliorer la diffusion de fluides afin d'éviter la création de circuits préférentiels, sources de points chauds et de cokage dans le lit catalytique peuvent être qualifiés de « filtrants ». Les billes inertes pleines constituées de silice et d'alumine et placées au dessus du lit catalytique peuvent servir d'illustration. Au cours de la circulation du fluide liquide il apparaît que les particules solides contenues dans celui-ci peuvent s'accumuler dans les zones interstitielles libres situées entre les billes. Comme le montreront les essais, cette rétention des particules sur les inertes ne peut être qualifiée de « filtration » au sens de l'invention, dans la mesure où elle résulte de l'agencement des billes dans le réacteur et non de leurs géométries propres. Il en est de même pour des éléments similaires pleins ou creux, à base de céramique, carbonate de calcium, quartz ou encore verre. Ces éléments peuvent se présenter sous diverses géométries telles que, par exemple, des cylindres pleins, roues à quatre ou sept rayons, cylindres étoiles, sphères à 1 ou 5 canaux traversants, prismes... Leurs dimensions peuvent s'échelonner de quelques millimètres à près de 100 mm. De la même façon que pour les billes inertes, les impuretés contenues dans la charge peuvent s'accumuler dans les interstices libres ou être retenues par les aspérités de surface des éléments. Ces éléments peuvent également être utilisés dans des applications autres que les réacteurs catalytiques à lit fixe, comme par exemple dans les installations de filtration à haute température visant la séparation des particules solides et/ou liquides des gaz chauds. Même s'ils sont parfois qualifiés de « filtrants », ces différents éléments ne le sont pas au sens de l'invention car leurs capacités de rétention dépendent de l'agencement des éléments entre eux et non de leurs géométries propres. La rétention des particules par ces éléments reste donc faible et incertaine. Les essais présentés ici s'attachent à montrer cette caractéristique en mesurant la capacité de filtration de différents lits de filtration.
Les essais ont été réalisés sur 13 références d'éléments comparatifs habituellement utilisés pour la filtration (cf. figures 9 à 19) en comparaison avec un élément D du lit de filtration du dispositif selon l'invention formé d'un enroulement hélicoïdal cylindrique creux fermé à une extrémité et ouvert à l'autre (cf. figure 8 - version D à ouverture simple). A l'exception de la référence N°4, aucune autre référence n'a d'activité catalytique. Les références 1 et 2 sont des sphères pleines présentant un diamètre de 12,7 mm (1/2") et 3, 175 mm (1 /8") respectivement.
Les références 3 à 13 correspondent aux éléments représentés sur les figures 9 à 19 respectivement.
L'élément filtrant du lit de filtration du dispositif selon l'invention (élément D) utilisé dans ces essais est défini par les paramètres suivants :
Hauteur totale de l'élément : 23 mm
- 22% < Siibre/Sm < 23 %
- Pl/P2< 5
Diamètre intérieur Di de l'élément : 10 mm - Configuration de l'élément:
Cylindre de 20 mm de hauteur constitué d'une extrémité ouverte suivie de 3 spires jointive s, elles mêmes suivies d'une zone Zl constituée de 2 spires non jointives à pas PD l constant de 3 mm, ladite zone Zl étant suivie d'une zone Z2 constituée de spires non jointives à pas PD2 constant de 1 mm sur une hauteur de 8 mm, ladite zone Z2 étant suivie par une extrémité fermée conique à spires jointives sur une hauteur de 3 mm.
Fil en Inox 321 de section circulaire de 0,8 mm de diamètre. Les essais ont consisté à évaluer le pouvoir de rétention d'un lit de filtration constitué d'une certaine référence d'éléments filtrants. Les éléments d'une même référence ont ainsi été chargés en vrac afin de constituer un lit de filtration sur colonne de 60cm de hauteur et de 10cm de diamètre.
Dans la première série d'essais, chacun des lits constitué par l'une des 14 références a été pesé à vide puis soumis, pendant 2 heures, à un débit de liquide (120L/h d'eau) chargé en particules colmatantes (2kg de particules solides de granulométrie variant de 10 μm à 400 μm) et à un débit de gaz (2,5 m3/h d'air). A la fin de chaque essai, les éléments chargés en particules constituant les lits de filtration ont été séchés à l'étuve à 1200C pendant 24 heures puis pesés. Le tableau 2 regroupe les résultats de cette première série et révèle la capacité de filtration globale d'un lit de filtration constitué d'une même catégorie d'éléments.
Ces essais mettent en évidence la très faible capacité de filtration de la majorité des éléments testés : 86% des lits de filtration retiennent moins de 3 % de particules . Les deux lits de filtration les plus performants retiennent respectivement un peu plus de 7% de particules pour le lit de filtration constitué des éléments portant la référence N° 12 et un peu plus de 5% pour le lit de filtration constitué des éléments portant la référence N° 14 (élément D filtrant selon l'invention). L'observation à l'œil nu des éléments D du lit de filtration du dispositif selon l'invention montre que les particules s'accumulent à l'intérieur des éléments jusqu'à saturation de ceux-ci.
Dans la seconde série d'essais, les deux lits de filtration constitués des éléments de filtration les plus performants (références N° 12 et N° 14) révélées par la série 1 d'essais ont été soumis, en continu, à 3 passages successifs, de 2 heures chacun, du liquide chargé en particules colmatantes sous débit de gaz (soit 3 fois 120L/h d'eau chargée par 2kg de particules solides de granulométrie variant de 10 à 400 μm sous un débit d'air de 2,5 m3/h). Entre chaque passage, les éléments testés n'étaient ni nettoyés ni remplacés. Les pesées des éléments chargés en particules constituant les lits de filtration ont été effectuées après séchage en étuve (1200C pendant 24 heures). Ces essais cumulés montrent que les éléments creux formés d'un enroulement hélicoïdal selon l'invention ont une capacité de filtration presque double par rapport à celle des éléments N° 12. Ces éléments exercent donc une filtration « active » résultant de leur géométrie propre, contrairement aux éléments N° 12 qui saturent plus rapidement.
Les résultats de ces essais cumulés (tableau 2) montrent que, grâce à leur géométrie adaptée, les éléments du lit de filtration du dispositif selon l'invention filtrent activement le liquide chargé en particules, ces dernières s 'accumulant à l'intérieur des éléments jusqu'à les remplir entièrement.
Les éléments N° 12 n'exercent qu'une « rétention passive » des particules qui s'accumulent dans les interstices laissés libres entre chaque élément. Les aspérités à la surface des éléments N° 12 permettent de capter des particules, mais sont rapidement saturées et ne permettent pas le captage d'un volume important de particules.
Contrairement aux éléments creux formés d'un enroulement hélicoïdal, les autres éléments manquent d'efficacité, ils ne peuvent donc pas être qualifiés de filtrants au sens de l'invention.

Claims

REVENDICATIONS
1 . Dispositif pour la filtration et la prédistribution (4) d'au moins un fluide chargé en particules, caractérisé en ce que ledit dispositif comprend : un plateau (5) plan perforé d'orifices (16), chaque orifice du plateau étant surplombé par une cheminée (6) creuse verticale comportant au moins une lumière traversant sa paroi latérale, un lit de filtration (7) disposé sur le plateau perforé et entourant lesdites cheminées, le lit de filtration comportant au moins une couche d'éléments filtrants (8) creux dont les dimensions sont supérieures aux dimensions des lumières des cheminées, ledit élément filtrant étant obtenu par un enroulement en spires jointives et/ou non jointives d'un fil de section (s) de façon à comporter au moins une extrémité fermée et présentant un rapport surface libre (Subre) de l'élément sur surface occupée (Sm) par le fil compris entre 2 et 50% .
2 . Dispositif pour la filtration et la prédistribution selon la revendication 1, caractérisé en ce que chaque cheminée du plateau perforé (5) est amovible.
3 . Dispositif pour la filtration et la prédistribution selon la revendication 1 ou 2, caractérisé en ce que ladite au moins une lumière (22) de chaque cheminée s'étend suivant une trajectoire sensiblement en forme d'hélice le long de la paroi latérale de la cheminée.
4 . Dispositif pour la filtration et la pré distribution selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la densité de répartition des orifices (16) sur le plateau plan perforé (5) est comprise entre 5 et 150 orifices par m2 de surface du plateau, de préférence entre
30 et 100 orifices par m2 de surface de plateau.
5 . Dispositif pour la filtration et la pré distribution selon l'une quelconque des revendications 1 à 4, caractérisé en ce que chaque cheminée (6) est obtenue par enroulement d'un fil de section (s') en spires non jointives de pas constant sur toute sa hauteur.
6 . Dispositif pour la filtration et la pré distribution selon l'une quelconque des revendications 1 à 5, caractérisé en ce que chaque cheminée (6) est en forme de cylindre et présente des extrémités ouvertes dont l'une au moins se termine par un retour radial du fil de section (s') de longueur comprise entre 1/3 et 2/3 du diamètre de la cheminée.
7 . Dispositif pour la fîltration et la pré distribution selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la hauteur de chaque cheminée (6) est comprise 100 et 1500 mm, de préférence entre
150 et 600 mm.
8 . Dispositif pour la filtration et la pré distribution selon l'une des revendications 1 à 7, caractérisé en ce que au moins une extrémité de la cheminée est conformée de manière à pouvoir être emboîtée manuellement et réversiblement sur un manchon (20) cylindrique.
9 . Dispositif pour la filtration et la prédistribution selon la revendication 8, caractérisé en ce qu'une extrémité de la cheminée est pourvue d'un manchon inséré dans un orifice (16) du plateau perforé (5) et l'autre extrémité de la cheminée (6) est pourvue d'un manchon (20) recouvert d'un élément coiffant (15).
10 . Dispositif pour la filtration et la pré distribution selon l'une quelconque des revendications 1 à 9, caractérisé en ce que chaque cheminée (6) dépasse le niveau du lit de filtration (7) d'une hauteur comprise entre 20 et 70 mm, de préférence entre 30 et 60 mm.
11 . Dispositif pour la filtration et la pré distribution selon l'une quelconque des revendications 1 à 10, caractérisé en ce que le rapport Siibre/Sfîi est compris entre 5 et 30%, de préférence entre 15 et 25%.
12 . Dispositif pour la filtration et la pré distribution selon l'une quelconque des revendications 1 à 1 1, caractérisé en ce que l'élément filtrant (8) est en forme de cylindre ou en forme de sphère.
13 . Dispositif pour la filtration et la pré distribution selon l'une quelconque des revendications 1 à 12, caractérisé en ce que l'élément filtrant (8) comporte une extrémité ouverte suivie d'une zone d'entrée Zl du fluide constituée de spires non jointives de pas Pl suivie d'une zone de filtration Z2 constituée de spires non jointives de pas P2<P1 et qui se prolonge par une extrémité fermée.
14 . Dispositif pour la filtration et la pré distribution selon l'une quelconque des revendications 1 à 13, caractérisé en ce que l'élément filtrant (8) est constitué d'un matériau métallique, de préférence de l'acier ou de l'acier inoxydable.
15 . Dispositif pour la filtration et la pré distribution selon l'une quelconque des revendications 1 à 14, caractérisé en ce que les éléments filtrants (8) d'une même couche du lit de filtration (7) sont identiques entre eux.
16 . Dispositif pour la filtration et la pré distribution selon l'une quelconque des revendications 1 à 15, caractérisé en ce que le lit de filtration (7) est constitué de plusieurs couches organisées selon un gradient de taille des éléments filtrants.
17 . Dispositif pour la filtration et la pré distribution selon l'une quelconque des revendications 1 à 16, caractérisé en ce que les éléments filtrants (8) d'une même couche du lit de filtration (7) sont utilisés seuls ou en association avec d'autres éléments.
18 . Dispositif pour la filtration et la prédistribution selon la revendication 17, caractérisé en ce que les éléments associés sont des particules de catalyseur et/ou des billes inertes.
19 . Utilisation du dispositif (4) pour la filtration et la prédistribution selon l'une quelconque des revendications 1 à 18 dans un réacteur (1) comportant au moins un lit catalytique fixe (12), le réacteur étant alimenté par au moins un liquide chargé en particules et un gaz réactif, ledit dispositif (4) étant situé en amont du lit catalytique (12), le plateau (5) plan étant parallèle à la section transversale du réacteur (1).
20 . Utilisation du dispositif (4) pour la filtration et la prédistribution selon la revendication 19, caractérisée en ce que le dispositif est situé en amont d'un plateau distributeur (9) lui même situé en amont du lit catalytique fixe (12).
21 . Utilisation du dispositif (4) pour la filtration et la prédistribution selon l'une quelconque des revendications 1 à 18 pour des réactions d'hydrotraitement, d'hydrogénation sélective, ou de conversion de résidus ou de coupes hydrocarbonées.
EP09784393A 2008-06-23 2009-05-26 Dispositif de filtration et de predistribution pour reacteur a lit catalytique fixe et son utilisation Withdrawn EP2307127A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0803491A FR2932698B1 (fr) 2008-06-23 2008-06-23 Dispositif de filtration et de predistribution pour reacteur a lit catalytique fixe et son utilisation.
PCT/FR2009/050967 WO2010007265A1 (fr) 2008-06-23 2009-05-26 Dispositif de filtration et de predistribution pour reacteur a lit catalytique fixe et son utilisation

Publications (1)

Publication Number Publication Date
EP2307127A1 true EP2307127A1 (fr) 2011-04-13

Family

ID=40285430

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09784393A Withdrawn EP2307127A1 (fr) 2008-06-23 2009-05-26 Dispositif de filtration et de predistribution pour reacteur a lit catalytique fixe et son utilisation

Country Status (4)

Country Link
US (1) US20110201856A1 (fr)
EP (1) EP2307127A1 (fr)
FR (1) FR2932698B1 (fr)
WO (1) WO2010007265A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2969587B1 (fr) * 2010-12-27 2013-01-04 Total Raffinage Marketing Dispositif allege de chargement de particules solides
FR2996465B1 (fr) * 2012-10-10 2015-10-16 IFP Energies Nouvelles Plateau de distribution filtrant destine a l'alimentation d'un reacteur a lit fixe a co courant descendant de gaz et de liquide pour le traitement de charges lourdes colmatantes
KR101447334B1 (ko) * 2012-12-21 2014-10-06 포스코에너지 주식회사 탈황 장치
JP1517589S (fr) * 2014-03-02 2015-02-16
EP2918332A1 (fr) * 2014-03-14 2015-09-16 Morten Müller Ltd., ApS Plateau de prédistribution et de collecte d'échelle pour récipient à écoulement biphasique vers le bas
EP3294444B1 (fr) 2015-05-14 2020-09-30 SABIC Global Technologies B.V. Réacteurs et dispositifs internes de réacteur pour la déshydrogénation d'hydrocarbures
KR102608487B1 (ko) * 2015-11-09 2023-11-30 아이에프피 에너지스 누벨 촉매 반응기용의 여과 및 분배 디바이스
CN110869104B (zh) * 2017-07-14 2021-12-17 托普索公司 具有过滤器单元的颗粒分离催化化学反应器
US10556212B2 (en) * 2017-12-21 2020-02-11 Uop Llc Scale collection device for downflow reactors
US10537866B2 (en) * 2017-12-21 2020-01-21 Uop Llc Scale collection device for downflow reactors
US10576439B2 (en) * 2017-12-21 2020-03-03 Uop Llc Scale collection device for downflow reactors
US10549249B2 (en) * 2017-12-21 2020-02-04 Uop Llc Scale collection device for downflow reactors
US11298669B2 (en) 2017-12-21 2022-04-12 Uop Llc Scale collection device for downflow reactors
US11224849B2 (en) * 2017-12-21 2022-01-18 Uop Llc Scale collection device for downflow reactors
CN114588852A (zh) * 2022-03-14 2022-06-07 中国石油化工股份有限公司 用于安装在反应器封头内的双层支撑结构及反应器
CN115178192B (zh) * 2022-08-15 2023-06-16 安徽泰亨特科技有限公司 一种固定床反应器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR582972A (fr) * 1924-06-19 1925-01-03 Matériel de remplissage pour colonnes de réaction et de contact
US3584685A (en) * 1968-12-30 1971-06-15 Universal Oil Prod Co Tubular screen
US3992282A (en) * 1973-05-24 1976-11-16 Atlantic Richfield Company Method contacting a bed of solid particles with a stream containing particulate impurities
JP4205841B2 (ja) * 2000-07-31 2009-01-07 株式会社日本触媒 不均一触媒を用いた反応方法およびその反応装置
US7722832B2 (en) * 2003-03-25 2010-05-25 Crystaphase International, Inc. Separation method and assembly for process streams in component separation units
FR2889973B1 (fr) * 2005-08-26 2007-11-09 Inst Francais Du Petrole Plateau filtrant pour reacteur a lit a co courant descendant de gaz liquide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010007265A1 *

Also Published As

Publication number Publication date
FR2932698A1 (fr) 2009-12-25
US20110201856A1 (en) 2011-08-18
FR2932698B1 (fr) 2010-08-13
WO2010007265A1 (fr) 2010-01-21

Similar Documents

Publication Publication Date Title
EP2307127A1 (fr) Dispositif de filtration et de predistribution pour reacteur a lit catalytique fixe et son utilisation
EP3075444B1 (fr) Dispositif de melange et de distribution avec zones de melange et d echange
EP1147808B1 (fr) Sous-ensemble polyfonctionnel assurant la mise en contact , la distribution de matière et l&#39;échange de chaleur et/ou de matière d&#39;au moins une phase gazeuse et d&#39;au moins une phase liquide
WO2017080756A1 (fr) Dispositif de filtration et de distribution pour reacteur catalytique
EP1866068B1 (fr) Dispositif pour le melange et la repartition d&#39;un gaz et d&#39;un liquide en amont d&#39;un lit granulaire
EP1922391A1 (fr) Plateau filtrant pour reacteur a lit fixe a co-courant descendant de gaz et de liquide
EP2151277B1 (fr) Réacteur gaz-liquide à écoulement co-courant ascendant avec plateau distributeur
EP2739383A1 (fr) Plateau distributeur d&#39;un gaz et d&#39;un liquide, reacteur equipe d&#39;un tel plateau et utilisation dudit plateau
EP3277417A1 (fr) Dispositif compact de melange et de distribution combine de fluides pour un reacteur catalytique
EP2813283A1 (fr) Dispositif de distribution d&#39;un fluide
EP3826760B1 (fr) Dispositif de filtration pour un reacteur a co-courant descendant de fluide
WO2010007264A1 (fr) Utilisation pour la filtration d&#39;éléments creux formés d&#39;un enroulement de type hélicoïdal
EP3473335A1 (fr) Panier amovible pour reacteur catalytique
FR3043339A1 (fr) Dispositif de filtration et de distribution pour reacteur catalytique
EP0740955B1 (fr) Enceintes avec soutirage amélioré des particules solides
FR2729585A1 (fr) Enceintes a lit mobile en ecoulement regularise
EP3820601B1 (fr) Dispositif de distribution d&#39;un fluide, apte a etre dispose dans un reacteur comprenant un lit catalytique fixe
FR3066411B1 (fr) Dispositif de melange et de distribution avec systeme d&#39;equilibrage des fluides
FR2925859A1 (fr) Dispositif pour reduire l&#39;effet de la vitesse d&#39;impact d&#39;un fluide sur un lit de particules solides, reacteur equipe d&#39;un tel dispositif et leurs utilisations.
FR3083993A1 (fr) Dispositif de melange et de distribution avec buse d&#39;injection perfectionnee
FR3060413A1 (fr) Procede d&#39;hydrotraitement de charges lourdes en reacteur radial multitubulaire
EP3694639A1 (fr) Dispositif de melange et de distribution avec ouverture longitudinale
EP3463639A1 (fr) Dispositif anti-colmatant pour la circulation ascendante d&#39;un fluide
FR3066409A1 (fr) Dispositif de melange et de distribution avec injection de fluide de trempe ameliore
BE464228A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141202